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CLASSIFYING A FAMILY OF SYMMETRIC GRAPHS

SANMING ZHOU

Let F be a G-symmetric graph admitting a nontrivial G-invariant partition B of block
size v. For blocks B, C of B adjacent in the quotient graph Fg, let k be the number
of vertices in B adjacent to at least one vertex in C. In this paper we classify all
possibilities for (F, F B , G ) in the case where k = v — 1 ^ 2 and B(a) = B(/3) for
adjacent vertices a,0 of F, where for a vertex of F, say 7 € B, B(y) denotes the set
of blocks C such that 7 is the only vertex in B not adjacent to any vertex in C.

1. INTRODUCTION

A finite graph F = (V(F),£(F)) is said to admit a finite group G as a group of
automorphisms if G acts on V(F) in such a way that it preserves the adjacency of F.
For such a pair (F, G), if G is transitive on V(F) and, in its induced action, is transitive
on the set Arc(F) of arcs of F, then F is said to be a G-symmetric graph, where an arc
is an ordered pair of adjacent vertices. Roughly speaking, in most cases such a graph
F admits a nontrivial G-invariant partition, that is, a partition B of V(F) such that
1 < | 5 | < |V(F)| and B» € B for B e B and g e G, where S» := {a» : o e B}. In
this case F is said to be an imprimitive G-symmetric graph. From permutation group
theory [3, Corollary 1.5A], this happens precisely when Ga is not a maximal subgroup
of G, where a € V'(F) and GQ is the stabiliser of a in G. For such a graph F we have
a natural quotient graph FB with respect to B, which is defined to have vertex set B in
which B,C e B are adjacent if and only if there exists an edge {a, 0} 6 E(T) with a e B
and 0 G C. In the following we shall always assume that FB has at least one edge, so
each block of B is an independent set of F (see for example [1, Proposition 22.1] and [8]).
This quotient graph FB conveys a lot of information about the graph F, and in particular
it inherits the G-symmetry from F (under the induced action of G on B). For B € B,
denote by ^B{B) the neighbourhood of B in Fg. In introducing a geometric approach
to imprimitive symmetric graphs, Gardiner and Praeger [4] suggested an analysis of this
quotient graph Fe together with (i) the 1-design with point set B and "blocks" F(C)nB
(with possible repetitions), for all C £ FB(B); and (ii) the induced bipartite subgraph
r[B,C] of F with bipartition {F(C) n B,T{B) n C } , where F(B) := (J F(a) with F(a)
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the neighbourhood of a in F. Since F is G-symmetric, F[B, C] is, up to isomorphism,
independent of the choice of adjacent blocks B, C of B.

The purpose of this paper is to classify a family of imprimitive symmetric graphs
and the corresponding quotients and groups. This makes partial contribution to our
project of the study of G-symmetric graphs F with k = v - 1 ^ 2, where v :— \B\ is the
block size of B and k :— \T(C) D B\ is the size of each part of the bipartition of F[B, C\.
It seems that this case is rather rich in both theory and examples: In [7, Section 6] a
natural construction of a subclass of such graphs was discovered, and this was further
developed in [9, 10]. In [5] such graphs F with F e a complete graph and G a 3-transitive
subgroup of PFL(2,g) were determined and characterised, for any prime power q. In
[11] an intertwined relationship between G-symmetric graphs with k = v — 1 ^ 2 and
certain kinds of G-point- and G-block-transitive 1-designs was revealed. For such a graph
F and a vertex a of F, we denote by B(a) the unique block of B containing a. Since
k = v — 1 ^ 2, we may define

(1) B{a) := {C €B: F(C) n B(a) = B(a) \ {a}}

and set

(2) m:=\B(a)\.

Thus B(a) is the set of blocks of B which are adjacent to B(a) in F^ but contain no
vertex adjacent to a in F. Since G is transitive on V(T), the integer m does not depend
on the choice of a. It seems that the size of B(a) n B(0), for adjacent vertices a,0
of F, influences a lot the structure of F. For example, we shall see in Lemma 2.1(c)
that, if it is greater than m/2, then F is forced to be an almost cover [9] of F0, that
is, F[S,C] is a matching of v — 1 edges. In this paper, we investigate the extreme case
where B{a) — B(P) for adjacent vertices a, /? of F, and (without loss of generality) Fe is
connected. In this case, we shall prove that the group G is rather restrictive and all of
F, F s and T[B,C] can be determined explicitly, namely F S (v + 1) • Kv

m, FB ^ K^\
F is an almost cover of Fg, and G is an extension of a group by any 3-transitive group
of degree v + 1 (see Theorem 3.1 and Remark 3.2). Here we denote by K^ the complete
n-partite graph with m vertices in each part of its n-partition, and by n • S the union of
n vertex-disjoint copies of a given graph E.

