
S. Louboutin
Nagoya Math. J.
Vol. 138 (1995), 199-208

CLASS-NUMBER PROBLEMS FOR CUBIC NUMBER FIELDS

STEPHANE LOUBOUTIN

1. Introduction

Let M be any number field. We let Z)M, dM, hUf ζM, AM and RegM be the dis-

criminant, the absolute value of the discriminant, the class-number, the Dedekind

zeta-function, the ring of algebraic integers and the regulator of M, respectively.

3 + 2\/2 , ,
We set c — o ^ # * s a n y °dd prime we let ( / q) denote the Legendre's

symbol. We let DP and dP be the discriminant and the absolute value of the discri-

minant of a polynomial P.

LEMMA A (See [Sta, Lemma 3] and [Hof, Lemma 2]). Let M be any number field.

Then, ζM has at most one real zero in

L c log d

if such a zero exists, it is simple and is called a Siegel zero.

LEMMA B (See [Lou 2]). Let M be a number field of degree n = rλ -f 2r2 where

M has rγ real conjugate fields and 2r2 complex conjugate fields. Let s0 G [(1/2), 1[

be such that ζM(s0) < 0. Then,

Res 5 = 1(ζM) > (1 - so)d^°"lh

2. Lower bounds for class-numbers of cubic number fields

Let K be a cubic number field. If K / Q is normal then K is a cyclic cubic

number field. Let / κ be its conductor. Then dκ—fκ and ζ κ ( s ) = ζ(s)L(s, χ)

L(s, χ) where χ is a primitive cubic Dirichlet character modulo/ κ . Hence, we get
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ζ κ ( s ) < 0, s G [0,1 [. With sQ = 1 - (2/ logd κ ) Lemma B provides the follow-

ing lower bound which improves the one given in [Let]

Lettl used his lower bound to determine all the simplest cubic number fields with

small class-numbers. Here, the simplest cubic number fields are real cubic cyclic

numbers fields defined as being the splitting fields of the polynomials P(X) = X

— aX — (a + 3)X — 1 (a > 0) whose discriminants dP = (a + 3a + 9) are

square of a prime p — a + 3a + 9, which implies A κ = Z[ε] where ε > 1 is the

only real root of P(X) greater than one (we have ε G ]# + 1, α + 2[). He found

that there are 7 simplest cubic fields with class-number one, and none with

class-number two or three.

In the same spirit, Lazarus determined all the simplest quartic fields with

class-number 1 or 2. Here, the simplest quartic number fields are real quartic

cyclic number fields defined as being the splitting fields of the polynomials

POO = X* - 2aX3 - 6X2 + 2aX + 1 (a > 0) whose discriminants dP = 256d3

a

are such that da — a 4- 4 is odd-square-free. He found that there are 6 simplest

quartic fields with class-number one, and 3 with class-number two.

From now on, we assume that K is not normal. Thus, the normal closure N of

K is a sextic number field with Galois group the symmetric group sS3.

LEMMA C. Let K / Q be a non-normal cubic extension with normal closure

N = KL where L = Q ( / D ^ ) is quadratic. It holds ζ N ζ = CKCL Hence, rfN =

d κ ( i L , and dN divides dκ. Finally, ζ κ does not have any real zero in the range

[1 - (lΛ3clogdκ))f 1[.

Proof. The first point is proved page 227 of [Cas-Fro] using Artin L-series

formalism. The second point follows from the first one using the functional equa-

tions satisfied by these zeta-functions (see [Lou 1]). According to the first point,

any real zero in ]0 , l [ of ζ κ is a multiple zero of ζ N . Hence, the fourth point fol-

lows from Lemma A. It remains to prove the third point. According to Stickelber-

ger's theorem, we have Dκ = 0,1 (mod 4). Hence, Z)L divides Dκ, and we may de-

fine / > 1 by means of Dκ = f DL. D

According to Lemmata A, B and C, we get:

https://doi.org/10.1017/S0027763000005249 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000005249


CUBIC NUMBER FIELDS 2 0 1

THEOREM 1. LetJί be a non-normal cubic number field. It holds

3. Computation of the class-number of a non-abelian cubic number field K

with negative discriminant

We make use of the results of [Bar-Lox-Wil] and [Bar-Wil-Ban]. Set Φ(s) =

(ζκ/ζ)W = Σ Γ

nK rίegκ = —7s— = 2^ —v
Λ **- L/ y*>

where

Γ°° e~x

E(y) = I —dx = - log V,

where 7 = 0.577215664901.. . is the Euler's constant, and where C —

Now, j »-* α θ ) is a multiplicative function such that a(pn) = F(pn) —

F(pn~ ) where F(k) is the number of distinct ideals of K with norm A: > 1.

