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§ 1. Introduction.

This paper is devoted to the study of the asymptotic distribution of
eigenvalues of the Laplace operator with zero boundary conditions in a
quasi-bounded domain contained in Euclidean space R?.. Let us consider
the following eigenvalue problem:

(1.1) —(_az_ + 2 )u =, weHYQ)

) o0x: ox2 ’ ° ’
where
(1.2) Q={x, )] —o0 <2, < 00,0 <z, <qlx)},

and q(x) is a smooth positive function defined on (—oo, o) satisfying
lim g(x) = 0.

jx] =0

It has been shown in [1] that the problem (1.1) has an infinite se-
quence of discrete eigenvalues approaching to co. We denote by N(h)
the number of eigenvalues less than A& of the problem (1.1). We are
concerned with the asymptotic behavior of N(k) as h — oo.

The asymptotic distribution of eigenvalues of the Laplace operator
with zero boundary conditions in a quasi-bounded domain has been
studied by Clark [1], Hewgill [4], and Glazman and Skacek [2]. It seems
to the author that any true asymptotic formula for N(k) even in the
case of such a simple domain as (1.2) has not been known.

We shall study the problem (1.1) under the formulation as an eigen-
value problem of a differential operator with operator-valued coefficients.
On the other hand, Kostjuchenko and Levitan [5] studied the eigenvalue prob-
lem for the operator —(d?/dt?) + Q(f) under the assumption that Q(f) is
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a semi-bounded self-adjoint operator for each fixed ¢ e R!' with the com-
mon domain of definition 2(Q(¢)) = 2, and other restrictions. Our method
is different from that in [5] in some ways.

DEFINITION 1.1. We denote by K(m) (0 < m < 1) the set of smooth
functions ¢(x) defined on R' satisfying the following conditions: There
exist positive constants C,,C, and C independent of # and ¥ such that

(i) CQA+z) ™ < gl < CA + |zh~™,

(ii) for |z — y| <1, |9(x) — ¢(¥)| < Cq(@) |x — ¥,

ese j .

(iii) l(%) q(w)\ = [¢P@)| < Cq(@) (G =1,2).

Now we shall state our main theorem which will be proved in §4.

THEOREM 1.1. Let {{, > 0};., be eigenvalues of the operator A,
(= —aa_?;) with the domain of definition 9(A) = Hi0,1) N HY(0,1). Sup-

pose that q(x) belongs to K(m) (0 <m <1). Then, as h — o
Nw~L13[ (- e@Hede,
T j=1J25n)

where Q,h) = {xeR'|hq®) > {;}, while [f(h)) ~ g(h) means that
lim fF(h)'g(h) = 1.

h—oo

Remark. {{;q(x)~*};., are regarded as eigenvalues of the operator

_a_az? with the domain of definition H}(0, q(x)) N H*0, ¢(x)).
Y

EXAMPLE. If lim |z q(x) = a (> 0), then

|z| =00

N(h) ~ C(a)h~V2t+1em o<m<1l,
~ C(a)h log h m=1).

Throughout this paper, we confine ourselves to such a simple prob-
lem as (1.1), but some generalizations will be discussed without proofs
in §7. Finally we note that in this paper we use one and the same
symbol C in order to denote positive constants which may differ from
each other. When we specify the dependence of such a constant on a
parameter, say m, we denote it by C(m) or C,.
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§ 2. Preliminaries.

Let us introduce some function spaces.

H’(0,1) and H{(0,1) (G =1,2, -.-) denote the usual Sobolev spaces on
the interval (0,1). For any real s, the Sobolev space H*(0,1) can be
defined by interpolation methods ([6]). We denote by X the Hilbert

space L*0,1) with the usual scalar product (u,v), = Il w(@)v(x)dz, and the
0

norm ||ull, = Illuiz dx. L*(—o0,c0;X) denotes the Hilbert space of X-
0
valued square integrable functions with the scalar product <{f,g> =

[" @, g@nda.

