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Abstract

Let S3−1 denote the unit sphere in Euclidean space R3 , 3 > 2, equipped with surface measure f3−1. An instance

of our main result concerns the regularity of solutions of the convolution equation

0 · ( 5 f3−1)∗(@−1) ��
S3−1 = 5 , a.e. on S3−1,

where 0 ∈ �∞ (S3−1), @ > 2(3 + 1)/(3 − 1) is an integer, and the only a priori assumption is 5 ∈ !2 (S3−1).
We prove that any such solution belongs to the class �∞ (S3−1). In particular, we show that all critical points

associated with the sharp form of the corresponding adjoint Fourier restriction inequality on S3−1 are �∞-smooth.

This extends previous work of Christ and Shao [4] to arbitrary dimensions and general even exponents and plays a

key role in the companion paper [24].

1. Introduction

Sharp Fourier restriction theory has attracted a great deal of interest recently. In the particular case

of the unit sphere equipped with surface measure (S3−1, f3−1), a natural starting point is that of the

Tomas-Stein inequality,

‖ 5̂ f3−1‖!@ (R3) 6 T3,@ ‖ 5 ‖!2 (S3−1) , (1.1)

which is known to hold [28, 29] with T3,@ < ∞ provided that 3 > 2 and @ > @3 := 2 3+1
3−1

; see (1.3) for

the precise definition of the Fourier extension operator. Here T3,@ denotes the optimal constant given by

T3,@ = sup
0≠ 5 ∈!2

‖ 5̂ f3−1‖!@ (R3)
‖ 5 ‖!2 (S3−1)

. (1.2)

By a maximiser of (1.1) we mean a nonzero, complex-valued function 5 ∈ !2 (S3−1) for which

‖ 5̂ f3−1‖!@ (R3) = T3,@ ‖ 5 ‖!2 (S3−1) .
The existence of maximisers for the Tomas-Stein inequality (1.1) has been investigated in the works

[3, 9, 13, 25], but the explicit form of the maximisers is only known in very few, special cases [1, 11].

Once maximisers are known to exist, it is natural to investigate their properties with methods from the

calculus of variations. In the present article, we study the associated Euler-Lagrange equation and show
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that the corresponding critical points are �∞-smooth whenever the exponent @ is an even integer. Our

motivation is twofold. On the one hand, our main result is used in the companion paper [24] to establish

that constant functions are the unique real-valued maximisers for a number of new sharp instances of

inequality (1.1) and to fully characterise all complex-valued maximisers. On the other hand, we extend

the main results of Christ and Shao [4] to arbitrary dimensions and general even exponents.

Let 3 > 2 and @ > @3 be given. Consider the Fourier extension operator E( 5 ) = 5̂ f3−1, acting on

functions 5 : S3−1 → C via

5̂ f3−1 (G) =
∫

S3−1

5 (l)4−8G ·l df3−1 (l). (1.3)

The operator E is bounded from !2 (S3−1) to !@ (R3) in light of (1.1). Its adjoint equals the restriction

operator E∗(6) = 6∨ |S3−1 and is bounded from !@
′ (R3) to !2 (S3−1); here, @′ = @/(@ − 1) denotes the

conjugate Lebesgue exponent of @. Suppose that 5 maximises the functional Φ3,@ associated to (1.1),

Φ3,@ ( 5 ) =
‖ 5̂ f3−1‖@!@ (R3)
‖ 5 ‖@

!2 (S3−1)
, (1.4)

and further assume 5 to be !2-normalised, ‖ 5 ‖!2 (S3−1) = 1. We can then estimate the operator norm of

the extension operator as follows:

‖E‖@
!2→!@ = ‖E( 5 )‖@

!@ (R3) = 〈|E( 5 ) |@−2
E( 5 ),E( 5 )〉 = 〈E∗(|E( 5 ) |@−2

E( 5 )), 5 〉!2 (S3−1)

6 ‖E∗(|E( 5 ) |@−2
E( 5 ))‖!2 (S3−1) 6 ‖E∗‖!@′→!2 ‖|E( 5 ) |@−2

E( 5 )‖!@′ (R3)

= ‖E∗‖!@′→!2 ‖E( 5 )‖@−1

!@ (R3) = ‖E‖@
!2→!@ , (1.5)

where 〈·, ·〉 denotes the !@
′ − !@ pairing in R3 , and 〈·, ·〉!2 (S3−1) denotes the !2 pairing in S3−1. In

addition to easy algebraic manipulations, the first inequality in (1.5) amounts to an application of the

Cauchy-Schwarz inequality, and the second inequality in (1.5) holds because the adjoint operator E∗

is bounded from !@
′

to !2. In the last identity, we also used the fact that the operator norms of E,E∗

coincide, ‖E‖!2→!@ = ‖E∗‖!@′→!2 . Because the first and last terms in the chain of inequalities (1.5)

coincide, all inequalities are forced to be equalities. In particular, equality holds in the application of

the Cauchy-Schwarz inequality, which in turn implies the existence of a constant `, for which

E
∗(|E( 5 ) |@−2

E( 5 )) = ` 5

holds outside a set of zero f3−1-measure. Thus, we see that a maximiser of (1.1) necessarily satisfies

(
| 5̂ f3−1 |@−2 5̂ f3−1

)∨���
S3−1

= _‖ 5 ‖@−2

!2 (S3−1) 5 , f3−1-a.e. on S3−1, (1.6)

for some _ ∈ C. This is the Euler-Lagrange equation associated with the variational problem (1.2); see

[2] for a more general statement. To determine the parameter _ ∈ C, one simply multiplies both sides

of (1.6) by 5̄ and integrates with respect to surface measure to check that _ = Φ3,@ ( 5 ). In particular, 5

is a maximiser of inequality (1.1) if and only if (1.6) holds with _ = T
@

3,@
.

General nonzero solutions of the Euler-Lagrange equation (1.6) are called critical points of the

functional Φ3,@ . As noted in [2], it follows at once that constant functions satisfy (1.6) for some _ > 0,

simply because |f̂3−1 |@−2f̂3−1 is a radial function, the inverse Fourier transform of any radial function

is radial and the restriction of any radial function on R3 to S3−1 is constant.
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If @ = 2= is an even integer, = ∈ N, then the Tomas-Stein inequality (1.1) can be equivalently stated

in convolution form via Plancherel’s theorem as

‖( 5 f3−1)∗=‖2
!2 (R3) 6 (2c)−3T2=

3,2=‖ 5 ‖2=
!2 (S3−1) , (1.7)

where the =-fold convolution measure ( 5 f3−1)∗= is recursively defined for integral values of = > 2 via

( 5 f3−1)∗2 = 5 f3−1 ∗ 5 f3−1, and ( 5 f3−1)∗(=+1)
= ( 5 f3−1)∗= ∗ 5 f3−1. (1.8)

The functional Φ3,2= can then be rewritten as

Φ3,2= ( 5 ) = (2c)3
‖( 5 f3−1)∗=‖2

!2 (R3)

‖ 5 ‖2=
!2 (S3−1)

, (1.9)

and the Euler-Lagrange equation (1.6) translates to

(
( 5 f3−1)∗= ∗ ( 5★f3−1)∗(=−1)

)���
S3−1

= (2c)−3_‖ 5 ‖2=−2
!2 (S3−1) 5 , f3−1-a.e. on S3−1, (1.10)

where 5★ denotes the conjugate reflection of 5 around the origin, defined via

5★(l) = 5 (−l), for all l ∈ S3−1.

A function 5 : S3−1 → C is said to be antipodally symmetric if 5 = 5★, in which case basic properties

of the Fourier transform imply that 5̂ f3−1 is real valued.

The convolution structure of equation (1.10) induces some extra regularity on its solutions, a phe-

nomenon that turns out to hold in greater generality. To describe it precisely, consider the multilinear

operator M: !2 (S3−1)<+1 → !2 (S3−1),

M( 51, . . . , 5<+1) = ( 51f3−1 ∗ · · · ∗ 5<+1f3−1)
���
S3−1

, (1.11)

which is well defined for integral values of < > 4 if 3 = 2 and < > 2 if 3 > 3 in view of the

chain of inequalities (1.5); see also [2, Prop. 2.4]. Further consider the conjugate reflection operator

' : !2 (S3−1) → !2 (S3−1), '( 5 ) = 5★. Given an integer : ∈ N0, the powers ': are defined in the usual

way via composition, with the understanding that '0 = Id. We are interested in solutions of the general

equation

0 · M(':1 ( 5 ), . . . , ':<+1 ( 5 )) = _ 5 , f3−1-a.e. on S3−1, (1.12)

where (:1, . . . , :<+1) ∈ {0, 1}<+1, 0 ∈ �∞ (S3−1) and _ ∈ C. The additional factor 0 ∈ �∞ (S3−1)
brings no further complications to the analysis but can be used to address the smoothness of critical

points for weighted measures on S3−1 and, by an additional scaling argument, on ellipsoids.

Our main result concerns regularity properties of generic solutions of equation (1.12).

Theorem 1.1. Let 3 > 2, and let < be an integer satisfying < > 4 if 3 = 2 and < > 2 if 3 > 3. Let

(:1, . . . , :<+1) ∈ {0, 1}<+1, 0 ∈ �∞(S3−1) and _ ∈ C \ {0}. If 5 ∈ !2 (S3−1) is a complex-valued

solution of equation (1.12), then 5 ∈ �∞ (S3−1).
The special case (3, <) = (3, 2) of Theorem 1.1 implies [4, Theorem 1.1]. Thus, Theorem 1.1 extends [4,

Theorem 1.1] to arbitrary dimensions and general even exponents. Interestingly, our proof of Theorem

1.1 bypasses the Banach fixed point argument from [4] and, as such, could be considered more elementary

and of independent value. Moreover, the case (3, <) = (2, 4) of Theorem 1.1 completes the proof of

the main result in [26], where the following issue was detected: In [26, Proof of Prop. 3.6], the first

(unnumbered) displayed equation on page 9 seems to be incorrect. We further believe that the argument
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in [26] cannot be repaired without studying the regularity of the fourfold convolution f∗4
1

, such as a

Hölder-type estimate of the kind established in Subsection 4.3. The following result is an immediate

consequence of Theorem 1.1 and is used in a crucial manner in the companion paper [24].

Corollary 1.2. Let 3 > 2 and @ > 2 3+1
3−1

be an even integer. If 5 ∈ !2 (S3−1) is a critical point of the

functional Φ3,@ , then 5 ∈ �∞(S3−1). In particular, maximisers of Φ3,@ are �∞-smooth.

1.1. Outline

In Section 2 we recall some useful facts about the special orthogonal group and define the appropriate

smoothness spaces on S3−1 on which our estimates will be based. In Section 3 we collect some simple

properties of the multilinear operator M, defined in (1.11). A fundamental distinction arises, depending

on whether or not the parameters (3, <) from Theorem 1.1 lie on the ‘boundary’ of the set of admissible

values. In the latter case, there is an automatic uniform gain in the initial regularity, which leads to a quick

proof of the smoothing property of M in the ‘non-boundary’ case; see Lemma 3.4. This is not possible

if (3, <) lies on the boundary, because in that case the corresponding functional is essentially scale

invariant. The analysis is then more delicate and relies on Hölder-type estimates for certain convolution

operators, which are the subject of Section 4. In turn, these estimates are used in Section 5 to find a

suitable replacement for Lemma 3.4 in the boundary case; see Lemma 5.2. The final section, Section 6,

is devoted to the proof of Theorem 1.1. We proceed in two steps: firstly, we establish an initial ‘kick’ in

the regularity of any solution of equation (1.12); secondly, we use a bootstrapping procedure to promote

the initial gain in regularity to �∞-smoothness.

1.2. Notation

The set of natural numbers is N = {1, 2, 3, . . .}, and N0 = N ∪ {0}. Given a set � ⊂ R3 , its indicator

function is denoted by1� , its Lebesgue measure by |� | and its complement by �∁ = R3\� . Given A > 0,

we let �(G, A) ⊂ R3 denote the closed ball of radius A centered at G ∈ R3 and abbreviate �A = �(0, A).
We will continue to denote by ( 5 f3−1)∗: the :-fold convolution measure, recursively defined in (1.8).

We denote 1 : S3−1 → R the function 1(l) ≡ 1 and the zero function by 0 : S3−1 → R, 0(l) ≡ 0. We

use - . . , . & - or - = $ (. ) to denote the estimate |- | 6 �. for an absolute constant � and - ≃ .
to denote the estimates - . . . - . We will often require the implied constant � in the above notation

to depend on additional parameters, which we will indicate by subscripts (unless explicitly omitted);

thus, for instance, - . 9 . denotes an estimate of the form |- | 6 � 9. for some � 9 depending on 9 .

2. Function spaces

The special orthogonal group SO(3) consists of all 3 × 3 orthogonal matrices of unit determinant

and acts transitively on the unit sphere S3−1 in the natural way. This action extends to actions on

functions 5 : S3−1 → C by Θ 5 = 5 ◦ Θ for Θ ∈ SO(3) and on finite Borel measures ` on R3 by

Θ(`) (�) = `(Θ(�)) for � ⊆ R3 . This extension interacts well with convolutions, in the sense that

Θ(` ∗ a) = Θ(`) ∗ Θ(a). In particular, for any Θ ∈ SO(3),

Θ( 51f3−1 ∗ · · · ∗ 5:f3−1) = (Θ 51)f3−1 ∗ · · · ∗ (Θ 5: )f3−1. (2.1)

For further information on the special orthogonal group, see [17] and references therein.

Given U ∈ (0, 1), let ΛU (R3) denote the space of Hölder continuous functions 5 : R3 → C of order

U, with norm

‖ 5 ‖ΛU (R3) = ‖ 5 ‖�0 (R3) + sup
G≠G′

|G − G ′ |−U | 5 (G) − 5 (G ′) |. (2.2)

Given 1 < U ∉ N, write U = : + X, with : ∈ N and X ∈ (0, 1). We then say that 5 ∈ ΛU (R3) if 5 is :

times continuously differentiable, 5 ∈ �: (R3) and all of the :th-order partial derivatives of 5 belong
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to ΛX (R3). An equivalent definition of the space ΛU (R3) via Littlewood-Paley projections is available,

but we shall delay its precise formulation until the need arises in the proof of Proposition 3.1. Given

U ∈ (0, 1), the space of Hölder continuous functions 5 : S3−1 → C of order U, denoted ΛU (S3−1),
is defined in a similar way to (2.2). We further consider the space Lip(S3−1) of Lipschitz continuous

functions 5 : S3−1 → C, equipped with the norm

‖ 5 ‖Lip(S3−1) = ‖ 5 ‖�0 (S3−1) + sup
l≠l′

|l − l′ |−1 | 5 (l) − 5 (l′) |.

By �B = �B (S3−1) we mean the usual Sobolev space of functions having B > 0 derivatives in

!2 (S3−1), defined via spherical harmonic expansions – for example, as in [22, §1.7.3, Remark 7.6] – or

by considering a smooth partition of unity and diffeomorphisms onto the unit ball in R3−1 together with

the usual Sobolev norm on R3−1; we set �0 = !2 (S3−1). If B is an integer, then the following norm is

equivalent to any other norm for �B:

‖ 5 ‖� B = ‖ 5 ‖!2 (S3−1) +
∑

168< 963

‖-B8, 9 5 ‖!2 (S3−1) , (2.3)

where the derivatives are given by

-8, 9 = G8m 9 − G 9m8 =
m

m\8, 9
, -B8, 9 =

mB

m\B
8, 9

, (2.4)

and \8, 9 denotes the angle in polar coordinates of the (G8 , G 9 )-plane; see, for instance, [6, §4.5], and [8,

Prop. 3.3].

We find it convenient to work with the function spaces HB = H
B (S3−1), which for 3 = 3 were

introduced in [4]. To extend the definition to general dimensions 3 > 2, recall (2.4), where we introduced

the derivatives -8, 9 = m/m\8, 9 . We can equivalently view -8, 9 as the �∞-vector field on S3−1 that

generates rotations about the (G8 , G 9 )-plane for each 1 6 8 < 9 6 3. In this way, for each a =

(a1, . . . , a3) ∈ S3−1, exp(C-8, 9 ) (a) is obtained by rotating the vector (a8 , a 9 ) by C radians. We note that

{-8, 9 : 1 6 8 < 9 6 3} forms a basis for so(3), the Lie algebra of ($ (3).
Observe that the following quantity defines an equivalent norm on the space ΛU (S3−1), provided

U ∈ (0, 1):
‖ 5 ‖�0 (S3−1) + max

168< 963
sup

l∈S3−1

sup
C ∈R

|C |−U | 5 (4C-8, 9 (l)) − 5 (l) |.

