CLASSIFYING A FAMILY OF SYMMETRIC GRAPHS

Sanming Zhou

Abstract

Let Γ be a G-symmetric graph admitting a nontrivial G-invariant partition \mathcal{B} of block size v. For blocks B, C of \mathcal{B} adjacent in the quotient graph $\Gamma_{\mathcal{B}}$, let k be the number of vertices in B adjacent to at least one vertex in C. In this paper we classify all possibilities for ($\Gamma, \Gamma_{\mathcal{B}}, G$) in the case where $k=v-1 \geqslant 2$ and $\mathcal{B}(\alpha)=\mathcal{B}(\beta)$ for adjacent vertices α, β of Γ, where for a vertex of Γ, say $\gamma \in B, \mathcal{B}(\gamma)$ denotes the set of blocks C such that γ is the only vertex in B not adjacent to any vertex in C.

1. Introduction

A finite graph $\Gamma=(V(\Gamma), E(\Gamma))$ is said to admit a finite group G as a group of automorphisms if G acts on $V(\Gamma)$ in such a way that it preserves the adjacency of Γ. For such a pair (Γ, G), if G is transitive on $V(\Gamma)$ and, in its induced action, is transitive on the set $\operatorname{Arc}(\Gamma)$ of arcs of Γ, then Γ is said to be a G-symmetric graph, where an arc is an ordered pair of adjacent vertices. Roughly speaking, in most cases such a graph Γ admits a nontrivial G-invariant partition, that is, a partition \mathcal{B} of $V(\Gamma)$ such that $1<|B|<|V(\Gamma)|$ and $B^{g} \in \mathcal{B}$ for $B \in \mathcal{B}$ and $g \in G$, where $B^{g}:=\left\{\alpha^{g}: \alpha \in B\right\}$. In this case Γ is said to be an imprimitive G-symmetric graph. From permutation group theory [3, Corollary 1.5A], this happens precisely when G_{α} is not a maximal subgroup of G, where $\alpha \in V(\Gamma)$ and G_{α} is the stabiliser of α in G. For such a graph Γ we have a natural quotient graph $\Gamma_{\mathcal{B}}$ with respect to \mathcal{B}, which is defined to have vertex set \mathcal{B} in which $B, C \in \mathcal{B}$ are adjacent if and only if there exists an edge $\{\alpha, \beta\} \in E(\Gamma)$ with $\alpha \in B$ and $\beta \in C$. In the following we shall always assume that $\Gamma_{\mathcal{B}}$ has at least one edge, so each block of \mathcal{B} is an independent set of Γ (see for example [1, Proposition 22.1] and [8]). This quotient graph $\Gamma_{\mathcal{B}}$ conveys a lot of information about the graph $\Gamma_{\text {, and in particular }}$ it inherits the G-symmetry from Γ (under the induced action of G on \mathcal{B}). For $B \in \mathcal{B}$, denote by $\Gamma_{\mathcal{B}}(B)$ the neighbourhood of B in Γ_{B}. In introducing a geometric approach to imprimitive symmetric graphs, Gardiner and Praeger [4] suggested an analysis of this quotient graph $\Gamma_{\mathcal{B}}$ together with (i) the 1-design with point set B and "blocks" $\Gamma(C) \cap B$ (with possible repetitions), for all $C \in \Gamma_{\mathcal{B}}(B)$; and (ii) the induced bipartite subgraph $\Gamma[B, C]$ of Γ with bipartition $\{\Gamma(C) \cap B, \Gamma(B) \cap C\}$, where $\Gamma(B):=\bigcup_{\alpha \in B} \Gamma(\alpha)$ with $\Gamma(\alpha)$

[^0]the neighbourhood of α in Γ. Since Γ is G-symmetric, $\Gamma[B, C]$ is, up to isomorphism, independent of the choice of adjacent blocks B, C of \mathcal{B}.

