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SOME RESULTS FOR THE
GENERAL BULK SERVICE QUEUEING SYSTEM

D.F. HOLMAN, M.L, CHAUDHRY AND A. GHOSAL

This paper deals with a general bulk service queueing system with

one server, for which customers arrive in a Poisson stream and

the service is in bulk. The maximum number of customers to be

served in one lot is B (capacity), but the server does not

start service until A (quorum, less than B ) customers have

accumulated; and the service time follows a general probability

distribution. Probability generating functions of the

distributions P and P , under equilibrium, have been derived
n n

by using the supplementary variable technique. An expression has

been derived for the expected value of the queue size and its

relation with the expected value of the waiting time of a

customer has been explored. A numerical case has been worked out

on the assumption that bulk service follows a specified Erlangian

distribution.

1. Introduction

In real life we come across queueing situations in which service is

rendered in bulk. A general bulk-service system with single server is such

that the server, when he is free, starts service only if a specified

minimum, say A , of customers have accumulated in the queue and he does

not take more than B customers for service in one lot. The paper
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discusses a system for which the customers arrive in a Poisson stream (in

other words, inter-arrival times between customers follow an exponential

distribution with mean, say 1/X ), and the batch service time follows a

general probability distribution function, say B(x) , with a mean service

rate y . Let such a system be called M/CT' /I . (if the inter-arrival

time had followed a general probability distribution function, the system

would have been called GI/U"" /I .)

If there is no quorum (that is, if A = 1 ), the system described

above reduces to one discussed by Bailey [7], it will be referred to as the

M/Gr/l system. A system in which both A and B are equal will be

referred to as an M/u/1 system - it was discussed by Fabens [S], amongst

others. The M/(T' /I system was dealt with first by Neuts [77].

Various workers, apart from the authors referred to above, have

derived probability distribution of the queue size under equilibrium

condition for various descriptions of bulk queues - see Bloemena [3],

Jaiswal [72], [73], Foster and Nyunt [9], Foster and Parera [70], Chaudhry

and Templeton [4], and so on. (References to relevant work have been given

at the end of this paper.) Most of them attempted to derive the generating

function of either of the two probabilities under equilibrium state, as

given below:

P equals the probability that the number in queue just after a

departure epoch is n (n = 0, 1, 2, ...) ,

P equals the probability that the number in queue at a random

epoch is n ( n = 0 , 1, 2, . . . ) .

In queueing literature, P is equivalent to the probability that a

customer on arrival finds the queue size to be n (under equilibrium

condition). The approach of most of the authors (see Foster and Parera

[70], Fabens [S]) has been: firstly to derive P or its generating

and then to relate it to P or its
n

generating function P(z) = £ P zn\ by using the theory of semi-Markov
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processes or the renewal theory.

In this paper the technique of supplementary variables has been used

to derive the generating function P(s) directly for M/CT' /I system;

this technique was used by Chaudhry and Templeton [4] for a simpler bulk

service system. Neuts [77] had obtained an exact solution for this system

by using semi-Markov process, but the results were not computationally

tractable. The method used here enables one to derive the expected value

and the variance of the queue size in a simpler way. This has been

elucidated for an M/E£' /I system, in which the service time follows an

Erlangian distribution.

A contribution of this paper has been to relate 1^} of the system to

its {Pn} , where Pn has been derived by using the imbedded Markov chain

technique.

Finally the relation between the expected value of the queue size and

the expected value of the waiting time has been explored.

2. Equilibrium distribution of number in queue

Let N (t) be the queue size (defined here to denote the number of

customers waiting for service, not including those in service) and X(t)

the elapsed service time of the group undergoing service at time t . The

supplementary variable X(t) is introduced in order to obtain a bivariate

Markov process {N (t), X(t)} . Let us now define the following joint

probabilities:

vp(t) = Prob(#(t) = r and the server is idle) , 0 £ r < A ,

«r(t) H Prob(#it) = r and the server is busy) , 0 5 r ,

u (x, t) = lim [Prob(ff (t) = r, x < X{t) S x + Ax)/Ax] , r > 0 .