Given B ∈ (0, 1), the spaceHB is defined as the set of all functions 5 ∈ !2 (S3−1) for which the norm

‖ 5 ‖HB = ‖ 5 ‖!2 (S3−1) +
∑

168< 963

sup
|C |61

|C |−B ‖ 5 ◦ 4C-8, 9 − 5 ‖!2 (S3−1) (2.5)

is finite. We further set H0
= !2 (S3−1). Similar to the case of Euclidean space, the notion of weak

differentiability of a function with respect to the vector field -8, 9 is made precise by the use of identity

[24, Eq. (5.4)], which states that, for any complex-valued functions 5 , 6 ∈ �1(S3−1),
∫

S3−1

(-8, 9 5 ) 6 df3−1 = −
∫

S3−1

5 (-8, 96) df3−1. (2.6)

In this way, we say that 5 ∈ !2 (S3−1) is weakly differentiable with respect to the vector field

-8, 9 if there exists a function, denoted -8, 9 5 , that belongs to !1 (S3−1) and satisfies (2.6) for all

6 ∈ �∞ (S3−1).
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If B = : + U, with : ∈ N and U ∈ (0, 1), then the spaceHB consists of all functions 5 ∈ !2 (S3−1) for

which the norm

‖ 5 ‖HB = ‖ 5 ‖!2 (S3−1) +
∑

.

∑

168< 963

sup
|C |61

|C |−U‖. 5 ◦ 4C-8, 9 − . 5 ‖!2 (S3−1) (2.7)

is finite, where . ranges over the finite set of all compositions -81 , 91 ◦ -82 , 92 ◦ · · · ◦ -8ℓ , 9ℓ with 0 6 ℓ 6 :
factors, and 5 itself is viewed as . 5 where . has zero factors. We implicitly assume the function 5 to

be weakly differentiable with respect to the vector fields {-8, 9 }168< 963 as many times as required by the

definition of the norm.

The next result explores the relationship between the function spaces HB and the usual Sobolev

spaces �C .

Lemma 2.1. For every 0 6 C < B, B ∉ N,HB is contained in the Sobolev space �C , and

‖ 5 ‖� C 6 � (B, C)‖ 5 ‖HB , (2.8)

for all 5 ∈ HB and some constant � (B, C) < ∞.

Estimate (2.8) was noted in [4, Lemma 2.1] in the three-dimensional case 3 = 3 when B < 1. From

Lemma 2.1 it follows at once that, given B ∈ (1,∞) \ N, 5 ∈ HB and - ∈ {-8, 9 : 1 6 8 < 9 6 3}, then

‖- 5 ‖!2 (S3−1) . ‖ 5 ‖HB and therefore - 5 ∈ HB−1. This observation will be useful in the sequel.

As a preliminary step towards the proof of Lemma 2.1, we recall the Euclidean Sobolev spaces

�B (R3) and define the spaces HB (R3) in analogy to the spherical ones, HB . Given 5 : R3 → R and

B = : + U with : ∈ N0 and U ∈ (0, 1), we consider the norms

‖ 5 ‖2
� B (R3) :=

∫

R3

(1 + |b |2)B | 5̂ (b) |2 db, (2.9)

‖ 5 ‖HB (R3) := ‖ 5 ‖!2 (R3) +
∑

ℓ

sup
|G |61

|G |−U‖�ℓ 5 ◦ gG − �ℓ 5 ‖!2 (R3) , (2.10)

where the sum in (2.10) runs over all multi-indices ℓ = (ℓ1, . . . , ℓ3) ∈ N3 satisfying 0 6 |ℓ | 6 : ,

�ℓ := m |ℓ |/mGℓ3
3
· · · mGℓ1

1
denotes the partial derivative, gG : R3 → R3 , H ↦→ G + H denotes translation

by G = (G1, . . . , G3) ∈ R3 and 5 itself is viewed as �0 5 . For 1 6 8 6 3, let 48 denote the 8th canonical

vector 48 = (0, . . . , 0, 1, 0, . . . , 0), with the 1 in the 8th position. For every B = : +U, : ∈ N0, U ∈ (0, 1),
the following is an equivalent norm forHB (R3), perhaps more reminiscent to that for S3−1 in (2.7) :

‖ 5 ‖!2 (R3) +
∑

06 |ℓ |6:

∑

16863

sup
|C |61

|C |−U‖�ℓ 5 ◦ gC48 − �ℓ 5 ‖!2 (R3) . (2.11)

It is also worth observing that, by the triangle inequality and the translation invariance of the Lebesgue

measure inR3 , an equivalent norm to that in (2.10) or (2.11) is obtained by replacing sup |C |61 by sup |C |6Y
for any Y > 0. Likewise, by the triangle inequality and the ($ (3)-invariance of the measure f3−1 in

S
3−1, an equivalent norm forHB is obtained from (2.7) by replacing sup |C |61 by sup |C |6Y for any Y > 0.

Proof of Lemma 2.1. We discuss the analogous Euclidean statement for the case of the sphere then

follows by working in local coordinates. In fact, as already mentioned, the �C -norm on S3−1 can be

defined by considering a smooth partition of unity and diffeomorphisms onto the unit ball in R3−1

together with the usual Sobolev norm on R3−1, as in (2.9). In order to handle theHB-norm on S3−1, we

observe that it is likewise amenable to the use of local coordinates: Given a smooth partition of unity

{i8}1686# onS3−1, 5 ∈ HB if and only if i8 5 ∈ HB for every 1 6 8 6 # , and ‖ 5 ‖HB ≃ ∑
1686# ‖i8 5 ‖HB .

Let O8 denote the support of i8 , which we may take to be connected and of small diameter if necessary,

and let {(Ω8 , k8)}1686# denote a system of local coordinates for S3−1 subordinate to {O8}1686# ; that
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is, Ω8 is open and connected, k8 : Ω8 → int(�1) is a diffeomorphism onto the open unit ball in

R
3−1 and O8 ⋐ Ω8 is compactly contained in Ω8 . If Y > 0 is small enough, it then follows that

‖i8 5 ‖!2 (S3−1) = ‖i8 5 ‖!2 (Ω8) and, for every |C | 6 Y,

‖. (i8 5 ) ◦ 4C-:,; − . (i8 5 )‖!2 (S3−1) = ‖. (i8 5 ) ◦ 4C-:,; − . (i8 5 )‖!2 (Ω8∩4−C-:,; (Ω8)) ,

for every . and (:, ;) as in (2.10). In this way, in order to show that ‖i8 5 ‖HB ≃ ‖(i8 5 ) ◦ k−1
8 ‖HB (R3−1) ,

one may appeal to the theory of differentiability along noncommuting vector fields, as developed in [20,

§4]; see, in particular, Lemmas 4.1, 4.2 and Theorem 4.3 in [20].

In light of the previous paragraph, we can assume that in the Euclidean case the relevant supports are

contained in the unit ball of R3 . This will be useful later on in the argument. More precisely, the task is

now to show that there exists � (B, C) < ∞ such that for every 5 ∈ HB (R3) whose support is contained

in the unit ball of R3 , it holds that

‖ 5 ‖� C (R3) 6 � (B, C)‖ 5 ‖HB (R3) , (2.12)

whenever 0 6 C < B ∉ N.

We start by considering the case 0 < C < B < 1 (the case C = 0 being trivial) and recalling

the equivalent formulation of Sobolev spaces in terms of the Riesz potential. Fix C ∈ (0, 1), and let

5 : R3 → R be given. From Plancherel’s theorem, we have that

∫

(R3)2

| 5 (G + H) − 5 (H) |2
|G |3+2C

dG dH =

∫

R3

∫

R3

|48G ·b − 1|2 | 5̂ (b) |2 db
dG

|G |3+2C
(2.13)

= �C ,3

∫

R3

|b |2C | 5̂ (b) |2 db, (2.14)

where we used the fact that the integral

�C ,3 (b) :=

∫

R3

|48G ·b − 1|2
|G |3+2C

dG

satisfies �C ,3 (_b) = _2C �C ,3 (b) for every _ > 0. The constant �C ,3 in (2.14) satisfies �C ,3 = �C ,3 (l) for

any l ∈ S3−1 and is finite as long as C ∈ (0, 1). In turn, because C ∈ (0, 1), we have that

(1 + |b |2)C 6 1 + |b |2C 6 2(1 + |b |2)C ,

for every b ∈ R3 . In particular, the following two-sided estimate holds:

‖ 5 ‖2
� C (R3) ≃C ,3 ‖ 5 ‖2

!2 (R3) +
∫

(R3)2

| 5 (G + H) − 5 (H) |2
|G |3+2C

dG dH. (2.15)

Given B ∈ (C, 1), we use Hölder’s inequality to estimate

∫

(R3)2

| 5 (G + H) − 5 (H) |2
|G |3+2C

dG dH

=

∫

|G |61

∫

R3

| 5 (G + H) − 5 (H) |2
|G |3+2C

dH dG +
∫

|G |>1

∫

R3

| 5 (G + H) − 5 (H) |2
|G |3+2C

dH dG

6

(
sup
|G |61

∫

R3

| 5 (G + H) − 5 (H) |2
|G |2B dH

) ∫

|G |61

dG

|G |3−2(B−C)
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+ 2

∫

|G |>1

∫

R3

| 5 (G + H) |2 + | 5 (H) |2
|G |3+2C

dH dG

.3 (B − C)−1‖ 5 ‖2
H

B (R3) + C
−1‖ 5 ‖2

!2 (R3) .

In light of (2.15), this establishes (2.12) in the particular case when 0 < C < B < 1.

We now consider the case when B = : + U, with : ∈ N and U ∈ (0, 1). No generality is lost in

assuming that C ∈ (:, B) and specialising to the case : = 1, so that the desired conclusion would follow

from the estimate ‖�ℓ 5 ‖� C−1 (R3) . ‖ 5 ‖HB (R3) for every |ℓ | 6 1. In this case, the previous argument

applies to �ℓ 5 provided that �ℓ 5 ∈ !2 (R3) for any |ℓ | = 1, with appropriately bounded !2 (R3)-norm,

which we now verify in the special case when the support of 5 is contained in the unit ball of R3 . As

discussed above, this will suffice for our application to S3−1.

Fix a multi-index ℓ ∈ N3 , |ℓ | = 1, and write � := �ℓ . Let 6 ∈ �∞
0
(R3) be such that supp(6) ⊂ �1.

Then (�6) (H − Cℓ) = − d
dC
(6(H − Cℓ)) = � (6(· − Cℓ)) (H). By Fubini’s theorem and the definition of

weak derivative of 5 , it follows that

0 =

∫ 2

−2

∫

R3

(�6) (H − Cℓ) 5 (H) dH dC = −
∫ 2

−2

∫

R3

6(H) (� 5 ) (H + Cℓ) dH dC.

As a consequence,

∫

R3

� 5 (H)6(H) dH =
1

4

∫ 2

−2

∫

R3

(
� 5 (H) − � 5 (H + Cℓ)

)
6(H) dH dC.

By adding and subtracting appropriate terms, the triangle and Cauchy-Schwarz inequalities and the

invariance of the Lebesgue measure in R3 with respect to translations together imply

����
∫

R3

� 5 (H)6(H) dH

���� 6
1

4

∫ 2

−2

‖� 5 ◦ gCℓ − � 5 ◦ g C
2
ℓ ‖!2 (R3) ‖6‖!2 (R3) dC

+ 1

4

∫ 2

−2

‖� 5 ◦ g C
2
ℓ − � 5 ‖!2 (R3) ‖6‖!2 (R3) dC

.

∫ 1

0

‖� 5 ◦ gCℓ − � 5 ‖!2 (R3) dC ‖6‖!2 (R3)

6

(∫ 1

0

CU dC

)
‖ 5 ‖

H
1+U (R3) ‖6‖!2 (R3) . (2.16)

Consequently, � 5 ∈ !2 (R3) and ‖� 5 ‖!2 (R3) . ‖ 5 ‖HB (R3) . This concludes the proof of the lemma. �

Remark 2.2. For our purposes later on, it will suffice to invoke the following simpler consequence of

Lemma 2.1: For any 0 < B ∉ N, there is a continuous embedding HB ⊆ � ⌊B⌋ . We now provide a short

proof of this fact that is intrinsic to the sphere. The case B ∈ (0, 1) is clear because then� ⌊B⌋ = !2 (S3−1).
For B > 1, B ∉ N and 5 ∈ HB it suffices to show that ‖- 5 ‖!2 (S3−1) . ‖ 5 ‖HB , where - ranges over the

finite set of all compositions -81 , 91 ◦ -82 , 92 ◦ · · · ◦ -8ℓ , 9ℓ with 1 6 ℓ 6 ⌊B⌋ factors.1 As noted in the course

of the proof of Lemma 2.1, we may specialise to the case ℓ = 1 because the general case follows in the

same way. We then simply note that, for any 6 ∈ �∞(S3−1), - ∈ {-8, 9 : 1 6 8 < 9 6 3} and l ∈ S3−1,

it holds that (-6) (4C-l) = (- (6 ◦ 4C- )) (l) = 3
3C
(6(4C-l)), so that

∫ 2c

0
(-6) (4C-l) dC = 0, and the

desired estimate, ����
∫

S3−1

- 5 (l)6(l) df3−1 (l)
���� . ‖ 5 ‖HB ‖6‖!2 (S3−1) ,

1As stated in (2.3) and explained in the references thereafter, it suffices to consider the case ℓ = ⌊B⌋.
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follows in the same way as (2.16). See also [5, Cor. 7] for a discussion of this embedding using an

equivalent definition2 ofHB .

3. Preliminary inequalities

We establish some linear and multilinear inequalities that will be used to analyse the solutions of equation

(1.12). Our first result translates into a modest amount of control over the regularity of convolution

measures in a number of situations of interest.

Proposition 3.1. Given integers 3, < > 2, set U = 1
2
(3 − 1) (< − 2) − 1. Let { 5 9 }<9=1

⊂ �∞ (S3−1). If

U > 0, then 51f3−1 ∗ · · · ∗ 5<f3−1 ∈ ΛU (R3).
The proof of Proposition 3.1 is based on the classical Littlewood-Paley characterisation of the Hölder

spaces ΛU (R3); see [14, §6.3] and [28, Ch. VI, §5].

Proof of Proposition 3.1. Consider a smooth partition of unity in R3 . More precisely, fix [ > 0, a

nonnegative, decreasing and radial �∞-function of compact support, defined on R3 , with the properties

that [(G) = 1 for |G | 6 1 and [(G) = 0 for |G | > 2. Together with [, define another function X by

X(G) := [(G) − [(2G) > 0. For each integer 9 > 1, consider the function i 9 := X(2− 9 ·), which is

supported on the spherical shell {G ∈ R3 : 2 9−1 6 |G | 6 2 9+1}, and let i0 = [, so that

∞∑

9=0

i 9 (G) = 1, for every G ∈ R3 .

For U > 0, a function � : R3 → C belongs to ΛU (R3) if and only if

sup
9∈N0

2 9 U‖(�̂i 9 )∨‖!∞ (R3) < ∞. (3.1)

Moreover, the expression on the left-hand side of (3.1) produces a norm that is equivalent to any other

norm for ΛU (R3); see [14, Theorem 6.3.7]. The Hausdorff-Young inequality implies that estimate (3.1)

is fulfilled if ∫

R3

|�̂ (G)i 9 (G) | dG . 2− 9 U, 9 = 0, 1, 2, . . . ,

for some implicit constant that does not depend on 9 . Now, the Fourier transform of � := 51f3−1 ∗ · · · ∗
5<f3−1 is given by �̂ =

∏<
:=1 5̂:f3−1, which leads to the analysis of the integrals

∫

�2

<∏

:=1

�� 5̂:f3−1 (G)
�� dG,

∫

�
2 9+1 \�2 9−1

<∏

:=1

�� 5̂:f3−1(G)
�� dG, 9 = 1, 2, . . .

A well-known stationary phase argument applied to each 5: ∈ �∞ (S3−1) yields the following decay

estimate:

| 5̂:f3−1 (G) | . (1 + |G |)− 3−1
2 , for every G ∈ R3 ,

where the implicit constant depends only on the dimension 3 and the function 5: ; see [28, Chapter VIII,

§3.1]. Using polar coordinates, it is then direct to check that

∫

�
2 9+1 \�2 9−1

<∏

:=1

�� 5̂:f3−1 (G)
�� dG . 2 932−

9<(3−1)
2 = 2− 9 ( (3−1) ( <

2
−1)−1) ,

2We comment on various equivalent definitions of the spaceHB in Subsection 6.2.
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for every 9 ∈ N. The desired conclusion follows from this and from the observation that �̂ defines a

continuous function on R3 and is thus bounded on the ball �2 ⊂ R3 . �

Remark 3.2. We find it convenient to consider the ‘universe’ of admissible parameters

U = {(3, <) ∈ N2 : 3 = 2 and < > 4, or 3 > 3 and < > 2},

together with its ‘boundary’

mU = {(2, 4), (3, 3)} ∪ {(3, 2) : 3 > 3}. (3.2)

Note that the set U encapsulates the hypotheses on 3, < imposed by Theorem 1.1. On the other hand,

with the exception of (3, <) = (3, 3), the set mU contains precisely those values (3, <) for which <

is the smallest even integer such that T3,<+2 < ∞, and therefore the corresponding inequality (1.1)

holds. As the upcoming sections will reveal, the analysis simplifies considerably if (3, <) ∈ U \ mU,

which is the reason for treating the boundary set mU separately. As a first instance of this phenomenon,

note that, given (3, <) ∈ U, we have that (3, <) ∉ mU if and only if 1
2
(3 − 1) (< − 2) − 1 > 0. These

are precisely the cases covered by Proposition 3.1. See also the comments following Lemma 3.4 and

Remark 6.4.

