CLASS-NUMBER PROBLEMS FOR CUBIC NUMBER FIELDS

STÉPHANE LOUBOUTIN

1. Introduction

Let \mathbf{M} be any number field. We let $D_{\mathbf{M}}$, $d_{\mathbf{M}}$, $h_{\mathbf{M}}$, $\zeta_{\mathbf{M}}$, $A_{\mathbf{M}}$ and $\mathrm{Reg}_{\mathbf{M}}$ be the discriminant, the absolute value of the discriminant, the class-number, the Dedekind zeta-function, the ring of algebraic integers and the regulator of \mathbf{M} , respectively. We set $c = \frac{3+2\sqrt{2}}{2}$. If q is any odd prime we let (\cdot/q) denote the Legendre's symbol. We let D_P and d_P be the discriminant and the absolute value of the discriminant of a polynomial P.

Lemma A (See [Sta, Lemma 3] and [Hof, Lemma 2]). Let M be any number field. Then, ζ_M has at most one real zero in

$$\left[1 - \frac{1}{c \log d_{\mathsf{M}}}, 1\right[;$$

if such a zero exists, it is simple and is called a Siegel zero.

LEMMA B (See [Lou 2]). Let **M** be a number field of degree $n = r_1 + 2r_2$ where **M** has r_1 real conjugate fields and $2r_2$ complex conjugate fields. Let $s_0 \in [(1/2), 1[$ be such that $\zeta_{\mathbf{M}}(s_0) \leq 0$. Then,

$$\operatorname{Res}_{s=1}(\zeta_{\mathtt{M}}) \geq (1-s_0)d_{\mathtt{M}}^{(s_0-1)/2} \left(1 - \frac{2r_1}{d_{\mathtt{M}}^{s_0/2n}} - \frac{2\pi r_2}{d_{\mathtt{M}}^{s_0/n}}\right).$$

2. Lower bounds for class-numbers of cubic number fields

Let K be a cubic number field. If K/Q is normal then K is a cyclic cubic number field. Let f_K be its conductor. Then $d_K = f_K^2$ and $\zeta_K(s) = \zeta(s)L(s,\chi)$ $L(s,\bar{\chi})$ where χ is a primitive cubic Dirichlet character modulo f_K . Hence, we get

Received March 22, 1994.

 $\zeta_{\mathbf{K}}(s) \leq 0$, $s \in [0,1[$. With $s_0 = 1 - (2/\log d_{\mathbf{K}})$ Lemma B provides the following lower bound which improves the one given in [Let]

$$\operatorname{Res}_{s=1}(\zeta_{\mathbf{K}}) \geq \frac{1}{3\log(f_{\mathbf{K}})}, f_{\mathbf{K}} \geq 10^6.$$

Lettl used his lower bound to determine all the simplest cubic number fields with small class-numbers. Here, the simplest cubic number fields are real cubic cyclic numbers fields defined as being the splitting fields of the polynomials $P(X) = X^3 - aX^2 - (a+3)X - 1$ $(a \ge 0)$ whose discriminants $d_P = (a^2 + 3a + 9)^2$ are square of a prime $p = a^2 + 3a + 9$, which implies $\mathbf{A_K} = \mathbf{Z}[\varepsilon]$ where $\varepsilon > 1$ is the only real root of P(X) greater than one (we have $\varepsilon \in]a+1$, a+2[). He found that there are 7 simplest cubic fields with class-number one, and none with class-number two or three.

In the same spirit, Lazarus determined all the simplest quartic fields with class-number 1 or 2. Here, the simplest quartic number fields are real quartic cyclic number fields defined as being the splitting fields of the polynomials $P(X) = X^4 - 2aX^3 - 6X^2 + 2aX + 1$ ($a \ge 0$) whose discriminants $d_P = 256d_a^3$ are such that $d_a = a^2 + 4$ is odd-square-free. He found that there are 6 simplest quartic fields with class-number one, and 3 with class-number two.