In limiting case, that is, when t •*• °° , the argument t in the above

functions is suppressed. We may also note the following relations:

V. = 0 if i > A or i < 0 ;

u^ - 0 if i < 0 ;
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u.(x) = 0 if i < 0 ;

and

0

We also define the conditional service rate, i(x) , conditional that

service has not yet been completed at time x :

n(x) =b(x)/[l-&(x)) ,

so that b(x) and B(x) are respectively density function and

distribution function of the service time, given by

b(x) = n(*)exp{ Jp{- J

p{- |X(2) 6(x) = 1 - ex

Following Cox [5] or Chaudhry and Templeton [4], we may now apply the

supplementary variable technique to the problem by forming the equations of

the state of the system in steady state. They are

(3) XyQ = j uQ(xMx)dx ,

(U) Xv - Xu = u (x)r)(x)dx , 1 < r < J - i ,
J0

(5) 4 » 0 ( ^ =

( 6 ) & " n ^ =

These equations are to be solved subject to the following boundary

conditions:

(7) u (0) = Y, u (xMx)dx + Xu
0 >»! In r x

B

(8) wn(0) = j un+B(x)n(x)dx , M > 0 .
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Next we define the following probability generating functions:

00

u{z) = I unz
n ,

rt=0

oo

«(*, 3) = I U Mz"1 .
n=0

Let us define

u(z) = u(x, z)dx .
J0J0

We also define P(s) to be the probability generating function of the

number in the queue, regardless of whether the server is busy or not.

Obviously, then the following is true:

A-l
(9) P(a) = u(z) + I v.z1 .

We now proceed to develop an expression for u(z) . Multiplying

equation (6) by z summing from n = 1 to infinity and adding equation

(5), we get a differential equation which on solution gives

(10) u(«, z) = K ( 0 ,

where we have used the relation (2).

We next find u(Q, z) from the boundary conditions, as follows.

Using equation (3), C O , (7) and (8), one can get after some simplification

(11) u(0, z) = z~B I [zB-zr) f u (xMx)dx + z~B f u[x, zMx)dx .
r=0 J0 J0

After using (10) and the definition of r\(x) , we get after simplificatj

(12) u(0, z) = f I [zB-zr) f u (x)n(x)drl / (sS-F(X-X2)) .
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[zB-b(X-\z))\

x e~{X~Xz)x[l-B{x)]

Recall now that u{z) = u(x, z)dx . The equation (13) can be so

integrated, using one step of integration by parts, to give

(Ik) u(z) = u(0, z) • [l-b(\-\z))/(\-\z) .

This is the probability generating function of number in the queue

with the server busy. Further discussion of this will be taken up in a

later section. It is of considerable interest to note that the above

expression has no dependence on A , the quorum. It agrees exactly with

the similar expression found by Chaudhry and Templeton [4] for the system

3. Relation to the imbedded Markov chain

Next we wish to relate the probability generating function in equation

(lU) to P (z) , the probability generating function of the number in the

system immediately after departure epochs or equivalently just before

commencement of service epochs:

CO ,

P (z) = T P.z , where P- probability that the number is i .

This procedure is new and has been used for the first time by Chaudhry and

Templeton [4] for analyzing bulk service queues. For computational

results, this allows us to use the steady-states imbedded Markov chain

probabilities, which can be calculated as shown below. We note from

Chaudhry and Templeton [4] that P* is related to «„(*) as follows:

(15) P* = d I u(x)r)(x)dx

where d is a normalizing constant. The equation (15) is based on the

definitions of un(
x) and r)(x) . The probability generating function

P (z) can be seen to be
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P+(s) = d I w(x, z)n(x)dx .

Using equation (10), we get

(16) P+(z) = du{0, z)b(X-Xz) ,

where we have used the definition of r\(x) . Now taking M(0, Z) from

equation (12) we get

(17) P+(3) = d f I [**-*") f ujx)r\{x)dx] I (/-F(A-As)) • b{\-\z) .

Using equation (15) this simplifies to

B
+((18) F(z) = ( a _ 1 / c _

X [z -zr)v\ / [z -b(X-Xz)) • b(X-Xz) .

It needs to be pointed out here that equation (18) may be compared with

equation (12) of Neuts1 paper [77] with ff.(') = »(•) ,

i = 0, 1, 2, ..., 5 .