Let ¢(x) be a function belonging to K(m) and let 2 be an open do-
main defined by 2 = {(x;, %)]| —co <z, < 00,0 < z, < q(x,)} and G be a
cylinder domain defined by G = {(z,¥)| —c0 < 2z < 0,0 <y <1}. Then
we define the unitary operator U from L*Q) onto L*G@) by

(2.1 U-w(z,y) = q@)u(z, ¢()y) , ue L¥(9) .

Similary we define the unitary operator V(=U*) from L*G) onto L* Q)
by

(2.2) V)@, ) = qlx) (2, q(x) '),  veLlXG).

Now consider the following eigenvalue problem in L*Q):

& +ﬁz—)u=2u, ue H{(D) .

a.1) Hu = _<~_
oxt oxk

Here the operator H is a positive self-adjoint operator associated with
the symmetric bilinear form

2.3) alu,v) = J <_a_u_a_17 + ——a——u—a—ﬁ>dx1dx2 , u,v e HyQ) .
2 \ox, ox, 0x, 0%,
By using the operators U and V, we shall transform the above problem
(1.1) into the problem in L¥G).
Let U and V be the operators defined by (2.1) and (2.2) respectively.
Then, we have
d d

b _ 9 1
2.4) U2V =% _ q@) '@y — L@ ¢ = -L + P@),
(2.4 52 7 ()9 (x)y. 5 5 q(x)~'q(x) e P(x)
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@.5) U2V =q@2 = Qw,

ox, oy
where for each fixed ¢ e R', P(t) and Q(f) are regarded as operators act-
ing on X with the domain of definition 2(P(t)) = 2(Q{) = Hy0,1).
Here we remark that the coefficients of the operator P(f) are uniformly
bounded. By using (2.4) and (2.5), the symmetric bilinear form a(u,v)
is transformed into a bilinear form

= (& + rom (&

+[7 @@ e@vids,

+ P(x))v) dx

0

(2.6)

where b(u,v) is defined on the set 2(b) = {u e L(—o0,00; X)ldiu e L?
x

(—o00,0; X), Q@)U c LA(—o0, 00} X)} The symmetric bilinear form

b(u, v) induces a unique positive self-adjoint operator T in the sense of
Friedrichs. T has the following expression:

7= _(_d_y _ __P(x) + P*(x) — + PX@P(@) + Q*@)Q) ,
dx

_(_d_>2 _ _P(x) + P*(x) —+A@,
dx

2.7

where for each fixed ¢t e R!, P*(t) and Q*(t) denote the adjoint operators
in X and A@®) (¢; fixed) is a self-adjoint operator with the domain of
definition 2(A®)) = Hi0,1) N H*0,1). Thus we have transformed the
eigenvalue problem (1.1) in L*(Q) into the following equivalent problem
2.8) in L¥(—o0,0; X):

d

2.8  Tu=— (dx

) U — TP(x)u + P*(x)—u + A@u = iu .

We denote by {u;}7., and {u,}7., eigenvalues of the problem (2.8)
and the normalized eigenfunctions corresponding to {y;}7., respectively.

Let A, be the positive self-adjoint operator ——aaiz with the domain
Y

of definition 2(4,) = Hi(0,1) N H*0,1). Then, we have with a constant
C independent of te R,
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IA@ul, < Cq@®)* || Agull , for any ue 2(4,) ,
and

[A@)" ], = Cq(®) [[AY*»ll,,  for any ve D(AY?) .
Hence, with the aid of the Heinz interpolation inequality, we have

LEMMA 2.1.

2.9 [A®ull, < Cq@®) 7 || A5ull , for ue2(4p), 0 <a <1,
(2.10) [|A®Pull, > Cq@®)* [ Agull, ,  for ue 2(As), 0 < p<1/2),
where C is a constant independent of te R' and u.

The following lemma is obvious from the definitions of the opera-
tors P(t) and A(?).

