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CLASS-NUMBER PROBLEMS FOR CUBIC NUMBER FIELDS

STEPHANE LOUBOUTIN

1. Introduction

Let M be any number field. We let Dy, dy, %y, Cyu, Ay and Regy be the dis-
criminant, the absolute value of the discriminant, the class-number, the Dedekind

zeta-function, the ring of algebraic integers and the regulator of M, respectively.

3+ 2y2
2

We set ¢ = . If ¢ is any odd prime we let (-/¢) denote the Legendre's

symbol. We let D, and d, be the discriminant and the absolute value of the discri-
minant of a polynomial P.

LemMma A (See [Sta, Lemma 3] and [Hof, Lemma 2]). Let M be any number field.
Then, {yy has at most one real zevo in

cogay 1
[1 clog dy’ 1
if such a zervo exists, it is simple and is called a Siegel zevo.

LEMMA B (See [Lou 2]). Let M be a number field of degree n = v, + 27, where
M has 7, real conjugate fields and 27, complex conjugate fields. Let s, € [(1/2), 1[
be such that {y(s) < 0. Then,

_ 27, 2my,
Res, (G = (1 — spdg™ (1 - 4 — =72),
dM M

2. Lower bounds for class-numbers of cubic number fields

Let K be a cubic number field. If K/Q is normal then K is a cyclic cubic
number field. Let fy be its conductor. Then dg = fie and { x(s) = L(S)L(s, %)
L(s, )_() where ¥ is a primitive cubic Dirichlet character modulo fK Hence, we get
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{k(s) <0, s [0,1[. With s,=1 — (2/log dg) Lemma B provides the follow-
ing lower bound which improves the one given in [Let]

1 6
Ress=1(CK) 2 m’ fK = 10",

Lettl used his lower bound to determine all the simplest cubic number fields with
small class-numbers. Here, the simplest cubic number fields are real cubic cyclic
numbers fields defined as being the splitting fields of the polynomials P(X) = x®
—aX®— (@a+3)X —1(a=0) whose discriminants dp, = (a® + 3a + 9)° are
square of a prime p = @’ + 3a + 9, which implies Ag = Z[e] where ¢ > 1 is the
only real root of P(X) greater than one (we have ¢ € la + 1, a + 2[). He found
that there are 7 simplest cubic fields with class-number one, and none with
class-number two or three.

In the same spirit, Lazarus determined all the simplest quartic fields with
class-number 1 or 2. Here, the simplest quartic number fields are real quartic
cyclic number fields defined as being the splitting fields of the polynomials
P(X) = X' — 2aX® — 6X* + 2aX + 1 (a > 0) whose discriminants d, = 256d,
are such that d, = a+4is odd-square-free. He found that there are 6 simplest
quartic fields with class-number one, and 3 with class-number two.

From now on, we assume that K is not normal. Thus, the normal closure N of

K is a sextic number field with Galois group the symmetric group 4,

Lemma C. Let K/Q be a non-normal cubic extension with wnormal closure
N = KL where L = Q(/Dy) is quadratic. It holds {n\C* = (5Cy. Hence, dy =
dlz(dL, and dy divides dIS(. Finally, g does not have any veal zevo in the vange
[1 - (1/@clogdg), 1L

Proof. The first point is proved page 227 of [Cas-Fro] using Artin L-series
formalism. The second point follows from the first one using the functional equa-
tions satisfied by these zeta-functions (see [Lou 1]). According to the first point,
any real zero in 10,1[ of {x is a multiple zero of {y. Hence, the fourth point fol-
lows from Lemma A. It remains to prove the third point. According to Stickelber-
ger’s theorem, we have Dg = 0,1 (mod 4). Hence, Dy, divides D, and we may de-
fine f 2 1 by means of Dg = D, Ll

According to Lemmata A, B and C, we get:
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THEOREM 1. Let K be a non-normal cubic number field. It holds

Vdy
log dg

1
hy Regg = £ ,dg > 4-10°.

3. Computation of the class-number of a non-abelian cubic number field K
with negative diseriminant

We make use of the results of [Bar-Lox-Wil] and [Bar-Wil-Ban]. Set @(s) =
Lg/D() = 2,5, a()j . Then,
(1
hg Regy = (C) = 2

izl

o;(é) ¢+ 2 a)EGO)

i=z1

where

E(y)=fwe dr= —logx — 7 — Z%xj,

x
121

where ¥ = 0.577215664901. .. is the Euler’s constant, and where C = 27‘[/@.