Again it is interesting to note that there is no dependence on A ,

the quorum. Thus, this expression holds for the imbedded Markov chain

results for M/(J/1 and M/GT/l ; and indeed we note exact agreement with

expressions for these systems developed by TakScs [20], Foster and Nyunt

[9], and Chaudhry and Templeton [4]. It appears that although the three

systems M/(//l, M/(P/l and M/c/1'8/! have different underlying

processes, these differences do not surface at the instants examined by the

imbedded Markov chain. Thus, whether the server is intermittently

available (Bailey's model), or waits for a customer when he is idle and

serves him as soon as he arrives (Jaiswal or Bloemena or Chaudhry's model)

or waits for A customers when he is idle (Foster and Nyunt or Taka*cs'

model), the imbedded Markov chain results are the same. In his paper

concerning the AT/CT/1 system (AT implies that the arrival process is

also a Poisson stream but X people can arrive in bulk at a given epoch),

Bhat [2] has raised this same observation; however, he had not considered

the present Ml<f"> /I system. Some details of Bhat's paper may be found

in Prabhu [J9], We can evaluate the constant d by applying the
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normalizing condition, P ( l ) = 1 , to equation ( l6 ) .

We find

(19) d" [M(0, I ) ] " 1 .

We evaluate [w(0, l ) ] ~ from equation (lU), by applying the normalizing

condition to t h i s equation, recall ing from equation (9) that

A-l
w(l) = 1 - Y, v > the total probability that the server is busy.

r=0

Finally, we get, using L'Hopital's rule,

M(0,

a result which is intuitively appealing and may be obtained by the

conservation principle. This gives

^ _ -i

(20) d = Lfl - £
|_l r=0

By comparing equations (lU) and (IT), and using (20) we get the relation

(21) n{z)/P+{z) = [l-b(\-\z))/(\-\z)
( A~1
Pi " I v

v r=0
/ b(X-\z) .

We may also point out here that the probability generating function

P (s) for the number in the queue Just before arrival epochs is simply the

same as P{z) due to the characteristics of the Poisson arrival process.

4. Calculation of basic Pp and v^ probabilities

We next discuss the calculation of the unknown probabilities, P ,

v = 0, 1, ..., B and then these are related to the idle-server

probabilities, u. , i = 0, 1, ..., A-l .
"If

The characteristic equation of this queueing system i s , from the

denominator of (18),

(22) zB - F(A-Xs) = 0 .
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The equation (22) has B zeros inside and on C (for details, see

Foster and Nyunt [9]). There is a simple zero at s = 1 , and therefore,

there are B - 1 other zeros inside the unit circle. Let us call them

zi , i = 1, 2, ..., B-X .

Consider again the equation (18). Since it must converge inside and

on the unit circle, the numerator must vanish at all the zeros of the

denominator which are inside and on the unit circle. The zero at 3 = 1

clearly cancels from both numerator and denominator, leaving B-X other

equations:

(23) f (4-<)^ = 0 , i =1, 2, ..., fl-1 .

To this we add the normalization condition, P (l) = 1 , which gives

B-X
(2U) I (B-r)P+ = fl(l-p) .

r=0

Together, the system of equations (23) and {2k) form a set of B

linearly independent equations in the B unknowns P . Therefore, the

P can be found from the zeros of the characteristic equation inside and

on the unit circle. Thus the probability generating function P (s) is

completely determined. We now wish to relate the P 's to the V.'s .

Recall the equation (15), and using the value of d from (20), we

have

A-X
f u (xMx)dx = ufl - I v.)p* .
'0 «• £=0 >

This relationship is substituted into equations (3) and {h) giving

r A-X
(25) XuQ = p l - £ i

-£=0

f ^ i +
(26) Xvp - Xv = p i - Y, v-\pp » 1 - r < 4-1 .

Multiplying (25) by A and adding to it the equation (26) multiplied by

(4-r) and summed over r = X to A - 1 , we get an equation which gives
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(27) 1 - £ v. = (X/u) / X/u .+ E (4-r)P .
•£=0 ' *• r = 0 •*

Since P (s) is already fully determined, (27) together with the

equation (2l) is sufficient to give u(z) completely. However, it is

still necessary to find values of individual v.'s to use in (9). First,

substituting (27) into (25) gives,

(28)

Also summing (25) and (26) for r = 1 to n gives an equation which, with

the use of (27) gives

(29)

A-l i

We now wish to evaluate the term E u 'z *° complete the
i=0

determination of P(z) in equation (9). From (29), we get

A-l
V .Z =I

i=0

4-1

r=0

Finally, this gives the expression for P(s) :

1-1
(30) P(z) = u{z) +

r=0

5. Expected number in queue and expected waiting time in queue

The expected number in the queue, L , is found as usual by taking

the first derivative of (30) and setting 3 = 1 . The derivative of the

first term, w'(l) , is found from (21), which on using (27), gives

(31) u'(l) = (X/u) /[[xx/u+ E (A-r)pj]) [£++(Xu/2.) (a2-(l/u2))] ,

+ + 2
where L = P '(l) and a is the variance of the service time

distribution given by F"(0) = a2 + (l/u2) .
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The d e r i v a t i v e of t h e second term i s

