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Abstract A homogeneous Dirichlet problem with p-Laplacian and reaction term depending on a param-
eter λ > 0 is investigated. At least five solutions—two negative, two positive and one sign-changing
(namely, nodal)—are obtained for all λ sufficiently small by chiefly assuming that the involved non-
linearity exhibits a concave–convex growth rate. Proofs combine variational methods with truncation
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1. Introduction

Let Ω be a bounded domain in R
N with a smooth boundary ∂Ω and let p ∈ ]1, +∞[.

Consider the homogeneous Dirichlet problem

−∆pu = f(x, u, λ) in Ω,

u = 0 on ∂Ω,

}
(P′

λ)

where ∆p denotes the p-Laplace differential operator, namely, ∆pu := div(|∇u|p−2∇u)
for all u ∈ W 1,p

0 (Ω), while the reaction term f : Ω×R×R
+ → R satisfies Carathéodory’s

conditions. The main result (Theorem 4.1) of [14] provides a λ∗ > 0 such that (P′
λ)

possesses at least five non-trivial weak solutions belonging to C1
0 (Ω̄), four of which have

constant sign, for every λ ∈ ]0, λ∗[.
A bifurcation theorem describing the dependence of positive solutions of (P′

λ) on the
parameter λ > 0 was established in [15] for the case when the nonlinearity f takes the
form

f(x, t, λ) := λg(x, t) + h(x, t), (x, t, λ) ∈ Ω × R × R
+, (1.1)

with suitable Carathéodory functions g, h : Ω × R → R.

c© 2013 The Edinburgh Mathematical Society 521

https://doi.org/10.1017/S0013091513000515 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000515


522 S. A. Marano and N. S. Papageorgiou

This paper contains a more precise version of [14, Theorem 4.1], which, however,
requires that f satisfies (1.1). Thus, here, we deal with the problem

−∆pu = λg(x, u) + h(x, u) in Ω,

u = 0 on ∂Ω.

}
(Pλ)

A (p − 1)-sublinear growth rate for g(x, ·) is assumed, i.e.

lim
t→0

g(x, t)
|t|p−2t

= +∞, lim
|t|→+∞

g(x, t)
|t|p−2t

= 0, (1.2)

while, roughly speaking, h(x, ·) is (p − 1)-superlinear; namely,

lim
t→0

h(x, t)
|t|p−2t

= 0, lim
|t|→+∞

h(x, t)
|t|p−2t

= +∞. (1.3)

Under these hypotheses, in addition to some further technical conditions, we prove that
for each λ ∈ ]0, λ∗[ there exist at least five non-trivial weak solutions of (Pλ): two negative,
two positive and one sign-changing (i.e. nodal) (see Theorem 4.3). As in [14], proofs
combine variational arguments with truncation methods.

Because of (1.2), (1.3), the reaction term that appears in (Pλ) exhibits a concave–
convex behaviour. Following the seminal paper [1], treating the case p = 2, such problems
have been thoroughly investigated (see, for example, [6, 11, 14–16] and the references
therein).

2. Preliminaries

Let (X, ‖ · ‖) be a real Banach space. If V is a subset of X, we write V̄ for the closure
of V , ∂V for the boundary of V and int(V ) for the interior of V . (X∗, ‖ · ‖X∗) denotes
the dual space of X, 〈·, ·〉 stands for the duality pairing between X and X∗ and xn → x

(respectively, xn ⇀ x) in X means ‘the sequence {xn} converges strongly (respectively,
weakly) in X’.

The next elementary but useful result [15, Proposition 2.1] will be used in § 4.

Proposition 2.1. Suppose (X, ‖ · ‖) is an ordered Banach space with order cone K.
If x0 ∈ int(K), then to every z ∈ K there corresponds tz > 0 such that tzx0 − z ∈ K.