The purpose of this paper is to classify a family of imprimitive symmetric graphs and the corresponding quotients and groups. This makes partial contribution to our project of the study of G-symmetric graphs Γ with $k=v-1 \geqslant 2$, where $v:=|B|$ is the block size of \mathcal{B} and $k:=|\Gamma(C) \cap B|$ is the size of each part of the bipartition of $\Gamma[B, C]$. It seems that this case is rather rich in both theory and examples: In [7, Section 6] a natural construction of a subclass of such graphs was discovered, and this was further developed in $[\mathbf{9}, 10]$. In [5] such graphs Γ with $\Gamma_{\mathcal{B}}$ a complete graph and G a 3-transitive subgroup of $\operatorname{P\Gamma L}(2, q)$ were determined and characterised, for any prime power q. In [11] an intertwined relationship between G-symmetric graphs with $k=v-1 \geqslant 2$ and certain kinds of G-point- and G-block-transitive 1-designs was revealed. For such a graph Γ and a vertex α of Γ, we denote by $B(\alpha)$ the unique block of \mathcal{B} containing α. Since $k=v-1 \geqslant 2$, we may define

$$
\begin{equation*}
\mathcal{B}(\alpha):=\{C \in \mathcal{B}: \Gamma(C) \cap B(\alpha)=B(\alpha) \backslash\{\alpha\}\} \tag{1}
\end{equation*}
$$

and set

$$
\begin{equation*}
m:=|\mathcal{B}(\alpha)| . \tag{2}
\end{equation*}
$$

Thus $\mathcal{B}(\alpha)$ is the set of blocks of \mathcal{B} which are adjacent to $B(\alpha)$ in $\Gamma_{\mathcal{B}}$ but contain no vertex adjacent to α in Γ. Since G is transitive on $V(\Gamma)$, the integer m does not depend on the choice of α. It seems that the size of $\mathcal{B}(\alpha) \cap \mathcal{B}(\beta)$, for adjacent vertices α, β of Γ, influences a lot the structure of Γ. For example, we shall see in Lemma 2.1(c) that, if it is greater than $m / 2$, then Γ is forced to be an almost cover [9$]$ of $\Gamma_{\mathcal{B}}$, that is, $\Gamma[B, C]$ is a matching of $v-1$ edges. In this paper, we investigate the extreme case where $\mathcal{B}(\alpha)=\mathcal{B}(\beta)$ for adjacent vertices α, β of Γ, and (without loss of generality) $\Gamma_{\mathcal{B}}$ is connected. In this case, we shall prove that the group G is rather restrictive and all of $\Gamma, \Gamma_{\mathcal{B}}$ and $\Gamma[B, C]$ can be determined explicitly, namely $\Gamma \cong(v+1) \cdot K_{m}^{v}, \Gamma_{\mathcal{B}} \cong K_{m}^{v+1}$, Γ is an almost cover of $\Gamma_{\mathcal{B}}$, and G is an extension of a group by any 3-transitive group of degree $v+1$ (see Theorem 3.1 and Remark 3.2). Here we denote by K_{m}^{n} the complete n-partite graph with m vertices in each part of its n-partition, and by $n \cdot \Sigma$ the union of n vertex-disjoint copies of a given graph Σ.

2. Preliminary

For terminology and notation on graphs and permutation groups, the reader is referred to [1] and [3], respectively. Let Γ be a G-symmetric graph admitting a nontrivial G-invariant partition \mathcal{B} such that $k=v-1 \geqslant 2$. For two vertices α, β of Γ, if $B(\alpha) \in \mathcal{B}(\beta)$ and $B(\beta) \in \mathcal{B}(\alpha)$ hold simultaneously, then we say that α, β are mates, and that α is
the mate of β in $B(\alpha)$ (so β is the mate of α in $B(\beta)$ as well). Define Γ^{\prime} to be the graph with vertex set $V(\Gamma)$ in which α, β are adjacent if and only if they are mate. Then Γ^{\prime} is G-symmetric ([7, Proposition 3]). One can see that the set $\{\mathcal{B}(\alpha): \alpha \in B\}$ is a G_{B}-invariant partition of $\Gamma_{B}(B)$, and hence G_{B} induces an action on it, where G_{B} is the setwise stabiliser of B in G. Clearly, for $(\alpha, \beta) \in \operatorname{Arc}(\Gamma)$, the value of $|\mathcal{B}(\alpha) \cap \mathcal{B}(\beta)|$ is between 0 and m, and is independent of the choice of such (α, β) since Γ is G-symmetric. Part (c) of the following lemma gives an upper bound for this integer in terms of m and the valency of $\Gamma[B, C]$.