((*) I [A{A-l)-r(r-l)]P+\ I fx/y + £ U-r)P*l •
<• r = 0 ^ l r=0 J

Combining terms, we get

(32) L =

r=0

Thus £ is determined in terms of L and the P 's . The latter

can be found, as described earlier, from the roots of the characteristic

equation. Similarly L can be found by expressing P {z) in terms of

the roots of the characteristic equation and differentiating, as usual.

While discussing the waiting time distribution for the queueing system

M/IT* /I , Medhi [76] reports that the Little's formula L = \W (where

W is the expected waiting time in the queue) holds true. It is

conjectured by the authors that this relation should hold true for

M/G^* /I case also or even for GI/Cr' /I system, asymptotically. A

combinatorial argument may be developed on the following lines.

For a GI/G/1 system, let

HAn) equal the probability that the nth customer on starting

his service finds k customers waiting behind,

W equal the waiting time of the nth customer,

t equal the time interval between arrivals of the nth and

(n+1)th customers.

Then

oo
/ o o \ V / / ( t t } = Prr»h fn > -t + + + + +• \

7,_« k n n n+1 """ n+£—1

By replacing t^ by its expected value (r = n, ..., n+i-l) I/A , we

get, on some general conditions,
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T, HAn) •* Probfw > i/\) .
k=i k n .

Summing over i , for large n , we get (since w follows a

continuous distribution function)

GO 00

I I HAn) =lPr{w >k/\)
i=l k=i * i n

•*• X Pr(u > x)dx ,
J0+

whence

(3U) VXV

A B n+i-1
Since, for an M/Cr' / I system, £ t in (33) does not depend on

r=n

A or B , the result (3^) should hold good asymptotically. In the

asymptotic case, P7 approximates #^(n) •

A rigorous proof of (3^) will be published by the authors in a

subsequent communication.

6. Expected busy and idle periods

In this section we determine the expected values of the busy and idle

periods using zero-one process. This technique can be applied to the

present system in a straight-forward fashion, and yields the expected value

directly.

Let n and I be random variables which represent respectively the

busy and idle times of the server. Accordingly, using the zero-one process

(Parzen [7g]) we get the relationship

,~,-\ g(n) _ -, • Prob(server is busy at time t)
E(I) t ^ Prob(server is idle at time t) '

The probability that the server is idle in equilibrium is given by the

-4-1
sum £ v. . Therefore (35) becomes
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A-l
(36)

We next proceed to evaluate E(I) . There are A states of the

system with the server idle: those states with 0, 1, 2, ..., J4-1

customers in the queue and the server is idle. Thus the total probability

A-l +

that the server is idle just after a service departure is Y. ? •

r=0 r

Therefore the probability of the server being idle with n customers in

the queue on a service departure is

p+ I ( t p+) » 0 £ n £ A-l .

If there are n in the queue on a service departure, which begins an

idle period, there must be A - n units that arrive before the idle period

ends. Accordingly, the expected value of such an idle period is (A-n)/\ ,

and the overall expected value is

It should be noted that this expected value as stated above is conditional

that the idle period is non-zero.

Now continuing (36) and (37) we get the expected busy period:

A-l i c A-lC~-l .EM

Using equation (27) this can be simplified to give

(38) E[r\) r "-1 +i
L r=°

The special cases of (36) with B = A , or A = 1 and G = En , where En

is a modified Erlang distribution, have been discussed by Fabens [£] and
Jaiswal [74], respectively.
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7. The queue M/£?'S/1 - a particular case

By specifying a service time distribution we can discuss some further

results of this system. Since the k-Erlang distribution

(b(x) = {{vk)k/(k-l)l}exV(-Vkx)x
k-1 , u > 0 , fc > 1 , x € [0, <=°) ) is

the most general and will be a good approximation to systems with service

time distributions whose coefficient of variation is less than 1 , this is

the one we investigate.

In this case b(s) = [y/(u+e)] . Therefore the characteristic

equation becomes

(39) zB = [y/(u+X-As)]
fe .

Following Bailey [I], it can be shown that

k
<»*o) f+(s) = T T (e.-i)/(e.-2) ,

where 9., i = 1, 2, ..., k , are the zeros outside the unit circle.