Now, j~ a(j) is a multiplicative function such that a(p”) = F(") —
F(®"™") where F(k) is the number of distinct ideals of K with norm k& > 1.
Moreover, if p does not divide d, then

()] which implies (Dg/p) = + 1 (Type I),
(p =12, ifandonlyif (Dg/p) = — 1 (Type ID),
P,%,%, which implies (Dg/p) = + 1 (Type III).

If p divides d, then with f as in the proof of Lemma C we have

. @f@z if p does not divide f (Type IV),

®)
P°  if p divides f (Type V).

If the ring of algebraic integers of K is generated by an algebraic integer xg and
if Px(X) is the minimum polynomial over Q of xy, then we are in the Type I or
Type III cases according as Pg(X) does not have or has at least one root modulo
p, and we are in the Type IV or Type V cases according as Pg(X) has a double
or a triple root modulo p.

4. Explicit class-number problem for non-nermal cubic number fields

First example. In the same way we got Theorem 1, we get
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TueorEM 2. (a) (See [Fro-Tay, Chapter 5]) Let [ =1 be an integer. Set
P(X) = X’ + IX — 1. Then P,(X) is irreducible in QLX], has negative discrimi-
nant D, = — d, = — (41° + 27), and has exactly one real root x,. Set &, =1/x,.
Then, | <e <1+ 1 Set K, =Qlx) = Qle). Then K, is a real cubic number
field with negative discriminant and €, is the fundamental unit greater than one of the
cubic order Zlx,] = Zle,].

(b) Assume that the ving of algebraic integers A, of K, is equal to Zle,). Then,

ps Vi

| 2 —————— whend, = 2-10°, and h, > 3 when | > 400
20 log™(d)

(here h, is the class-number of K,). Hence, there ave 5 such K, with class-number one,
namely K, K,, K;, K; and K,,; there are 2 such K, with class-number two, namely
K, and K, ; there are 3 such K, with class-number three, namely Kg, K5 and K,,.

LEMMA D. (a) The ring of algebraic integers of K, is equal to Zle,] if and only
if 3% does not divide I, and p2 does not divide d;, = 40° + 27 for any prime p = 5.

(b) Under this assumption, we have:
(i) For any prime p # 3 that divides d, we have F") = n+ 1 and a(”) =1, n > 1.
(ii) Ifp = 3 divides d,, then F(3") =1 and a(3") =0, n > 1.
(iti) If p does not divide d, and (— d,/p) = —1, thena(p”) = (1 + (= D")/2.
(iv) If p does not divide d, and (— d,/p) = +1, then

n+1 if P,(X) has at least one root modulo p,
a(p") = 1 ifn=0 (mod3),
m+1/3)=1—-1 ifn=1 (mod3), ifP,(X) has no real root modulo p.

0 ifn=2 (mod3),

Proof. Point (b) follows from Section 3 (see [Bar-Lox-Wil, Table 2]).

Now, we proceed with the proof of point (a). We note that the integral bases
of all cubic fields are determined in [Alb]. Though, we give a simple proof for this
special case. Let { be an integer and set

ity +

¥, (O = 5
Then yl,,,(t) is a root of the following polynomial
po PO Lo StP,Z(t) v P,(3t)2
b » »
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(being the characteristic polynomial of the linear map z+—y,,(#)z of the three
Q-dimensional vector space K,, then y,,(#) is indeed a root of this polynomial).
Hence, y,,(f) is an algebraic integer provided that P,(#) = 0 (mod pz) and
P/(H) =0 (mod p).

Now, assume that Z[x,] is the ring of algebraic integers of K, and let p be
any prime which divides d, = 41° + 27. Hence p is odd.
First, assume that p # 3. Then p does not divide [ and we take { = t,» such that
2it,, = 3 (mod p) and where we hence write 2/t,, = 3 + ap. Then,

41°P)(t,,) =3B + ap)’ + 41’ = d, = 0 (mod p),
8I°P,(t,) = 3+ ap)’ + 41’3 + ap) — 8’ = d, + apd, = d, (mod p°).

Hence, if p° would divide d, then ¥,.(t, ) would be an algebraic integer of K; and
p would divide the index of Z[x,] in A,. Contradiction.

Second, assume that p = 3. If 3* would divide /, then y,,(1) would be an algebraic
integer. Hence, 3 would divide the index of Z[x,] in A,. Contradiction.

Conversely, first assume that if p # 3 divides d, then p2 does not divides d,. Since
d, = (A: Z[x,])szI, then p does not divides this index (A, : Z[x,]) which is thus
a 3-power. Note that if 3 divides this index, then 3 divides d,, i.e., 3 divides I.