A function Φ : X → R satisfying

lim
‖x‖→+∞

Φ(x) = +∞

is called coercive. We say that Φ is weakly sequentially lower semicontinuous when xn ⇀ x

in X implies Φ(x) � lim infn→∞ Φ(xn). Let Φ ∈ C1(X). The classical Palais–Smale
condition for Φ reads as follows.

(PS) Every sequence {xn} ⊆ X such that {Φ(xn)} is bounded and ‖Φ′(xn)‖X∗ → 0
possesses a convergent subsequence.
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Define, for any c ∈ R,

Φc := {x ∈ X : Φ(x) � c}, Kc(Φ) := K(Φ) ∩ Φ−1(c),

where, as usual, K(Φ) denotes the critical set of Φ, i.e. K(Φ) := {x ∈ X : Φ′(x) = 0}.
An operator A : X → X∗ is said to be of type (S)+ if

xn ⇀ x in X, lim sup
n→+∞

〈A(xn), xn − x〉 � 0

imply xn → x. The next simple result is more-or-less known and will be employed in § 4.

Proposition 2.2. Let X be reflexive and let Φ ∈ C1(X) be coercive. Assume Φ′ =
A+B, where A : X → X∗ is of type (S)+, while B : X → X∗ is compact. Then Φ satisfies
(PS).

Proof. Pick a sequence {xn} ⊆ X such that {Φ(xn)} turns out to be bounded and

lim
n→+∞

‖Φ′(xn)‖X∗ = 0. (2.1)

By the reflexivity of X, in addition to the coercivity of Φ, we may suppose, up to subse-
quences, xn ⇀ x in X. Since B is compact, using (2.1) and taking a subsequence when
necessary, one has

lim
n→+∞

〈A(xn), xn − x〉 = lim
n→+∞

(〈Φ′(xn), xn − x〉 − 〈B(xn), xn − x〉) = 0.

This forces xn → x in X, because A is of type (S)+, as desired. �

Given a topological pair (A, B) satisfying B ⊂ A ⊆ X, the symbol Hk(A, B), k ∈ N0,
indicates the kth relative singular homology group of (A, B) with integer coefficients. If
x0 ∈ Kc(Φ) is an isolated point of K(Φ), then

Ck(Φ, x0) := Hk(Φc ∩ U, Φc ∩ U \ {x0}), k ∈ N0,

are the critical groups of Φ at x0. Here, U stands for any neighbourhood of x0 such that
K(Φ) ∩ Φc ∩ U = {x0}. By excision, this definition does not depend on the choice of U .
The monograph [3] is a general reference on the subject.

Throughout the paper, Ω denotes a bounded domain of the real Euclidean N -space
(RN , | · |) with a smooth boundary ∂Ω, p ∈ ]1, +∞[, p′ := p/(p − 1), ‖ · ‖p is the usual
norm of Lp(Ω) and W 1,p

0 (Ω) indicates the closure of C∞
0 (Ω) in W 1,p(Ω). On W 1,p

0 (Ω)
we introduce the norm

‖u‖ :=
( ∫

Ω

|∇u(x)|p dx

)1/p

, u ∈ W 1,p
0 (Ω).

Write p∗ for the critical exponent of the Sobolev embedding W 1,p
0 (Ω) ⊆ Lq(Ω). Recall

that p∗ = Np/(N − p) if p < N , p∗ = +∞ otherwise and the embedding is compact
whenever 1 � q < p∗.
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Let W−1,p′
(Ω) be the dual space of W 1,p

0 (Ω) and let A : W 1,p
0 (Ω) → W−1,p′

(Ω) be the
nonlinear operator stemming from the negative p-Laplacian, i.e.

〈A(u), v〉 :=
∫

Ω

|∇u(x)|p−2∇u(x) · ∇v(x) dx, ∀u, v ∈ W 1,p
0 (Ω).