Recall the operator M: !2 (S3−1)<+1 → !2 (S3−1), which was defined in (1.11) as

M( 51, . . . , 5<+1) = ( 51f3−1 ∗ · · · ∗ 5<+1f3−1)
���
S3−1

.

Lemma 3.3. The operator M defined in (1.11) satisfies the following properties:

(i) M is an (< + 1)-linear operator.

(ii) M is symmetric in the sense that, given any permutation g of {1, 2, . . . , < + 1},

M( 51, . . . , 5<+1) = M( 5g (1) , . . . , 5g (<+1) ). (3.3)

(iii) For any Θ ∈ SO(3), the following identities hold:

M( 51, . . . , 5<+1) ◦ Θ = M( 51 ◦ Θ, . . . , 5<+1 ◦ Θ). (3.4)

(Θ − �)M( 51, . . . , 5<+1) =
<+1∑

9=1

M( 51, . . . , 5 9−1, (Θ − �) 5 9 ,Θ 5 9+1, . . . ,Θ 5<+1) (3.5)

= M((Θ − �) 51,Θ 52, . . . ,Θ 5<+1)
+ M( 51, (Θ − �) 52, . . . ,Θ 5<+1)
...

+ M( 51, 52, . . . , (Θ − �) 5<+1).

(iv) For any B > 0, there exists �B < ∞ such that if { 5 9 }<+1
9=1

⊂ �B , then

‖M( 51, . . . , 5<+1)‖� B 6 �B

<+1∏

9=1

‖ 5 9 ‖� B . (3.6)
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(v) If - = -8, 9 3 for some 1 6 8 < 9 6 3 and { 5: }<+1
:=1

⊂ �1, then

-M( 51, . . . , 5<+1) =
<+1∑

:=1

M( 51, . . . , 5:−1, - 5: , 5:+1, . . . , 5<+1). (3.7)

(vi) For any 0 < B ∉ Z, there exists �B < ∞ such that, if { 5 9 }<+1
9=1

⊂ HB , then

‖M( 51, . . . , 5<+1)‖HB 6 �B

<+1∏

9=1

‖ 5 9 ‖HB . (3.8)

We record the basic !2-estimate, which coincides with the case B = 0 of (3.6):

‖M( 51, . . . , 5<+1)‖!2 (S3−1) .
<+1∏

9=1

‖ 5 9 ‖!2 (S3−1) . (3.9)

Proof of Lemma 3.3. We prove estimate (3.8) only, the rest being direct from the definitions or simple

to verify; in particular, the proof of (iv) is analogous to that of [4, Lemma 2.2]. Let us first assume that

B ∈ (0, 1). Given { 5: }<+1
:=1

⊂ HB , set 6 := M( 51, . . . 5<+1). Let Θ = 4C- ∈ SO(3), where - = -8, 9 for

some 1 6 8 < 9 6 3. In light of (3.5), we then have that

Θ6 − 6 =

<+1∑

:=1

M( 51, . . . , 5:−1, (Θ − �) 5: ,Θ 5:+1, . . . ,Θ 5<+1). (3.10)

By (3.9), the first summand on the right-hand side of (3.10) satisfies

‖M((Θ − �) 51, 52, . . . , 5<+1)‖!2 (S3−1) . ‖Θ 51 − 51‖!2 (S3−1)

<+1∏

ℓ=2

‖ 5ℓ ‖!2 (S3−1) ,

and similarly for the other < summands. It follows that

sup
|C |61

|C |−B ‖6 ◦ 4C- − 6‖!2 (S3−1) .
<+1∑

:=1

sup
|C |61

|C |−B ‖4C- 5: − 5: ‖!2 (S3−1)
∏

ℓ: ℓ≠:

‖ 5ℓ ‖!2 (S3−1)

6
<+1∑

:=1

‖ 5: ‖HB

∏

ℓ: ℓ≠:

‖ 5ℓ ‖!2 (S3−1) 6
<+1∏

:=1

‖ 5: ‖HB .

Because this holds whenever - is any of the vector fields {-8, 9 }168< 963 , estimate (3.8) as follows,

settling (vi) in the special case when B ∈ (0, 1). Now suppose that B = : + U, with : ∈ N and U ∈ (0, 1).
Let 1 6 ℓ 6 : and consider a composition . with ℓ factors as in (2.7). Remark 2.2 and estimate (3.6)

imply that 6 ∈ �: . In light of (3.7), we then see that .6 can be written as a sum of terms of the

form M(.1 51, . . . , .<+1 5<+1), where .1, . . . , .<+1 are compositions of 81, . . . , 8<+1 vector fields -8, 9 ,

and
∑<+1
9=1 8 9 = ℓ. Note that . 9 5 9 ∈ HU for all such vector fields, and ‖. 9 5 9 ‖HU 6 ‖ 5 9 ‖HB . Expanding

(Θ − �).6 as in (3.10), we find in the same way as before that

sup
|C |61

|C |−U‖.6 ◦ 4C- − .6‖!2 (S3−1) .
<+1∏

9=1

‖ 5 9 ‖HB .

This implies the desiredHB-bound for the function 6 and concludes the proof of the lemma. �

3Recall the definition (2.4) of -8, 9 =
m

m\8, 9
.

https://doi.org/10.1017/fms.2021.7 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.7


12 Diogo Oliveira e Silva and René Quilodrán

The following result details a sense in which M can be viewed as a smoothing operator but requires

(3, <) ∉ mU.

Lemma 3.4. Given (3, <) ∈ U \ mU, set U3,< = 1
2
(3 − 1) (< − 2) − 1. If U ∈ (0, 1) is such that

U 6 U3,<, {i 9 }<9=1
⊂ �∞ (S3−1) and 6 ∈ !2 (S3−1), then M(i1, . . . , i<, 6) ∈ HU. Moreover, the

following estimate holds:

‖M(i1, . . . , i<, 6)‖HU

.

( <∏

9=1

‖i 9 ‖!2 (S3−1) + ‖i1f3−1 ∗ · · · ∗ i<f3−1‖ΛU3,<
(R3)

)
‖6‖!2 (S3−1) . (3.11)

It is natural to wonder whether a similar gain in regularity holds in the case when (3, <) ∈ mU. The

(affirmative) answer is more subtle, and we postpone the discussion until Section 5; see Lemma 5.2.

Proof of Lemma 3.4. Recall that U3,< > 0 because (3, <) ∈ U \ mU. It then follows from Proposition

3.1 that i1f3−1 ∗ · · · ∗ i<f3−1 ∈ ΛU3,< (R3). For notational convenience, we shall only consider the

special case when i 9 = i, for all 9 . Given Θ ∈ SO(3) and l ∈ S3−1, estimate

|M(i, . . . , i, 6)◦Θ(l) − M(i, . . . , i, 6) (l) |

6

∫

S3−1

���(if3−1)∗<(Θl − [) − (if3−1)∗<(l − [)
���|6([) | df3−1 ([).

If U ∈ (0, 1) is such that U 6 U3,<, then (if3−1)∗< ∈ ΛU (R3) and, consequently,

|M(i, . . . , i, 6) ◦ Θ(l) − M(i, . . . ,i, 6) (l) |
6 | (Θ − �)l|U‖(if3−1)∗<‖ΛU (R3) ‖6‖!1 (S3−1)
. |Θ − � |U‖(if3−1)∗<‖ΛU (R3) ‖6‖!2 (S3−1) .

Letting Θ = 4C- for some - ∈ {-8, 9 }168< 963 and integrating the square of both sides of the latter

estimate, we obtain

sup
|C |61

|C |−U‖M(i, . . . , i, 6) ◦ Θ − M(i, . . . , i, 6)‖!2 (S3−1)

. sup
|C |61

|C |−U |4C- − � |U‖(if3−1)∗<‖ΛU (R3) ‖6‖!2 (S3−1) .

In turn, this and the basic !2-estimate (3.9) together imply

‖M(i, . . . , i, 6)‖HU . (‖i‖<
!2 (S3−1) + ‖(if3−1)∗<‖ΛU (R3) )‖6‖!2 (S3−1) .

To obtain (3.11), simply rerun the argument with the i 9s in place of i. This completes the proof of the

lemma. �

4. Hölder regularity

In this section, we prove Hölder-type estimates for certain convolution measures, which will pave the

way towards finding a suitable replacement for Lemma 3.4 in the case when (3, <) ∈ mU.
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4.1. Twofold convolutions

The purpose of this subsection is to generalise [4, Lemma 2.3] to arbitrary dimensions 3 > 2. Though for

the most part the analysis follows similar lines to those of [4], we include it for the sake of completeness.

Start by recalling that the twofold convolution f3−1 ∗ f3−1 defines a measure supported on the ball

�2 ⊂ R3 , which is absolutely continuous with respect to the Lebesgue measure on �2, and whose

Radon-Nikodym derivative equals

(f3−1 ∗ f3−1) (G) =
l3−2

23−3

1

|G | (4 − |G |2)
3−3

2
+ . (4.1)

Here, l3−2 := f3−2 (S3−2) = 2c
3−1

2 Γ( 3−1
2
)−1 denotes the surface area of S3−2, H+ := max{0, H} for

H ∈ R, and

(4 − |G |2)
3−3

2
+ :=

(
(4 − |G |2)+

) 3−3
2 ;

see, for instance, [1, Lemma 5].

Let ℎ1, ℎ2 ∈ Lip(S3−1). From [12, Appendix A.2], we know that the function D12 defined by the

relation (ℎ1f3−1 ∗ ℎ2f3−1) (G) = D12 (G) (f3−1 ∗f3−1) (G) for 0 < |G | 6 2 and D12(G) = 0 for |G | > 2 can

be expressed as

D12(G) =
⨏
ΓG

ℎ1 (a)ℎ2(G − a) dfG (a), (4.2)

where ΓG = S
3−1 ∩ (G + S3−1), and

⨏
denotes the averaged integral on the (3 − 2)-dimensional sphere

ΓG ; see also [3] for a careful discussion of the case 3 = 3.

The case 3 = 2 merits some further remarks. In this case, if 0 < |G | < 2, then ΓG consists of two

points, which we identify with S0. Let G⊥ be the 90◦-counterclockwise rotation of G, so that G⊥ · G = 0

and |G⊥ | = |G |. Given G ∈ �2 \ {0} ⊂ R2, there exist unique-up-to-permutation G1, G2 ∈ S1, such that

G = G1 + G2. The vectors G1, G2 are explicitly given by

G1 =
G

2
+
(
1 − |G |2

4

) 1
2 G⊥

|G | , G2 =
G

2
−
(
1 − |G |2

4

) 1
2 G⊥

|G | .

Given ℎ1, ℎ2 ∈ Lip(S1), the convolution ℎ1f1 ∗ ℎ2f1 can be written in the following way: If 0 < |G | 6 2,

then

(ℎ1f1 ∗ ℎ2f1) (G) = 2
ℎ1 (G1)ℎ2(G2) + ℎ1 (G2)ℎ2(G1)

|G |
√

4 − |G |2
,

and for |G | > 2 one obviously has that (ℎ1f1 ∗ ℎ2f1) (G) = 0. In this case, identity (4.2) is then seen to

reduce to

D12(G) =
1

2
(ℎ1 (G1)ℎ2(G2) + ℎ1(G2)ℎ2(G1)), if 0 < |G | 6 2.

Lemma 4.1. Let 3 > 2 and G, G ′ ∈ �2 \ {0} ⊂ R3 . Then

|D12 (G) − D12(G ′) | 6 �‖ℎ1‖Lip(S3−1) ‖ℎ2‖Lip(S3−1)

(
|G − G ′ |1/2 +

����
G

|G | −
G ′

|G ′ |

����
)
,

for some universal constant � < ∞.

Proof. The integral (4.2) defining D12 can be equivalently written as

D12(G) = l−1
3−2

∫

S
3−2
G

ℎ1 ( G2 + d(G)l)ℎ2( G2 − d(G)l) df3−2 (l),
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where the function d > 0 satisfies d(G)2 + (|G |/2)2 = 1, and the unit sphere S3−2
G is contained in the

(3−1)-dimensional subspace ofR3 orthogonal to G and is therefore parallel to the hyperplane containing

ΓG . It is elementary to check that |d(G) − d(G ′) | 6 | |G | − |G ′ | |1/2 for every G, G ′ ∈ �2 \ {0}.
Let us start by considering the case G ′ = _G for some _ > 0. We then have that S3−1

G = S3−1
G′ , and so

���
( G
2
+ d(G)l

)
−
( G ′

2
+ d(G ′)l

)��� 6 1

2
|G − G ′ | + |d(G) − d(G ′) | . |G − G ′ |1/2.

In a similar way,
���
( G
2
− d(G)l

)
−
( G ′

2
− d(G ′)l

)��� . |G − G ′ |1/2.

Denote G1 = G
2
+ d(G)l, G2 = G

2
− d(G)l and D̃(G) = ℎ1 (G1)ℎ2(G2). Because ℎ1, ℎ2 are Lipschitz

functions, we have that

|D̃(G) − D̃(G ′) | = |ℎ1 (G1)ℎ2(G2) − ℎ1 (G ′1)ℎ2(G ′2) |
6 |ℎ2 (G2) | |ℎ1 (G1) − ℎ1 (G ′1) | + |ℎ1 (G ′1) | |ℎ2 (G2) − ℎ2(G ′2) |
6 ‖ℎ2‖!∞ ‖ℎ1‖Lip |G1 − G ′1 | + ‖ℎ1‖!∞ ‖ℎ2‖Lip |G2 − G ′2 |
. ‖ℎ1‖Lip‖ℎ2‖Lip |G − G ′ |1/2.

It then follows by integration over S3−2
G that

|D12 (G) − D12(G ′) | . ‖ℎ1‖Lip‖ℎ2‖Lip |G − G ′ |1/2.

We now consider the case |G | = |G ′ | ∈ (0, 2]. We then have that d(G) = d(G ′). Let Θ ∈ SO(3) denote

a rotation that fixes the space (span{G, G ′})⊥ and sends G/|G | to G ′/|G ′ |. It is not difficult to see that

|Θ − � | 6 |G/|G | − G ′/|G ′ | |. We can then write

D12(G ′) = l−1
3−2

∫

S
3−2
G

ℎ1 ( G
′

2
+ d(G)Θl)ℎ2( G

′
2
− d(G ′)Θl) df3−2 (l),

so that, for n ∈ {−1, 1},
���
( G
2
+ n d(G)l

)
−
( G ′

2
+ n d(G ′)Θl

)��� 6 1

2
|G − G ′ | + d(G) |(Θ − �)l|

6
1

2
|G − G ′ | + d(G)

����
G

|G | −
G ′

|G ′ |

����

=

(
d(G) + |G |

2

)����
G

|G | −
G ′

|G ′ |

���� .
����
G

|G | −
G ′

|G ′ |

����.

Reasoning as before, we conclude that

|D12 (G) − D12(G ′) | . ‖ℎ1‖Lip‖ℎ2‖Lip

����
G

|G | −
G ′

|G ′ |

����.

For general G, G ′ ∈ �2 \ {0} we proceed as follows. Let H = |G |G ′/|G ′ |, so that |H | = |G | and G ′ = _H for

_ = |G ′ |/|G | > 0. Then

|D12 (G) − D12(G ′) | 6 |D12 (G) − D12 (H) | + |D12 (H) − D12(G ′) |

. ‖ℎ1‖Lip‖ℎ2‖Lip

(
|G ′ − H |1/2 +

����
H

|H | −
G

|G |

����
)
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= ‖ℎ1‖Lip‖ℎ2‖Lip

(
| |G | − |G ′ | |1/2 +

����
G ′

|G ′ | −
G

|G |

����
)

6 ‖ℎ1‖Lip‖ℎ2‖Lip

(
|G − G ′ |1/2 +

����
G

|G | −
G ′

|G ′ |

����
)
.

This completes the proof of the lemma. �

The following consequence of Lemma 4.1 will be useful in the forthcoming analysis.

Corollary 4.2. Let 3 > 3 and G, G ′ ∈ �2 \ {0} ⊂ R3 . Then

���|G | (ℎ1f3−1 ∗ ℎ2f3−1) (G) − |G ′ | (ℎ1f3−1 ∗ ℎ2f3−1) (G ′)
���

6 �‖ℎ1‖Lip(S3−1) ‖ℎ2‖Lip(S3−1)

(
|G − G ′ |1/2 +

����
G

|G | −
G ′

|G ′ |

����
)
,

for some universal constant � < ∞.

Proof. From (4.1) and (4.2), for |G | 6 2 we have that

|G | (ℎ1f3−1 ∗ ℎ2f3−1) (G) = 2−3+3l3−2 (4 − |G |2) 3−3
2 D12(G).

The function (4 − |G |2) 3−3
2 1�2

(G) belongs to Λ1/2(R3) if 3 > 4 and to Λ1/2(�2) if 3 = 3. The desired

conclusion follows easily from this and Lemma 4.1. �

4.2. The case (3, =) = (3, 3)
In the course of this subsection only, we shall simplify the notation by writing df = df2. Our goal is to

establish a Hölder estimate for the threefold convolution ℎ1f ∗ ℎ2f ∗ ℎ3f, where {ℎ 9 }3
9=1

are Lipschitz

functions on the unit sphere S2.