2. PRELIMINARY

For terminology and notation on graphs and permutation groups, the reader is re-
ferred to [1] and [3], respectively. Let F be a G-symmetric graph admitting a nontrivial
G-invariant partition B such that k = v— 1 ^ 2 . For two vertices a, /? of F, if B(a) £ B{(3)
and B(/3) € B(a) hold simultaneously, then we say that a,0 are mates, and that a is

https://doi.org/10.1017/S0004972700019377 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700019377


[3] Symmetric graphs 331

the mate of 0 in B(a) (so 0 is the mate of a in B(0) as well). Define F to be the

graph with vertex set V(T) in which a, 0 are adjacent if and only if they are mate. Then

F' is G-symmetric ([7, Proposition 3]). One can see that the set {B(a) : a € B} is a

Gfi-invariant partition of Fg(.B), and hence Gg induces an action on it, where GB is the

setwise stabiliser of B in G. Clearly, for (a,0) 6 Arc ( r ) , the value of \B(a) n B{0)\ is

between 0 and m, and is independent of the choice of such (a , 0) since F is G-symmetric.

Part (c) of the following lemma gives an upper bound for this integer in terms of m and

the valency of T[B,C}.

LEMMA 2 . 1 . Let (F,G) be as above, and let s be the valency of T[B,C] (for

adjacent blocks B, C ofB). Then the following (a)-(c) hold.

(a) The valency ofT is equal to ms(v - 1), and the valency of FB is equal to mv ([7,

Theorem 5(a)]).

(b) GB is doubly transitive on {B(a) : a € B) ([7, Theorem 5(b)]).

(c) For (a, 0) € Arc(r), we have \B{a) D B(0)\ ^ m/s. In particular, if \B{a) n

B{0)\ > m/2, then r[B, C] a (v - 1) • K2.

PROOF: We need to prove (c) only. Let n = |S(a) f~l B(f3)\ for (a, 0) £ Arc(F). Let
B = B(a), C e r e ( B ) \ B(a), and set r (o) n C = {0U . . . , & } . Then B(a) n B(0i),
for i = 1, . . . , s, are pairwise disjoint with each containing n blocks of B(a). So we have
sn ^ m, as required. In particular, if n > m/2, then we must have s = 1 and thus
r\B,C] = (v-l)- K2. D

The following example shows that the case where B{a) = B{0) for adjacent vertices
Q, 0 of F can occur. For a finite set / , we denote by /(2) the set of ordered pairs of distinct
elements of / .

EXAMPLE 2.2. Let X be a finite group acting 3-transitively on a finite set / of degree
v + 1 ^ 4, and Y a finite group acting on a finite set J of degree m ^ 1. We require that
Y is 2-transitive on J whenever m ^ 2. Then G := X x Y is transitive on V := 7'2' x J
in its action defined by (i,h, j)^^ := {ix,hx,jy) for (i,h,j) € V and (i ,y) € G. Define
F to be the graph with vertex set V in which {i,h,j),(i',h',f) are adjacent if and only
if i / i' and h - ti. Then F = (v + 1) • /C^,, and the assumptions on X, Y imply that P
is G-symmetric. Clearly, F admits B := {[i,j] : i € / , j ' € J } as a G-invariant partition,
where [i,j] := {{i,h,j) : h € I \ {i}}. We have F s ^ K^1 with [i,j],[i',j'] adjacent if
and only if i ? i'. Also, we have F[S,G] ^ (v - 1) • K2 for adjacent blocks 5 ,G of B
(hence k = v - 1 ^ 2). Moreover, for adjacent vertices a = {i,h,j), a' = (i',h,j') of F,
we have B{a) = B(a') = {[hj] : (. £ J}, and hence \B{a)\ - m.
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3. MAIN RESULT AND THE PROOF

Unexpectedly, the graphs F in Example 2.2 are the only G-symmetric graphs with
FB connected such that k — v — 1 ^ 2 and B(a) = B(P) for adjacent vertices a, /? of F,
and TB, T[B,C] are as shown therein. More precisely, we have the following theorem,
which is the main result of this paper.

