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Abstract. The statistical bootstrap theory of hadrons predicts a particle level density which increases 
with mass like Q(m) = cmaexp bm. The motivation for this level density is explored and then it is 
used to derive an equation of state for zero-temperature ultra-dense (> 10 1 7 g cm - 3 ) matter. The 
nature, uses, and limitations of the equation of state are discussed. 

1. Introduction 

Developments in the theory of particle physics over the last several years have had 
surprising implications concerning the multiplicity of particle states at energies far 
beyond the reach of present day experiments. A natural impulse is to apply this new 
found knowledge to physically interesting situations involving high temperatures 
and/or high densities. In particular, knowledge of the variety of particle species and 
their interactions under extreme conditions can be used to construct an equation of 
state applicable to the early stages of the universe in the context of a big bang cosmol­
ogy or to the structure and stability of hadron stars. 

This paper is oriented toward conditions of high density and negligible temperature 
and so is most directly concerned with the subject of hadron stars. While the equation 
of state itself follows straightforwardly from two key assumptions regarding the densi­
ty of particle states and the manner in which their interactions are treated, the inter­
esting physics is involved in the motivation of these assumptions and the degree of 
their validity. Thus these assumptions will be explored here even though they are of a 
much more general nature than the specific topic of the equation of state for cold 
ultra-dense matter. The derivation of the equation of state will then be sketched and 
its nature, uses, and limitations will be discussed. 

2. The Density of Particle States 

On aesthetic grounds one might like to think that there were some finite number of 
fundamental building blocks out of which all strongly interacting particles (hadrons) 
could be constructed. In fact some recent work indicates a quite different situation. 
Rather than there being any truly fundamental particles the hadrons may be their own 
constituents. In this picture not only will hadrons not be broken down into a few 
prime constituents at high energies but, in addition, the number of different particles 
will increase exponentially with mass-energy. 

That the density of particle states would behave like 

Q(m) = p- - cmaebm, (1) 
dm 
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was first predicted by Hagedorn (1965). Hagedorn used a bootstrap type argument of 
the sort illustrated below in which it is supposed that each hadron is composed of 
other hadrons in some statistical sense. An independent suggestion that something 
like (1) is true came with the establishment of the concept of duality - that the Regge-
pole contribution is in itself an average description of the full scattering amplitude. 
Dolen et al. (1968) argued that Regge-pole contributions could not be added coherent­
ly to resonance contributions to the scattering amplitude, as in the interference model, 
without resulting in multiple counting. Duality says that resonances and Regge-poles 
are related by finite-energy sum rules so that one formalism is equivalent to the other. 

Krzywicki (1969) and Fubini and Veneziano (1969) used duality models to derive 
the degeneracy of particle states as a function of energy. They found the same result 
as did Hagedorn, the number of particle states increases drastically with mass, agree­
ing asymptotically with (1). For a recent review of duality and the Veneziano model 
see Kaidalov (1972). 

The derivation of the level density based on statistical bootstrap arguments is 
conceptually much simpler than that based on duality models and so will be used here 
to illustrate the origin of (1). The following discussion closely follows that of Frautschi 
(1971). 

The current crude bootstrap model assumes that an effective potential serves to 
confine the constituents of a hadron in a volume with radius of order 1 0 " 1 3 cm. 
Inside this box the constituents are presumed to circulate freely. The density of levels 
in the box is then identified with the density of hadron states. This treatment assumes 
that all attractive interactions are accounted for in a statistical sense by counting all 
the resonance states in the box. In reality we know that a pair of particles in the box 
will interact via some potential. For an attractive potential, as the particles get closer 
their wave function oscillates more rapidly and for every extra oscillation correspond­
ing to a phase shift of 180° the effect is to create another state in the box. Thus while 
an exact treatment would count states of motion of all the particles in their mutual 
potential, an approximate treatment is to count states of motion of the original 
particles plus the states of motion of all resonances, all considered to be non-inter­
acting. Just such a treatment is shown to be rigorously true in certain idealized cases 
by Dashen et al (1969) and Veneziano (1971). They show that narrow resonances in 
the scattering amplitude are manifested as free particles in the corresponding statistical 
ensemble. 