Proposition 4.3. Given ℎ1, ℎ2, ℎ3 ∈ Lip(S2), let � = ℎ1f ∗ ℎ2f ∗ ℎ3f. Then there exists a universal

constant � < ∞ such that, for every G, G ′ ∈ R3,

|� (G) − � (G ′) | 6 �
3∏

9=1

‖ℎ 9 ‖Lip(S2) |G − G ′ |1/3.

Proof. By homogeneity, we may assume ‖ℎ 9 ‖Lip = 1, 1 6 9 6 3. Because the function � is compactly

supported, it is enough to consider G, G ′ ∈ R3 for which4 |G − G ′ | ≪ 1. From (4.1) and (4.2), the function

D12 (G) := (2c)−1 |G | (ℎ1f ∗ ℎ2f) (G) is given by

D12(G) =
⨏
ΓG

ℎ1 (a)ℎ2(G − a) dfG (a), (4.3)

where ΓG = S
2 ∩ (G + S2). We further have that

� (G) =
∫

S2

(ℎ1f ∗ ℎ2f) (G − l)ℎ3(l) df(l) = 2c

∫

S2

1 |G−l |<2(l)
|G − l| D12(G − l)ℎ3(l) df(l),

4We will write |G − G′ | ≪ 1 to mean that the quantity |G − G′ | is sufficiently small for the purposes of the corresponding proof.
For instance, in the course of the proof of Proposition 4.3, we can and will assume that |G − G′ | 6 100−1.
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and so

(2c)−1 (� (G) − � (G ′)) =
∫

S2

1 |G′−l |<2(l)
|G ′ − l| (D12(G − l) − D12(G ′ − l)) ℎ3 (l) df(l)

+
∫

S2

(
1 |G−l |<2(l)

|G − l| −
1 |G′−l |<2(l)

|G ′ − l|

)
D12(G − l)ℎ3(l) df(l).

We denote the integrals on the right-hand side of the latter identity by � and � �, respectively. We start

by estimating the first integral.

Estimating �. The first step is to restrict the domain of integration to the region where G−l, G ′−l ∈
�2, plus a remainder, which is$ (|G − G ′ |). With this purpose in mind, decompose S2 = * ∪* ′∪+ ∪, ,

where

* := {l ∈ S2 : |G ′ − l| < 2 6 |G − l|}, * ′ := {l ∈ S2 : |G − l| < 2 6 |G ′ − l|}, (4.4)

+ := {l ∈ S2 : |G − l|, |G ′ − l| < 2}, , := {l ∈ S2 : 2 6 |G ′ − l|, |G − l|}.

The integrand of � vanishes on the region * ′ ∪, , and so we are left to analyse the integrals over *

and + . We claim that f(*) = $ (|G − G ′ |). Indeed, if l ∈ *, then |G ′ − l| < 2 6 |G − l|, so that as

|G ′ − l| > |G − l| − |G − G ′ | > 2 − |G − G ′ | we obtain

* ⊆ {l ∈ S2 : 2 − |G − G ′ | 6 |G ′ − l| 6 2}. (4.5)

This shows that the region * is contained in the intersection of S2 with a spherical shell of thickness

|G − G ′ | centred at G ′. The claim follows. The contribution of* to the integral � can then be bounded in

the following way:

∫

*

1 |G′−l |<2(l)
|G ′ − l| |D12 (G ′ − l)ℎ3(l) | df(l) 6

∫

*

1 |G′−l |<2(l)
|G ′ − l| df(l).

If l ∈ *, then |G ′ − l| > 2 − |G − G ′ | > 1 because |G − G ′ | ≪ 1. As a consequence, the latter integral

can be crudely bounded as follows:

∫

*

df(l)
|G ′ − l| 6 f(*) . |G − G ′ |. (4.6)

To handle the contribution of the region + , note that Lemma 4.1 implies the pointwise estimate

|D12 (G − l) − D12(G ′ − l) | . |G − G ′ |1/2 +
����
G − l
|G − l| −

G ′ − l
|G ′ − l|

���� . (4.7)

The contribution of the region

' :=

{
l ∈ + :

����
G − l
|G − l| −

G ′ − l
|G ′ − l|

���� 6 |G − G ′ |1/2
}

(4.8)

to the integral � is easy to estimate. In view of (4.7) and (4.8),

���
∫

'

1 |G′−l |<2(l)
|G ′ − l| (D12(G − l) − D12(G ′ − l)) ℎ3(l) df(l)

���

.

(∫

'

1 |G′−l |<2(l)
|G ′ − l| df(l)

)
|G − G ′ |1/2 . |G − G ′ |1/2.
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In the second estimate, we used the elementary fact that there exists a universal constant� < ∞ such that

∫

'

1 |G′−l |<2(l)
|G ′ − l| df(l) 6

∫

S2

df(l)
|G ′ − l| 6 � < ∞,

for all G ′ ∈ R3. If l ∈ + \ ', then

|G − G ′ |1/2 <
����
G − l
|G − l| −

G ′ − l
|G ′ − l|

���� 6
2|G − l| |G − G ′ |
|G − l| |G ′ − l| , (4.9)

from which we obtain |G ′ − l| 6 2|G − G ′ |1/2. The contribution of this region can then be estimated as

follows:

���
∫

+ \'

1 |G′−l |<2(l)
|G ′ − l| (D12(G − l) − D12 (G ′ − l)) ℎ3 (l) df(l)

���

.

∫

+ \'

1 |G′−l |<2(l)
|G ′ − l|

����
G − l
|G − l| −

G ′ − l
|G ′ − l|

���� ℎ3(l) df(l)

.

(∫

S2∩� (G′,2 |G−G′ |1/2)

1 |G′−l |<2(l)
|G ′ − l| df(l)

)
‖ℎ3‖!∞

. |G − G ′ |1/2.

From the third line to the fourth line, we used the fact that

q(G ′) :=

∫

S2∩� (G′, Y)

df(l)
|G ′ − l| (4.10)

defines a radial function of G ′ that satisfies

q(G ′) . f(S2 ∩ �(G ′, Y))1/2
. Y.

This concludes the verification of the bound |� | . |G − G ′ |1/2.

Estimating � �. The integral � � is bounded by

∫

S2

����
1 |G−l |<2(l)

|G − l| −
1 |G′−l |<2(l)

|G ′ − l|

���� df(l).

By symmetry, it is enough to consider

∫

)

(
1 |G−l |<2(l)

|G − l| −
1 |G′−l |<2(l)

|G ′ − l|

)
df(l), (4.11)

where the integral is taken over the region

) :=

{
l ∈ S2 :

1 |G−l |<2(l)
|G − l| >

1 |G′−l |<2(l)
|G ′ − l|

}
.

Decompose ) = * ′′ ∪+ ′′, where

* ′′ := {l ∈ ) : |G − l| < 2 6 |G ′ − l|},
+ ′′ := {l ∈ ) : |G − l| < |G ′ − l| < 2}.
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We have that* ′′ = * ′ ∩ ) , and therefore f(* ′′) = $ (|G − G ′ |). Moreover,

∫

* ′′

(
1 |G−l |<2(l)

|G − l| −
1 |G′−l |<2(l)

|G ′ − l|

)
df(l) =

∫

* ′′

df(l)
|G − l| . |G − G ′ |,

where the last inequality follows as in (4.6). The contribution of the region+ ′′ to the integral in (4.11) is

slightly more delicate to estimate. We consider two cases as before. Outside the ball |G ′−l| > |G−G ′ |1/3,

we use the estimate |G − l| > |G ′ − l| − |G − G ′ | & |G − G ′ |1/3, which implies

����
1

|G − l| −
1

|G ′ − l|

���� =
����
|G ′ − l| − |G − l|
|G − l| |G ′ − l|

���� 6
|G ′ − G |

|G − l| |G ′ − l|
. |G − G ′ |−2/3 |G − G ′ | = |G − G ′ |1/3.

Inside the ball |G ′ −l| 6 |G − G ′ |1/3, we also have |G −l| 6 |G − G ′ |1/3, as l ∈ + ′′. The contribution of

this region to the integral in (4.11) is at most two times the integral

q(G ′) =
∫

S2∩� (G′, X)

df(l)
|G ′ − l| ,

where X = |G − G ′ |1/3. Proceeding as in (4.10), one is led to the bound q(G ′) . X, whence the term in

question is $ (|G − G ′ |1/3). This establishes the bound |� � | . |G − G ′ |1/3. The proof of the proposition is

now complete. �

Remark 4.4. Proposition 4.3 implies that if = > 4, then �= := ℎ1f ∗ · · · ∗ ℎ=f ∈ Λ1/3(R3) whenever

{ℎ 9 }3
9=1

⊂ Lip(S2) and {ℎ 9 }=9=4
⊂ !1 (S2). This can be improved under the additional assumption

{ℎ 9 }=9=1
⊂ Lip(S2), in which case we have, for instance, that �6 ∈ Λ2/3(R3). In dimensions 3 > 4,

a similar argument to that in the proof of Proposition 4.3 shows that, if {ℎ 9 }3
9=1

⊂ Lip(S3−1), then

ℎ1f3−1 ∗ ℎ2f3−1 ∗ ℎ3f3−1 ∈ ΛU (R3) for some U > 0. Consequently, if = > 3 and {ℎ 9 }=9=1
⊂ Lip(S3−1),

then ℎ1f3−1 ∗ · · · ∗ ℎ=f3−1 ∈ ΛU (R3) for some U > 0.

4.3. The case (3, =) = (2, 4)
In the course of this subsection only, we shall simplify the notation by writing df = df1. Our goal is to

establish a Hölder-type estimate for the fourfold convolution ℎ1f ∗ ℎ2f ∗ ℎ3f ∗ ℎ4f, where {ℎ 9 }4
9=1

are

Lipschitz functions on the unit circle S1. We start with some preparatory work. As in Subsection 4.1, let

D12(G) =
1

2
(ℎ1 (G1)ℎ2(G2) + ℎ1 (G2)ℎ2(G1))1�2

(G), (4.12)

D34(G) =
1

2
(ℎ3 (G1)ℎ4(G2) + ℎ3 (G2)ℎ4(G1))1�2

(G), (4.13)

both of which satisfy the conclusion of Lemma 4.1. For brevity, we write

� (G) := (f ∗ f) (G) = 4|G |−1 (4 − |G |2)−1/2
1�2

(G), (4.14)

as in (4.1), with 3 = 2. We will make repeated use of the upper bound

1

|G |
√

4 − |G |2
=

√
4 − |G |2
4|G | + |G |

4
√

4 − |G |2
6

1

|G | +
1√

2 − |G |
, for all |G | 6 2, (4.15)
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together with the estimate

f∗4(G) . (1 + | log |G | |)1�4
(G), for all G ∈ R2. (4.16)

Inequality (4.16) follows from [24, Eq. (3.21)] and, in particular, implies that

| · |Vf∗4 ∈ !∞ (R2), for every V > 0. (4.17)

Setting �W (G) = |G |W
(
(D12�) ∗ (D34�)

)
(G), we then have that �W ∈ !∞ (R2), for any W > 0 and

{ℎ 9 }4
9=1

⊂ !∞ (S1). This will be used in Proposition 4.6. The following preparatory result quantifies the

smallness of the function (1� (f ∗ f)) ∗ (f ∗ f) for certain sets � ⊂ R2 of small Lebesgue measure.

Lemma 4.5. Set � = f ∗ f. Let G ∈ �4 ⊂ R2. Then, for every W ∈ (0, 1] and B ∈ (0, W

2(W+1) ), there

exists a constant �W,B < ∞ such that, for all Y ∈ (0, 1),

|G |W
∫

�(G,Y)
� (H)� (G − H) dH 6 �W,BY

min{ 1
6
,

W

2(W+1) −B}, (4.18)

|G |W
∫

�2∩� (G,Y)
� (H)� (G − H) dH 6 �W,BY

min{ 1
2
,W−B}, (4.19)

where �(G, Y) := {H ∈ �2 : 2 − Y 6 |G − H | 6 2}.
Before embarking on the proof of Lemma 4.5, we discuss a coordinate system that will prove

convenient for the argument. Let G ∈ R2, G ≠ 0 be given. A point H ∈ R2 is uniquely determined by the

pair (|H |, |G − H |), up to reflection with respect to the line spanned by G. This gives rise to the so-called

(two-center) bipolar coordinates, defined by (A, B) = (|H |, |G − H |); see [10, §2] and [12, §2.2] for the

use of this coordinate system in a related setting. The map H ↦→ (A, B) = (|H |, |G − H |) is a two-to-one

map from R2 \ span{G} to the region determined by the relations |A − B | < |G | < A + B, whose Jacobian

is given by

dH =
2AB

(|G |2 − (A − B)2) 1
2 ((A + B)2 − |G |2) 1

2

dA dB. (4.20)

After the change of variables 0 = A − B 1 = A + B, the Jacobian becomes

dH =
(0 + 1) (1 − 0)

4(|G |2 − 02) 1
2 (12 − |G |2) 1

2

d0 d1. (4.21)

Proof of Lemma 4.5. From (4.17), it follows that the left-hand sides of (4.18), (4.19) define bounded

functions of G, and therefore Y > 0 can be taken as small as needed in the argument below. We may also

assume that G ≠ 0; otherwise, (4.18) and (4.19) are trivial.

Let us start with (4.18). Note that |�(G, Y) | . Y and that if H ∈ �(G, Y), then |G − H | > 2 − Y > 1. As

a consequence, the left-hand side of (4.18) can be bounded as follows:

|G |W
∫

�(G,Y)

dH

|H |
√

4 − |H |2 |G − H |
√

4 − |G − H |2
. |G |W

∫

�(G,Y)

dH

|H |
√

4 − |H |2
√

2 − |G − H |
.

We then use the upper bound (4.15),

1

|H |
√

4 − |H |2
6

1

|H | +
1√

2 − |H |
, for |H | 6 2, (4.22)
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and are left to analyse the following integrals:

q1 (G, Y) := |G |W
∫

�(G,Y)

dH

|H |
√

2 − |G − H |
, q2(G, Y) := |G |W

∫

�(G,Y)

dH√
2 − |H |

√
2 − |G − H |

.

Analysis of q1(G, Y). We perform a dyadic decomposition of �(G, Y) via

� 9 = {H ∈ �2 : 2 − 2− 9Y 6 |G − H | 6 2 − 2−( 9+1)Y}, 9 ∈ N0, (4.23)

so that

q1(G, Y) = |G |W
∫

�(G,Y)

dH

|H |
√

2 − |G − H |
≃ |G |W

∞∑

9=0

(2− 9Y)−1/2
∫

� 9

dH

|H | .

Further, consider X ∈ (0, 1
2
) and decompose � 9 = � 9 ,1 ∪ � 9 ,2, where � 9 ,1 = {H ∈ � 9 : |H | >

(2− 9Y)1/2−X} and � 9 ,2 = {H ∈ � 9 : |H | 6 (2− 9Y)1/2−X} = � 9 ∩ � (2− 9 Y)1/2−X . Then the contribution of

{� 9 ,1} 9>0 to q1(G, Y) can be bounded as follows:

|G |W
∞∑

9=0

(2− 9Y)−1/2
∫

� 9,1

dH

|H | .
∞∑

9=0

(2− 9Y)−1+X |� 9 ,1 | .
∞∑

9=0

(2− 9Y)−1+X2− 9Y .X Y
X , (4.24)

where we used that |� 9 ,1 | 6 |� 9 | . 2− 9Y. We now proceed to bound the contribution of the sets � 9 ,2
with the help of bipolar coordinates. We have

∫

� 9,2

dH

|H | ≃
∫

|A−B |< |G |<A+B
06A6 (2− 9 Y)1/2−X

2−2− 9 Y6B62−2−( 9+1) Y

B dA dB√
|G |2 − (A − B)2

√
(A + B)2 − |G |2

≃
∫

|0 |< |G |<1
06 0+1

2
6 (2− 9 Y)1/2−X

2−2− 9 Y6 1−0
2
62−2−( 9+1) Y

d0 d1√
|G |2 − 02

√
12 − |G |2

≃
∫

|0 |< |G |<1
06 0+1

2
6 (2− 9 Y)1/2−X

2−2− 9 Y6 1−0
2
62−2−( 9+1) Y

d0 d1√
|G | − |0 |

√
1 − |G |

≃
∫

|0 |< |G |
−2+2−( 9+1) Y606−2+2− 9 Y+(2− 9 Y)1/2−X

∫
1> |G |

−0616−0+2(2− 9 Y)1/2−X

0+4−2− 9+1 Y6160+4−2− 9 Y

d0 d1√
|G | − |0 |

√
1 − |G |

. max{(2− 9Y)1/2, (2− 9Y)1/4−X/2}min{(2− 9Y)1/2, (2− 9Y)1/4−X/2}
= (2− 9Y)1/2(2− 9Y)1/4−X/2,

where we used that in the domain of integration |0 | ≃ 1 ≃ 1, so that
√
1 + |G | ≃ 1 and

√
|G | + |0 | ≃ 1.