LEMMA 2.2. For any t and s such that [t — s| < 1, we have

2.11) (P@) — P()ul, < C |t — sl A@)ul, ,
2.11") [(P*@) — P*()ull, < Clt — sl ADull, ,
(2.12) [(A®) — Ao, < Clt — s||A@, ,

where C s a constant independent of t,s,uc 2AX)?) = H0,1) and
v e 2(A()).

By Lemma 2.2, we see that the operators A(t)"VA(P(t) — P(s)), A(t)"/
-(P*(t) — P*(s)) and A(t)"'(A(t) — A(8)) can be extended to bounded opera-
tors in X and satisfy

(2.13) A@)AP@) — Pl < Clt — s],

(2.13) NA@P*E) — Pl < Clt — s],

(2.14) MA@ AR) — AL < C It — s, (t—sI<D

where ||[-]|[, stands for the usual operator norm for bounded operators
in X.

LEMMA 2.8. Let b(u,v) be the symmetric bilinear form defined by
(2.6). Then, we have for a constant C independent of u e 2(b),

b, 1) > Cr {( d, 9 u) ¥ |ep (A, A},/Zu)o}dx .
i dx dx 0
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Proof. We note that there exist constants C and B independent of
z and ve2(AYY) such that |P@)v|} < BllQ@)v|} and ||Q@)v|} > C|xf™
JAYw|Ei. For any ¢ > 0, we have

b(u,'u) > I:( ;ld;u

=[_(:
Hence, by choosing ¢ in (2.15) so that «(1 + g <1, we obtain the

proof. Q.E.D.
Let us consider the following eigenvalue problem in L*(—oo, 00 ; X):

[~ 2| Laf 1@l + 1P@uE + Q@)

4, ! —e8/(1 — O] Q@ + ||Q(x)unz)dx .
dx o

2.16) —%u + |epm A = Au .

We denote by {{;}5., eigenvalues of the operator A, and by {i:}r., eigen-

values of the operator — % + |z considered in L*—oo,c0). Then
x

with the aid of separation of variables, we easily see that the eigenvalues
{v;}5-, of the problem (2.16) are given by {{7/"*™2x}3 s

LEMMA 2.4. Let {v,}7., be eigenvalues of the problem (2.16). Then,
for any »p > 1/2 + 1/2m and h > 2, we have

STy + B)? < C(p)hve+iam=p 0<m<1)
=1
< Cp)h*-?logh m=1).

Proof. It is known that there exists a constant C independent of
k such that 2, > Ck*™/™+*V gnd it is clear that ¢, > Cs%. ([7])
Hence, it follows that

2 G+ )77 <O 0 U 4 1)
Furthermore, by using the estimate with a constant C independet of &
i (kZm/(mH) + h)—p S Ch1/2+1/2m—1) R
=
we have

o

Z (jz/(m+1)k2m/(m+1) + h)-—p S C i: j-l/mhl/ﬂl/zm—p .
7=1

Jyk=1
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This gives the proof in the case of 0 <m <1. When m =1, it is easy
to see that >17,., Gk + h)™? < Ch'~?log h, which completes the proof.
Q.E.D.

ProPOSITION 2.1. Let {p}7., be eitgenvalues of the problem (2.8).
Then, for any p > 1/2 + 1/2m and h > 2, we have with a constant C
independent of h,

ST, + W) < Chetm=s (0 <m <1,
7=
< Ch*?logh m=1).

Proof. By virture of Lemma 2.3, we see that there exists a constant
C independent of j such that yx; > Cv;. Hence, by combining this fact
with Lemma 2.4, we get our assertion. Q.E.D.

§ 3. Propositions.

In this section, we shall state fundamental propositions which will
be used later.

Let us fix some notations.

Let Y be a separable Hilbert space with the scalar product (, )y and
the norm || |y. B(Y) stands for the Banach space of all bounded oper-
ators acting on Y with the operator norm [ -|||,, and B,(Y) denotes the
subspace of B(Y) consisting of compact operators such that [|K|||, =
Co5-1 BV < co, where {8; > 0}, denote eigenvalues of (K*K).