Moreover, if p does not divide rfκ, then

(p) which implies (Dκ/p) = + 1 (Type I),

5 ^ if and only if (Dκ/p) = - 1 (Type II),

9$>29Z which implies (Dκ/p) = + 1 (Type III).

If ^ divides <iκ, then with / as in the proof of Lemma C we have

( i^ 2 if p does not divide / (Type IV),

1 if p divides / (Type V).

If the ring of algebraic integers of K is generated by an algebraic integer xκ and

if PK(X) is the minimum polynomial over Q of xκ, then we are in the Type I or

Type III cases according as PK(X) does not have or has at least one root modulo

p, and we are in the Type IV or Type V cases according as PK(X) has a double

or a triple root modulo p.

4. Explicit class-number problem for non-normal cubic number fields

First example. In the same way we got Theorem 1, we get
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THEOREM 2. (a) (See [Fro-Tay, Chapter 5]) Let / > 1 be an integer. Set

P^X) — X + IX — 1. Then P,(X) is irreducible in Q,[X]f has negative discrimi-

nant Dι = — dι = — (4/ + 27), and has exactly one real root xx. Set ε/ = \ /xx.

Then, l< ει < I + 1. Set Kt = Q(xt) = Q(εt). Then K, is a real cubic number

field with negative discriminant and εt is the fundamental unit greater than one of the

cubic order Z[xt] = Z[εJ.

(b) Assume that the ring of algebraic integers A, o/K, is equal to Z[ε7]. Then,

h, > ~~ when dι>2-105, and h, > 3 when I > 400
20 log2 {d)

{here hι is the class-number o/K7). Hence, there are 5 siic/i Kz will class-number one,

namely K D K2, K3, K5 and K n there are 2 such K/ with class-number two, namely

K4 and K7 ί^re are 3 such K, w iί/i class-number three, namely K6, K1 5 and K17.

LEMMA D. (a) The ring of algebraic integers of Jit is equal to ZtεJ if and only

if 3 does not divide I, and p does not divide dι — 4/ + 27 for any prime p ^ 5.

(b) Under this assumption, we have:

(i) For any prime p Φ 3 that divides dι we have F(p ) = n + 1 and a(^) ) = 1, n > 1.

(ii) Ifp = 3 dm<tes rf;, ί ^ n F(3W) = 1 and a(3n) = 0, w > 1.

(iii) ///> d^5 noί divide dι and ( - d,/^) = - 1 , then a{pn) = (1 + (~ l) w )/2.

(iv) //"̂ ) dθ£s noί divide dt and (— dt/p) = + 1 , then

a(p")

1 if Pj(X) has at least one root modulo p,

ifn = 0 (mod 3),

(w + 1 /3) = — 1 if n = 1 (mod 3), ifPt(X) has no real root modulo p.

0 ifn = 2 (mod 3),

Pr<%>/. Point (b) follows from Section 3 (see [Bar-Lox-Wil, Table 2]).

Now, we proceed with the proof of point (a). We note that the integral bases

of all cubic fields are determined in [Alb]. Though, we give a simple proof for this

special case. Let t be an integer and set

xf

Then yPtl(t) is a root of the following polynomial

vs Pi® V2. 3/p,ω p,ω 2

i 7 1 Ί ~ I Γ
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(being the characteristic polynomial of the linear map z*-* yPtl(ί)z of the three

Q-dimensional vector space K,, then yPjl(t) is indeed a root of this polynomial).

Hence, yPj(t) is an algebraic integer provided that P,(0 Ξ 0 (modp ) and

P ω = 0 (xnoάp).
Now, assume that ZLr,] is the ring of algebraic integers of K, and let p be

any prime which divides dι = 4/ + 27. Hence p is odd.

First, assume that p Φ 3. Then p does not divide / and we take t — tιp such that

2ltltP = 3 (modp) and where we hence write 2ltιp = 3 + ap. Then,

4l2Pί(tPJ) = 3(3 + ap)2 + 4/3 = dι = 0 (mod/>),

Sl3Pt(tPtl) = (3 + α£)2 + 4/3(3 + <#) - 8/3 = dt + apdι = rf, ( m o d / ) .

Hence, up would divide dι then ypι(tpι) would be an algebraic integer of K, and

p would divide the index of ZLrJ in A,. Contradiction.

Second, assume that/? = 3. If 3 would divide /, then z/3;/(l) would be an algebraic

integer. Hence, 3 would divide the index of ZLrJ in A,. Contradiction.

Conversely, first assume that if p Φ 3 divides dι then p does not divides d{. Since

dι — (A,: Z t ^ ] ) dKι, then p does not divides this index (Az: ZLr,]) which is thus

a 3-power. Note that if 3 divides this index, then 3 divides dh i.e., 3 divides /.