From now on, we assume that **K** is not normal. Thus, the normal closure **N** of **K** is a sextic number field with Galois group the symmetric group \mathcal{S}_3 .

Lemma C. Let K/Q be a non-normal cubic extension with normal closure N = KL where $L = Q(\sqrt{D_K})$ is quadratic. It holds $\zeta_N \zeta^2 = \zeta_K^2 \zeta_L$. Hence, $d_N = d_K^2 d_L$, and d_N divides d_K^3 . Finally, ζ_K does not have any real zero in the range $[1 - (1/(3c \log d_K)), 1]$.

Proof. The first point is proved page 227 of [Cas-Fro] using Artin L-series formalism. The second point follows from the first one using the functional equations satisfied by these zeta-functions (see [Lou 1]). According to the first point, any real zero in]0,1[of $\zeta_{\mathbf{K}}$ is a multiple zero of $\zeta_{\mathbf{N}}$. Hence, the fourth point follows from Lemma A. It remains to prove the third point. According to Stickelberger's theorem, we have $D_{\mathbf{K}} \equiv 0,1 \pmod 4$. Hence, $D_{\mathbf{L}}$ divides $D_{\mathbf{K}}$, and we may define $f \geq 1$ by means of $D_{\mathbf{K}} = f^2 D_L$.

According to Lemmata A, B and C, we get:

Theorem 1. Let ${f K}$ be a non-normal cubic number field. It holds

$$h_{\mathbf{K}} \operatorname{Reg}_{\mathbf{K}} \ge \frac{1}{55} \frac{\sqrt{d_{\mathbf{K}}}}{\log d_{\mathbf{K}}}, d_{\mathbf{K}} \ge 4 \cdot 10^{5}.$$

3. Computation of the class-number of a non-abelian cubic number field K with negative discriminant

We make use of the results of [Bar-Lox-Wil] and [Bar-Wil-Ban]. Set $\Phi(s) = (\zeta_{\mathbf{K}}/\zeta)(s) = \sum_{j\geq 1} \alpha(j)j^{-s}$. Then,

$$h_{\mathbf{K}} \operatorname{Reg}_{\mathbf{K}} = \frac{\Phi(1)}{C} = \sum_{j>1} \frac{\alpha(j)}{jC} e^{-jC} + \sum_{j>1} \alpha(j) E(jC)$$

where

$$E(y) = \int_{y}^{\infty} \frac{e^{-x}}{x} dx = -\log x - \gamma - \sum_{j>1} \frac{(-1)^{j}}{j(j!)} x^{j},$$

where $\gamma=0.577215664901\ldots$ is the Euler's constant, and where $C=2\pi/\sqrt{d_{\mathbf{K}}}$. Now, $j\mapsto \alpha(j)$ is a multiplicative function such that $\alpha(p^n)=F(p^n)-F(p^{n-1})$ where F(k) is the number of distinct ideals of \mathbf{K} with norm $k\geq 1$. Moreover, if p does not divide $d_{\mathbf{K}}$, then

$$(p) = \begin{cases} (p) & \text{which implies } (D_{\mathbf{K}}/p) = + \text{ 1 (Type I),} \\ \mathscr{P}_1 \mathscr{P}_2 & \text{if and only if } (D_{\mathbf{K}}/p) = - \text{ 1 (Type II),} \\ \mathscr{P}_1 \mathscr{P}_2 \mathscr{P}_3 & \text{which implies } (D_{\mathbf{K}}/p) = + \text{ 1 (Type III).} \end{cases}$$

If p divides $d_{\mathbf{K}}$, then with f as in the proof of Lemma C we have

$$(p) = \begin{cases} \mathscr{P}_1^2 \mathscr{P}_2 & \text{if } p \text{ does not divide } f \text{ (Type IV),} \\ \mathscr{P}^3 & \text{if } p \text{ divides } f \text{ (Type V).} \end{cases}$$

If the ring of algebraic integers of K is generated by an algebraic integer x_K and if $P_K(X)$ is the minimum polynomial over Q of x_K , then we are in the Type I or Type III cases according as $P_K(X)$ does not have or has at least one root modulo p, and we are in the Type IV or Type V cases according as $P_K(X)$ has a double or a triple root modulo p.