ProPOSITION 3.1. Let K(z) (—oo <z < o0) be a family of operators
belonging to B,(Y) such that K(x) is continuous under the norm ||| -,

with respect to x and that r |1 K@) dx < +oco. Let {yy(x};., be a
complete orthonormal system in L*(—oo,00;Y). If we define B; =

[ K@@z, then 318,15 = [_11K@IE dx.

Proof. Let {0;}7., be a complete orthonormal system in Y. Then,
we set ki(x) = (K(x)4,,0,)y and t;@) = (Y;(x),0)r. We note that
{t;@) = (ti(®))i=1}5-, forms a complete orthonormal system in L*(— oo, o0 ; £%),
where ¢ denotes the usual Hilbert space consisting of all complex-valued
square summable series. By the above definitions of %k/(z) and ¢;(x),
we have
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3.1) K@iry(@) = 31tk @),

By (3.1), we obtain

08,0 = 3,

Jj=1

1
N

7 )

-

" K@@z, [ K@ @dz)

j‘” t @k (@) dwb,, 3

n,m=1

I - tjn(x)k""‘(x)dxﬂm)x

<.
il
=t

I
'MS
P

.

Il
s
™Ms

.
)
Pt
N
Il
-

5 f; t (@)@ dw r

[l
M
[Ms

-.
1l
-
&~
[)
-

[ @rds = K@i e,
where we have used the fact that {¢,(x)};., forms a complete orthonormal
system in L*(—oo, c0; ¢%). This completes the proof.

Let 2 ,(y: positive real number) be the Hilbert space with the scalar
product (u,v), = (Aju, Ajv), and the norm [u|} = ||Aju|;. Let o£_( > 0)
be the dual space of »#,. The norm in J_, is defined by

1€, )|
Il

It has been shown in [3] that the space 2#, is characterized as follows:

lul-, = sup
vEHy

= Hy0,1) N H*(0,1), @/2<r<1
3.2) #,= H¥0,1), /4 <y<1/2)
= H(0,1) . (—1/4 <y <1/4) .

Let B(a,8) be the Banach space of all bounded operators from 7,
to s, with the usual operator norm || [[|.,;,, When B belongs to B(a,a),
in particuler, we write ||| - |||, instead of [|| - || a-

The following proposition is well-known.

PROPOSITION 3.2. (Interpolation theorem) ([6]). Let B be a bound-
ed operator belonging to B(«,0) N B(B,0) (< p). Then, B is the bounded

operator belonging to B(y,0) (¢ < y < B) and satisfies the following esti-
mate

B g0 < Cla, B D INIBIIE A= I BIlIG ¢ .
where a constant C(e, f,7) is independent of B.

LEMMA 3.1, If —1/4 <y <0, then the operators A(t)"'2P(t) and
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A()V*P*(t) can be extended to bounded operators belonging to B(y,y)
with the operator norm independent of te R

Proof. We shall give the proof only for A(t)~Y?P(t). Since Cy(0,1)
is dense in 2, under the norm | -|,, it is sufficient to show that for
any u ¢ Cy(0,1),

3.3) |A@)2P@)ull, < C|lull, .
Let ue Cy(0,1). Then, by the definition of s#,, we have

[(A@) 2 P()u, v),|
lvll-,
(3.4) = sup [(u, PX()A(E)"*v),|

VEX -7 ”7)”_7,

< ), sup IEXDAG0].,
= T el

IA@*P@)ull, = sup
VEHX -7

We note that P*() it a bounded operator from .#,, , = Hi0,1) N
H'-#(0,1) to o#_, = H™*(0,1) with the operator norm independent of f.
Hence, we have

(3.5) IP*BAD) ], < CIIA®O |-, < Cllol-, ,

which together with (8.4) implies our assertion (3.3). Q.E.D.

§ 4. Main theorem.

