J. Austral. Math. Soc. 20 (Series B) (1978), 157-164

A NOTE ON CONTINUATION METHODS FOR THE SOLUTION
OF NONLINEAR EQUATIONS

JAMES P. ABBOTT and RICHARD P. BRENT

(Received 12 September 1977)

Abstract

In this note we present a variable order continuation method for the solution
of nonlinear equations when only a poor estimate of a solution is known.
The method changes continuously from one which improves the global
convergence characteristics to one which attains rapid convergence to a
solution and proves to be more efficient than methods previously presented
in [2].

1. Introduction

In a previous paper [2] we described some methods for the solution of a system
of nonlinear equations when only a poor initial estimate of a zero is known. In
this note we continue this work and present an adaptive method which has proved
to be more efficient than those described in [2). We have attempted to be brief
and refer the interested reader to [1] for a full description of the details.

The general approach goes back to the last century but see, in particular, [3],
[10], [11] and their references for the major work. Suppose we wish to find a zero
x* of the function f: D<= R*—+ R™ We embed this problem in a family of problems
of the form

H(x(1),t) = 0, (1.1

where 1€[0,7), for some 7>0. (+ may be infinite but we do not specifically
distinguish this case.) The embedding is chosen so that, for ¢ = 0, the solution
x(t) of (1.1) is known to be x,, that is, x(0) = x,, and x(7) is the required solution x*.
We assume subsequently that x(7) exists for all 1€[0,r) and refer, for sufficient
conditions, to Rheinboldt [12] for the general case and [2] and its references for
particular choices of H(x, r). The problem is now one of the following the solution
trajectory from x(0) = x, to x(7) = x*. By application of the chain-rule, it follows
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that the solution of (1.1) satisfies the initial value problem
X(t) = —0,H(x, )10, H(x,1), x(0)=x,. (1.2)

The choice of H in [2] was
H(x,1) = f(x)— e~ f(xo), (1.3)

whence (1.2) becomes
X)) =—=J)1f(x), x(0)=x,, (i4)

where J(x) is the Jacobian of fat x. In this case, under general conditions on f and
Xg, limy, x(t) = x*. In [2] we developed single and multistep methods for
integrating (1.4). These methods have rapid final convergence to x* and improve
on the efficiency of some of the methods previously suggested. However, the
methods of [2] make no use of the fact that the solution of (1.4) also satisfies (1.1)
and in this note we describe a method which uses this relation to advantage.

2. An adaptive Newton method

As in [2] we do not wish to follow x(¢) with high accuracy since following x(¢)
is only a means to finding x* For efficiency we require a low order method for
integrating (1.4) which is stable in the sense that an error over one step of the
integration will not adversely affect subsequent steps. This is the case if a method
has a positive order, in the sense of Henrici [8].

DEerFINITION ([8]. If the initial value problem

(1) =g(x,1), x(0)=x,, 2.1)
is solved by the iterative process
X =G(x, 1 h), i=0,1,.., 2.2

where x; is an approximation to x(¢;) and A; = t;,,—t;, then method (2.2) has
order r for (2.1) if
G(x,t,h) = z(t+ h)+ O(h™*Y),

where z(u) is the solution of
2u) =g(z,u), z()=x.

(By a = b+ 0(8) we mean that there is a constant K, independent of 3, such that
||a—b||< K| 8] for all sufficiently small 8.)

If x;#x(z;) then, at the (i+1)st stage, a method with positive order tries to
follow the solution of

Z.(t) = g(z, t)’ z(ti) = X
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which is different from x(¢). Now, when g(x, t) is given by

g(x, 1) = =J(x)1f(x),

then, under general conditions on fand x;, z(¢) still converges to x*. This is because
(1.4) is stable, in the Liapunov sense, at x* (see [2] for details). Therefore, the fact
that x;% x(¢;) is not necessarily detrimental.