THEOREM 3 . 1 . Suppose that T is a G-symmetric graph admitting a nontrivial
G-invariant partition B such that k = v-1 ^ 2. Suppose further that Fg is connected and
thatB(a) = B{(3) for adjacent vertices a, f3 of T. Letm= \B(a)\. Then F = [v + l)-K^,
FB = K%fl, T[B, C] = {v-1)- K2 for adjacent blocks B, C ofB, and the induced action
ofG on the natural (v + l)-partition B of FB is 3-transitive. Moreover, the vertices of F
can be labelled by ordered triples of integers such that the following (a)-(c) hold (where
we set I : = { 0 , 1 , . . . , v} and J :— { 1 , 2 , . . . , m}J:

(a) V(T) = 7(2) x J, and two vertices (z, h,j), (i1, h',j') € V(T) are adjacent in
T if and only if i ^ i' and h = h!'.

(b) B = {[i,j] : i e hj E J}, where [ij] := {(i,hj) : h € / \ {*}}, and

[*>j]i [i'>f] are adjacent blocks if and only ifi ^ i'.

(c) B = {i : i e / } , where i = {[ij] : j G J}.

Conversely, the graph F defined in (a) together with the group G = X x Y satisfies all
conditions of the theorem, where X is a group acting 3-transitively on I, Y is a group
acting on J which is 2-transitive ifm ^ 2, and the action ofG on V(T) is as defined in
Example 2.2.

P R O O F : By our assumption we have \B(a) n B((3)\ =m> m/2 for (a,/?) £ Arc(F).
Thus Lemma2.1(c) implies

(i) F[£>, E]^(v-l)-K2 for adjacent blocks D, E of B.

Let B be a block of B and let ori, a2, •. • ,ctv be vertices of B. For each a* € B, we label
(in an arbitrary way) the m blocks in B(cti) by [i,j], j £ J. Also, we label the unique
mate /?„• of Qj in the block [i,j] by (i,0,j), j € J. For each block [i,j] and for each
h € J \ {0} distinct from i, (i) implies that [i,j] contains a unique vertex adjacent to a^.
We label such a vertex in [i, j] by (i, /i, j) . In view of (i) one can see that each vertex in
[i, j] receives a unique label, and that the labels of distinct vertices in \i, j} have distinct
second coordinates. Therefore, for each i € / \ {0} and j e J, we may identify the block
[z, j] with the set {(i, h,j) : h £ I\ {i}}. By our assumption, for i, h € / \ {0} with i ^ h
and i 6 J, we have

(ii) B((t, h,j)) - £(<*„) = {[h, 1], [A, 2 ] , . . . , [h,m]}-

In particular, this implies that

(iii) \i,i], [i',j') are adjacent blocks, for distinct i,i' e I\ {0} and any j,j' £ J.

Moreover, if two vertices (i,h,j), (i',h',j') are adjacent, then by (ii) and our assump-
tion we must have B(ah) — B((i,h,j)) = B((i',h\j')) = B(ah'), which is true only when
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h = h'. This, together with (i) and (iii), implies the following assertion.

(iv) For distinct i,i' S / \ {0} and any j,f € J, two labelled vertices
(i,h,j), {i',h',j') of F are adjacent if and only if h = ti. In other words,
for adjacent blocks D — [i,j],E = [i',f] of B, the bipartite subgraph
F[D, E] of P is the matching of v - 1 edges joining (i,h,j) and {i',h,j'),
iorh£l\{i,i'}.

Therefore, (i,i',j) and (i',i, j ' ) are mates and hence, for the graph F' denned at the
beginning of the previous section, we have

(v) r'((i,h,j)) = {(h,i,f):j'eJ}.

Now let us examine a particular labelled vertex, say (i,h,j). From Lemma 2.1(a)
and (i) above, the valency of F is m(v — 1), and hence the neighbourhood F((i, h,j))
of {i,h,j) contains m(v - 1) vertices. From (iv) we have {{i',h,j') : i' € / \ {0,/i,z}>
j ' e J} C F((z, h, j)) and this contributes m(v - 2) neighbours of (i,h,j). Note that ah

is also a neighbour of (i,h,j). Apart from these, there are m — 1 remaining neighbours
of (i,h,j), which we denote by <52, • • • ,Sm, respectively. By (i) these vertices <52,... ,<5m

belong to distinct blocks, say B 2 , . . . , Bm, of B. For each 6t, we have B(6t) = B((i, h, j)) —
B(ah) — {[h, 1], [h,2],... , [/i,m]} by (ii) and our assumption. In particular, this implies
that all the blocks [h, £}, for I € J, are adjacent to the block Bt. On the other hand, from
(v) we have r'({h,h'J)) = {(ti,h,t) : t € J} for each vertex {h,h'J) 6 [h,e}\{/3hi}. In
other words, the m mates of each vertex in [h, £] \ {Phi} are in | J [h1, t). So the