Therefore, the contribution of {� 9 ,2} 9>0 to q1(G, Y) can be bounded as follows:

|G |W
∞∑

9=0

(2− 9Y)−1/2
∫

� 9,2

dH

|H | .
∑

9>0

(2− 9Y)−1/2(2− 9Y)1/2(2− 9Y)1/4−X/2

=

∑

9>0

(2− 9Y)1/4−X/2 ≃X Y1/4−X/2. (4.25)

Taking X = 1
6
, we conclude from (4.24) and (4.25) that q1(G, Y) . Y1/6, which is an acceptable

contribution, in the sense that it is smaller than a multiple of the right-hand side of (4.18).
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Analysis of q2(G, Y). The contribution of the region �′ := {H ∈ �(G, Y) :
√

2 − |H | > YX} to q2(G, Y)
can be estimated as follows:

|G |W
∫

�′

dH√
2 − |H |

√
2 − |G − H |

6 |G |WY−X
∫

�′

dH√
2 − |G − H |

. Y−X
∫

�(G,Y)

dH√
4 − |G − H |2

= Y−X
∫ 2c

0

∫ 2

2−Y

A√
4 − A2

dA d\ . Y
1
2
−X . (4.26)

If H ∈ �′′ := �(G, Y) \ �′, then 2 − Y2X 6 |H | 6 2 and 2 − Y 6 |G − H | 6 2. Therefore, �′′ is contained

in the intersection of two annuli of small thickness and located at distance comparable to 2 from the

origin. We may further assume that |G | > YX , because otherwise, given any B ∈ (0, W),

q2(G, Y) 6 (YX) (W−B) |G |Bf∗4(G) .B Y (W−B) X , (4.27)

so that q2(G, Y) = $U (YU) for every U ∈ (0, WX). We now apply the same dyadic decomposition of

�(G, Y) as in (4.23) together with a similar one on the second annulus,

�: = {H ∈ �2 : 2 − 2−:Y2X 6 |H | < 2 − 2−(:+1)Y2X}, : ∈ N0,

so that �′′ = ∪ 9 ,:>0� 9 ∩ �: . This yields

|G |W
∫

�′′

1√
2 − |H |

1√
2 − |G − H |

dH . |G |WY−1/2−X
∑

9 ,:>0

2( 9+:)/2 |� 9 ∩ �: |. (4.28)

We now use bipolar coordinates to bound |� 9 ∩ �: |. First consider the case where, in addition to

|G | > YX , we have |G | 6 4 − YX , so that � 9 and �: intersect transversely; the intersection consists of

two connected components that are symmetric with respect to the line spanned by G. Using bipolar

coordinates, we have that

|� 9 ∩ �: | ≃
∫

|A−B |< |G |<A+B
2−2−: Y2X6A62−2−(:+1) Y2X

2−2− 9 Y6B62−2−( 9+1) Y

AB dA√
|G |2 − (A − B)2

√
(A + B)2 − |G |2

≃
∫

|0 |< |G |<1
2−2−: Y2X6 0+1

2
62−2−(:+1) Y2X

2−2− 9 Y6 1−0
2
62−2−( 9+1) Y

d0 d1√
|G |2 − 02

√
12 − |G |2

. (4.29)

Given (0, 1) in the domain of integration from (4.29), it holds that 0 6 4 − 1 6 Y2X and |0 | 6 Y2X , so

that under the working assumption |G | > YX , we have |G | − |0 | &X |G | and |G | + |0 | ≃ |G |. If, in addition,

|G | 6 4 − YX , then 1 − |G | &X YX , and therefore (4.29) yields

|� 9 ∩ �: | .X |G |−1Y−X (2− 9Y) (2−:Y2X) = |G |−12−( 9+:)Y1+X ,

and (4.28) can be bounded as follows:

|G |W
∫

�′′

1√
2 − |H |

1√
2 − |G − H |

dH .X |G |−(1−W)
∑

9 ,:>0

2−( 9+:)/2Y1/2 . Y
1
2
−X (1−W) . (4.30)

In the complementary case when 4 − YX 6 |G | 6 4, we have |G | − |0 | ≃ 1 and 1 + |G | ≃ 1 in the domain
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of integration from (4.29), so that

|� 9 ∩ �: | ≃
∫

|0 |< |G |<1
2−2−: Y2X6 0+1

2
62−2−(:+1) Y2X

2−2− 9 Y6 1−0
2
62−2−( 9+1) Y

d0 d1√
1 − |G |

=

∫
1> |G |

1>4−2− 9 Y−2−: Y2X

164−2−( 9+1) Y−2−(:+1) Y2X

∫
|0 |< |G |

2−2−: Y2X6 0+1
2
62−2−(:+1) Y2X

2−2− 9 Y6 1−0
2
62−2−( 9+1) Y

d0
1√

1 − |G |
d1

. min{2− 9Y, 2−:Y2X}
∫ 4−2−( 9+1) Y−2−(:+1) Y2X

max{4−2− 9 Y−2−: Y2X , |G | }

d1√
1 − |G |

. min{2− 9Y, 2−:Y2X}max{(2− 9Y)1/2, 2−:/2YX}
= 2−( 9+:)/2Y1/2+X min{2− 9/2Y1/2, 2−:/2YX}.

In this way, (4.28) is bounded as follows:

|G |W
∫

�′′

1√
2 − |H |

1√
2 − |G − H |

dH . |G |W
∑

9 ,:>0

min{2− 9/2Y1/2, 2−:/2YX}

.
∑

9>0

(2− 9Y)1/2 +
∑

9>0

(2− 9Y)1/2 | log(2− 9Y1−2X) |

.B
∑

9>0

(2− 9Y)1/2 +
∑

9>0

YX (2− 9Y1−2X)1/2−B

.B Y
1
2
−B , (4.31)

for any B ∈ (0, 1
2
). In the passage from the first line to the second line above, we split the sum in : ac-

cording to the partition N0 = {: ∈ N0 : : > | log2 (2− 9Y1−2X) |} ∪ {: ∈ N0 : : < | log2(2− 9Y1−2X) |} =:

�1 ∪ �2, respectively, where log2 (·) denotes the base 2 logarithm. On �1, the sum is a convergent geo-

metric series whose value is proportional to the first term; hence it is . (2− 9Y)1/2. On �2, the summands

are constant, and the contribution to the sum equals (2− 9Y)1/2 |�2 | ≃ (2− 9Y)1/2 | log(2− 9Y1−2X) |. As a re-

sult of (4.26), (4.27), (4.30) and (4.31), we conclude the upper bound q2(G, Y) .X,B max{Y 1
2
−X , Y (W−B) X}

for every X ∈ (0, 1
2
) and B ∈ (0, W). Optimising in X, we are thus led to the estimate q2(G, Y) .B Y

W

2(W+1) −B

for every B > 0. This concludes the verification of (4.18).

To handle (4.19), start by noting that

|G |W
∫

�2∩� (G,Y)
� (H)� (G − H) dH = 16|G |W

∫

�2∩� (G,Y)

1

|H |
√

4 − |H |2
1

|G − H |
√

4 − |G − H |2
dH.

Because Y < 1, we may remove the term
√

4 − |G − H |2 from the latter integrand at the expense of a

universal constant. After an application of (4.22), we are then left to study the following integrals:

q3(G, Y) := |G |W
∫

�2∩� (G,Y)

dH

|H | |G − H | , q4(G, Y) := |G |W
∫

�2∩� (G,Y)

dH√
2 − |H | |G − H |

. (4.32)

Analysis of q3(G, Y). Decompose the region of integration �2 ∩ �(G, Y) = �1 ∪ �2, where

�1 := �(G, Y) ∩ {H ∈ �2 : |H | > Y1/2},
�2 := �(G, Y) ∩ {H ∈ �2 : |H | < Y1/2}.
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On the region �1, we may simply estimate

|G |W
∫

�1

dH

|H | |G − H | 6 |G |WY−1/2
∫

� (G,Y)

dH

|G − H | = 2c |G |WY−1/2Y . Y1/2.

We further split �2 = �′
2
∪ �′′

2
, with

�′
2 := �2 ∩ {H : |H | > |G − H |}, and �′′

2 := �2 ∩ {H : |H | < |G − H |}.

If H ∈ �′
2
, then |H | > 1

2
|G |, and therefore

|G |W
∫

�′
2

dH

|H | |G − H | .
∫

�′
2

dH

|H |1−W |G − H | .

Now, |H |−(1−W)1�2
∈ ! ? (R2) for every 1 6 ? < 2

1−W , and |H − G |−1
1�2

∈ !@ (R2) for every 1 6 @ < 2.

Taking 2 < ? < 2
1−W , its conjugate satisfies 2

1+W < ?′ < 2, and so by Hölder’s inequality we have that

∫

�′
2

dH

|H |1−W |G − H | 6
(∫

�
Y1/2

dH

|H |? (1−W)
) 1

?
(∫

� (G,Y)

dH

|G − H |?′
) 1

?′

= 2c

(2−? (1−W))
1
? (2−?′)

1
?′
Y

? (1+W)−2
2? .

Note that (?(1 + W) − 2)/(2?) strictly increases to W as ? increases to 2/(1 − W). In this way, we obtain

|G |W
∫

�′
2

dH

|H | |G − H | .B Y
W−B ,

for every B ∈ (0, W). If H ∈ �′′
2

, then |G − H | > 1
2
|G | and |H | < |G − H | 6 Y; in particular, �′′

2
⊂ �Y .

Therefore, if 2 < ? < 2
1−W , then

|G |W
∫

�′′
2

dH

|H | |G − H | .
∫

�′′
2

dH

|H | |G − H |1−W 6
(∫

�Y

dH

|H |?′
) 1

?′
(∫

� (G,Y)

dH

|G − H |? (1−W)
) 1

?

. Y
2−?′
?′ Y

2−? (1−W)
? = YW .

We conclude that q3(G, Y) .B Ymin{ 1
2
,W−B} for every B ∈ (0, W).

Analysis of q4(G, Y). Proceeding as before, we decompose the region of integration �2 ∩ �(G, Y) =

�1 ∪ �2, where

�1 := �(G, Y) ∩ {H ∈ �2 :
√

2 − |H | > Y1/2},
�2 := �(G, Y) ∩ {H ∈ �2 :

√
2 − |H | < Y1/2}.

On the region �1, we may simply estimate

|G |W
∫

�1

dH√
2 − |H | |G − H |

6 |G |WY−1/2
∫

� (G,Y)

dH

|G − H | . Y
1/2.

If H ∈ �2, then 2 − Y < |H | 6 2, and so 2 − 2Y 6 |G | 6 2 + Y. We may apply a dyadic decomposition,

+ 9 = {H ∈ �2 : 2−( 9+1)Y 6 |G − H | 6 2− 9Y}, 9 ∈ N0,
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so that, letting %(+ 9 ) denote the image of + 9 under the polar coordinate map, and further writing

%(+ 9 ) = {(A, \) : \ ∈ Θ, A ∈ '(\)} for some Θ ⊆ [0, 2c) and '(\) ⊆ [0,∞), we have that

|G |W
∫

�2

dH√
2 − |H | |G − H |

. |G |W
∞∑

9=0

2 9Y−1

∫

+9

dH√
4 − |H |2

= |G |W
∞∑

9=0

2 9Y−1

∫

% (+9 )

A dA d\√
4 − A2

. |G |W
∞∑

9=0

2 9Y−1

∫

Θ

|'(\) |1/2 d\ . |G |W
∞∑

9=0

(2− 9Y)−1(2− 9Y)1/2(2− 9Y) . Y1/2.

In the second-to-last inequality, we used the fact that the length of the intersection of any line with

the annulus + 9 is $ (2− 9Y) (so that |'(\) |1/2 . (2− 9Y)1/2), whereas the angular span Θ has measure

$ (2− 9Y) given that |G | & 1 and+ 9 ⊆ �(G, 2− 9Y). We conclude that q4(G, Y) . Y1/2, and therefore (4.19)

is verified. This finishes the proof of the lemma. �

Proposition 4.6. Given W > 0 and {ℎ 9 }4
9=1

⊂ Lip(S1), let �W = | · |W (ℎ1f ∗ ℎ2f ∗ ℎ3f ∗ ℎ4f). Then

there exist g > 0 and � < ∞ such that, for every G, G ′ ∈ R2,

|�W (G) − �W (G ′) | 6 � |G − G ′ |g , (4.33)

where � 6 �0

∏4
9=1 ‖ℎ 9 ‖Lip(S1) for some constant �0 < ∞ depending only on W.

The proof of Proposition 4.6 will reveal that one can take any g < min{ 1
14
,

W

2(3W+2) }. To a large extent,

the proof follows similar lines to those of Proposition 4.3, and so at times we shall be brief. The main

difference is that now the extra singularity of (f ∗ f) (G) along the boundary circle |G | = 2 also needs

to be accounted for.

Proof of Proposition 4.6. Because the case W > 1 follows from that of W ∈ (0, 1], the latter condition

will be assumed throughout the proof. By homogeneity, we may assume that ‖ℎ 9 ‖Lip = 1, 1 6 9 6 4.

Because�W is compactly supported, it is enough to consider G, G ′ ∈ R2 satisfying |G−G ′ | ≪ 1; we further

assume |G | 6 min{4, |G ′ |}. With the notation introduced above (recall (4.12)–(4.14)), we have that

|�W (G) − �W (G ′) | =
���|G |W (D12� ∗ D34�) (G) − |G ′ |W (D12� ∗ D34�) (G ′)

���

6 |G |W
���(D12� ∗ D34�) (G) − (D12� ∗ D34�) (G ′)

��� + ||G |W − |G ′ |W |
���(D12� ∗ D34�) (G ′)

���. (4.34)

The second summand in (4.34) satisfies the upper bound

| |G |W − |G ′ |W |
���(D12� ∗ D34�) (G ′)

��� 6 | |G |W − |G ′ |W |f∗4(G ′) .W | |G | − |G ′ | |Wf∗4(G ′)

6 |G − G ′ |B |G ′ |W−Bf∗4(G ′)
.W,B |G − G ′ |B ,

for any B ∈ (0, W), where in the third inequality we used |G | 6 |G ′ | to obtain | |G | − |G ′ | | 6 |G ′ | and in

the last inequality we invoked (4.17). The first summand in (4.34) can be rewritten as the sum of two

integrals,

|G |W
(
(D12� ∗ D34�) (G) − (D12� ∗ D34�) (G ′)

)

= |G |W
∫

�2

D12(H)� (H)� (G ′ − H) (D34(G − H) − D34(G ′ − H)) dH

+ |G |W
∫

�2

D12(H)� (H) (� (G − H) − � (G ′ − H)) D34(G − H) dH.
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We denote the integrals on the right-hand side of the latter identity by � and � �, respectively, and

proceed to estimate them separately.

Estimating �. The first step is to restrict the domain of integration to the region where G− H, G ′− H ∈ �2,

plus a$ (|G − G ′ |U) remainder, for some U > 0 to be determined. With this purpose in mind, decompose

�2 = * ∪* ′ ∪+ ∪, , where

* := {H ∈ �2 : |G ′ − H | < 2 6 |G − H |}, * ′ := {H ∈ �2 : |G − H | < 2 6 |G ′ − H |}, (4.35)

+ := {H ∈ �2 : |G − H |, |G ′ − H | < 2}, , := {H ∈ �2 : 2 6 |G ′ − H |, |G − H |}.

The integrand of � vanishes on * ′ ∪, , and so we are left to analyse the integrals over the regions *

and + . As in (4.5), we have that

* ⊆ {H ∈ �2 : 2 − |G − G ′ | 6 |G ′ − H | 6 2} =: �(G ′, |G − G ′ |) (4.36)

and, therefore,

|G |W
∫

*

|D12 (H)D34 (G ′ − H) |� (H)� (G ′ − H) dH 6 |G |W
∫

�(G′, |G−G′ |)
� (H)� (G ′ − H) dH

.W,B |G − G ′ |min{ 1
6
,

W

2(W+1) −B},

for every B ∈ (0, W

2(W+1) ), where the latter inequality follows from estimate (4.18). We now consider the

integral over the set + . To begin with, note that Lemma 4.1 implies the pointwise estimate

|D34 (G − H) − D34(G ′ − H) | . |G − G ′ |1/2 +
����
G − H
|G − H | −

G ′ − H
|G ′ − H |

���� , (4.37)

provided that G − H, G ′ − H ∈ �2. The contribution of the region

' :=

{
H ∈ + :

����
G − H
|G − H | −

G ′ − H
|G ′ − H |

���� 6 |G − G ′ |1/2
}

(4.38)

to the integral � is easy to estimate. In view of (4.37) and (4.38), because |G | 6 |G ′ |,

|G |W
���
∫

'

D12(H)� (H)� (G ′ − H) (D34(G − H) − D34(G ′ − H)) dH

���

. |G ′ |W
(∫

'

� (H)� (G ′ − H) dH

)
|G − G ′ |1/2

6 |G ′ |Wf∗4
2 (G ′) |G − G ′ |1/2 .W |G − G ′ |1/2,

where in the latter inequality we invoked (4.17). If H ∈ + \ ', then |G ′ − H | 6 2|G − G ′ |1/2 as in (4.9).