Denote by λ1 the first eigenvalue of the operator −∆p in W 1,p
0 (Ω). It is known [13,16]

that

(p1) ‖u‖p
p � λ−1

1 ‖u‖p for all u ∈ W 1,p
0 (Ω) and

(p2) A : W 1,p
0 (Ω) → W−1,p′

(Ω) is bijective and of type (S)+.

Define C1
0 (Ω̄) := {u ∈ C1(Ω̄) : u = 0 on ∂Ω}. Obviously, C1

0 (Ω̄) is an ordered Banach
space with order cone

C1
0 (Ω̄)+ := {u ∈ C1

0 (Ω̄) : u(x) � 0, ∀x ∈ Ω̄}.

Moreover, one has

int(C1
0 (Ω̄)+) =

{
u ∈ C1

0 (Ω̄) : u > 0 in Ω,
∂u

∂n
< 0 on ∂Ω

}
,

where n(x) denotes the outward unit normal vector to ∂Ω at the point x ∈ ∂Ω (see, for
example, [8, Remark 6.2.10]).

On account of (p2), we can find a function e ∈ W 1,p
0 (Ω) such that

−∆pe = 1 in Ω. (2.2)

Theorems 1.5.6 and 1.5.7 of [7] then give e ∈ int(C1
0 (Ω̄)+).

Finally, ‘measurable’ always signifies Lebesgue measurable, while m(E) indicates the
Lebesgue measure of E. Provided t ∈ R, we can set

t− := max{−t, 0}, t+ := max{t, 0}.

If u, v : Ω → R belong to a given function space X and u(x) � v(x) for almost every
x ∈ Ω, then we set

[u, v] := {w ∈ X : u(x) � w(x) � v(x) almost everywhere in Ω}.

3. Basic assumptions and auxiliary results

To avoid unnecessary technicalities, ‘for every x ∈ Ω’ will take the place of ‘for almost
every x ∈ Ω’ and the variable x will be omitted when no confusion can arise.

Let g, h : Ω × R → R be two Carathéodory functions such that g(x, 0) = h(x, 0) = 0
for all x ∈ Ω. Write, as usual,

G(x, z) :=
∫ z

0
g(x, t) dt, H(x, z) :=

∫ z

0
h(x, t) dt, ∀(x, z) ∈ Ω × R.

The hypotheses below will be posited later.
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(a11) There exist c1 > 0, q ∈ ]1, p∗[ satisfying

|g(x, t)| � c1(1 + |t|q−1) in Ω × R.

(a12) lim|z|→+∞ G(x, z)/|z|p = 0 uniformly with respect to x ∈ Ω.

(a13) To every ρ > 0 there corresponds µ′
ρ > 0 such that the function

t �→ g(x, t) + µ′
ρ|t|p−2t

is non-decreasing in [−ρ, ρ] for all x ∈ Ω.

(a14) g(x, t)t � 0, (x, t) ∈ Ω × R. Moreover, for every x ∈ Ω, the function

t �→ g(x, t)
|t|p−2t

turns out to be non-decreasing in ]−∞, 0[ and non-increasing in ]0, +∞[.

(a15) 0 < g(x, z)z � θG(x, z) provided x ∈ Ω and 0 < |z| � δ, where θ ∈ ]1, p[, while
δ > 0. Further, ess infx∈Ω G(x, δ) > 0.

(a21) There exist c2 > 0, r ∈ ]max{p, q}, p∗[ satisfying

|h(x, t)| � c2|t|r−1 in Ω × R.

(a22) lim|z|→+∞ H(x, z)/|z|p = +∞ uniformly with respect to x ∈ Ω.

(a23) To every ρ > 0 there corresponds µ′′
ρ > 0 such that the function

t �→ h(x, t) + µ′′
ρ |t|p−2t

is non-decreasing in [−ρ, ρ] for all x ∈ Ω.

(a24) h(x, t)t � 0, (x, t) ∈ Ω × R.

(a25) h(x, t) � θH(x, t), provided x ∈ Ω and 0 < |z| � δ, where θ, δ come from (a15).