Second, it is known that if x is an algebraic integer whose minimum polynomial is

^-Eisenstein for a prime p, then p does not divides the index of Z[x] in the ring

of algebraic integers of the number field QCr) (see [Nar, Lemma 2.2, page 60]).

Hence, if we can find an integer a such that P,(tf) = P[{d) = 0 (mod 3) and

Pt(a) ^ 0 ( m o d 3 2 ) , then the minimum polynomial Qa(Y) = Pt(Y + a) = Y3 +

3aY2 + PΊ(a)Y-\- Pt(a) of y^a) = xt — a is then 3-Eisenstein. Hence, 3 does

not divide the index (A iZLrJ) , which implies the desired result. Now, assume

that 3 divides / but that 3 does not divide /. Then, Qλ(Y) being 3-Eisenstein we

get the desired result. O

The computational method of the third section and Lemma D provide the fol-

lowing table of class-numbers hι of these number fields K/ for the first values of

/ > 1 such that Ztε^ is the ring of algebraic integers of K^ According to the more

extensive class-number computation of hι for / < 400, we easily get Theorem

2(b).
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/

1

2

3

4

5

6

7

10

11

12

d
t

31

59

135

283

527

891

1399

4027

5351

6939

K
1

1

1

2

1

3

2

6

1

6

/

13

14

15

16

17

19

20

21

22

23

d,
8815

11003

13527

16411

19679

27463

32027

37071

42619

48695

ft,
5

8

3

8

3

7

10

6

12

4

/

24

25

26

28

29

30

31

32

34

35

di

55323

62527

70331

87835

97583

108027

119191

131099

157243

171527

18

6

8

32

6

15

12

10

28

12

/

37

38

39

40

41

42

43

44

46

47

dι

202639

219515

237303

256027

275711

296379

318055

340763

389371

415319

ft,
8

23

15

28

6

39

16

18

27

8

D

Second example. Let K = Q(yfd), d > 2, be a real pure cubic number field.

Assume that d is cube-free and define a and b by means of {a, b) = 1 and d =

ab\ Then, Dκ= - 3(ab)2 or Dκ= ~27(ab)2 according as d= ± 1 (mod 9)

or not. Now, L = Q(V~ 3") and ζ L does not have any real zero in ]0, l[ . Hence,

we get ζ N (s) < 0, s ^ ]0, l [ According to Lemma C, we have Res 5 = 1 (ζ N ) =

(Res 5 = 1 (ζ κ ) ) Res 5 = 1 (ζ L ) and we may apply Lemma B with s0 = 1 —

(2/logd N ) , which provides an optimal lower bound on R e s s = 1 ( ζ N ) . Since

R e s s = 1 ( ζ L ) = 7r/3\/3\ we get the following lower bound that improves the one

given in Theorem 1:

THEOREM 3 (See [Bar-Lou]). LetK be a real pure cubic number field. Then,

THEOREM 4. When m > 1 is such that m ± 1 is cube-free, we set K±m

— Q(vm ί 1) which is a pure cubic real number field. There are 2 such K ± m with

class-number one, namely K+ 1 and K+2; there does not exist any such K± m with

class-number two', and there are 3 such K ± m with class-number three, namely K_2,

K_3 and K+3.

Proof Set d±m = m ± 1 and ω±m = yfd^. Then, ε±m = ± Λω±m - m) =

ω± mω± m w e n a v e ε±m —

Hence,
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2

and according to Theorem 3 we get

D V log (3rf κ ± J B )

which implies Aκ ± w ^ ^ ^ o r ^κ + M > l l ' 106. Note that m > 72 implies d κ ± w ^

3dm > 1.1 106. Now, the computation of a and b for d±m = m3 ± 1 and 1 < m

< 72 yields dκ±/M — l l ' 10 ^ a n c^ o n ^ ^ 1 — m — 6 when d±m = m + 1, and

2 < m < 7 when d± m = m — 1 (note that d ± m must be cube-free). The

class-numbers of these number fields may be found in [Hos-Wad], and they pro-

vide the desired result. CH

5. Another class-number problem

Let K be a real quadratic number field of discriminant D > 0. The ring of

algebraic integers A κ = Z ^ of K writes A κ = Z[ε] where ε =

Λ > 1 is a unit of A κ if and only if v — 1, hence if and only if D = m + 4 ,

mJr\l'D
m > 1. In that case, εD < ε = ^ < yD + 4 where ε^ is the fundamental

unit of K. According to the Brauer-Siegel theorem, there are only finitely many

real quadratic number fields with discriminants D = m ± 4 of given

class-number. Up to now, no one knows how to make the Brauer-Siegel effective

in the real quadratic case, without assuming a suitable generalized Riemann

hypothesis (see [Mol-Wil]. In contrast to the real quadratic case, let K be a cubic

number field with negative discriminant whose ring of algebraic integers A κ is

generated by a unit ε, i.e. such that A κ = Z[ε]. This clearly amounts to saying

that A κ = Z [ ε κ ] , where ε κ > 1 is the fundamental unit of K. According to

Theorem 1 and the following Proposition 5, we get the effective Corollary 6 that

would enable one to explicitly determine all the cubic number fields of negative

discriminants whose have small class-numbers and whose rings of algebraic inte-

gers are generated by units.