Lemma 2.1. Let (Γ, G) be as above, and let s be the valency of $\Gamma[B, C]$ (for adjacent blocks B, C of \mathcal{B}). Then the following (a)-(c) hold.
(a) The valency of Γ is equal to $m s(v-1)$, and the valency of $\Gamma_{\mathcal{B}}$ is equal to $m v$ ($\{7$, Theorem 5(a)]).
(b) G_{B} is doubly transitive on $\{\mathcal{B}(\alpha): \alpha \in B\}$ ([7, Theorem 5(b)]).
(c) For $(\alpha, \beta) \in \operatorname{Arc}(\Gamma)$, we have $|\mathcal{B}(\alpha) \cap \mathcal{B}(\beta)| \leqslant m / s$. In particular, if $\mid \mathcal{B}(\alpha) \cap$ $\mathcal{B}(\beta) \mid>m / 2$, then $\Gamma[B, C] \cong(v-1) \cdot K_{2}$.

Proof: We need to prove (c) only. Let $n=|\mathcal{B}(\alpha) \cap \mathcal{B}(\beta)|$ for $(\alpha, \beta) \in \operatorname{Arc}(\Gamma)$. Let $B=B(\alpha), C \in \Gamma_{\mathcal{B}}(B) \backslash \mathcal{B}(\alpha)$, and set $\Gamma(\alpha) \cap C=\left\{\beta_{1}, \ldots, \beta_{s}\right\}$. Then $\mathcal{B}(\alpha) \cap \mathcal{B}\left(\beta_{i}\right)$, for $i=1, \ldots, s$, are pairwise disjoint with each containing n blocks of $\mathcal{B}(\alpha)$. So we have $s n \leqslant m$, as required. In particular, if $n>m / 2$, then we must have $s=1$ and thus $\Gamma[B, C] \cong(v-1) \cdot K_{2}$.

The following example shows that the case where $\mathcal{B}(\alpha)=\mathcal{B}(\beta)$ for adjacent vertices α, β of Γ can occur. For a finite set I, we denote by $I^{(2)}$ the set of ordered pairs of distinct elements of I.

EXAMPLE 2.2. Let X be a finite group acting 3-transitively on a finite set I of degree $v+1 \geqslant 4$, and Y a finite group acting on a finite set J of degree $m \geqslant 1$. We require that Y is 2-transitive on J whenever $m \geqslant 2$. Then $G:=X \times Y$ is transitive on $V:=I^{(2)} \times J$ in its action defined by $(i, h, j)^{(x, y)}:=\left(i^{x}, h^{x}, j^{y}\right)$ for $(i, h, j) \in V$ and $(x, y) \in G$. Define Γ to be the graph with vertex set V in which $(i, h, j),\left(i^{\prime}, h^{\prime}, j^{\prime}\right)$ are adjacent if and only if $i \neq i^{\prime}$ and $h=h^{\prime}$. Then $\Gamma \cong(v+1) \cdot K_{m}^{v}$, and the assumptions on X, Y imply that Γ is G-symmetric. Clearly, Γ admits $\mathcal{B}:=\{[i, j]: i \in I, j \in J\}$ as a G-invariant partition, where $[i, j]:=\{(i, h, j): h \in I \backslash\{i\}\}$. We have $\Gamma_{B} \cong K_{m}^{v+1}$ with $[i, j],\left[i^{\prime}, j^{\prime}\right]$ adjacent if and only if $i \neq i^{\prime}$. Also, we have $\Gamma[B, C] \cong(v-1) \cdot K_{2}$ for adjacent blocks B, C of \mathcal{B} (hence $k=v-1 \geqslant 2$). Moreover, for adjacent vertices $\alpha=(i, h, j), \alpha^{\prime}=\left(i^{\prime}, h, j^{\prime}\right)$ of Γ, we have $\mathcal{B}(\alpha)=\mathcal{B}\left(\alpha^{\prime}\right)=\{[h, \ell]: \ell \in J\}$, and hence $|\mathcal{B}(\alpha)|=m$.