The contribution of the region + \ ' can then be estimated as follows:

|G |W
���
∫

+ \'
D12(H)� (H)� (G ′ − H) (D34(G − H) − D34(G ′ − H)) dH

���

. |G |W
∫

+ \'
|D12 (H) |� (H)� (G ′ − H)

����
G − H
|G − H | −

G ′ − H
|G ′ − H |

���� dH

6 2|G |W
∫

+∩� (G′,2 |G−G′ |1/2)
� (H)� (G ′ − H) dH

.W,B |G − G ′ |min{ 1
4
,
W
2
−B},

for every B ∈ (0, W
2
). The latter inequality is a consequence of estimate (4.19).
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Estimating � �. The integral � � is bounded in absolute value by

|G |W
∫

�2

� (H) |� (G − H) − � (G ′ − H) | dH.

Decompose �2 = * ∪* ′ ∪ + ∪, as in (4.35) and note that the integrand of � � vanishes on , . The

contribution of the region* ∪* ′ can be handled with estimate (4.18) as follows (recall (4.36)):

|G |W
∫

*∪* ′
� (H) |� (G − H) − � (G ′ − H) | dH 6 2|G |W

∫

�(G, |G−G′ |)
� (H)� (G − H) dH

.W |G − G ′ |min{ 1
6
,

W

2(W+1) −B},

for every B ∈ (0, W

2(W+1) ). The estimate on the region + is more delicate, and we split the analysis into

two cases. Inside the ball |G − H | 6 |G − G ′ |1/4, we also have that |G ′− H | 6 |G − G ′ | + |G − H | . |G − G ′ |1/4.

In order to bound the corresponding piece of � �, it suffices to consider the integral

i(G, G ′) := |G ′ |W
∫

+∩� (G′, |G−G′ |1/4)
� (H)� (G ′ − H) dH,

which by (4.19) satisfies i(G, G ′) .B |G − G ′ | 1
4

min{ 1
2
,W−B} for every B ∈ (0, W). We proceed with the

analysis of the complementary region; that is, where |G − H | > |G − G ′ |1/4. If H ∈ �2, then

� (H) = 4

|H |
√

4 − |H |2
=

√
4 − |H |2
|H | + |H |√

4 − |H |2

and, as a consequence,

|� (G − H) − � (G ′ − H) |

6

����

√
4 − |G − H |2
|G − H | −

√
4 − |G ′ − H |2
|G ′ − H |

���� +
����

|G − H |√
4 − |G − H |2

− |G ′ − H |√
4 − |G ′ − H |2

����

6
√

4 − |G − H |2
����

1

|G − H | −
1

|G ′ − H |

���� +
1

|G ′ − H | |
√

4 − |G − H |2 −
√

4 − |G ′ − H |2 |

+ |G − H |
����

1√
4 − |G − H |2

− 1√
4 − |G ′ − H |2

���� +
1√

4 − |G ′ − H |2
���|G − H | − |G ′ − H |

���.

Using the triangle inequality and recalling that � (G ′ − H) = 4

|G′−H |
√

4−|G′−H |2
,

|� (G − H) − � (G ′ − H) | . |G − G ′ |
|G − H | |G ′ − H | +

����
1√

4 − |G − H |2
− 1√

4 − |G ′ − H |2

����

+ |G − G ′ |1/2
|G ′ − H | + |G − G ′ |√

4 − |G ′ − H |2

.
|G − G ′ |

|G − H | |G ′ − H | +
����

1√
4 − |G − H |2

− 1√
4 − |G ′ − H |2

����

+ |G − G ′ |1/2� (G ′ − H).
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If |G − H | > |G − G ′ |1/4, then |G ′ − H | > |G − H | − |G − G ′ | & |G − G ′ |1/4. Then for H ∈ + ∩ �(G, |G − G ′ |1/4)∁
we obtain

|� (G − H) − � (G ′ − H) | . |G − G ′ |1/2 +
����

1√
4 − |G − H |2

− 1√
4 − |G ′ − H |2

����

+ |G − G ′ |1/2� (G ′ − H).

It follows that the contribution of this region to the integral � � is bounded by

|G |W |G − G ′ |1/2
∫

+

� (H) dH + |G |W |G − G ′ |1/2
∫

+

� (H)� (G ′ − H) dH

+ |G |W
∫

+∩� (G, |G−G′ |1/4)∁
� (H)

����
1√

4 − |G − H |2
− 1√

4 − |G ′ − H |2

���� dH

. |G − G ′ |1/2 + |G |W
∫

+∩� (G, |G−G′ |1/4)∁
� (H)

����
1√

4 − |G − H |2
− 1√

4 − |G ′ − H |2

���� dH,

where we used that |G | 6 |G ′ |, |G |W
∫
+
� (H)� (G ′ − H) dH 6 |G ′ |Wf∗4(G ′) 6 �W < ∞ and

∫
+
� (H) dH 6

f(S1)2. The last integral left to analyse is

|G |W
∫

+∩� (G, |G−G′ |1/4)∁
� (H)

����
1√

4 − |G − H |2
− 1√

4 − |G ′ − H |2

���� dH. (4.39)

Given X ∈ (0, 1
2
), we further decompose the domain of integration, + ∩ �(G, |G − G ′ |1/4)∁, into the

subregion where 4 − |G − H |2 > |G − G ′ | X and its complement. If H ∈ + satisfies 4 − |G − H |2 > |G − G ′ | X ,
then 4 − |G ′ − H |2 & |G − G ′ | X , and so

����
1√

4 − |G − H |2
− 1√

4 − |G ′ − H |2

���� .
|G − G ′ |1/2√

4 − |G − H |2
√

4 − |G ′ − H |2
. |G − G ′ | 1

2
−X .

Therefore, the contribution of this region to the integral (4.39) is bounded by

|G |W |G − G ′ | 1
2
−X

∫

�2

� (H) dH . |G − G ′ | 1
2
−X .

Finally, if 4 − |G − H |2 < |G − G ′ | X , then 2 − |G − H | 6 1
2
|G − G ′ | X , so that this region is contained in the

annular domain

�(G, Y) := {H ∈ �2 : 2 − Y 6 |G − H | 6 2},

for Y = 1
2
|G − G ′ | X . Because we also have 2 − |G ′ − H | 6 |G − G ′ | X if |G − G ′ | ≪ 1, the region is also

contained in �(G ′, 2Y). The triangle inequality implies that the integral over the latter region is bounded

by (two times) the quantity

ĩ(G, G ′) := |G |W
∫

�(G, |G−G′ |X )
� (H)� (G − H) dH.

One last application of estimate (4.18) reveals that ĩ(G, G ′) .W,B |G − G ′ | Xmin{ 1
6
,

W

2(W+1) −B} for every

B ∈ (0, W

2(W+1) ). This concludes the proof of the proposition. �

Remark 4.7. More generally, all higher convolutions �= := ℎ1f ∗ · · · ∗ ℎ=f, = > 5, are Hölder

continuous functions whenever {ℎ 9 }=9=1
⊂ Lip(S1). Indeed, this can be verified for the fifth convolution

�5 = ℎ1f ∗ · · · ∗ ℎ5f by writing �5 = (| · |−W�W) ∗ ℎ5f for any W ∈ (0, 1), studying the differences
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|�5 (G) −�5(G ′) | and using Proposition 4.6 together with the methods employed in its proof. Once it is

known that �5 ∈ ΛU (R2) for some U > 0, it is immediate that �= ∈ ΛU (R2) for every = > 5. This can

be improved, for example, by noting that �10 ∈ Λ2U (R2).

5. HB-bound for a restricted convolution operator

Consider a function � : R3 → C supported on the ball �' ⊂ R3 , for some ' > 0, satisfying, for some

U ∈ (0, 1) and � < ∞,

|� (G) − � (G ′) | 6 � |G − G ′ |U + �
����
G

|G | −
G ′

|G ′ |

���� , for every G, G ′ ∈ �' \ {0}. (5.1)

Then � ∈ !∞ (R3) and is continuous in �' \ {0}. Given W ∈ [0, 1], let  W = | · |−W� and define the

corresponding linear operator KW : �0(S3−1) → !2 (S3−1) via

(KW 5 ) (l) =
∫

S3−1

5 (a) W (l − a) df3−1 (a). (5.2)

Lemma 5.1. Let 3 > 3 and W ∈ [0, 1] or 3 = 2 and W ∈ [0, 1). Let ' > 0 andKW be the linear operator

defined in (5.2) above. Then there exists X = X(3, W, ') > 0 such thatKW extends to a bounded operator

from !2 (S3−1) toHX (S3−1).
Proof. Let us start by considering the case W = 1 in dimensions 3 > 3. Henceforth,  1,K1 will be

denoted by  ,K, respectively. Implicit constants may depend on 3, ', as well as on the constant � from

(5.1). Consider the function X(G) as in the proof of Lemma 3.1. Introduce a radial partition of unity on

�', {q 9 } 9>0, where q 9 = X(2 9'−1·) is supported where 2− 9−1' 6 |G | 6 2− 9+1', and
∑
9>0 q 9 (G) = 1

for every G ∈ �' \ {0}. Let  9 =  q 9 , so that ‖ 9 ‖!∞ 6 2 9+1'−1‖�‖!∞ , and  9 is supported in the

spherical shell

� 9 (') := {G ∈ R3 : 2− 9−1' 6 |G | 6 2− 9+1'}.

For G, G ′ ∈ � 9 ('), we have that

| 9 (G) −  9 (G ′) | = | |G |−1� (G)q 9 (G) − |G ′ |−1� (G ′)q 9 (G ′) |
6 | |G |−1 − |G ′ |−1 | |� (G) |q 9 (G) + |G ′ |−1 |� (G) − � (G ′) |q 9 (G)
+ |G ′ |−1 |� (G ′) | |q 9 (G) − q 9 (G ′) |

.

����
1

|G | −
1

|G ′ |

���� + 2 9 |G − G ′ |U + 2 9
����
G

|G | −
G ′

|G ′ |

���� + 22 9 |G − G ′ |

. 22 9 |G − G ′ | + 2 9 |G − G ′ |U + 2 9
(

1

|G | +
1

|G ′ |

)
|G − G ′ |

. 22 9 |G − G ′ |U . (5.3)

If G, G ′ ∈ �', G ∈ supp( 9 ) but G ′ ∉ supp( 9 ), then | 9 (G) −  9 (G ′) | = | 9 (G) | . 2 9 .

To each  9 there is a corresponding operator K 9 , so that K =
∑
9>0K 9 . The claimed boundedness

of K is ensured if the operator norms of the K 9 are summable in 9 . In turn, the operator K 9 is bounded

on !2 (S3−1), with operator norm ‖K 9 ‖!2→!2 = $ (2−(3−2) 9 ). Indeed, by Schur’s test, we have that

sup
a∈S3−1

∫

S3−1

| 9 (l − a) | df3−1 (l) = sup
l∈S3−1

∫

S3−1

| 9 (l − a) | df3−1 (a)

. 2 9 sup
l∈S3−1

∫

S3−1

1{2− 9−1'6 |l−a |62− 9+1'} (a) df3−1 (a)
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. 2−(3−2) 9 .

Moreover, K 9 maps !2 (S3−1) to ΛU (S3−1). To see why this is the case, given l, l′ ∈ S3−1, define the

sets

* (l, l′) := {a ∈ S3−1 : l − a ∈ supp( 9 ), l′ − a ∉ supp( 9 )},
* (l′, l) := {a ∈ S3−1 : l′ − a ∈ supp( 9 ), l − a ∉ supp( 9 )},

+ := {a ∈ S3−1 : l − a, l′ − a ∈ supp( 9 )}.

Observe that

f3−1 (+) 6
∫

S3−1

1{ |l−a |62− 9+1'} (a) df3−1 (a) . 2−(3−1) 9 .

On the other hand, and similar to (4.5), the following inclusion holds:

* (l, l′) ⊆ {a ∈ S3−1 : 2− 9−1' − |l − l′ | 6 |l′ − a | 6 2− 9−1'}
∪ {a ∈ S3−1 : 2− 9+1' − |l − l′ | 6 |l − a | 6 2− 9+1'}.

In particular, f3−1 (* (l, l′)) . 2−(3−2) 9 |l − l′ |. By the same argument, we also have that

f3−1 (* (l′, l)) . 2−(3−2) 9 |l − l′ |. Then we may use (5.3) and estimate

| (K 9 5 ) (l) − (K 9 5 ) (l′) | 6
∫

* (l,l′)∪* (l′,l)∪+
| 9 (l − a) −  9 (l′ − a) | | 5 (a) | df3−1 (a)

. 22 9 |l − l′ |U
∫

+

| 5 (a) | df3−1 (a) + 2 9
∫

* (l,l′)
| 5 (a) | df3−1 (a)

. 22 9 |l − l′ |U2−
3−1

2
9 ‖ 5 ‖!2 + 2−

3−4
2
9 |l − l′ |1/2‖ 5 ‖!2

. 2−
3−5

2
9 |l − l′ |min{ 1

2
,U}‖ 5 ‖!2 . (5.4)

No generality is lost in assuming that U 6 1
2
. Inequality (5.4) implies thatK 9 maps !2 toHU boundedly

and, moreover,

‖K 9 5 ‖HU . ‖K 9 5 ‖!2 + 2−
3−5

2
9 ‖ 5 ‖!2 . 2−

3−5
2
9 ‖ 5 ‖!2 . (5.5)

From the definition of theHB-spaces, one directly checks the following interpolation bounds:

‖ 5 ‖
H

\B+(1−\ )C 6 �‖ 5 ‖ \
H

B ‖ 5 ‖1−\
H

C , for all \ ∈ [0, 1], 0 6 B, C < 1.

Using this to interpolate (5.5) with the H0-bound ‖K 9 5 ‖!2 . 2−(3−2) 9 ‖ 5 ‖!2 reveals that if X > 0 is

chosen sufficiently small depending on 3 ∈ {3, 4, 5} and X = U if 3 > 6, then K 9 maps !2 to HX

boundedly, with operator norm $ (2−2 9 ) for some 2 > 0 that does not depend on 9 . This implies that

‖K‖!2→HX < ∞.

We now discuss the case W ∈ [0, 1). If 3 = 2, then the argument above works for the kernel

 W = | · |−W� for any W ∈ (0, 1), because the !2 → !2 operator norm of the corresponding KW, 9 is

then $ (2−(1−W) 9 ). If 3 > 3, then we write  W = | · |1−W 1 and see that the Hölder estimate for  1 easily

yields a corresponding statement for  W for every W ∈ (0, 1); in particular, the above argument also

transfers. The argument for K0 is similar but simpler (details omitted). The proof of the lemma is now

complete. �

We are finally ready to establish a suitable replacement of Lemma 3.4 that handles the cases when

(3, <) ∈ mU.
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Lemma 5.2. Given (3, <) ∈ mU, there exists U > 0 with the following property. If {ℎ 9 }<9=1
⊂ Lip(S3−1)

and 6 ∈ !2 (S3−1), then M(ℎ1, . . . , ℎ<, 6) ∈ HU. Moreover, the following estimate holds:

‖M(ℎ1, . . . , ℎ<, 6)‖HU .
<∏

9=1

‖ℎ 9 ‖Lip(S3−1) ‖6‖!2 (S3−1) .

Proof. We consider three distinct cases:

Case 3 > 3, < = 2. From Corollary 4.2, the function � = | · | (ℎ1f3−1 ∗ ℎ2f3−1) satisfies

|� (G) − � (G ′) | . ‖ℎ1‖Lip‖ℎ2‖Lip

(
|G − G ′ |1/2 +

����
G

|G | −
G ′

|G ′ |

����
)
.

The conclusion then follows from Lemma 5.1 with W = 1.

Case (3, <) = (3, 3). In view of Proposition 4.3, the function ℎ1f2 ∗ ℎ2f2 ∗ ℎ3f2 belongs to Λ1/3(R3).
The conclusion then follows from Lemma 5.1 with W = 0.

Case (3, <) = (2, 4). In view of Proposition 4.6, given W > 0, there exists g ∈ (0, 1) such that the

function | · |W (ℎ1f1 ∗ ℎ2f1 ∗ ℎ3f1 ∗ ℎ4f1) belongs to Λg (R2). The conclusion then follows from Lemma

5.1 applied to any W ∈ (0, 1). �

6. Smoothness of critical points

This section is devoted to the proof of Theorem 1.1. Before starting the proof in earnest, we present two

further results that will simplify the forthcoming analysis.

Given (3, <) ∈ U and smooth functions {i 9 }<9=1
⊂ �∞ (S3−1), we define the linear operator

L = L[i1, . . . , i<] : !2 (S3−1) → !2 (S3−1) via

L[i1, . . . , i<] (6) = M(i1, . . . , i<, 6).

Lemmas 3.4 and 5.2 together imply the bound ‖L(6)‖HU 6 �‖6‖!2 , for some constant � that depends

on 3, <, and on the functions {i 9 }. For our purposes, the precise dependence of the constant � on {i 9 }
is not important; however, it is essential that L defines a bounded operator from !2 (S3−1) to HU for

some exponent U > 0 that is independent of the functions {i 9 }. Lemmas 3.4 and 5.2 can be recast in

terms of the operator L as follows.