/l'e/\{0,h},t€J

only possibility is that j3ht is the mate of St in [h,£], for each £ € J. Consequently, we
have

( v i ) B ( 0 M ) = --- = B { P h m ) = { B , B 2 l . . . , B m ) , a n d h e n c e n o n e o f B , B 2 t . . . , B n

coincides with [i, j] for any i £ I \ {0} and j £ J.

We know from (iii) that the blocks [i', j'], for i' £ I\ {0, h} and j ' € J, are all adjacent to
[h, £]. Besides these m(v - 1) blocks, B, B2, • • • , Bm are the only blocks of B adjacent to
[h, £] in F 0 since TB has valency mv (Lemma 2.1(a)). Therefore, if we apply the procedure
above to another vertex (i',h,j'), we would get the same blocks B 2 , . . . ,Bm. In other
words, these blocks are independent of the choice of the vertex (i, h,j) (depending only on
h), and hence they are adjacent to the block [i,j] for any i 6 / \ { 0 } and j e J. Moreover,
since the mate 6t of 0M in Bt is unique, the vertices <52,... ,6m are also independent of
the choice of (i, h,j) and thus they are common neighbours of all such vertices (i,h, j).
Thus, since the valency of FQ is mv, B, 5 2 , . . . , Bm are the only unlabelled blocks of B.
From this and by a similar argument to that above, we see that for each h 6 / \ {0}, all
the vertices (i, h, j), i € I\ {0, h}, j 6 J, have a common neighbour in each Bt, which we
now label by (0, h, t). Since for distinct h,h' the vertices {i,h,j), {i,h',j) have different
neighbours in Blt the vertices of Bt receive pairwise distinct labels. Now let us label
B,B2,... ,Bm with [0,1], [0 ,2] , . . . ,[0,m], respectively, and label each ah with (0,/i, 1).
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Then all the vertices of F and all the blocks of B have been labelled. From the labelling
above, the validity of (a) and (b) follows immediately.

Since the valency of F is m(v — 1), the argument above also shows that for each
h £ I the connected component of F containing the vertex ah is the complete w-partite
graph K^ with u-partition | { ( i , h , j ) : j 6 J} : i € / } , where we set a0 = Ai- Hence
we have F = (v + 1) • K^. Also, FB is the complete (v + l)-partite graph K^1 with
(v + l)-partition B := {i : i € / } , where i := B(ai) - {[i,j] : j € J } for i € / . Clearly,
(FB)B — Kv+i and B is a G-invariant partition of B. From Lemma 2.1(b), GB is doubly
transitive on {B{j) : 7 G B } . The setwise stabiliser in G of the block 0 contains GB

as a subgroup, and so is doubly transitive on the neighbourhood B \ {0} of 0 in (Fe)B .
Therefore, G is 3-transitive on B.

Finally, for G = X x Y with X triply transitive on / and Y doubly transitive on
J whenever m ^ 2, Example 2.2 shows that the graph F defined in (a) satisfies all the
conditions in the theorem. D

REMARK 3.2. In Theorem 3.1, G may or may not be faithful on B. (This can be seen
from Example 2.2, where the action of G on B is permutationally isomorphic to the
action of X on / which is not necessarily faithful.) Let K be the kernel of the action of G
on B, and set H := G/K. Then H is 3-transitive and faithful on B of degree v +1, and G
is an extension of K by H. From the classification of finite highly transitive permutation
groups (see for example [2, 6]), H is one of the following: Sv+\ (v ^ 3), Av+i (v ^ 4),
Mu+1 (v = 10,11,21,22,23), M u (v = 11), AGL(d, 2) (v = 2d - 1), Z\.A7 (v = 15), and
PSL(2,'y) ^ H ^ PFL(2,w) (v a prime power). Example 2.2 shows that m = \B(a)\
defined in (2) can be any positive integer and H can be any group listed above.
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