3. Main result and the proof

Unexpectedly, the graphs Γ in Example 2.2 are the only G-symmetric graphs with $\Gamma_{\mathcal{B}}$ connected such that $k=v-1 \geqslant 2$ and $\mathcal{B}(\alpha)=\mathcal{B}(\beta)$ for adjacent vertices α, β of Γ, and $\Gamma_{B}, \Gamma[B, C]$ are as shown therein. More precisely, we have the following theorem, which is the main result of this paper.

Theorem 3.1. Suppose that Γ is a G-symmetric graph admitting a nontrivial G-invariant partition \mathcal{B} such that $k=v-1 \geqslant 2$. Suppose further that $\Gamma_{\mathcal{B}}$ is connected and that $\mathcal{B}(\alpha)=\mathcal{B}(\beta)$ for adjacent vertices α, β of Γ. Let $m=|\mathcal{B}(\alpha)|$. Then $\Gamma \cong(v+1) \cdot K_{m}^{v}$, $\Gamma_{\mathcal{B}} \cong K_{m}^{v+1}, \Gamma[B, C] \cong(v-1) \cdot K_{2}$ for adjacent blocks B, C of \mathcal{B}, and the induced action of G on the natural $(v+1)$-partition \mathbf{B} of $\Gamma_{\mathcal{B}}$ is 3-transitive. Moreover, the vertices of Γ can be labelled by ordered triples of integers such that the following (a)-(c) hold (where we set $I:=\{0,1, \ldots, v\}$ and $J:=\{1,2, \ldots, m\})$:
(a) $V(\Gamma)=I^{(2)} \times J$, and two vertices $(i, h, j),\left(i^{\prime}, h^{\prime}, j^{\prime}\right) \in V(\Gamma)$ are adjacent in Γ if and only if $i \neq i^{\prime}$ and $h=h^{\prime}$.
(b) $\mathcal{B}=\{[i, j]: i \in I, j \in J\}$, where $[i, j]:=\{(i, h, j): h \in I \backslash\{i\}\}$, and $[i, j],\left[i^{\prime}, j^{\prime}\right]$ are adjacent blocks if and only if $i \neq i^{\prime}$.
(c) $\mathbf{B}=\{\mathbf{i}: i \in I\}$, where $\mathbf{i}=\{[i, j]: j \in J\}$.

Conversely, the graph Γ defined in (a) together with the group $G=X \times Y$ satisfies all conditions of the theorem, where X is a group acting 3-transitively on I, Y is a group acting on J which is 2-transitive if $m \geqslant 2$, and the action of G on $V(\Gamma)$ is as defined in Example 2.2.

Proof: By our assumption we have $|\mathcal{B}(\alpha) \cap \mathcal{B}(\beta)|=m>m / 2$ for $(\alpha, \beta) \in \operatorname{Arc}(\Gamma)$. Thus Lemma 2.1(c) implies
(i) $\Gamma[D, E] \cong(v-1) \cdot K_{2}$ for adjacent blocks D, E of \mathcal{B}.