What of repulsive interactions? Leung and Wang (1971) outline a possible theoretical 
argument that indicates that any repulsive baryon-baryon interaction would be roughly 
cancelled by a corresponding attractive interaction. The idea is that while interactions 
mediated by mesons of the co family would be repulsive, interactions would also occur 
with coupling constants of the same order mediated by members of t h e / family which 
would provide an attractive interaction. Thus Leung and Wang argue that on the 
average not only repulsive but all baryon-baryon interactions might be ignored in 
certain cases. 

In a more general way Hamer and Frautschi (1971) argue that repulsive interactions 
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just serve to eliminate possible resonances from the system leaving the attractive inter­
actions to generate the multiplicity of resonances which dominate the physics of the 
situation. More specifically, they point out that there are no limits to the rate of 
increase with energy of the number of states which attraction can generate whereas, 
while repulsion can serve to decrease the number of states up to a point, causality puts 
a finite limit on the rate of decrease. Therefore as long as channels exist which provide 
attractive interactions there will be an exponential increase in the density of states 
which will swamp any effect of repulsion in other channels. 

Thus the assumption that the hadron constituents can be treated as moving freely 
in a box as long as all possible states are counted can be seen to be a fair first approxi­
mat ion/This model should be particularly satisfactory under proper conditions, for 
instance a very dilute collection of hadrons. On the other hand, in the context we have 
in mind, dense zero temperature hadron matter, we will require the hadrons to be 
closely packed and baryons to be degenerate. The possible effects of interactions will 
then have to be re-examined. 

The problem, therefore, is to compute all the states in the box which composes the 
hadron volume. The number of states of one particle in a box of volume V with 
momentum between p and p + dp is 

Vd3p 

I T - ( 2 ) 

By extension, the density of states for n independent particles with total energy m is 

Q n ( m ) = J ' fl J d 3 p ' d ( £ E ' - m ) 3 3 ( £ p ' ) • ( 3 ) 

The momentum delta function and the omitted factor of Vjh3 correspond to taking the 
:enter of mass at rest. 

For the bootstrap model of hadrons, the hadrons are assumed to be compounds of 
Dther hadrons, for instance, schematically, 

N = ( T T T T + nK + KK +•••) + (nnn + nnK +•••)+•••. 

To compute the level density corresponding to this case two conditions must be met. 
The statistical condition is that the level density of hadrons Qout(m) is given by the 
shase space volume of an arbitrary number of noninteracting internal constituents 
confined in the volume V which have level density £ I N ( W I ) - This level density is 

x d( t E{ - m)<5 3 ( t x P i ) - (4) 

ie re the integral over mass sums the contribution to the phase space volume of 
:ach mass interval. The factor \jn\ eliminates the effect of double counting (cf. 
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Frautschi, 1971). Equation (4) is incorrect in that it does not take into account the 
Pauli principle and hence two or more fermions are allowed in the same state. Such 
states are statistically insignificant and do not contribute to the asymptotic level 
density in the non-degenerate case. The effects of the Pauli principle on the level 
density have not yet been included in the computation of the present equation of state. 
The possible effects of this correction will be discussed. 

The second condition necessary to compute the hadron level density is the bootstrap 
condition, that the internal constituents are just the hadrons themselves, i.e. 

£out("0 = ein(™). (5) 

Frautschi originally applied this relation only in the asymptotic region of large m. 
Hamer and Frautschi (1971) call that relation the 'strong asymptotic bootstrap con­
dition.' They discovered that (5) could be applied at all masses above a certain thresh­
old which they take to be the two pion threshold in the simplest case. Hamer and 
Frautschi call (5) the 'strong bootstrap condition.' The 'weak asymptotic bootstrap 
condition' is that originally used by Hagedorn (1965) where £ o u t is consistent with gin 

only to within a power of the mass. 
Frautschi (1971) then shows that the solution to (4) and (5) is of the form 

o = cmaebm. (6) 