PROPOSITION 5. A polynomial P(X) is said of type (T) if it is a monic irreducible

cubic polynomial with integral coefficients (say of the form P(X) — X — ClX + bX

— 1) with exactly one real root εP (i.e. DP < 0) which satisfies εP > 1 (i.e. we have
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b < a — 1), Then, there exists an effective constant cι > 0 such that for any polyno-

mial of type (T) we have dP = \ DP \ > cλεP .

COROLLARY β. Let h be a positive integer. Then, there are only finitely many

cubic number fields K of negative discriminants Dκ which have class-number h and

whose rings of algebraic integers write A κ = Z [ ε κ ] , where ε κ > 1 is the fundamental

unit of K. Moreover, there exists c2 > 0 effective such that | Dκ | < c2h log h for

these number fields.

Proo of Proposition 5. Set ε = εP, xx = ε, and let x2 = a + iβ and x3 = a —

iβ be the two complex conjugate roots of this polynomial. Then,

1 = xxx2x3 = εia + β2),

b = xγx2 + x,x3 + x^ = 2εa + ia + β2) = 2εα + (1 /ε),

a — x, H- Xo + Xo = ε + 2a.

Hence, we have | a \ < 1 /yε < 1 and ε < a + 2, which implies a ^ 0. Moreover,

we have | 6 | ^ 2/^ + 1 < 2]/a + 2 + 1, which implies that there are only finite-

ly many polynomials of type (T) with 0 < a < 17. Hence, we may assume

a> 18.

We have - DP = 4(a3 + δ3) - α2^2 - ISab + 27.

First, we assume a > 0. Since 0 < 2εα + (1/ε) < 2y/ε + 2α (since 0 < α

< 1/v/ε and ε > 1), we get 1 < b < 24a. Now b ^ fib) = - DP = 4bs - ab2

— ISab + 4=a3 + 27 is decreasing in the range [1,2 ̂ a] (since tf > 9). So, we

write 4α = m + r, with m > 0 and 0 < r < 2m, which provides 1 6 ^ >

16/(m) if r > 1, and 16rfP > 16/(m - 1) if r = 0. Noticing that 16/(6) =

{AaΫiAa - b2) - 72bUa - b2) - 8b3 + 432, we thus get

ί rim2 + rf - Ί2rm - 8rn + 432 > m - 8m3 + 2m2 - Ί2m + 433 if r > 1,
p ~ [2nΐ - m - 8m - 120m2 + 192m + 368 if r = 0.

Since 4# < m and ε < α + 2, we get the desired result.

Second, we assume a < 0. Then, b = 2εa + (1/ε) < 1/ε < 1, i.e. b < 0.

We set £ = - b. Now #CB) = - DP= - AB3 - aB2 + 18α£ + 4α3 + 27 is

decreasing on [1, + °o[ (since a > 9), and gW4a 4- 1) < 0 (since a > 16).

Hence, we get B < y/Aa + 1 . So, we write 4a + 1 = m + r, with m > 0 and

0 < r < 2m. Since g(0) > ^(1) (since a > 18), we have 16dP > 16gim) if r > 1,

and 16rfP > 16^(m - 1) if r = 0. We thus get
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(r- 1) (m2 + r - I ) 2 + Ί2m{r ~ 1) + 8m3 4- 432 > 8m3 + 432 if r > 1,

2m5 - 2m4 +• 4m3 + 124m2 - 262m + 566 if r = 0.

As in the first case, we get the desired result.

Let us note that when POO = X3 ~ M2X2 - 2MX - 1 we have dP = AM3

+ 27 and M2 < εP < M2 + 1 (M > 2) which implies dP ~ 4 ε Γ •

6. Conclusion

Let h and n be two given positive integers. Are there only finitely many num-

ber fields K of degree n with class-number h such that their rings of algebraic in-

tegers are generated by units ? More precisely, let n > 1 be a given positive inte-

ger and let K = QCr) be a number field of degree n where x is an algebraic unit

which is a root of any irreducible monic polynomial of the form P(X) — Xn +

an_ιX + + aλX ± 1. If we assume that the ring of algebraic integers of K

is equal to ZLr] and that K has a unit group of rank 1, is that true that the

class-number of K tends to infinity with dκ = dP?
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