Let B be a block of \mathcal{B} and let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{v}$ be vertices of B. For each $\alpha_{i} \in B$, we label (in an arbitrary way) the m blocks in $\mathcal{B}\left(\alpha_{i}\right)$ by $[i, j], j \in J$. Also, we label the unique mate $\beta_{i j}$ of α_{i} in the block $[i, j]$ by $(i, 0, j), j \in J$. For each block $[i, j]$ and for each $h \in I \backslash\{0\}$ distinct from i, (i) implies that $[i, j]$ contains a unique vertex adjacent to α_{h}. We label such a vertex in $[i, j]$ by (i, h, j). In view of (i) one can see that each vertex in $[i, j]$ receives a unique label, and that the labels of distinct vertices in $[i, j]$ have distinct second coordinates. Therefore, for each $i \in I \backslash\{0\}$ and $j \in J$, we may identify the block $[i, j]$ with the set $\{(i, h, j): h \in I \backslash\{i\}\}$. By our assumption, for $i, h \in I \backslash\{0\}$ with $i \neq h$ and $j \in J$, we have
(ii) $\mathcal{B}((i, h, j))=\mathcal{B}\left(\alpha_{h}\right)=\{[h, 1],[h, 2], \ldots,[h, m]\}$.

In particular, this implies that
(iii) $[i, j],\left[i^{\prime}, j^{\prime}\right]$ are adjacent blocks, for distinct $i, i^{\prime} \in I \backslash\{0\}$ and any $j, j^{\prime} \in J$.

Moreover, if two vertices $(i, h, j),\left(i^{\prime}, h^{\prime}, j^{\prime}\right)$ are adjacent, then by (ii) and our assumption we must have $\mathcal{B}\left(\alpha_{h}\right)=\mathcal{B}((i, h, j))=\mathcal{B}\left(\left(i^{\prime}, h^{\prime}, j^{\prime}\right)\right)=\mathcal{B}\left(\alpha_{h^{\prime}}\right)$, which is true only when
$h=h^{\prime}$. This, together with (i) and (iii), implies the following assertion.
(iv) For distinct $i, i^{\prime} \in I \backslash\{0\}$ and any $j, j^{\prime} \in J$, two labelled vertices $(i, h, j),\left(i^{\prime}, h^{\prime}, j^{\prime}\right)$ of Γ are adjacent if and only if $h=h^{\prime}$. In other words, for adjacent blocks $D=[i, j], E=\left[i^{\prime}, j^{\prime}\right]$ of \mathcal{B}, the bipartite subgraph $\Gamma[D, E]$ of Γ is the matching of $v-1$ edges joining (i, h, j) and $\left(i^{\prime}, h, j^{\prime}\right)$, for $h \in I \backslash\left\{i, i^{\prime}\right\}$.
Therefore, $\left(i, i^{\prime}, j\right)$ and $\left(i^{\prime}, i, j^{\prime}\right)$ are mates and hence, for the graph Γ^{\prime} defined at the beginning of the previous section, we have
(v) $\Gamma^{\prime}((i, h, j))=\left\{\left(h, i, j^{\prime}\right): j^{\prime} \in J\right\}$.