Second, it is known that if x is an algebraic integer whose minimum polynomial is
p-Eisenstein for a prime p, then p does not divides the index of Z[x] in the ring
of algebraic integers of the number field Q(x) (see [Nar, Lemma 2.2, page 60)).
Hence, if we can find an integer @ such that P, (@) = P/(@) = 0 (mod 3) and
P,(a) # 0(mod 3%, then the minimum polynomial Q,(Y) = P, (Y +a) = Y*+
3aY’+ P{(@Y + P,(a) of y,(@) = x,— a is then 3-Eisenstein. Hence, 3 does
not divide the index (A,:Z[x;]), which implies the desired result. Now, assume
that 3 divides [ but that 3° does not divide /. Then, @,(¥) being 3-Eisenstein we
get the desired result. ]

The computational method of the third section and Lemma D provide the fol-
lowing table of class-numbers %, of these number fields K, for the first values of
! =1 such that Z[e/] is the ring of algebraic integers of K,. According to the more
extensive class-number computation of 4, for [ < 400, we easily get Theorem

2(b).
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I d, n, 1 d, h, 1 d, no 1 d, h,
1 31 1 13 8815 5 24 55323 18 37 202639 8

2 59 1 14 11003 8 25 62527 6 38 219515 23
3 135 1 15 13527 3 26 70331 8 39 237303 15
4 283 2 16 16411 8 28 87835 32 40 256027 28
5 527 1 17 19679 3 29 97583 6 41 275711 6

6 891 319 27463 7 30 108027 15 42 296379 39
7 1399 2 20 32027 10 31 119191 12 43 318055 16
10 4027 6 21 37071 6 32 131099 10 44 340763 18
11 5351 1 22 42619 12 34 157243 28 46 389371 27
12 6939 6 23 48695 4 35 171527 12 47 415319 8

g

Second example. Let K = Q(\s/g), d 2 2, be a real pure cubic number field.
Assume that d is cube-free and define @ and b by means of (@, b)) =1 and d =
ab® Then, Dy = — 3(ab)® or Dy = — 27(ab)* according as d = = 1 (mod 9)
or not. Now, L = Q(/— 3) and {, does not have any real zero in ]0,1[. Hence,
we get {nN(s) £0,s €10,1[. According to Lemma C, we have Res,_ ({y) =
(Res,_, ({g))" Res,_,(¢;) and we may apply Lemma B with s,=1—
(2/log dy), which provides an optimal lower bound on Res, ({y). Since
Res,_,({;) = n/3V3, we get the following lower bound that improves the one
given in Theorem 1:

THEOREM 3 (See [Bar-Lou]). Let K be a real pure cubic number field. Then,

I Rege = g log dg

, dg = 3-10"

THEOREM 4. When m =1 is such that m’ £ 1 is cube-free, we set K,
def 3 3 ) . . . .
= QW m” £ 1) which is a pure cubic veal number field. There are 2 such K, with
class-number one, namely K., and K, there does not exist any such K., with

class-number two; and there are 3 such K., with class-number three, namely K_,,

K ., and K,
Proof. Set d,, =m’* 1 and w,,, = d,, . Then, ¢,, = Nwy,, —m) =

wh,, + mw,, + m" is a unit of Ak, and we have 1 <e¢,, < 4wl,, = @Bd,,)"
Hence,
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2 2
Regy,, < loge,, < 3log(8d,,) < zlogdy, ),

and according to Theorem 3 we get

> l\/ dKim > 2.10%
MK 2 6 log’3dy, )’ frcan = 3110
which implies kg > 3 for dg, > 1.1- 10°. Note that m > 72 implies dg, =
3d,, > 1.1-10° Now, the computation of @ and b for d,, =m’ =1 and 1 < m
< 72 yields dg, < 1.1 -10° if and only if 1 < m < 6 when d,,, = m’ + 1, and
2<m<7 when d,,=m" —1 (note that d,, must be cube-free). The
class-numbers of these number fields may be found in [Hos-Wad], and they pro-
vide the desired result. U]

5. Another class-number problem

Let K be a real quadratic number field of discriminant D > 0. The ring of

D+ D
algebraic integers AK:Z[T‘/] of K writes Ag =Z[e] where =

u+ oD
—2—\/—‘— > 1 is a unit of Ag if and only if v = 1, hence if and only if D = m * 4,

m+ VD
2

unit of K. According to the Brauer-Siegel theorem, there are only finitely many

m = 1. In that case, ¢y < e = <vyD + 4 where ¢, is the fundamental

real quadratic number fields with discriminants D = m+4 of given
class-number. Up to now, no one knows how to make the Brauer-Siegel effective
in the real quadratic case, without assuming a suitable generalized Riemann
hybothesis (see [Mol-Wil]. In contrast to the real quadratic case, let K be a cubic
number field with negative discriminant whose ring of algebraic integers Ay is
generated by a unit ¢, ie. such that Ag = Zle]. This clearly amounts to saying
that Ag = Zlegl, where g > 1 is the fundamental unit of K. According to
Theorem 1 and the following Proposition 5, we get the effective Corollary 6 that
would enable one to explicitly determine all the cubic number fields of negative
discriminants whose have small class-numbers and whose rings of algebraic inte-
gers are generated by units.