0 5 10 15 2 0 
m 

Fig. 1. The bootstrap density of all hadron states compared with experiment. Also shown is the 
fit of Hagedorn and Ranft (1968). This figure is from Hamer and Frautschi (1971). (Reprinted with 

the kind permission of the authors and Physical Review.) 
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He also shows that if one considers only hadrons of a particular baryon number B, 
change Q, strangeness 5, etc., the parameters a and b are unique, i.e., 

QBQS... = cBQSmmmaebm. (7) 

Figure 1 shows the results of the statistical bootstrap model as computed by Hamer 
and Frautschi (1971) and the theoretical solution as given by Hagedorn and Ranft 
(1968). The experimentardata can not yet distinguish an exponential mass spectrum 
from a power law. With a level density of the form of (6) Hamer and Frautschi can 
fit their results down to m~ 10 mn. 

The various theories give estimates of the values of the parameters as indicated in 
in Table I. Frautschi (1971) finds that the requirement of a consistent solution to (4) 
and (5) imposes an upper limit to a, 

a<-5/2. (8) 

Frautschi's analysis shows that it is not necessary to discuss thermodynamics in order 
to derive the level density; however, Hagedorn's (1965) thermodynamic analysis in­
dicates that for local thermodynamical equilibrium to hold in high energy collisions 
a lower limit is placed on a, 

a > - 7 / 2 . (9) 

TABLE I 
Parameter values for the statistical bootstrap level density, 

Q{m) = cm&exp bm 

a> —1/2 Hagedorn 
a < — 5/2 Frautschi 
a = - 5/2, - 3, - 7/2... Veneziano Model 
a ~ — 3 Hamer and Frautschi 
a = — 3 Nahm 
b~l~ 160 MeV Hagedorn 
b-1 ~ 174 MeV Veneziano Model (a = - 3) 
b~l'~ mn ~ 140 MeV Hamer and Frautschi 
c ~ (0.9 BeV)3/2 Hagedorn (a=- 5/2) 
c ~ (1-4) mn2 ~ (0.2 BeV)2 Hamer and Frautschi (a = - 3) 

The Veneziano model (Fubini and Veneziano, 1969; Bardakci and Mandelstam, 1969; 
Huang and Weinberg, 1970) allows a series of discrete values 

a = - 5 / 2 , - 3 , - 7 / 2 . . . . (10) 

Consistent with all these results Harrier and Frautschi (1971) compute that the value 
of a does not differ significantly from a= — 3 and report that W. Nahm has established 
this unique value analytically by extending the work of Frautschi. 

Hamer and Frautschi have shown that if all exotic resonances (\B\ > 1) are included 
in the bootstrap spectrum the value of a decreases by one half for each extra internal 
quantum number included, i.e., Q, Setc . In the present work all exotics will be excluded. 

The value of b was first estimated by Hagedorn (1968) and Hagedorn and Ranft 
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(1968)to be 

ft"1 ~ 160 MeV. (11) 

They obtained this number by noticing that the transverse momentum distribution 
of secondaries in very high energy collisions goes as exp(— \p±\/\60 MeV). Hagedorn's 
statistical model interprets the constant in the denominator as ft"1. The Veneziano 
model gives ft"1 = 174 MeV for a= — 3 (cf. Huang and Weinberg, 1970) and Hamer 
and Frautschi (1971) find, as expected on dimensional grounds, ft"1 140 MeV 
with the value roughly linearly proportional to the radius of the hadron volume assumed. 

Hagedorn (1967) estimates a value of the parameter c for the complete hadron 
spectrum of (0.9 G e V ) 3 / 2 for a value of a = - 5 / 2 . He does this by fitting the derived 
level density to the known hadron distribution, as far as it goes. Hamer and Frautschi 
find a value of c~m2. for a= — 3 from their numerical computations. 