4. Explicit class-number problem for non-normal cubic number fields

First example. In the same way we got Theorem 1, we get

THEOREM 2. (a) (See [Fro-Tay, Chapter 5]) Let $l \geq 1$ be an integer. Set $P_l(X) = X^3 + lX - 1$. Then $P_l(X)$ is irreducible in $\mathbf{Q}[X]$, has negative discriminant $D_l = -d_l = -(4l^3 + 27)$, and has exactly one real root x_l . Set $\varepsilon_l = 1/x_l$. Then, $l < \varepsilon_l < l + 1$. Set $\mathbf{K}_l = \mathbf{Q}(x_l) = \mathbf{Q}(\varepsilon_l)$. Then \mathbf{K}_l is a real cubic number field with negative discriminant and ε_l is the fundamental unit greater than one of the cubic order $\mathbf{Z}[x_l] = \mathbf{Z}[\varepsilon_l]$.

(b) Assume that the ring of algebraic integers A_l of K_l is equal to $\mathbf{Z}[\varepsilon_l]$. Then,

$$h_l \geq \frac{\sqrt{d_l}}{20\log^2(d_l)}$$
 when $d_l \geq 2\cdot 10^5$, and $h_l > 3$ when $l > 400$

(here h_l is the class-number of \mathbf{K}_l). Hence, there are 5 such \mathbf{K}_l with class-number one, namely \mathbf{K}_1 , \mathbf{K}_2 , \mathbf{K}_3 , \mathbf{K}_5 and \mathbf{K}_{11} ; there are 2 such \mathbf{K}_l with class-number two, namely \mathbf{K}_4 and \mathbf{K}_7 ; there are 3 such \mathbf{K}_l with class-number three, namely \mathbf{K}_6 , \mathbf{K}_{15} and \mathbf{K}_{17} .

LEMMA D. (a) The ring of algebraic integers of \mathbf{K}_l is equal to $\mathbf{Z}[\varepsilon_l]$ if and only if 3^2 does not divide l, and p^2 does not divide $d_l = 4l^3 + 27$ for any prime $p \ge 5$.

- (b) Under this assumption, we have:
- (i) For any prime $p \neq 3$ that divides d_1 we have $F(p^n) = n + 1$ and $\alpha(p^n) = 1$, $n \geq 1$.
- (ii) If p = 3 divides d_1 , then $F(3^n) = 1$ and $\alpha(3^n) = 0$, $n \ge 1$.
- (iii) If p does not divide d_1 and $(-d_1/p) = -1$, then $\alpha(p^n) = (1 + (-1)^n)/2$.
- (iv) If p does not divide d_l and $(-d_l/p) = +1$, then

$$\alpha(p^n) = \begin{cases} n+1 & \text{if } P_I(X) \text{ has at least one root modulo } p, \\ (n+1/3) = \begin{cases} 1 & \text{if } n \equiv 0 \pmod{3}, \\ -1 & \text{if } n \equiv 1 \pmod{3}, & \text{if } P_I(X) \text{ has no real root modulo } p. \\ 0 & \text{if } n \equiv 2 \pmod{3}, \end{cases}$$

Proof. Point (b) follows from Section 3 (see [Bar-Lox-Wil, Table 2]).