Consider (2.2) with G(x,t, h) given by

G(x,t,h) = p,(x,t, h), (2.3a)
where
po(x, t,h) = x (2.3b)
and
Piy1 =DPj— O, H(pj t+h) 1 H(p;,t+h), j=0,1,...,m—1. (2.3¢)

(For brevity we shall often omit the arguments x, ¢ and 4 from p,(x, ¢, h).) This is
an obvious method which has been suggested many times for other choices of
H (see [2], [11] and the references therein) and is simply m steps of Newton’s
method for finding x;,, by solving H(z,t;,,) = 0, using x; as initial guess. With
H(x,1) given by (1.3), (2.3c) becomes

Piv1 = Pi—J(p) (f(p))—e =R f(xo))-

The resulting method does not have a positive order (although it does satisfy a
different order condition [1]) but we can modify it to suit our needs. We note,
using (1.1) and (1.3), that x(¢) satisfies

Sx(t+h) = e f(xg) = e f(x(2)).

This suggests the iterative process given by

X = G(xp hy) (24)
where
G(x, h) = p,(x, h), (2.5a)
Do(x, B) =x (2.5b)
and
Pim =pi=J(p) X f(p)—e*f(x)), j=0,1,...,m—1 (2.5¢)

This method has order 2™ —1 for (1.4) as we now show.

THEOREM 2.1. Suppose that f: D= R™— R™ has a derivative J(x) which is Lipschitz
continuous in a convex neighbourhood S of a point x€lInt(D). Assume also that
J(x)7* exists and is bounded on S. Then the method given by (2.4) and (2.5) has order
2m—1 for (1.4).
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PrROOF. With the given conditions the Implicit Function Theorem ensures the
existence of a unique continuous solution, z(h)€ S, of

fe@)—e?f(x) =0, z(0)=x,

#(h)=—J(2)f(2), 2(0)=x, (2.6)
and he(—38, 8) for some §>0. We require to show that || z(h)— G(x, k)| = O(4*")

nmd ot 1.
aiidg, noting that

and therefore of

" Z(h)— G(X, h) ” = " Z(h) _pm(xs h)”’

we derive the required result by induction. Define oy, for j=0,1,...,m by

o = [ z(B)—py.
Also, for any w, y€ S, define u(w, y) by
S =f)+I ) (w—y)+uw, ). @7

Then, with the given conditions and from [11, Theorem 3.2.5], it follows that there
exist constants K; and K, such that

V) <Ky, Nutw, <Kol w—ylP, (2.8)
forall w,yeS.

Now from (2.6), || 2(4)]| is bounded for he(—§,8), and it follows from [11,
Theorem 3.2.3] that

ag = l|z(h) — x| = || z(h) — 2(0) || = O(h).
So, for small enough 4, p, is contained in an open sphere S(h)< S, centred at z(}).

We assume that, for some j, p;€ S(h) and that o = O(h?) and note that these are
true for j = 0. Now

41 = || 2() =Py |
and from (2.5¢) we have
&ia = |2 —=p;+I () S (p) — e f(0)].
But f(z()) = e~*f(x) and so
a1 = |2 —p;+ () (S () =S () |

which, from (2.7), gives

a1 = [ F ()~ u(z(h), py) |-
Now, from (2.8), we have

o541 <K Kp o2

and so, for small enough 4, p;,; € S(h). Also oy,; = O(h¥*") and the result follows
by induction. This completes the proof.
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This result indicates the order of accuracy of the method in following the
solution of (1.4) but now we consider the method as an iterative scheme for
finding x*. The process (2.4) is of the type discussed in [1] and [2]. For brevity
here we assume that the step size, h;, varies at each iteration until, for some i,
h; = h* for each i> i, This assumption is not necessary, however it is what we do
in practice. Now we can use the results of [11, section 10.1] which show that (2.4)
converges linearly to x* if 0< p(9, G(x*,h*))< 1, where p(*) denotes the spectral
radius, and (2.4)+(2.5) can converge at least quadratically to x* only if
8, G(x*, h*) = 0. Some simple algebra shows that, for (2.5),

0,G(x*h)y=en1

and so p(d,G(x*,h)) = e*>0, for all h. Thus, local convergence to x* is linear
for all #> 0. This is unsatisfactory and so we modify (2.5c) to

Pin=pi=J () (f(p) - W), j=0,1,...,m—1, 2.9

where ¢: R—> R, is a function which is an approximation to e~*. We first give a
result on the order of this method for following the solution of (1.4).

THEOREM 2.2. Suppose ¢: R— R is continuous and ¢(h) = e~*+ O(h**1), k>0.
Then, under the conditions of Theorem 2.1, the method given by (2.4), (2.5a,b) and
(2.9) has order min (2™ —1, k) for (1.4).