The statistical bootstrap model outlined here has some advantages over the 
Veneziano model. The latter strictly treats only multi-particle interactions among 
mesons while the bootstrap model incorporates baryons as well. The bootstrap model 
also gives an interesting constraint on the parameters a, ft, c9 V namely 

„=2 (n - 1)! 
where 

{2nfl2cVma+il2 

~{a + 5/2) h3b 

The solution to (12) is just * = l n 2 so that 

\n2h3b3l2m1'2 

* = — / • , 3 , 3 / 2 - 03) 

(14) 
r " 2 ( 2 T T ) 3 / 2 C ' 

for tf=-3. Equation (14) implies that some of the parameters of the model will 
change if the volume of the hadron is altered as it could conceivably be under con­
ditions of high density. In fact Hamer and Frautschi find that, in general, a = constant 
but that 

ftocK1/3, (15a) 

c o c K ( f l + 1 ) / 3 , (15b) 

for given input physics. The nth term in (12) gives the probability that a given break­
up channel will have n components. Thus 69% of the resonances will couple to only 
two components, 24% to three components and 7% to four or more components, with 
the average number being 2.4. 

Chiu and Heimann (1971) have incorporated the effects of spin on the hadron spec­
trum. For the most part this extra sophistication does not alter the basic results of the 
present work. 

3. The Equation of State 

With the level density of hadron states at hand, it is straightforward to calculate the 
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equation of state. To be consistent we must assume that hadron interactions in the 
macroscopic physical system of interest can be treated in the same manner as were the 
internal constituents of each hadron. That is, we must assume that the level density 
implicitly accounts for all hadron interactions and hence that the hadrons can be 
formally treated as free particles. The validity of the level density of (6) or (7) in the 
context in which it is us^d here will be examined later. 

In general the partition function for a non-interacting ensemble of particles whose 
mass distribution is given by the level density p{m) is (taking c = k= 1), 

l n z = if [ { a ° s o n s ( m ) d m | , n p 2 d p + 

+ Jef.rmion.Mdm J In (1 + A ) / ? 2 d / ? j , (16) 

where 
/l = e x p { [ / i - ( p 2 + m 2 ) 1 / 2 ] / r } . (17) 

The parameters of the equation of state, pressure, number density and mass-energy 
density are obtained from the partition function, 

ns=T 

dlnZ 
T 

cV 
dlnZ 

T, fi 

dfx 
i | r , v 

e = T2 
dlnZ dlnZ 

T,V J 

(18) 

(19) 

i(m)n(m)mdm. (20) 

Note that for temperatures much greater than the Fermi energy all particles will 
obey Maxwell-Boltzmann statistics so that using the level density of (6), 

00 00 

InZoc j m3l2Q(m)e-m/Tdmaz j m 3 / 2 + V " 1 / T ) m d m . (21) 
0 m 

Thus the partition function does not converge and thermodynamics is not valid if 
T>b~1. This is the source of Hagedorn's (1965) by now famous statement that the 
exponential level density implies a finite limiting temperature to any thermodynamical 
system of order 160 MeV. As energy is put into the system it goes into the rest mass of 
new particles rather than into the kinetic energy of existing particles. 

For application to hadron star matter we must make the opposite assumption, 
namely that the temperature is much less than the Fermi energy, which we idealize 
by specifically assuming r=0. In this case we find 

00 
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OO OO 

= b̂osons (™) n (m) m dm + ^ J efermions O) w 4^ ,(x) dm , (23) 
0 0 

where , X [> 2(m)-m 2] 1 / 2 

x m = J — , (24) m 
a n d / and are the standard Chandrasekhar functions (the g' contains the rest mass 
contribution to the energy density), 

/ = x (1 + x 2 ) 1 / 2 ( 2x 2 - 3) + 3 In [x + (1 + x 2 ) 1 / 2 ] , (25) 

g ' (x) = g(x) + 8 x 3 = 3x (1 + x 2 ) 1 / 2 (2x 2 + 1) - 3 In [x + (1 + x 2 ) 1 / 2 ] . 
(26) 