Now, we proceed with the proof of point (a). We note that the integral bases of all cubic fields are determined in [Alb]. Though, we give a simple proof for this special case. Let t be an integer and set

$$y_{p,l}(t) = \frac{x_l^2 + tx_l + t^2 + l}{p}.$$

Then $y_{\mathfrak{p},l}(t)$ is a root of the following polynomial

$$Y^3 - \frac{P_I'(t)}{p} Y^2 + \frac{3tP_I(t)}{p^2} Y - \frac{P_I(t)^2}{p^3}$$

(being the characteristic polynomial of the linear map $z\mapsto y_{p,l}(t)z$ of the three **Q**-dimensional vector space \mathbf{K}_l , then $y_{p,l}(t)$ is indeed a root of this polynomial). Hence, $y_{p,l}(t)$ is an algebraic integer provided that $P_l(t)\equiv 0\ (\mathrm{mod}\ p^2)$ and $P_l'(t)\equiv 0\ (\mathrm{mod}\ p)$.

Now, assume that $\mathbf{Z}[x_l]$ is the ring of algebraic integers of \mathbf{K}_l and let p be any prime which divides $d_l = 4l^3 + 27$. Hence p is odd.

First, assume that $p \neq 3$. Then p does not divide l and we take $t = t_{l,p}$ such that $2lt_{l,p} \equiv 3 \pmod{p}$ and where we hence write $2lt_{l,p} = 3 + ap$. Then,

$$4l^{2}P'_{l}(t_{p,l}) = 3(3 + ap)^{2} + 4l^{3} \equiv d_{l} \equiv 0 \pmod{p},$$

$$8l^{3}P_{l}(t_{p,l}) = (3 + ap)^{2} + 4l^{3}(3 + ap) - 8l^{3} \equiv d_{l} + apd_{l} \equiv d_{l} \pmod{p^{2}}.$$

Hence, if p^2 would divide d_l then $y_{p,l}(t_{p,l})$ would be an algebraic integer of \mathbf{K}_l and p would divide the index of $\mathbf{Z}[x_l]$ in \mathbf{A}_l . Contradiction.

Second, assume that p = 3. If 3^2 would divide l, then $y_{3,l}(1)$ would be an algebraic integer. Hence, 3 would divide the index of $\mathbf{Z}[x_l]$ in \mathbf{A}_l . Contradiction.

Conversely, first assume that if $p \neq 3$ divides d_l then p^2 does not divides d_l . Since $d_l = (\mathbf{A}_l : \mathbf{Z}[x_l])^2 d_{\mathbf{K}_l}$, then p does not divides this index $(\mathbf{A}_l : \mathbf{Z}[x_l])$ which is thus a 3-power. Note that if 3 divides this index, then 3 divides d_l , i.e., 3 divides l. Second, it is known that if x is an algebraic integer whose minimum polynomial is p-Eisenstein for a prime p, then p does not divides the index of $\mathbf{Z}[x]$ in the ring of algebraic integers of the number field $\mathbf{Q}(x)$ (see [Nar, Lemma 2.2, page 60]). Hence, if we can find an integer a such that $P_l(a) \equiv P_l'(a) \equiv 0 \pmod{3}$ and $P_l(a) \not\equiv 0 \pmod{3}$, then the minimum polynomial $Q_a(Y) = P_l(Y + a) = Y^3 + 3aY^2 + P_l'(a)Y + P_l(a)$ of $y_l(a) = x_l - a$ is then 3-Eisenstein. Hence, 3 does not divide the index $(\mathbf{A}_l : \mathbf{Z}[x_l])$, which implies the desired result. Now, assume that 3 divides l but that 3^2 does not divide l. Then, $Q_l(Y)$ being 3-Eisenstein we get the desired result.

The computational method of the third section and Lemma D provide the following table of class-numbers h_l of these number fields \mathbf{K}_l for the first values of $l \geq 1$ such that $\mathbf{Z}[\varepsilon_l]$ is the ring of algebraic integers of \mathbf{K}_l . According to the more extensive class-number computation of h_l for $l \leq 400$, we easily get Theorem 2(b).