Now let us examine a particular labelled vertex, say (i,h,j). From Lemma 2.1(a) and (i) above, the valency of Γ is $m(v-1)$, and hence the neighbourhood $\Gamma((i, h, j))$ of (i, h, j) contains $m(v-1)$ vertices. From (iv) we have $\left\{\left(i^{\prime}, h, j^{\prime}\right): i^{\prime} \in I \backslash\{0, h, i\}\right.$, $\left.j^{\prime} \in J\right\} \subseteq \Gamma((i, h, j))$ and this contributes $m(v-2)$ neighbours of (i, h, j). Note that α_{h} is also a neighbour of (i, h, j). Apart from these, there are $m-1$ remaining neighbours of (i, h, j), which we denote by $\delta_{2}, \ldots, \delta_{m}$, respectively. By (i) these vertices $\delta_{2}, \ldots, \delta_{m}$ belong to distinct blocks, say B_{2}, \ldots, B_{m}, of \mathcal{B}. For each δ_{t}, we have $\mathcal{B}\left(\delta_{t}\right)=\mathcal{B}((i, h, j))=$ $\mathcal{B}\left(\alpha_{h}\right)=\{[h, 1],[h, 2], \ldots,[h, m]\}$ by (ii) and our assumption. In particular, this implies that all the blocks $[h, \ell]$, for $\ell \in J$, are adjacent to the block B_{t}. On the other hand, from (v) we have $\Gamma^{\prime}\left(\left(h, h^{\prime}, \ell\right)\right)=\left\{\left(h^{\prime}, h, t\right): t \in J\right\}$ for each vertex $\left(h, h^{\prime}, \ell\right) \in[h, \ell] \backslash\left\{\beta_{h \ell}\right\}$. In other words, the m mates of each vertex in $[h, \ell] \backslash\left\{\beta_{h \ell}\right\}$ are in $\bigcup_{h^{\prime} \in I \backslash\{, h\}, t \in J}\left[h^{\prime}, t\right]$. So the only possibility is that $\beta_{h \ell}$ is the mate of δ_{t} in $[h, \ell]$, for each $\ell \in J$. Consequently, we have
(vi) $\mathcal{B}\left(\beta_{h 1}\right)=\cdots=\mathcal{B}\left(\beta_{h m}\right)=\left\{B, B_{2}, \ldots, B_{m}\right\}$, and hence none of B, B_{2}, \ldots, B_{m} coincides with $[i, j]$ for any $i \in I \backslash\{0\}$ and $j \in J$.
We know from (iii) that the blocks $\left[i^{\prime}, j^{\prime}\right]$, for $i^{\prime} \in I \backslash\{0, h\}$ and $j^{\prime} \in J$, are all adjacent to $[h, \ell]$. Besides these $m(v-1)$ blocks, B, B_{2}, \ldots, B_{m} are the only blocks of \mathcal{B} adjacent to $[h, \ell]$ in $\Gamma_{\mathcal{B}}$ since $\Gamma_{\mathcal{B}}$ has valency $m v$ (Lemma 2.1(a)). Therefore, if we apply the procedure above to another vertex ($i^{\prime}, h, j^{\prime}$), we would get the same blocks B_{2}, \ldots, B_{m}. In other words, these blocks are independent of the choice of the vertex (i, h, j) (depending only on h), and hence they are adjacent to the block $[i, j]$ for any $i \in I \backslash\{0\}$ and $j \in J$. Moreover, since the mate δ_{t} of $\beta_{h e}$ in B_{t} is unique, the vertices $\delta_{2}, \ldots, \delta_{m}$ are also independent of the choice of (i, h, j) and thus they are common neighbours of all such vertices (i, h, j). Thus, since the valency of $\Gamma_{\mathcal{B}}$ is $m v, B, B_{2}, \ldots, B_{m}$ are the only unlabelled blocks of \mathcal{B}. From this and by a similar argument to that above, we see that for each $h \in I \backslash\{0\}$, all the vertices $(i, h, j), i \in I \backslash\{0, h\}, j \in J$, have a common neighbour in each B_{t}, which we now label by ($0, h, t$). Since for distinct h, h^{\prime} the vertices (i, h, j), $\left(i, h^{\prime}, j\right.$) have different neighbours in B_{t}, the vertices of B_{t} receive pairwise distinct labels. Now let us label B, B_{2}, \ldots, B_{m} with $[0,1],[0,2], \ldots,[0, m]$, respectively, and label each α_{h} with $(0, h, 1)$.

Then all the vertices of Γ and all the blocks of \mathcal{B} have been labelled. From the labelling above, the validity of (a) and (b) follows immediately.

Since the valency of Γ is $m(v-1)$, the argument above also shows that for each $h \in I$ the connected component of Γ containing the vertex α_{h} is the complete v-partite graph K_{m}^{v} with v-partition $\{\{(i, h, j): j \in J\}: i \in I\}$, where we set $\alpha_{0}=\beta_{11}$. Hence we have $\Gamma \cong(v+1) \cdot K_{m}^{\nu}$. Also, Γ_{B} is the complete $(v+1)$-partite graph K_{m}^{v+1} with $(v+1)$-partition $\mathbf{B}:=\{\mathbf{i}: i \in I\}$, where $\mathbf{i}:=\mathcal{B}\left(\alpha_{i}\right)=\{[i, j]: j \in J\}$ for $i \in I$. Clearly, $\left(\Gamma_{B}\right)_{\mathbf{B}} \cong K_{v+1}$ and \mathbf{B} is a G-invariant partition of \mathcal{B}. From Lemma 2.1(b), G_{B} is doubly transitive on $\{\mathcal{B}(\gamma): \gamma \in B\}$. The setwise stabiliser in G of the block 0 contains G_{B} as a subgroup, and so is doubly transitive on the neighbourhood $\mathbf{B} \backslash\{0\}$ of 0 in $\left(\Gamma_{\mathcal{B}}\right)_{B}$. Therefore, G is 3-transitive on \mathbf{B}.