PROPOSITION 5. A polynomial P(X) is said of type (T) if it is a monic irreducible

cubic polynomial with integral coefficients (say of the form P(X) = X° — aX® + bX
— 1) with exactly one real oot p (i.e. Dp < 0) which satisfies €p > 1 (i.e. we have
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b < a— 1), Then, there exists an effective constant ¢, > O such that for any polyno-

mial of type (T) we have dp = | D,| = .63,

COROLLARY 6. Let h be a positive integer. Then, there ave only finitely many
cubic number fields K of negative discriminants Dg which have class-number h and
whose rings of algebraic integers write Ag = Z[&'K], where g > 1 is the fundamental
unit of K. Moreover, there exists ¢, > 0 effective such that | Dy | < 62h2 log4 h for

these number fields.

Proo of Proposition 5. Set € = ep, x; = ¢, and let x, = a + i and x; = o —
13 be the two complex conjugate roots of this polynomial. Then,

1 = z,12, = ela’ + B9,
b=z, + 2,2, + 1,0, = 2ea + (@ + ) = 2ea + (1/¢),

a=x tzx,+x,=¢+ 2a.

Hence, we have |a| < 1/ye <1 and ¢ < a + 2, which implies @ = 0. Moreover,
we have | b] £ 2y/e +1 < 2ya + 2 + 1, which implies that there are only finite-
ly many polynomials of type (T) with 0 < a < 17. Hence, we may assume
a = 18.

We have — D, = 4(a’ + b°) — a’b* — 18ab + 27.

First, we assume a = 0. Since 0 < 2ea + (1/¢) < 2Ve + 2a (since 0 <
<1/ve and e > 1), we get 1 < b < 2/a. Now b f(b) = — D, = 4b° — d°b°
— 18ab + 44’ + 27 is decreasing in the range [1,2+va] (since @ = 9). So, we
write 4a=m" + 7 with m >0 and 0 <7< 2m, which provides 164, =
16fGm) if » 21, and 16d, = 16f(m — 1) if » = 0. Noticing that 16f(b) =
(4a)*(4a — b*) — 72b(4a — b") — 8b° + 432, we thus get

rm’ + 9 — 72— 8m* + 432> m' — 8w’ +2m° — T2m + 433 ifr>1,

16d, >
’ [2m5 —m" — 8m’ — 120m” + 192m + 368 if r=0.

Since 4a < m® and e < a + 2, we get the desired result.

Second, we assume & < 0. Then, b =2ea+ (1/¢e) <1/ <1, ie. b<0.
We set B= —b. Now g(B) = — D, = — 4B — a’B* + 18aB + 4a’ + 27 is
decreasing on [1, + oof (since ¢ =9), and g(/da + 1) <0 (since a = 16).
Hence, we get B < 4a + 1. So, we write 4a + 1 =m’ + », with m = 0 and
0 < 7 < 2m. Since g(0) = g(1) (since @ = 18), we have 16d, = 16g(m) if r = 1,
and 16d, = 16g(m — 1) if » = 0. We thus get
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=D +r—1>+72mr—1) +8m° +432 > 8m* +432 ifr>1,

>
16d, = [2m5 —2m" + 4m’ + 124m” — 262m + 566 if r=0.

As in the first case, we get the desired result.
Let us note that when P(X) = X° — M*X® — 2MX — 1 we have d, = 4M°
+ 27 and M* < e, < M* 4+ 1 (M = 2) which implies d, = 4¢>°. O

6. Conclusion

Let 2 and # be two given positive integers. Are there only finitely many num-
ber fields K of degree # with class-number % such that their rings of algebraic in-
tegers are generated by units ? More precisely, let # = 1 be a given positive inte-
ger and let K = Q(x) be a number field of degree # where x is an algebraic unit
which is a root of any irreducible monic polynomial of the form P(X) = X"+
a,, X"+ -+ 4+ a,X £ 1. If we assume that the ring of algebraic integers of K
is equal to Z[z] and that K has a unit group of rank 1, is that true that the
class-number of K tends to infinity with dy = dp?
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