l	d_{i}	h_{l}	l	d_{I}	h_{l}	l	d_{i}	$h_{\scriptscriptstyle l}$	l	d_{l}	h_{l}
1	31	1	13	8815	5	24	55323	18	37	202639	8
2	59	1	14	11003	8	25	62527	6	38	219515	23
3	135	1	15	13527	3	26	70331	8	39	237303	15
4	283	2	16	16411	8	28	87835	32	40	256027	28
5	527	1	17	19679	3	29	97583	6	41	275711	6
6	891	3	19	27463	7	30	108027	15	42	296379	39
7	1399	2	20	32027	10	31	119191	12	43	318055	16
10	4027	6	21	37071	6	32	131099	10	44	340763	18
11	5351	1	22	42619	12	34	157243	28	46	389371	27
12	6939	6	23	48695	4	35	171527	12	47	415319	8

Second example. Let $\mathbf{K}=\mathbf{Q}(\sqrt[3]{d})$, $d\geq 2$, be a real pure cubic number field. Assume that d is cube-free and define a and b by means of (a,b)=1 and $d=ab^2$. Then, $D_{\mathbf{K}}=-3(ab)^2$ or $D_{\mathbf{K}}=-27(ab)^2$ according as $d\equiv \pm 1\pmod 9$ or not. Now, $\mathbf{L}=\mathbf{Q}(\sqrt{-3})$ and $\zeta_{\mathbf{L}}$ does not have any real zero in]0,1[. Hence, we get $\zeta_{\mathbf{N}}(s)\leq 0$, $s\in]0,1[$. According to Lemma C, we have $\mathrm{Res}_{s=1}(\zeta_{\mathbf{N}})=(\mathrm{Res}_{s=1}(\zeta_{\mathbf{K}}))^2\,\mathrm{Res}_{s=1}(\zeta_{\mathbf{L}})$ and we may apply Lemma B with $s_0=1-(2/\log d_{\mathbf{N}})$, which provides an optimal lower bound on $\mathrm{Res}_{s=1}(\zeta_{\mathbf{N}})$. Since $\mathrm{Res}_{s=1}(\zeta_{\mathbf{L}})=\pi/3\sqrt{3}$, we get the following lower bound that improves the one given in Theorem 1:

THEOREM 3 (See [Bar-Lou]). Let **K** be a real pure cubic number field. Then,

$$h_{\mathbf{K}} \operatorname{Reg}_{\mathbf{K}} \geq \frac{1}{9} \sqrt{\frac{d_{\mathbf{K}}}{\log d_{\mathbf{K}}}}, \ d_{\mathbf{K}} \geq 3 \cdot 10^4.$$

Theorem 4. When $m \geq 1$ is such that $m^3 \pm 1$ is cube-free, we set $\mathbf{K}_{\pm m} \stackrel{\text{def}}{=} \mathbf{Q}(\sqrt[3]{m^3 \pm 1})$ which is a pure cubic real number field. There are 2 such $\mathbf{K}_{\pm m}$ with class-number one, namely \mathbf{K}_{+1} and \mathbf{K}_{+2} ; there does not exist any such $\mathbf{K}_{\pm m}$ with class-number two; and there are 3 such $\mathbf{K}_{\pm m}$ with class-number three, namely \mathbf{K}_{-2} , \mathbf{K}_{-3} and \mathbf{K}_{+3} .

Proof. Set $d_{\pm m}=m^3\pm 1$ and $\omega_{\pm m}=\sqrt[3]{d_{\pm m}}$. Then, $\varepsilon_{\pm m}=\pm/(\omega_{\pm m}-m)=\omega_{\pm m}^2+m\omega_{\pm m}+m^2$ is a unit of $\mathbf{A_{K_{\pm m}}}$, and we have $1<\varepsilon_{\pm m}\leq 4\omega_{\pm m}^2=(8d_{\pm m})^{2/3}$. Hence,