Corollary 6.1. Let (3, <) ∈ U. There exists U > 0 such that L[i1, . . . , i<] (6) ∈ HU for any {i 9 }<9=1
⊂

�∞ (S3−1) and 6 ∈ !2 (S3−1). Moreover, the following estimate holds:

‖L[i1, . . . , i<] (6)‖HU 6 �‖6‖!2 (S3−1) , (6.1)

where � < ∞ depends only on 3, <, and on the functions {i 9 }<9=1
.

We shall find it necessary to expand the expressions (Θ − �)M( 51, . . . , 5<+1) and (Θ −
�)2M( 51, . . . , 5<+1), after a suitable decomposition 5 9 = i 9 ,0+i 9 ,1, 1 6 9 6 <+1, has been performed.

A model case for this situation is summarised in the following result. The list of {i 9 } with the 8th term

removed will be denoted by [i1, . . . , i̊8 , . . . , i<+1] := [i1, . . . , i8−1, i8+1, . . . , i<+1].
Lemma 6.2. Let (3, <) ∈ U, let Y ∈ (0, 1) and let { 5 9 }<+1

9=1
⊂ !2 (S3−1). For each 9 , decompose

5 9 = i 9 ,0 + i 9 ,1, with ‖i 9 ,0‖!2 (S3−1) < Y‖ 5 9 ‖!2 (S3−1) and i 9 ,1 ∈ �∞ (S3−1). Then, for any Θ ∈ SO(3),
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the following estimates hold:

‖(Θ − �)M( 51, . . . , 5<+1)‖!2 (S3−1)

.
<+1∑

8=1

‖(Θ − �)L[i1,1, . . . , i̊8,1, . . . , i<+1,1] (i8,0)‖!2 (S3−1)

+
<+1∑

8=1

Y‖(Θ − �)i8,0‖!2 (S3−1)

<+1∏

9=1, 9≠8

‖ 5 9 ‖!2 (S3−1)

+
<+1∑

8=1

‖(Θ − �)i8,1‖!2 (S3−1)

<+1∏

9=1, 9≠8

‖ 5 9 ‖!2 (S3−1) , (6.2)

and

‖(Θ − �)2M( 51, . . . , 5<+1)‖!2 (S3−1)

.
<+1∑

8=1

‖(Θ − �)L[i1,1, . . . , i̊8,1, . . . , i<+1,1] ((Θ − �)i8,0)‖!2 (S3−1)

+
<+1∑

8=1

Y‖(Θ − �)2i8,0‖!2 (S3−1)

<+1∏

9=1, 9≠8

‖ 5 9 ‖!2 (S3−1)

+
<+1∑

8=1

‖(Θ − �)2i8,1‖!2 (S3−1)

<+1∏

9=1, 9≠8

‖ 5 9 ‖!2 (S3−1)

+
∑

168< 96<+1

(Y8 , Y 9 ) ∈{0,1}2

‖(Θ − �)i8, Y8 ‖!2 (S3−1) ‖(Θ − �)i 9 , Y 9 ‖!2 (S3−1)

<+1∏

:=1,:∉{8, 9 }
‖ 5: ‖!2 (S3−1) . (6.3)

Estimates (6.2) and (6.3) exhibit a certain degree of asymmetry with respect to the role played by the

functions i8,0 and i8,1. This is in order to ensure that the less smooth terms ‖(Θ − �)i8,0‖!2 (S3−1) and

‖(Θ − �)2i8,0‖!2 (S3−1) always carry a mitigating factor of Y.

Proof of Lemma 6.2. Decompose each 5 9 = i 9 ,0 + i 9 ,1 as in the statement of the lemma. Substituting

this into 6 := M( 51, . . . , 5<+1) and using the multilinearity of M together with the permutation symmetry

(3.3), we have that

6 =

∑

(Y1 ,..., Y<+1) ∈{0,1}<+1

M(i1, Y1
, . . . , i<+1, Y<+1

)

= M(i1,1, . . . , i<+1,1) +
<+1∑

8=1

L[i1,1, . . . , i̊8,1, . . . , i<+1,1] (i8,0)

+
∑

(Y1 ,..., Y<+1) ∈{0,1}<+1

Y1+···+Y<+16<−1

M(i1, Y1
, . . . , i<+1, Y<+1

).

The first, second and third summands in the latter expression correspond to those cases in which exactly

none, one or at least two of the Y8s are equal to 0, respectively. Therefore,

(Θ − �)6 =(Θ − �)M(i1,1, . . . , i<+1,1) +
<+1∑

8=1

(Θ − �)L[i1,1, . . . , i̊8,1, . . . , i<+1,1] (i8,0)
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+
∑

(Y1 ,..., Y<+1) ∈{0,1}<+1

Y1+···+Y<+16<−1

(Θ − �)M(i1, Y1
, . . . , i<+1, Y<+1

). (6.4)

In order to !2-bound the terms coming from the latter sum in (6.4), we appeal to identity (3.5) for each

summand and obtain a further sum of terms of the form

M(i1, Y1
, . . . , i8−1, Y8−1

, (Θ − �)i8, Y8 ,Θi8+1, Y8+1
, . . . ,Θi<+1, Y<+1

).

The corresponding !2-norms can be bounded via the basic estimate (3.9), yielding

‖M(i1, Y1
, . . . , i8−1, Y8−1

, (Θ − �)i8, Y8 ,Θi8+1, Y8+1
, . . . ,Θi<+1, Y<+1

)‖!2 (S3−1)

. ‖(Θ − �)i8, Y8 ‖!2 (S3−1)

<+1∏

9=1, 9≠8

‖i 9 , Y 9 ‖!2 (S3−1) . (6.5)

As noted before, the condition Y1 + · · · + Y<+1 6 < − 1 implies the existence of at least two distinct

indices 8′ ≠ 9 ′ such that Y8′ = Y 9′ = 0. In this way, (6.5) is bounded by

Y‖(Θ − �)i8,0‖!2 (S3−1)

<+1∏

9=1, 9≠8

‖ 5 9 ‖!2 (S3−1)

if Y8 = 0 or even better by

Y2‖(Θ − �)i8,1‖!2 (S3−1)

<+1∏

9=1, 9≠8

‖ 5 9 ‖!2 (S3−1)

if Y8 = 1. Finally, observe that

‖(Θ − �)M(i1,1, . . . , i<+1,1)‖!2 (S3−1) 6
<+1∑

8=1

‖(Θ − �)i8,1‖!2 (S3−1)

<+1∏

9=1, 9≠8

‖ 5 9 ‖!2 (S3−1) .

Adding up all of the contributions, we obtain (6.2). Considering now (6.3), we start from (6.4), apply

Θ − � to both sides and obtain

(Θ − �)26 =(Θ − �)2M(i1,1, . . . , i<+1,1)

+
<+1∑

8=1

(Θ − �)2M(i1,1, . . . , i̊8,1, . . . , i<+1,1, i8,0)

+
∑

(Y1 ,..., Y<+1) ∈{0,1}<+1

Y1+···+Y<+16<−1

(Θ − �)2M(i1, Y1
, . . . , i<+1, Y<+1

). (6.6)

Using (3.5) twice together with the basic estimate (3.9), the first term on the latter right-hand side can

be bounded as follows:

‖(Θ − �)2M(i1,1, . . . , i<+1,1)‖!2 (S3−1)

.
∑

168< 96<+1

‖(Θ − �)i8,1‖!2 (S3−1) ‖(Θ − �)i 9 ,1‖!2 (S3−1)
∏

:::∉{8, 9 }
‖ 5: ‖!2 (S3−1)
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+
<+1∑

8=1

‖(Θ − �)2i8,1‖!2 (S3−1)
∏

9: 9≠8

‖ 5 9 ‖!2 (S3−1) .

An upper bound similar to the preceding one also applies to each term from the third sum in (6.6), but

this can be refined as follows:

‖(Θ − �)2M(i1, Y1
, . . . , i<+1, Y<+1

)‖!2 (S3−1)

.
∑

168< 96<+1

‖(Θ − �)i8, Y8 ‖!2 (S3−1) ‖(Θ − �)i 9 , Y 9 ‖!2 (S3−1)
∏

:::∉{8, 9 }
‖ 5: ‖!2 (S3−1)

+
<+1∑

8=1, Y8=1

Y2‖(Θ − �)2i8,1‖!2 (S3−1)
∏

9: 9≠8

‖ 5 9 ‖!2 (S3−1)

+
<+1∑

8=1, Y8=0

Y‖(Θ − �)2i8,0‖!2 (S3−1)
∏

9: 9≠8

‖ 5 9 ‖!2 (S3−1) .

Lastly, each of the terms coming from the second sum in (6.6) can be bounded as follows:

‖(Θ − �)2M(i1,1, . . . , i̊8,1, . . . , i<+1,1, i8,0)‖!2 (S3−1)

.
∑

16 9<:6<+1
9≠8,:≠8

Y‖(Θ − �)i 9 ,1‖!2 (S3−1) ‖(Θ − �)i:,1‖!2 (S3−1)
∏

ℓ∉{ 9 ,: }
‖ 5ℓ ‖!2 (S3−1)

+
<+1∑

9=1, 9≠8

‖(Θ − �)i8,0‖!2 (S3−1) ‖(Θ − �)i 9 ,1‖!2 (S3−1)
∏

:∉{8, 9 }
‖ 5: ‖!2 (S3−1)

+ ‖(Θ − �)L[i1,1, . . . , i̊8,1, . . . , i<+1,1] ((Θ − �)i8,0)‖!2 (S3−1) .

Adding up all of the contributions yields (6.3). This completes the proof of the lemma. �

6.1. Proof of Theorem 1.1

We are now ready to start with the proof of Theorem 1.1 in earnest. As a first step, we establish an initial

regularity kick. Henceforth we assume the parameter _ in equation (1.12) to be nonzero, in which case

_ can be absorbed into the function 0; see the final remark in Subsection 6.3. We are thus interested in

solutions of the equation

0 · M(':1 ( 5 ), . . . , ':<+1 ( 5 )) = 5 , f3−1-a.e. on S3−1. (6.7)

Proposition 6.3. Let (3, <) ∈ U and (:1, . . . , :<+1) ∈ {0, 1}<+1. Assume that 0 ∈ Λ^ (S3−1) for some

^ ∈ (0, 1). Then, given any complex-valued solution 5 ∈ !2 (S3−1) of equation (6.7), there exists B > 0

such that 5 ∈ HB .
Proof. Let 5 ∈ !2 (S3−1) be a complex-valued solution of (6.7), and let Y ∈ (0, 1) be a small constant,

to be chosen in the course of the argument. We may decompose 5 = 6Y + iY , where ‖6Y ‖!2 < Y‖ 5 ‖!2 ,

and iY ∈ �∞. In this way, we have that ‖iY ‖!2 6 (1 + Y)‖ 5 ‖!2 6 2‖ 5 ‖!2 ; it is important that the

latter bound is independent of Y. By multilinearity of M, no generality is lost in assuming that 5 is !2-

normalised, ‖ 5 ‖!2 = 1. In (6.7), we further suppose that :8 = 0 for every 1 6 8 6 <+1. This assumption

is made for notational purposes only, because the exact same argument applies in general.5 Substituting

5Note that the operator ' is a linear isometry and that ‖ (Θ − � ) 5 ‖!2 = ‖ (Θ − � ) 5★ ‖!2 for every Θ ∈ SO(3) .

https://doi.org/10.1017/fms.2021.7 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.7


34 Diogo Oliveira e Silva and René Quilodrán

5 = 6Y + iY into the right-hand side of (6.7), we then see that the function 6Y satisfies the equation

6Y = 0 · M( 5 , . . . , 5 ) − iY .

Given Θ ∈ SO(3), apply Θ − � to both sides of the latter identity, yielding

(Θ − �)6Y = (Θ − �)0 · ΘM( 5 , . . . , 5 ) + 0 · (Θ − �)M( 5 , . . . , 5 ) − (Θ − �)iY .

Consequently,

‖(Θ − �)6Y ‖!2 (S3−1) 6 ‖(Θ − �)0‖!∞ (S3−1) ‖M( 5 , . . . , 5 )‖!2 (S3−1) + ‖(Θ − �)iY ‖!2 (S3−1)
+ ‖0‖!∞ (S3−1) ‖(Θ − �)M( 5 , . . . , 5 )‖!2 (S3−1) .

We estimate the third summand on the right-hand side of the latter inequality with the help of Lemma

6.2, yielding

‖(Θ − �)6Y ‖!2 (S3−1) . ‖(Θ − �)0‖!∞ (S3−1) + (1 + ‖0‖!∞ (S3−1) )‖(Θ − �)iY ‖!2 (S3−1)

+ ‖0‖!∞ (S3−1)
(
‖(Θ − �)L[iY , . . . , iY] (6Y)‖!2 (S3−1) + Y‖(Θ − �)6Y ‖!2 (S3−1)

)
.

We may now choose Y ∈ (0, 1) small enough, depending on 3, < and ‖0‖!∞ , so that the last term on

the right-hand side can be absorbed into the left-hand side, yielding

‖(Θ − �)6Y ‖!2 (S3−1) . ‖(Θ − �)0‖!∞ (S3−1) + (1 + ‖0‖!∞ (S3−1) )‖(Θ − �)iY ‖!2 (S3−1)
+ ‖0‖!∞ (S3−1) ‖(Θ − �)L[iY , . . . , iY] (6Y)‖!2 (S3−1) .

Choose B ∈ (0, 1) in such a way that B 6 ^ and L[iY , . . . , iY] is bounded from !2 toHB , as promised

by Corollary 6.1. Such an B can be chosen independent of the function iY and therefore does not depend

on Y either (but the implicit constant may depend on Y, which we now take as fixed). Setting Θ = 4C-8, 9

for some 1 6 8 < 9 6 3, multiplying by |C |−B and taking the supremum over |C | ∈ [0, 1] yields

sup
|C |61

|C |−B ‖(4C-8, 9 − �)6Y ‖!2 (S3−1)

. ‖0‖ΛB (S3−1) + (1 + ‖0‖!∞ (S3−1) )‖iY ‖HB + �Y ‖0‖!∞ (S3−1) ‖6Y ‖!2 (S3−1) < ∞. (6.8)

Here we are using that the ΛB-norm can be controlled by the Λ^ -norm because B 6 ^. Estimate (6.8)

implies that 6Y ∈ HB and therefore 5 ∈ HB as well. The proof of the proposition is now complete. �

Remark 6.4. If (3, <) ∈ U \mU, then there is an automatic gain in the initial regularity of any complex-

valued 5 ∈ !2 (S3−1) solution of equation (6.7). Indeed, we claim that in that case 5 necessarily

coincides with a continuous function on S3−1. To see why this must be so, start by considering the case

3, < > 3. Writing < + 1 = (< − 1) + 2, where < − 1 > 2, we see that the convolution product on the

left-hand side of (1.12) can be written as

(':1 ( 5 )f3−1 ∗ · · · ∗ ':<−1 ( 5 )f3−1) ∗ (':< ( 5 )f3−1 ∗ ':<+1 ( 5 )f3−1).

Because each of the two functions in the preceding convolution belongs to !2 (R3), their convolution

defines a continuous function of bounded support on R3 . It follows that its restriction to the unit sphere

also defines a continuous function on S3−1, as claimed. An analogous argument works for the case 3 = 2

and < > 5.

The second main step is a bootstrapping procedure that will complete the proof of Theorem 1.1.

Indeed, in light of Remark 2.2, Propositions 6.3 and 6.5 together imply that a solution 5 of equation (6.7)
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(and therefore of equation (1.12) if _ ≠ 0) satisfies 5 ∈ �A for every A > 0. From Sobolev embedding

– see, for example, [18, Theorem 2.7] – it then follows that 5 ∈ �∞ (S3−1).
Proposition 6.5. Let (3, <) ∈ U. Let (:1, . . . , :<+1) ∈ {0, 1}<+1, _ ∈ C \ {0} and 0 ∈ �∞(S3−1). Then

there exists U > 0 with the following property. Let 5 be a solution of equation (6.7) satisfying 5 ∈ HB
for some B > 0. Then 5 ∈ HC for every C ∈ [0, B + min{B − ⌊B⌋, U}] \ Z.

Proof. We make a few initial simplifications. Firstly, we consider the special case 0 ≡ 1 only, because

the general case 0 ∈ �∞(S3−1) brings no additional complications, as shown by the proof of Proposition

6.3. Secondly, we further assume that :8 = 0, for every 1 6 8 6 < + 1; this considerably simplifies the

forthcoming notation but changes nothing fundamental in the analysis. Thirdly, we start by supposing

that B ∈ (0, 1). The case B > 1 will be dealt with at a later stage in the proof.

Assume ‖ 5 ‖!2 = 1, and let Y ∈ (0, 1), to be chosen in the course of the argument. Decompose

5 = 6Y + iY , with iY ∈ �∞ (S3−1) and ‖6Y ‖!2 < Y. In particular, ‖iY ‖!2 6 2. Because 5 ∈ HB , it

follows that 6Y ∈ HB as well. The equation satisfied by 6Y is

6Y = M( 5 , . . . , 5 ) − iY .