Finally, let λ > 0 and let

ξλ(x, z) := z[λg(x, z) + h(x, z)] − p[λG(x, z) + H(x, z)], (x, z) ∈ Ω × R.

The next assumption, involving both nonlinearities, will also be adopted.

(a31) For every λ > 0 there exists αλ ∈ L1(Ω) such that

αλ(x) � 0, ξλ(x, z′) � ξλ(x, z′′) + αλ(x) in Ω

whenever z′, z′′ ∈ R, |z′| � |z′′| and z′z′′ � 0.
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Throughout the paper, we shall write

f(x, t, λ) := λg(x, t) + h(x, t), ∀(x, t, λ) ∈ Ω × R × R
+, (3.1)

as well as

F (x, z, λ) :=
∫ z

0
f(x, t, λ) dt, (x, z, λ) ∈ Ω × R × R

+. (3.2)

Remark 3.1. An elementary verification shows that if (aij), i = 1, 2, j = 1, . . . , 5,
and (a31) hold true then f satisfies (f1)–(f5) of [14]. Hence, all the results in that paper
can be exploited here.

Remark 3.2. Due to (a12) and (a15) the function G(x, ·) is p-sublinear; namely,

lim
z→0

G(x, z)
|z|p = +∞, lim

|z|→+∞

G(x, z)
|z|p = 0.

Likewise, due to (a21) and (a22), the function H(x, ·) turns out to be p-superlinear, i.e.

lim
z→0

H(x, z)
|z|p = 0, lim

|z|→+∞

H(x, z)
|z|p = +∞.

Consequently, the reaction term in problem (Pλ) exhibits a growth rate of concave–convex
type.

Example 3.3. A simple but meaningful situation when all the hypotheses stated
above are satisfied is the following:

g(x, t) := |t|q−2t, h(x, t) := |t|r−2t, (x, t) ∈ Ω × R,

where 1 < q < p < r < p∗. The same conclusion holds if

h(x, t) := |t|p−2t log(1 + |t|p).

However, in such a case, the nonlinearity f given by (3.1) does not comply with the
well-known Ambrosetti–Rabinowitz condition; namely,

(AR) there exist σ > p, M > 0 such that

0 < σF (x, z, λ) � zf(x, z, λ)

for every x ∈ Ω, |z| � M .

To simplify notation, define X := W 1,p
0 (Ω) and C+ := C1

0 (Ω̄)+. Let F be as in (3.2)
and let

ϕλ(u) :=
1
p
‖u‖p −

∫
Ω

F (x, u(x), λ) dx, u ∈ X. (3.3)

Obviously, one has ϕλ ∈ C1(X). Theorem 3.1 in [14] directly yields the next result.
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Lemma 3.4. Suppose (ai1), (ai3) and (ai5), i = 1, 2, hold true. Then there exists λ∗ >

0 such that, for all λ ∈ ]0, λ∗[, (Pλ) possesses two solutions u0 ∈ int(C+), v0 ∈ −int(C+),
which are local minima of ϕλ.

Actually, the proof of [14, Theorem 3.1] guarantees that

u0 ∈ int(C+) ∩ [0, ū], v0 ∈ −int(C+) ∩ [−ū, 0], (3.4)

where ū := tλe, with e given by (2.2) and tλ > 0 a suitable constant.

Lemma 3.5. Under assumptions (a1j), j = 1, 2, 4, 5, there correspond to every λ > 0
a unique ũ ∈ int(C+) and a unique ṽ ∈ −int(C+) solving the equation

−∆pu = λg(x, u) in Ω. (3.5)

Proof. Fix λ > 0. Set g+(x, t) := g(x, t+),

G+(x, z) :=
∫ z

0
g+(x, t) dt

and
ψλ,+(u) :=

1
p
‖u‖p −

∫
Ω

G+(x, u(x)) dx, ∀u ∈ X. (3.6)

On account of (a11) and (a12), given any ε > 0, we can find c3 > 0 such that

G+(x, z) <
ε

p
|z|p + c3, (x, z) ∈ Ω × R.