П

$$\operatorname{Reg}_{\mathbf{K}_{\pm m}} \leq \log \varepsilon_{\pm m} \leq \frac{2}{3} \log(8d_{\pm m}) \leq \frac{2}{3} \log(3d_{\mathbf{K}_{\pm m}}),$$

and according to Theorem 3 we get

$$h_{\mathbf{K}_{\pm m}} \ge \frac{1}{6} \sqrt{\frac{d_{\mathbf{K}_{\pm m}}}{\log^3(3d_{\mathbf{K}_{\pm m}})}}, \ d_{\mathbf{K}_{\pm m}} \ge 3 \cdot 10^4.$$

which implies $h_{\mathbf{K}_{\pm m}} > 3$ for $d_{\mathbf{K}_{\pm m}} > 1.1 \cdot 10^6$. Note that m > 72 implies $d_{\mathbf{K}_{\pm m}} \geq 3d_m > 1.1 \cdot 10^6$. Now, the computation of a and b for $d_{\pm m} = m^3 \pm 1$ and $1 \leq m \leq 72$ yields $d_{\mathbf{K}_{\pm m}} \leq 1.1 \cdot 10^6$ if and only if $1 \leq m \leq 6$ when $d_{\pm m} = m^3 + 1$, and $2 \leq m \leq 7$ when $d_{\pm m} = m^3 - 1$ (note that $d_{\pm m}$ must be cube-free). The class-numbers of these number fields may be found in [Hos-Wad], and they provide the desired result.

5. Another class-number problem

Let **K** be a real quadratic number field of discriminant D > 0. The ring of algebraic integers $\mathbf{A}_{\mathbf{K}} = \mathbf{Z} \Big[\frac{D + \sqrt{D}}{2} \Big]$ of \mathbf{K} writes $\mathbf{A}_{\mathbf{K}} = \mathbf{Z}[\varepsilon]$ where $\varepsilon =$ $\frac{u+v\sqrt{D}}{2}>1$ is a unit of ${\bf A_K}$ if and only if v=1, hence if and only if $D=m^2\pm 4$, $m \geq 1$. In that case, $\varepsilon_D \leq \varepsilon = \frac{m + \sqrt{D}}{2} \leq \sqrt{D+4}$ where ε_D is the fundamental unit of K. According to the Brauer-Siegel theorem, there are only finitely many real quadratic number fields with discriminants $D=m^2\pm 4$ of given class-number. Up to now, no one knows how to make the Brauer-Siegel effective in the real quadratic case, without assuming a suitable generalized Riemann hypothesis (see [Mol-Wil]. In contrast to the real quadratic case, let ${f K}$ be a cubic number field with negative discriminant whose ring of algebraic integers $\mathbf{A}_{\mathbf{K}}$ is generated by a unit ε , i.e. such that $A_K = \mathbf{Z}[\varepsilon]$. This clearly amounts to saying that ${f A}_{f K}={m Z}[arepsilon_{f K}],$ where $arepsilon_{f K}>1$ is the fundamental unit of ${f K}$. According to Theorem 1 and the following Proposition 5, we get the effective Corollary 6 that would enable one to explicitly determine all the cubic number fields of negative discriminants whose have small class-numbers and whose rings of algebraic integers are generated by units.

PROPOSITION 5. A polynomial P(X) is said of type (T) if it is a monic irreducible cubic polynomial with integral coefficients (say of the form $P(X) = X^3 - aX^2 + bX - 1$) with exactly one real root ε_P (i.e. $D_P < 0$) which satisfies $\varepsilon_P > 1$ (i.e. we have

 $b \leq a-1$), Then, there exists an effective constant $c_1 > 0$ such that for any polynomial of type (T) we have $d_P = |D_P| \geq c_1 \varepsilon_P^{3/2}$.

COROLLARY 6. Let h be a positive integer. Then, there are only finitely many cubic number fields ${\bf K}$ of negative discriminants $D_{\bf K}$ which have class-number h and whose rings of algebraic integers write ${\bf A}_{\bf K}={\bf Z}[\varepsilon_{\bf K}]$, where $\varepsilon_{\bf K}>1$ is the fundamental unit of ${\bf K}$. Moreover, there exists $c_2>0$ effective such that $|D_{\bf K}|\leq c_2h^2\log^4h$ for these number fields.