Given Θ ∈ SO(3), we have that

(Θ − �)26Y = (Θ − �)2M( 5 , . . . , 5 ) − (Θ − �)2iY

and, therefore,

‖(Θ − �)26Y ‖!2 (S3−1) 6 ‖(Θ − �)2M( 5 , . . . , 5 )‖!2 (S3−1) + ‖(Θ − �)2iY ‖!2 (S3−1) .

Using Lemma 6.2 to estimate the first term on the right-hand side of the preceding inequality, we obtain

‖(Θ − �)26Y ‖!2 (S3−1) . ‖(Θ − �)iY ‖2
!2 (S3−1) + ‖(Θ − �)2iY ‖!2 (S3−1)

+ ‖(Θ − �)iY ‖!2 (S3−1) ‖(Θ − �)6Y ‖!2 (S3−1) + ‖(Θ − �)6Y ‖2
!2 (S3−1)

+ ‖(Θ − �)L[iY , . . . , iY] ((Θ − �)6Y)‖!2 (S3−1) + Y‖(Θ − �)26Y ‖2
!2 (S3−1) .

Now choose Y ∈ (0, 1) small enough, depending on 3, <, in such a way that the last term on the latter

left-hand side can be absorbed into the right-hand side. With such a choice of Y, the following inequality

holds:

‖(Θ − �)26Y ‖!2 (S3−1) . ‖(Θ − �)iY ‖2
!2 (S3−1) + ‖(Θ − �)2iY ‖!2 (S3−1)

+ ‖(Θ − �)iY ‖!2 (S3−1) ‖(Θ − �)6Y ‖!2 (S3−1) + ‖(Θ − �)6Y ‖2
!2 (S3−1)

+ ‖(Θ − �)L[iY , . . . , iY] ((Θ − �)6Y)‖!2 (S3−1) . (6.9)

Now that Y has been fixed, Corollary 6.1 implies that the operator L[iY , . . . , iY] is bounded from !2

toHU, for some U ∈ (0, 1) independent of Y.

Set X = min{B, U}, where U is as in the previous paragraph. In particular, L[iY , . . . , iY] is bounded

from !2 toHX , with operator norm that may depend on Y. Henceforth we consider Θ = Θ(C) = 4C-:,ℓ ,

1 6 : < ℓ 6 3 and |C | 6 1. The following estimate holds:

‖(Θ − �)L[iY , . . . , iY] ((Θ − �)6Y)‖!2 (S3−1)

6 |C | X sup
|g |61

|g |−X ‖(Θ(g) − �)L[iY , . . . , iY] ((Θ(C) − �)6Y)‖!2 (S3−1)

6 |C | X ‖L[iY , . . . , iY] ((Θ(C) − �)6Y)‖HX

6 �Y |C | X ‖(Θ − �)6Y ‖!2 (S3−1)
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6 �Y |C | X+B ‖6Y ‖HB .

Multiplying (6.9) by |C |−(B+X) yields

|C |−(B+X) ‖(Θ − �)26Y ‖!2 (S3−1)

. |C |−X ‖(Θ − �)iY ‖!2 (S3−1) |C |−B ‖(Θ − �)iY ‖!2 (S3−1) + |C |−(B+X) ‖(Θ − �)2iY ‖!2 (S3−1)

+ |C |−X ‖(Θ − �)iY ‖!2 (S3−1) |C |−B ‖(Θ − �)6Y ‖!2 (S3−1)

+ |C |−X ‖(Θ − �)6Y ‖!2 (S3−1) |C |−B ‖(Θ − �)6Y ‖!2 (S3−1) + �Y ‖6Y ‖HB .

Now take the supremum over |C | 6 1 and use the facts that iY ∈ HA for all 0 6 A ∉ Z and 6Y ∈ HB ∩HX

(recall that X 6 B). Invoking the characterisation of the HB+X-norm by means of second differences as

detailed in Subsection 6.2, which applies because B + X ∈ (0, 2), we obtain that

sup
|C |61

|C |−(B+X) ‖(Θ − �)26Y ‖!2 (S3−1) . ‖iY ‖HX ‖iY ‖HB + ‖iY ‖HB+X + ‖iY ‖HX ‖6Y ‖HB

+ ‖6Y ‖HX ‖6Y ‖HB + �Y ‖6‖HB < ∞.

In this way, again via second differences, we see that 6Y ∈ HB+X and therefore 5 ∈ HB+X as well.6 This

concludes the proof of the proposition in the special case when B ∈ (0, 1).
Repeated applications of the previous step reveal that if 5 ∈ HB for some B ∈ (0, 1), then 5 ∈ H1+W

for some W ∈ (0, 1). We complete the proof of the proposition by induction. In order to treat exponents

B = : +W, with : ∈ N and W ∈ (0, 1), we use the product rule (3.7) and differentiate : times identity (6.7)

with respect to - ∈ {-8, 9 : 1 6 8 < 9 6 3}, thus obtaining an equation for - : 5 ∈ HW . Decomposing

- : 5 = 6Y + iY , with iY ∈ �∞(S3−1) and ‖6Y ‖!2 6 Y‖- : 5 ‖!2 , we can use the same method as before

to show that 6Y ∈ HC for any C ∈ [B, B + min{W, U}] \ Z. In a similar way, we may analyse the mixed

derivatives . 5 := .1 . . . .: 5 , where .ℓ ∈ {-8, 9 : 1 6 8 < 9 6 3}, 1 6 ℓ 6 : . In what follows, we

provide the details.

For simplicity, we only consider powers of the same vector field - but note that the exact same

method would apply to a more general vector field. as in the previous paragraph. The equation satisfied

by - : 5 is of the form

- : 5 =
∑

®::=(:1 ,...,:<+1) ∈N<+1
0

:1+···+:<+1=:

2 ®: M(- :1 5 , . . . , - :<+1 5 ), (6.10)

for some constants 2 ®: > 0. Note that - : 9 5 ∈ H1+W if : 9 < : . Thus, we are led to splitting the sum in

(6.10) into two parts, one of them containing precisely those summands that carry the term - : 5 . There

are < + 1 of them, so

- : 5 =
∑

®:∈ 

2 ®: M(- :1 5 , . . . , - :<+1 5 ) + (< + 1)M( 5 , . . . , 5 , - : 5 ), (6.11)

where (:1, . . . , :<+1) ∈  if and only if : 9 < : , for every 1 6 9 6 < + 1, and :1 + · · · + :<+1 = : . The

first term on the right-hand side of (6.11) can be easily bounded inH1+W with (3.8), yielding

∑

®:∈ 

2 ®: ‖M(- :1 5 , . . . , - :<+1 5 )‖
H

1+W . ‖ 5 ‖<+1
H

B .

6If B + X = 1, thenHB+X is not defined; however, by using any X′ < X in the reasoning above, the conclusion is that 6Y ∈ HC

for every C < 1 and therefore 5 ∈ HC for every C < 1.
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To handle the second term, let Y ∈ (0, 1) and decompose 5 = i0 + i1, - : 5 = k0 + k1, with i1, k1 ∈
�∞ (S3−1) and ‖i0‖!2 < Y‖ 5 ‖!2 , ‖k0‖!2 < Y‖- : 5 ‖!2 . Because 5 ∈ HB , we have that i0 ∈ HB and

k0 ∈ HW . Now take X ∈ (0, 1) satisfying X 6 min{W, U}; recall that W = B − ⌊B⌋ and that U was chosen

immediately following (6.9). The equation satisfied byk0 may be derived from (6.11). Applying (Θ− �)2

to both sides of that equation and invoking Lemma 6.2, we find that, if Y > 0 is small enough, then

‖(Θ − �)2k0‖!2 (S3−1) .
∑

®:∈ 

2 ®: ‖(Θ − �)2M(- :1 5 , . . . , - :<+1 5 )‖!2 (S3−1)

+ (‖(Θ − �)2i0‖!2 (S3−1) + ‖(Θ − �)2i1‖!2 (S3−1) )‖- : 5 ‖!2 (S3−1)

+ (‖(Θ − �)i0‖!2 (S3−1) + ‖(Θ − �)i1‖!2 (S3−1) )2‖- : 5 ‖!2 (S3−1)
+ (‖(Θ − �)i0‖!2 (S3−1) + ‖(Θ − �)i1‖!2 (S3−1) )‖(Θ − �)k0‖!2 (S3−1)
+ (‖(Θ − �)i0‖!2 (S3−1) + ‖(Θ − �)i1‖!2 (S3−1) )‖(Θ − �)k1‖!2 (S3−1)

+ �Y |C | X ‖(Θ − �)k0‖!2 (S3−1) + ‖(Θ − �)2k1‖!2 (S3−1) .

Consequently, by means of second differences, we obtain

sup
0< |C |61

|C |−(X+W) ‖(Θ − �)2k0‖!2 (S3−1) < ∞

and, as a result, k0 ∈ HW+X . It follows that - : 5 ∈ HW+X and, because - ∈ {-8, 9 : 1 6 8 < 9 6 3} was

arbitrary,7 5 ∈ HB+X . The proof of the proposition is now complete. �

6.2. Second differences

Given B ∈ (0, 2), we define the spaceℋB = ℋ
B (S3−1) of all functions 5 ∈ !2 (S3−1), for which the norm

‖ 5 ‖ℋB = ‖ 5 ‖!2 (S3−1) +
∑

168< 963

sup
|C |61

|C |−B ‖(4C-8, 9 − �)2 5 ‖!2 (S3−1) (6.12)

is finite. We see that

(4C-8, 9 − �)2 5 = 5 ◦ 42C-8, 9 − 2 5 ◦ 4C-8, 9 + 5

resembles a second difference of 5 . From the definition, it is immediate that ‖ 5 ‖ℋB 6 2‖ 5 ‖HB provided

that B ∈ (0, 1), so HB ⊆ ℋ
B . The reverse inclusion also holds. Moreover, if B ∈ (0, 2) \ {1}, then

H
B
= ℋ

B , and the two norms given by (2.7) and (6.12) are equivalent. These assertions have all

appeared in the literature; in what follows, we provide precise references.

Let us discuss the Euclidean case first. Given B ∈ (0, 1), we defined the Hölder space ΛB (R3) to

contain precisely those functions 5 : R3 → C for which the norm

‖ 5 ‖!∞ (R3) + sup
|C |>0

|C |−B ‖ 5 (G + C) − 5 (G)‖!∞
G (R3)

is finite, whereas for B = : + X, 1 6 : ∈ N, X ∈ (0, 1), we have that 5 ∈ ΛB (R3) if 5 ∈ �: (R3) and

mU 5 ∈ ΛX (R3), for all multi-indices U ∈ N3
0

with |U | = : . Given B ∈ (0, 2), consider the norm (defined

in terms of second differences)

‖ 5 ‖!∞ (R3) + sup
|C |>0

|C |−B ‖ 5 (G + 2C) − 2 5 (G + C) + 5 (G)‖!∞
G (R3)

7Again, if B + X ∈ Z, then the conclusion is that 5 ∈ HC for every C ∈ [0, B + X ] \ Z.
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and the corresponding space of functions for which the latter norm is finite. These two spaces coincide

if B ∈ (0, 2) \ {1}, as dictated by the classical equivalence between Hölder and Zygmund spaces, the

latter being defined through higher differences; precise references include [27, Ch. V, Prop. 8] and [30,

Ch. 2, §2.6]. More generally, one may consider an ! ?-norm in G, 1 6 ? 6 ∞, and possibly an additional

!@-norm in C, 1 6 @ 6 ∞; see [27, Ch. V, Prop. 8’] and [30, Ch. 2, §2.6].

For the case of the unit sphereS3−1, the equivalence between theHB- and theℋB-norms, and therefore

the equality of the two corresponding spaces, can be found in [15, 16]. These works rely on harmonic ex-

tensions, in a similar spirit to the aforementioned chapter in [27]. Of particular relevance are Propositions

4.1 and 4.3 in [15] and Proposition 1.8 in [16]. In the former article [15], the function space Λ(U; ?, @) is

defined for U > 0, 1 6 ?, @ 6 ∞, and shown to be equivalent to a variant thereof using first- and second-

order differences; the special case (?, @) = (2,∞) and U = B ∈ (0, 1) of this equivalence is used to es-

tablish that the spacesHB andℋB coincide whenever B ∈ (0, 1). In the latter article [16], spaces of index

U = :+W, : ∈ N, are related to those of index W in a precise way; in turn, this is used to establish the equiv-

alence between the spaces HB and ℋ
B whenever B ∈ (1, 2). It should be pointed out that the norms in

terms of first and second differences considered in [15] are slightly different from the ones that we are us-

ing to defineHB andℋB . However, the norms are seen to be equivalent; see [7, Cor. 3.11]. See also [5] and

[23, Theorems 3.1 and 3.3].

We proceed to describe an alternative approach to the equivalence discussed in the previous paragraph

that perhaps requires less effort from the unfamiliar reader.

Firstly, the equivalence betweenHB and ℋ
B when B ∈ (0, 1) follows directly from the combinatorial

proof of [19, Lemma 1.1], stated in [19] for the case of R3 . For the convenience of the reader, we

provide a brief sketch of the argument. As mentioned already, the estimate ‖ 5 ‖ℋB 6 2‖ 5 ‖HB follows

easily from the definitions. For the reverse inequality, consider the following identity, which is valid for

every C ∈ R, - ∈ {-8, 9 : 1 6 8 < 9 6 3} and < ∈ N:

2<(4C- − �) = (42<C- − �) −
<−1∑

8=0

2<−1−8 (428 C- − �)2.

Applying this operator to a function 5 ∈ ℋ
B , taking the !2 (S3−1)-norm on both sides and invoking the

triangle inequality yields

2<‖(4C- − �) 5 ‖!2 (S3−1) 6 ‖(42<C- − �) 5 ‖!2 (S3−1) +
<−1∑

8=0

2<−1−8 ‖(428 C- − �)2 5 ‖!2 (S3−1) .

Dividing by 2<, using that ‖(42<C- − �) 5 ‖!2 (S3−1) 6 2‖ 5 ‖!2 (S3−1) 6 2‖ 5 ‖ℋ2 and letting < → ∞, we

then obtain

‖(4C- − �) 5 ‖!2 (S3−1) 6
1

2

∞∑

8=0

2−8 ‖(428 C- − �)2 5 ‖!2 (S3−1) .

Multiplying by |C |−B and taking the supremum over C ∈ R shows that, when B < 1, the following

holds:

sup
C ∈R

|C |−B ‖(4C- − �) 5 ‖!2 (S3−1) 6
1

2

( ∞∑

8=0

2−8 (1−B)
)

sup
C ∈R

|C |−B ‖(4C- − �)2 5 ‖!2 (S3−1)

=
1

2(1 − 2−(1−B) ) sup
C ∈R

|C |−B ‖(4C- − �)2 5 ‖!2 (S3−1) . (6.13)
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On the other hand, by 2c-periodicity of 4C- and ($ (3)-invariance of f3−1,

sup
C ∈R

|C |−B ‖(4C- − �): 5 ‖!2 (S3−1) ≃ sup
|C |<1

|C |−B ‖(4C- − �): 5 ‖!2 (S3−1)

for : ∈ {1, 2}. This together with (6.13) yields ‖ 5 ‖HB 6 �‖ 5 ‖ℋB for some � < ∞.

Secondly, the equivalence betweenHB and ℋ
B when B ∈ (1, 2) can be obtained via the techniques in

[8, §3] (especially Theorem 3.6) and [7, §2.3], which rely on the modulus of smoothness and Marchaud-

type inequalities. Indeed, the equivalence of the norms ‖ · ‖WA,U
?

and ‖ · ‖�A+U
?

given by [8, Theorem

3.6] provides the answer after specialising to (ℓ, A ?, U) = (1, 1, 2, B − 1), because in this case ‖ 5 ‖HB ≃
‖ 5 ‖WA,U

?
+ ‖ 5 ‖

H
B−1 , ‖ 5 ‖�A+U

?
≃ ‖ 5 ‖ℋB and, as already remarked, ‖ 5 ‖

H
B−1 ≃ ‖ 5 ‖ℋB−1 . ‖ 5 ‖ℋB . The

argument is straightforward but lengthy; thus, the reader is directed to the aforementioned references.

6.3. One final remark

Our proof of Theorem 1.1 does not in general handle the case when _ = 0 in (1.12). An exception

corresponds to the case when < = 2: is an even integer, ®: ∈ {0, 1}<+1 satisfies :1 + · · · + :<+1 = : − 1

and 0 > 0 on S3−1 (or, more generally, 0 = 0 on a set of f3−1-measure zero), which corresponds to the

Euler-Lagrange equation (1.10) with _ = 0. In this case, by multiplying both sides of (1.12) by 5 and

integrating over S3−1, one concludes that ‖ 5̂ f3−1‖!<+2 (R3) = 0, which clearly forces 5 = 0. It remains

unclear whether one should expect general solutions of (1.12) to be smooth when _ = 0.
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