This implies that

ψλ,+(u) >
1
p

(
1 − λε

λ1

)
‖u‖p − λc3m(Ω) in X.

Hence, the functional ψλ,+ turns out to be coercive. A simple argument, based on the
compact embedding X ⊆ Lp(Ω), shows that it is also weakly sequentially lower semicon-
tinuous. So, there exists ũ ∈ X satisfying

ψλ,+(ũ) = inf
u∈X

ψλ,+(u). (3.7)

Let us verify that ũ 
= 0. If u ∈ C+ \ {0}, then tu(x) � δ, x ∈ Ω, for every sufficiently
small t > 0. Through (a15) we infer that

ψλ,+(tu) =
tp

p
‖u‖p − λ

∫
Ω

G+(x, tu(x)) dx � tp

p
‖u‖p − c4t

θ‖u‖θ,

where c4 > 0. Since θ < p, fixing t > 0 small enough yields ψλ,+(tu) < 0. Therefore,

ψλ,+(ũ) = inf
u∈X

ψλ,+(u) < 0 = ψλ,+(0),
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which clearly means ũ 
= 0, as desired. Now, from (3.7), it follows that ψ′
λ,+(ũ) = 0;

namely,

〈A(ũ), v〉 = λ

∫
Ω

g+(x, ũ(x))v(x) dx, ∀v ∈ X. (3.8)

By (3.8) for v := −ũ−, one has ‖ũ−‖p = 0. Thus, ũ � 0 in Ω and, a fortiori, the
function ũ solves (3.5). Standard regularity results [7, Theorems 1.5.5 and 1.5.6] then
give ũ ∈ C+. Since, by (a14), ∆pũ(x) � 0 for almost every x ∈ Ω, [18, Theorem 5]
ensures that ũ ∈ int(C+). Finally, the uniqueness of ũ is an immediate consequence
of [4, Theorem 1]. Similar reasoning produces a function v ∈ −int(C+) with the asserted
properties. �

4. Nodal solutions

The main purpose of this section is to find a sign-changing (i.e. nodal) solution of (Pλ).
We start with the following.

Lemma 4.1. Let hypotheses (aij), i = 1, 2, j = 1, . . . , 5, be satisfied and let λ ∈ ]0, λ∗[.
Then (Pλ) has a biggest non-trivial negative solution v̂ ∈ −int(C+) and a smallest non-
trivial positive solution û ∈ int(C+).

Proof. Assume that u ∈ X is a non-trivial positive solution of (Pλ). Arguing as in
the proof of Lemma 3.5, we obtain u ∈ int(C+). Hence, due to Proposition 2.1, there
exists t > 0 such that

tũ(x) � u(x), ∀x ∈ Ω, (4.1)

where ũ comes from Lemma 3.5. Denote by t0 > 0 the biggest positive constant for which
(4.1) holds true. We claim that t0 � 1. Indeed, set ρ := ‖u‖∞. Conditions (a13) and (a23)
provide µρ > 0 such that

z �→ λg(x, z) + h(x, z) + µρ|z|p−2z

turns out to be non-decreasing in [−ρ, ρ] for all x ∈ Ω. If the assertion were false then,
on account of (a14), (a24) and (4.1),

−∆p(t0ũ) + µρ(t0ũ)p−1 = tp−1
0 [λg(x, ũ) + µρũ

p−1]

< λg(x, t0ũ) + µρ(t0ũ)p−1

� λg(x, t0ũ) + h(x, t0ũ) + µρ(t0ũ)p−1

� λg(x, u) + h(x, u) + µρu
p−1

= −∆pu + µρu
p−1.