Proo of Proposition 5. Set $\varepsilon = \varepsilon_P$, $x_1 = \varepsilon$, and let $x_2 = \alpha + i\beta$ and $x_3 = \alpha - i\beta$ be the two complex conjugate roots of this polynomial. Then,

$$1 = x_1 x_2 x_3 = \varepsilon (\alpha^2 + \beta^2),$$

$$b = x_1 x_2 + x_1 x_3 + x_2 x_3 = 2\varepsilon \alpha + (\alpha^2 + \beta^2) = 2\varepsilon \alpha + (1/\varepsilon),$$

$$a = x_1 + x_2 + x_3 = \varepsilon + 2\alpha.$$

Hence, we have $|\alpha| \le 1/\sqrt{\varepsilon} < 1$ and $\varepsilon < \alpha + 2$, which implies $a \ge 0$. Moreover, we have $|b| \le 2\sqrt{\varepsilon} + 1 \le 2\sqrt{a+2} + 1$, which implies that there are only finitely many polynomials of type (T) with $0 \le a \le 17$. Hence, we may assume $a \ge 18$.

We have
$$-D_P = 4(a^3 + b^3) - a^2b^2 - 18ab + 27$$
.

First, we assume $\alpha \geq 0$. Since $0 < 2\varepsilon\alpha + (1/\varepsilon) < 2\sqrt{\varepsilon + 2\alpha}$ (since $0 \leq \alpha \leq 1/\sqrt{\varepsilon}$ and $\varepsilon > 1$), we get $1 \leq b < 2\sqrt{a}$. Now $b \mapsto f(b) = -D_p = 4b^3 - a^2b^2 - 18ab + 4a^3 + 27$ is decreasing in the range $[1, 2\sqrt{a}]$ (since $a \geq 9$). So, we write $4a = m^2 + r$, with $m \geq 0$ and $0 \leq r \leq 2m$, which provides $16d_p \geq 16f(m)$ if $r \geq 1$, and $16d_p \geq 16f(m-1)$ if r = 0. Noticing that $16f(b) = (4a)^2(4a - b^2) - 72b(4a - b^2) - 8b^3 + 432$, we thus get

$$16d_{p} \ge \begin{cases} r(m^{2} + r)^{2} - 72rm - 8m^{3} + 432 \ge m^{4} - 8m^{3} + 2m^{2} - 72m + 433 & \text{if } r \ge 1, \\ 2m^{5} - m^{4} - 8m^{3} - 120m^{2} + 192m + 368 & \text{if } r = 0. \end{cases}$$

Since $4a \le m^2$ and $\varepsilon < a + 2$, we get the desired result.

Second, we assume $\alpha \leq 0$. Then, $b=2\varepsilon\alpha+(1/\varepsilon)\leq 1/\varepsilon<1$, i.e. $b\leq 0$. We set B=-b. Now $g(B)=-D_P=-4B^3-a^2B^2+18aB+4a^3+27$ is decreasing on $[1,+\infty[$ (since $a\geq 9$), and $g(\sqrt{4a+1})<0$ (since $a\geq 16$). Hence, we get $B<\sqrt{4a+1}$. So, we write $4a+1=m^2+r$, with $m\geq 0$ and $0\leq r\leq 2m$. Since $g(0)\geq g(1)$ (since $a\geq 18$), we have $16d_P\geq 16g(m)$ if $r\geq 1$, and $16d_P\geq 16g(m-1)$ if r=0. We thus get

$$16d_{p} \ge \begin{cases} (r-1)(m^{2}+r-1)^{2}+72m(r-1)+8m^{3}+432 \ge 8m^{3}+432 & \text{if } r \ge 1, \\ 2m^{5}-2m^{4}+4m^{3}+124m^{2}-262m+566 & \text{if } r = 0. \end{cases}$$

As in the first case, we get the desired result.