We omit the proof since it is similar to that of Theorem 2.1 and can be found
in [1].

Now, from (2.9),
05 G(x* 1) = d(h) 1

so we can achieve quadratic convergence to x* if ¢ and A* are chosen so that
¢(h*) = 0. In order to maintain a certain order, r say, for following the solution
of (1.4), a suitable choice for ¢(h) is
k (—hy
=% =7

where k = r or r+1 is chosen to be odd, for then ¢(k) satisfies the conditions of
Theorem 2.2 and has a unique positive root. A practical algorithm is therefore to
allow the step-sizes, /;, to increase subject to suitable step length tests, and finally
to hold each A, fixed at 4*, where ¢(h*) = 0. If k is large enough, the order of the
method will be 2™ —1 and the sequence {x;} will converge rapidly to x*. The method
changes in a continuous way from one which follows the solution trajectory x(r)
accurately to one which converges rapidly to x*. The final method, when A = A*,

is simply Newton’s method,
6
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3. Practical results

We tested the above method and compared the results with those described
in [2]. For a fair comparison we employed identical criteria for step-size changing
as used for the method RK3 in [2]. The methods in [2] were fixed order whereas a
major advantage of the above method is the ease with which we can vary its order,
simply by changing m. As might be expected, we found that varying the order at
each iteration improved efficiency and it is for this implementation that the results
are given. To compare with the order 3 methods in [2] we chose m, at each iteration,
so that the order was at most 3 but stopped iterations as soon as the relevant test [2]
indicated that the step-size would be doubled at the subsequent step.

TastLe 3.1
Method using (2.9)
Problem 1 2 3 4 5 6 7 8
Jacobian evaluations 10 15 6 26 15 8 27 29
Function evaluations 11 18 7 28 16 9 31 33

Equivalent function evaluations 31 48 19 80 61 57 112 120

The method was tested on the 8 problems in [2] and Table 3.1 gives the effort
required to reduce each component of f to less than 1078, The first line gives the
number of Jacobian evaluations, the second gives the number of function evalua-
tions and the third gives the number of equivalent function evaluations, counting
each Jacobian evaluation as »n function evaluations (except for problems 7 and 8
where the Jacobian is tridiagonal and its evaluation is counted as 3 function
evaluations). We note that these results represent a significant improvement over
the results in [2], and therefore upon those in, for example, [4]}, [5], [6], [9], [10]
which do not make special use of the characteristics of the solution of (1.2).

We also note that to evaluate J(p;) in (2.9) for each j may be inefficient. In
particular, if J(x) is evaluated only once per step and (2.9) replaced by

p_1'+l =pj_'](x)_1 [f(pj)_¢(h)f(x)]3 j = 09 l, ey M — 1’ (31)

then the resulting method has order m for (1.4). (This result is extended and proved
in [1].) For example, to achieve order 3, this method requires 3 function and 1
Jacobian evaluation whereas with (2.9) the method requires 2 function and
2 Jacobian evaluations. So, for small A at least, using (3.1) is theoretically more
efficient than using (2.9). Table 3.2 gives the results of the method with (3.1)
replacing (2.9). The table shows that this method is generally the most efficient.
The only notable exceptions were when the solution of (1.4) ran close to a region
where J(x) was singular, as in problem 4, and so J(x)~! was changing rapidly.
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It seems reasonable to monitor Det (J(x)), which can be done at little cost since
J(x) is factorized into triangular factors, and evaluate J(x) more often only when
Det (J(x)) becomes small.

TABLE 3.2
Method using (3.1)

Problem 1 2 3 4 5 6 7 8
Jacobian evaluations 8 8 6 36 9 7 14 15
Function evaluations 11 29 7 134 20 9 61 65

Equivalent function evaluations 27 45 19 206 56 S1 113 110

Finally, we note that this work is extended in [1] where tests are also performed
on other continuation methods, for example, Branin’s method [7] and the methods
which result from choosing H(x, ) as

H(x, 1) = f(x)— (1 - ) f(xp).

(See [11].) The results indicate that the new methods are more reliable and efficient.
In particular, for the new methods the step control is easier and they have a greater
chance of success in more difficult problems.
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