So, by [2, Proposition 2.6], we would have u − t0ũ ∈ int(C+), against the maximality of
t0. Now, since t0 � 1 while u was arbitrary, from (4.1) it results in

ũ � u in Ω for every non-trivial positive solution of (Pλ). (4.2)
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Define
Sλ,+ := {u ∈ [0, ū] : u 
= 0 and satisfies (Pλ)}.

Lemma 3.4 guarantees that Sλ,+ 
= ∅, because u0 ∈ Sλ,+. Reasoning as before, we get
Sλ,+ ⊆ int(C+). Moreover, Sλ,+ turns out to be downward directed (see [9, Lemma 4.2]).
By the Kuratowski–Zorn lemma, a smallest non-trivial positive solution û ∈ int(C+)
of (Pλ) exists once we know that each chain C ⊆ Sλ,+ is bounded below. Using [5, p. 336]
one has

inf C = inf{uk : k ∈ N} (4.3)

for some {uk} ⊆ C, while [10, Lemma 1.1.5] allows this sequence to be decreasing. Since

uk ∈ [0, ū] and A(uk) = λg(·, uk) + h(·, uk) in W−1,p′
(Ω), ∀k ∈ N, (4.4)

{uk} is bounded in W 1,p
0 (Ω). Passing to a subsequence when necessary, we may thus

suppose uk ⇀ u in W 1,p
0 (Ω) as well as uk → u in Lq(Ω), with

u = inf{uk : k ∈ N}. (4.5)

This forces

lim
k→+∞

∫
Ω

[λg(x, uk(x)) + h(x, uk(x))](uk(x) − u(x)) dx = 0.

Therefore, on account of (4.4),

lim
k→+∞

〈A(uk), uk − u〉 = 0.

Property (p2) yields uk → u in W 1,p
0 (Ω). From (4.4), letting k → +∞ it follows that

u ∈ [0, ū], A(u) = λg(·, u) + h(·, u) in W−1,p′

0 (Ω);

namely, u ∈ Sλ,+ because, by (4.2), ũ � u in Ω. Now, (4.3) and (4.5) lead to inf C ∈ Sλ,+,
as desired. Finally, due to (4.2) again, ũ(x) � û(x) for all x ∈ Ω. The construction of
a biggest non-trivial negative solution v̂ ∈ −int(C+) of (Pλ) such that v̂ � ṽ in Ω is
analogous. �

We are now in a position to find a sign-changing solution of (Pλ).

Theorem 4.2. Under hypotheses (aij), i = 1, 2, j = 1, . . . , 5, and (a31), if λ ∈ ]0, λ∗[,
then (Pλ) possesses a nodal solution w ∈ C1

0 (Ω̄).

Proof. Define, for every (x, t) ∈ Ω × R,

f̂(x, t, λ) :=

⎧⎪⎨
⎪⎩

λg(x, v̂(x)) + h(x, v̂(x)) if t < v̂(x),

λg(x, t) + h(x, t) if v̂(x) � t � û(x),

λg(x, û(x)) + h(x, û(x)) if û(x) < t,

(4.6)

f̂+(x, t, λ) := f̂(x, t+, λ), f̂−(x, t, λ) := f̂(x,−t−, λ). (4.7)
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Moreover, provided u ∈ X, set

ϕ̂λ(u) :=
1
p
‖u‖p −

∫
Ω

F̂ (x, u(x), λ) dx,

ϕ̂λ,±(u) :=
1
p
‖u‖p −

∫
Ω

F̂±(x, u(x), λ) dx,

where

F̂ (x, z, λ) :=
∫ z

0
f̂(x, t, λ) dt and F̂±(x, z, λ) :=

∫ z

0
f̂±(x, t, λ) dt.