The formalism of Ambartsumyan and Saakyan (1960) then gives the chemical 
potentials as 

l̂epton = A*e" = / V = W n (27) 
AWson = mjcQmeson (28) 
/̂ baryon = HBQ = /̂ n̂ baryon ~~ mnQbaryon (29) 

in terms of the charge (Q) and baryon number (B) where the chemical potential of the 
neutron is the same as for all B— 1, Q = 0 particles. Since baryons with mass greater 
than their chemical potential \i B Q are prohibited and since there is a lowest mass particle 
for given B and Q, the integrals for the equation of state variables split into a sum 
over B and Q of integrals with finite limits. The lepton contribution is fixed at a 
negligible level and dropping it allows algebraic elimination of the meson contribution 
giving the following expressions for pressure, energy density and baryon number 
density; 

HBQ 

6 / ^ - » , u i ^ ( w ) m 4 / ( x ) d m , (30) ^ 3 R B , Q J ^Wm 4 / ( x )dm, 

Hbq 
8 ~ 3 -jf- Eb, qQ QBq (m) m 3 x 3 dm + 

*n°BQ 

n B ~ fp^B^B QBQ(m) m 3 x 3 d m . ( 3 2 ) 

m°BQ 

Using the level density 

QBQ = cBQmaebm, ( 3 3 ) 
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gives a 'peak' in the integrands as the combined result of the exponential rise and the 
cutoff at JHBQ. Thus the main contribution to the integrals always comes from masses 
within about ft-1 of the cutoff. The ratio of the (Fermi) kinetic energy to the mass is 
then of order l/bfiBQ. The smallest iiBQ can be is about mn in which case \jbiiBQ~6. 
Assuming that fiBQ is always much greater than ft-1 implies the particles will always 
be non-relativistic which means / ( x ) ^ 8 / 5 x5 and g'(x)~$ x3. 

The 'peak' in the integrands also allows the integrals to be approximated by the 
asymptotic value of a modified Bessel function of argument bfiBQ which is again taken 
to be bnBQP 1. 

Equations (30-32) then become 

P = .' ^ , Q 4r C , (34) 
1 

bnn-°'« B 

S = EBQ8BQ9 (35) 

*b=*; (36) 

where the partial density &B,Q LS given by 

FI*. Q = ^ B a B b - s l l i i 3

B ^ a exp bfiBQ. (37) 

The exponential 

el>HBQ __ eb(nNB-mNQ) 

dominates sBQ and so the class of baryons with highest B will dominate the sum in (35) 
giving 

£ - * Q E * M A X , Q - ( 3 9 ) 

Using Hagedorn's (1965) interpretation of b~l as the limiting temperature T0 then 
gives 

P = nBT0, (40) 

= - T 0 , (41) 

taking, in the absence of any evidence to the contrary, BMAX= 1. See Wheeler (1971) 
for the details of this derivation. 

The form of (40a) is not surprising since the assumptions made here imply that 
noninteracting nonrelativistic particles with Fermi kinetic energy ~b~* — T0 dominate 
the equation of state. Note from (37) and (38) that the chief dependence is soce^ so 
that asymptotically (40b) will become 

P o c — . (42) 
lne 

This result has been derived independently by Hagedorn according to Rhoades and 
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P - K } ° c PE/P (43) 

Ruffini (1971). A thorough discussion of the physics associated with the exponential 
hadron level density has been given by Lee et al. (1971) followed by discussions of the 
zero temperature case by Leung and Wang (1971, 1972). See also the contribution by 
Wang in this volume. 

In particular by taking a= — 3, neglecting mnQ with respect to jun in the polynomial 
of fiBQ and eliminating jnn by (40b), the expression for the equation of state becomes 

( 2 / r ) 3 / 2 T 0

2 

where 

Crt = ZtfUQe-m*, (44) 
which has dimension (mass) 2 . 