This is the same equation reported by Bai ley for the system M/S7/1 ,

but also applies to our more general case. Thus the expected number in the

system at departure epochs is easily found to be

(Ui) L+ = P+'(I) = E (e-i)"1 •
i=l v

Moreover, partial fraction expansion of (Uo) allows us to find expressions

for the ? ps in terms of roots 8. . This gives

This is an alternative approach to find the P 's from the method

described in Section h. It allows us, then, to calculate the v.

probabilities, and along with L from (Ul) gives all the information

needed to find L from (32), E(I) from (37) and S(n) from (38).
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8. Numerical calculations for M/£?' / I

Some typical numerical calculations of the P and V. probabilities

and the expected values L and L were undertaken by the authors using

The Royal Military College PDP-11/31+ computer. We use equation (k2) for

the P* , (29) for V. , (Ul) for L+ , and (32) for L .
71 *• U GF

The preliminary step, then, was to find the 6. , the roots of

equation (37) with modulus greater than unity. It was found more

convenient here to change variable setting x = X/z and then finding the

roots inside the unit circle. These roots were then inverted to give the

desired 9.'s . Bairstow's method of extracting pairs of roots, which are

in general complex, was used with considerable success. All other

manipulations of these roots involved complex arithmetic, a requirement

which caused no real difficulty. When probabilities were calculated it was

noted that the values obtained were pure real numbers within the tolerance

of the round-off errors of the computer.

Extensive work concerning the numerical evaluation of the roots of

(37) appears to have been undertaken by Downton [6], C7], Kotiah, et at

[75], amongst others. Now efficient computer algorithms are available to

solve such polynomials. Indeed, in another connection Grassman [7 7] has

shown that it takes only a few seconds on a computer to find the roots of a

polynomial of degree as far as 50 . As such no attempt was made here to

reproduce large numerical data. However, we did undertake numerical

evaluation of various expected values for a few values of the parameters

involved. The results were quite encouraging. The case when p = 0.9 , is

presented below. The tables give various expected values in units of the

mean service time for p = 0.9 , 5 = 5 , A = l(l)5 , K = l(l)3 .

A remark regarding some numerical calculations may be in order here.

Jaiswal gives a table of numerical values for the mean busy-period for the

case when P{R = l) = 1 . In some cases, his values differ from the ones

found by us in the second decimal place. For example, if the busy-period

is computed in terms of the mean interarrival time as done by Jaiswal, then

for p = .9 , 5 = 5 , F(q) = 128.877 in our case, but it is 128.809 in

Jaiswal's case.
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M/Ek(_A,

TABLE OF VALUES OF L

k \ ^

1

2

3

27

18

15

1

.1*26

.61*3

.71*9

P =

27

18

15

0.9 ,

2

.017

.196

.259

B

26

17

ll*

= 5

3

.1*51

.1*93

.1*33

25

16

13

h

.768

.610

.382

25

15

12

5

.009

.61*5

.272

TABLE OF VALUES OF £01)

p = 0.9

B

1

2

3

9
It

3

1

• 999

.756

.025

lit

7

It

2

.659

.181

.268

19

10

5

3

.319

.185

.938

23

13

8

It

.979

.756

.081*

28

17

19

5

.639

.896

.761

TABLE OF VALUES OF E(I)

p = 0.9

1

2

3

1

1.111

1.111

1.111

2

.8M*

.798

• 778

3

.751*

.691*

.660

It

• 709

.631*

.599

5

.687

.600

.561

9. Concluding remarks

The problem of obtaining the probability distribution of the queue

size in a general bulk service queue vith Poisson arrival stream

[M/Cr' /l) has been dealt with in this paper. A contribution of this

paper is to relate the probability generating function of the queue size at

random point (that is, queue length when a customer arrives at a random

https://doi.org/10.1017/S0004972700007012 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700007012


General bulk service queueing system 177

point of time) to the probability generating function of the queue size

left on a departure epoch by a batch served; such a relation has been

given in the equation (30). Difficulty of deriving such a relationship for

his general model was pointed out by Neuts [77]. The system discussed here

is somewhat less general than the one which was considered by Neuts but has

the advantage of being amenable to easy calculations regarding the expected

value and standard deviation of the queue size. The queueing system

W/£V' /I has been worked out with numerical calculations. Finally a

discussion has been made on the applicability of Little's relation between

the expected value of the queue size and the expected value of the waiting

time in an M/u' /I system.
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