By (4.6), (4.7), one has

K(ϕ̂λ) ⊆ [v̂, û], K(ϕ̂λ,−) ⊆ [v̂, 0], K(ϕ̂λ,+) ⊆ [0, û]. (4.8)

We may assume that

K(ϕ̂λ,−) = {v̂, 0}, K(ϕ̂λ,+) = {0, û}. (4.9)

Indeed, if, for example, u ∈ K(ϕ̂λ,+) \ {0, û}, then (4.8) forces u ∈ [0, û] \ {0, û}. Thanks
to (4.6) we thus obtain u ∈ K(ϕλ), with ϕλ given by (3.3). Hence, on account of (4.2),
u is a non-trivial positive solution of (Pλ) and, like before, u ∈ int(C+). However, this is
impossible because of the minimality of û (see Lemma 4.1).

Let us next verify that û, v̂ are local minima for ϕ̂λ. Due to (4.7), the functional ϕ̂λ,+

is weakly sequentially lower semicontinuous and coercive. Thus, there exists ū ∈ X such
that

ϕ̂λ,+(ū) = inf
u∈X

ϕ̂λ,+(u). (4.10)

Arguing as in the proof of Lemma 3.5 produces

ϕ̂λ,+(ū) < 0 = ϕ̂λ,+(0), i.e. ū 
= 0. (4.11)

By (4.9), this implies ū = û ∈ int(C+). Since ϕ̂λ|X+ = ϕ̂λ,+|X+ , where

X+ := {u ∈ X : u � 0 in Ω}, (4.12)

û turns out to be a C1
0 (Ω̄)-local minimum for ϕ̂λ. Theorem 1.1 of [6] guarantees that the

same is true with X in place of C1
0 (Ω̄). A similar reasoning then holds for v̂.

Now, observe that ϕ̂λ is coercive and if

〈B(u), v〉 := −
∫

Ω

f̂(x, u(x), λ)v(x) dx, ∀u, v ∈ X,

then
〈ϕ̂′

λ(u), v〉 = 〈A(u), v〉 + 〈B(u), v〉.

The operator A is of type (S)+ (see (p2)), while B : X → X∗ turns out to be com-
pact, because (ai1), i = 1, 2, hold true and X embeds compactly in Lp(Ω). Therefore,
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Proposition 2.2 guarantees that ϕ̂λ satisfies (PS). Through [17, Corollary 1] we thus
obtain

K(ϕ̂λ) \ {v̂, û} 
= ∅.

Let w ∈ K(ϕ̂λ) \ {v̂, û} be a critical point of mountain pass type. From (4.8) and (4.6)
it follows that

A(w) = λg(·, w) + h(·, w) in W−1,p′
(Ω);

namely, w solves (Pλ), while standard regularity results [7, Theorems 1.5.5 and 1.5.6]
produce w ∈ C1

0 (Ω̄). We may assume that

C1(ϕ̂λ, w) 
= 0 (4.13)

(see [3, pp. 89–90]). By [12, Proposition 2.1] one has

Ck(ϕ̂λ, 0) = 0, ∀k ∈ N0. (4.14)

Comparing (4.13) with (4.14) yields w 
= 0. Now, since w ∈ [v̂, û] \ {v̂, 0, û}, Lemma 4.1
immediately leads to the conclusion. �

Through Lemma 3.4, Theorem 3.2 in [14] and Theorem 4.2 we easily infer the next
multiplicity result.

Theorem 4.3. If (aij), i = 1, 2, j = 1, . . . , 5, and (a31) hold true, then for every
λ ∈ ]0, λ∗[ problem (Pλ) has at least four constant-sign solutions, v0, v1 ∈ −int(C+),
u0, u1 ∈ int(C+), and a nodal solution, w ∈ C1

0 (Ω̄). Moreover, v1 � v0 < 0 < u0 � u1

in Ω.
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9. L. Gasiński and N. S. Papageorgiou, Nodal and multiple constant sign solutions for
resonant p-Laplacian equations with a nonsmooth potential, Nonlin. Analysis 71 (2009),
5747–5772.

https://doi.org/10.1017/S0013091513000515 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000515


532 S. A. Marano and N. S. Papageorgiou
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