Hamer and Frautschi (1971) find a value for the parameter c of between (1—4) m2. 
A value for c e f f of ml implies that e ~ 5 x 1 0 1 4 g c m " 3 , a typical nuclear density, when 

0n = "iii-
Using c c f f = To = w 2 , the approximate numerical representation of (43) is 

P - 5 x 1 0 3 3 (e/Py3/2 exp (s/P) dyne c m " 2 , (45) 

where for convenience of expression the units of e are taken to be erg c m " 3 . Figure 2 
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Fig. 3. The statistical bootstrap equation of state is shown in comparison with two common limiting 
cases, that for free relativistic particles (P = 1/3 e ) , and the causality limit (P = e) . Also shown are the 

numerical results of Leung and Wang (1971) based on the known hadron spectrum. 

shows the number densities of the known resonances as a function of density as given 
by Leung and Wang (1971) who incorporated all known particles in a noninteracting 
gas in the spirit of the statistical bootstrap treatment. Equation (45) is plotted in 
Figure 3 along with the results of the calculations of Leung and Wang (1971). 

As mentioned previously Hamer and Frautschi (1971) find that the form of the level 
density in (6) gives a good fit at masses as low as 10 mn9 corresponding to a density of 
about 1 0 1 7 g e m " 3 . Leung and Wang (1972) have come to the same conclusion in 
fitting the known hadron spectrum with a power law. Thus, while there may be criti­
cisms of the applicability of the level density of (6) at any density, there is no question 
that the equation of state (45) becomes inapplicable at densities less than about 
1 0 1 7 g c m " 3 . Fortunately, this is close to the regime where the known resonances can 
be employed as indicated in Figure 2 and hence the present analytic result can be used 
to extrapolate the numerical study of Leung and Wang (1971). Some adjustment, for 
instance of the parameter c e f f , might smooth the extrapolation. N o such attempt has 
been made at present. 

4. Discussion 

The direct use of the equation of state derived here is limited by its region of appli-
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cability. Although there are still uncertainties in the details, it is generally agreed that 
the maximum central density expected in stable hadron stars is about 1 0 1 5 g e m " 3 . 
Thus a central density greater than 1 0 1 7 g c m " 3 would imply a mass far greater than 
the stability limit. 

The value of the statistical bootstrap concept to hadron stars is that it provides a 
high density boundary condition on the equation of state. The equation of state at 
sub-nuclear densities is by now fairly well established (cf. the contributions by Negele 
and Buchler in this volume). Unfortunately the region around the critical central 
density where the maximum allowable mass of a hadron star occurs is still plagued by 
insufficient knowledge of the nuclear physics. Thus until these problems are solved the 
best one can do is to extrapolate to possible equations of state at much higher densi­
ties. The statistical bootstrap equation of state gives a serious alternative high density 
limit to be considered along with those used in the past, mainly on the basis of sim­
plicity, i.e. /?= 1/3 e for a strictly non-interacting gas of relativistic particles or p = e, 
the causality limit. Both the latter limits tend to imply a relatively 'stiffer' equation of 
state than the statistical bootstrap case in the region around the critical density. 

Leung and Wang (1971) have used their bootstrap equation of state to extrapolate 
in a straightforward way from sub-nuclear densities and have computed a maximum 
neutron star mass of around one half solar mass. Their result is all the more intriguing 
in light of the fact that a recent estimate of a neutron star mass, that of Wilson (1972) 
for the X-ray pulsar Centaurus X-3, is very low, one tenth of a solar mass. On the 
other hand Borner, in this volume, argues that the mass of the Crab pulsar is ~ 1.2 M©. 
In any case the extrapolation of the equation of state is not unique since a 'kink' in the 
equation of state at just the right density due to some quirk of the nuclear potential 
might raise the limiting neutron star mass considerably from the result of Leung 
and Wang and still be consistent with the statistical bootstrap results at higher densi­
ties. The limiting mass of a neutron star is ultimately a problem for nuclear physics, 
not hadron physics. 

Some cosmologists, noting the difficulty in forming galaxies in the context of a hot 
big bang model have considered a cold big bang which expands from the singularity 
at zero temperature (cf. Layzer, 1969). The equation of state discussed here would 
seem to be relevant in such a situation. 

The work outlined here can only be regarded as a first step. Many potential diffi­
culties can be discovered. A few of them and their possible effects will be mentioned. 