Let us note that when $P(X) = X^3 - M^2 X^2 - 2MX - 1$ we have $d_P = 4M^3 + 27$ and $M^2 < \varepsilon_P < M^2 + 1$ $(M \ge 2)$ which implies $d_P \approx 4\varepsilon_P^{3/2}$.

6. Conclusion

Let h and n be two given positive integers. Are there only finitely many number fields ${\bf K}$ of degree n with class-number h such that their rings of algebraic integers are generated by units? More precisely, let $n \geq 1$ be a given positive integer and let ${\bf K}={\bf Q}(x)$ be a number field of degree n where x is an algebraic unit which is a root of any irreducible monic polynomial of the form $P(X)=X^n+a_{n-1}X^{n-1}+\cdots+a_1X\pm 1$. If we assume that the ring of algebraic integers of ${\bf K}$ is equal to ${\bf Z}[x]$ and that ${\bf K}$ has a unit group of rank 1, is that true that the class-number of ${\bf K}$ tends to infinity with $d_{\bf K}=d_P$?

REFERENCES

- [Alb] A. A. Albert, A determination of the integers of all cubic fields, Ann. of Math., **31** (1930), 550-566.
- [Bar-Lou] P. Barrucand and S. Louboutin, Majoration et minoration du nombre de classes d'idéaux des corps réels purs de degré premier, Bull. London Math. Soc., **25** (1993), 533-540.
- [Bar-Lox-Wil] P. Barrucand, J. Loxton and H. C. Williams, Some explicit upper bounds on the class number and regulator of a cubic field with negative discriminant, Pacific J. of Math., 128 (1987), 209-222.
- [Bar-Wil-Ban] P. Barrucand, H. C. Williams and L. Baniuk, A computational technique for determining the class number of a pure cubic field, Math. Comp., **30** (1976), 312-323.
- [Cas-Fro] J. W. S. Cassels and A. Fröhlich, Algebraic Number Theory, Chapter VIII Zeta-functions and *L*-functions, Academic Press, London, 1967.
- [Fro-Tay] A. Fröhlich and M. J. Taylor, Algebraic number theory, Cambridge Studies in Advanced Mathematics 27, Cambridge University Press 1991.
- [Hos-Wad] J. Hosaya and H. Wada, Tables of ideal class groups of purely cubic fields, Proc. Japan Acad., **68** (1992), 111-114.
- [Hof] J. Hoffstein, On the siegel-Tatuzawa theorem, Acta Arith., 38 (1980), 167-174.
- [Laz] A. J. Lazarus, On the class number and unit index of simplest quartic fields, Nagoya Math. J., **121** (1991), 1-13.
- [Let] G. Lettl, A lower bound for the class number of certain cubic number fields, Math. Comp., **46** (1986), 659–666.

9	Λ	0
4	U	0

STÉPHANE LOUBOUTIN

[Lou 1]	S. Louboutin, On the class number one problem for non-normal quartic
	CM-fields, Tohôku Math. J., 46 (1994), 1–12.
[Lou 2]	S. Louboutin, Zéros réels des fonctions zéta et minorations de nombres
	de classes. Application à la majoration des discriminants de certains
	types de corps de nombres, Séminaire de Théorie des Nombres, Paris,
	1991-92, Progress in Math. Vol. 116 , 135-152, 1992 Birkhäuser.
[Mol-Wil]	R. A. Mollin and H. C. Williams, A conjecture of S. Chowla via the gener-
	alized Riemann hypothesis, Proc. Amer. Math. Soc., 102 (1988),
	794-796.
[Nar]	W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers,
	Second Edition, Springer-Verlag, Berlin 1990.
[Sta]	H. M. Stark, Some effective cases of the Brauer-Siegel theorem, Invent.

Université de Caen, U. F. R. Sciences Département de Mathématiques Esplanade de la Paix 14032 Caen Cedex, FRANCE email: loubouti@math.unicaen.fr

Math., **23** (1974), 135–152.