Finally, for $G=X \times Y$ with X triply transitive on I and Y doubly transitive on J whenever $m \geqslant 2$, Example 2.2 shows that the graph Γ defined in (a) satisfies all the conditions in the theorem.

Remark 3.2. In Theorem 3.1, G may or may not be faithful on \mathbf{B}. (This can be seen from Example 2.2, where the action of G on B is permutationally isomorphic to the action of X on I which is not necessarily faithful.) Let K be the kernel of the action of G on \mathbf{B}, and set $H:=G / K$. Then H is 3-transitive and faithful on \mathbf{B} of degree $v+1$, and G is an extension of K by H. From the classification of finite highly transitive permutation groups (see for example [2, 6]), H is one of the following: $S_{v+1}(v \geqslant 3), A_{v+1}(v \geqslant 4)$, $\mathrm{M}_{v+1}(v=10,11,21,22,23), \mathrm{M}_{11}(v=11), \operatorname{AGL}(d, 2)\left(v=2^{d}-1\right), \mathbb{Z}_{2}^{4} \cdot A_{7}(v=15)$, and $\operatorname{PSL}(2, v) \leqslant H \leqslant \operatorname{P\Gamma L}(2, v)$ (v a prime power). Example 2.2 shows that $m=|\mathcal{B}(\alpha)|$ defined in (2) can be any positive integer and H can be any group listed above.

References

[1] N.L. Biggs, Algebraic graph theory, (Second edition) (Cambridge University Press, Cambridge, 1993).
[2] P.J. Cameron, 'Finite permutation groups and finite simple groups', Bull. London Math. Soc. 13 (1981), 1-22.
[3] J.D. Dixon and B. Mortimer, Permutation groups (Springer-Verlag, Berlin, Heidelberg, New York, 1996).
[4] A. Gardiner and C.E. Praeger, 'A geometrical approach to imprimitive graphs', Proc. London Math. Soc. (3) 71 (1995), 524-546.
[5] A. Gardiner, C.E. Praeger and S. Zhou, 'Cross ratio graphs', Proc. London Math. Soc. (to appear).
[6] W.M. Kantor, 'Homogeneous designs and geometric lattices', J. Combin. Theory Ser. A 38 (1985), 66-74.
[7] C.H. Li, C.E. Praeger and S. Zhou, 'A class of finite symmetric graphs with 2 -arc transitive quotients', Math. Proc. Cambridge Philos. Soc. 129 (2000), 19-34.
[8] C.E. Praeger, 'Imprimitive symmetric graphs', Ars Combin. 19A (1985), 149-163.
[9] S. Zhou, 'Almost covers of 2-arc transitive graphs', (submitted).
[10] S. Zhou, 'Imprimitive symmetric graphs, 3-arc graphs and 1-designs', Discrete Math. (to appear).
[11] S. Zhou, 'Constructing a class of symmetric graphs', (submitted).

Department of Mathematics and Statistics
The University of Western Australia
Perth, WA 6907
Australia
e-mail: smzhou@maths.uwa.edu.au

Current address:
Department of Mathematics and Statistics
The University of Melbourne
Parkville, VIC 3010
Australia
e-mail: smzhou@ms.unimelb.edu.au

[^0]: Received 24th July, 2000
 The author appreciates greatly Professor Cheryl E. Praeger for her guidance and excellent supervision.