As noted previously the expression for the level density (4) does not incorporate 
the Pauli principle and is thus actually inappropriate to problems dealing with a 
degenerate Fermi gas. Frautschi (1971) has checked that inclusion of the Pauli 
principle does not significantly alter the asymptotic expression for the level density for 
cases where degeneracy is not important. Thus there is certainly hope that the ex­
ponential level density which is the mainstay of the present work will be retained when 
the degenerate case is handled more rigorously. 

Sawyer (1972) has discussed one possible effect of the Pauli principle. This is that 
due to the high Fermi level of its decay products the mass of a given resonance may be 
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shifted upward from the mass determined in the laboratory where the resonance is 
free to decay with no phase space restrictions. Leung and Wang (1972) consider this 
point and argue that the exponential level density could still be expected to result 
although perhaps based on an 'effective' baryon mass spectrum. The basic idea is that, 
although the mass of each resonance might be shifted upward by some fraction, this 
effect would not have aiiy ultimate bearing on the basic form of the level density since 
an exponential increase will always eventually dominate a geometric increase. The 
question of whether the level spacing between baryons, i.e., T0, could change with 
density is examined in a somewhat different context below. 

Another serious point is that in practice the hadron spatial distribution is anything 
but that of a dilute gas. Frautschi et al. (1972) have worked out the effective volume 
of the hadrons in the limit as T->T0 and find that it is somewhat larger than the actual 
volume assumed for the hadrons. Thus, although the situation is marginal the results 
are reasonably consistent with the assumptions of the statistical bootstrap model. 

The situation is more severe in the zero temperature case. Writing out (36) again 
neglecting mnQ in the power of fxBQ gives 

nB = IBf QcBQB~l/2 exp (finB - mnQ)/T0. (46) 

Eliminating a weighting factor B gives the number density of hadrons (with Bmax = 1) 

h3 
n h ~ ~T3 3jY e C E F F . V*') 

with c e f f as in (43). Frautschi's constraint (14) gives an expression for the assumed 
hadron volume 

In2 h3mlJ2 

V = , x - „ * - . (48) 
2{2nfl2T3l2c 

The ratio of the actual assumed volume to the effective volume K e f f = l / « h , taking 
mn~T0 and c ~ c e f f , is then 

This number should be less than unity for self-consistency. However, even at iin = mn 

(49) gives VIVeff~9. In actuality there are more than 9 hadrons in the volume assumed 
for one. 

At this point the pessimist will argue that application of the exponential level 
density simply makes no sense. A more optimistic outlook would be to say that the 
basic results are reasonable even though there is some scrambling of construct with 
constituent. The constituent states were, after all, assumed to be completely overlap­
ping within the hadron volume. A third alternative would be to take advantage of 
the result of Hamer and Frautschi (1971) that the parameter T0 actually scales with 
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the hadron volume V. A consistent scheme can be constructed in which the basic 
results given here hold true but where one regards T0 = T0(V). 

Suppose, for instance, that in the degenerate case the hadron volume continually 
adjusts itself to the condition which holds naturally in the high temperature case, 
namely V~ K e f f . By requiring 

Ve« = *V9 (50) 

where 1 and employing the empirical scaling law of Hamer and Frautschi (1971) 

To = To.oUr) > ( 5 1) 

where T 0 0 and V0 are the standard values, one finds the following relation 

In 2 / r 0 t 0 ' 3/2 / X / \ l / 2 
e x p l - ^ ( T T ) I- (52) 1 ToAvJ .' 

Solving (52) gives 

T 0 ~ ( l - 2 l n - 4 r ) f i „ . ( 5 3 ) 0 - 1 " - " " 1 . 0 3 

Thus (40b) becomes 

p = ( x - 2 l n m ) s - ( 5 4 ) 

That is, the equation of state again becomes Poce, with causality intact if a = VtfijV> 
> 1.03, and positive pressure if a < 1.03 e112 ~ 1.7. 

Perhaps the real value of the study of the statistical bootstrap model in the context 
of cold ultradense matter is not that it will teach us more about the nature of hadron 
stars but that it will lead us to new insights into the nature of hadron physics itself. 
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