In this section, our main theorem stated in §1 will be proved by a
series of lemmas.

Let teR' be fixed. Then, we consider the following differential
equation for given fe L*(—o0,c00; X) and any h > 0:

@) TO+mu=—Lu— 2 peyu+ Pxt)-Lu + Ayu + hu = f .
dr? dx dzx

The solution u(x) is given by

@) = (IO + 7f = R)f = [ Ko — 53 DF@ds,

where

4.2) Kfx—s;h)= (27r)“f1 e + b+ E@,E)7ds, @G=4-1)
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4.3) E(t,8) = —i&P(t) + 6P*(t) + A®) .

We denote by R¥(h) (= 0,1,2, - --) the operator (%)jm”(h), which is
defined by

“4.4) RO f = ji K9z — 8)f(s)ds ,
where
(@5 K@@ —s;h) = (=1'GHC2n)" r et e(e? 4 b 4+ E(t,£)"Y*Vde .

We often write R{®(h) and K{*(x ; k) instead of R,(k) and K,(x ; h) respectively.

Let us introduce real-valued C,-functions ¢(x), y(x) and y(x) defined
on R' such that ¢(x), y(x) and y(x) =1 if || <1,=0 if || > 2, and that
o(@)P(x) = p(x) and (@)x(x) = ¥(x). For each fixed te R and ¢ > 0( <1),
we denote by ¢,.(x) the function ¢, (%) = o((x — t)/e). Similarly we de-
fine the functions - ,(x) and g ,(x). Then, putting R(k) = (T + k)~ and
using the resolvent equation, we have

GDz,sR(h) = ‘!’t,gRt(h)ﬁoz..
+ Y, B (WT @) + Bor,e — @1, (T + Ry, R(h) .

(We have used that ¢, (T + h)y:,. = ¢.,.(T + h).)

Let {u;(x)};., be the normalized eigenfunctions corresponding to the
eigenvalues {;}5., of the operator T. Then, by letting (4.6) operate on
each u,(x), we have

(4.6)

(ﬂj + h)—1¢t,|uj = '\!"&,cR&(h)got,cuj

4.7
@D + (5 + W7, BB, s, )1ty

where we have set
B(t,s,¢) = (T(®)¢;,(8) — ¢¢,(8) Dy, (8) = (T(E)gs,.(8) — ¢4, .(HT)

= ((-%£ - 4 sy 4
4.8) h (( dst  ds Pt + P*(®) ds + A(t))sot,,(S)
dZ

e

d d
—<LP© + PO + A(s))) .

By differentiating (4.7) n-times with respect to h in the sense of
L(— o0, 00; X), we have
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(=D Dy + B~ P, uy

4.9 n
= Vo Bty + 25 Coley + 7070, BP(W)BE, 8, ) -
p=

Furthermore, by rewriting (4.9) in the form of the integral equation,

(=D nD(y; + b)), ()u;(x)

=@ [ K@ — 55 Dg o)uy()ds
(4.10) n o
+ 2 Coles + 702, @) [ K@@ — 83 B, 5, 9u,()ds
p=0 —o
= a,(t,%,9) + 3 Cyby,(t, ) -

We remark that by the regularity theorem for elliptic operators, the
eigenfunction u,(x) belongs to C~(— oo, co; X) (the set of smooth functions
with values in X). Hence, the equality (4.10) is well-defined for all x.
By this fact, we can put * = ¢ in (4.10). Then, we have

(=D Dy + B~ Puy(?)

4.11) n
= aj(t: 5) + Z,:)Cpbj,p(t’ 5) ’
o=

where we have set a;(t,¢) = a,(t,t,¢) and b,({,e) = b, (L, ,¢).
By taking the scalar products in X of both sides of (4.11) and the
summation with respect to j, and integrating over (— o, o0), we have

(n1)? gl(‘uj 4 p)-EeED — gl‘[iw “a,j(t, e)|l dt

4.12) +25 (" Re (aj(t, 9, 37 Cyb, 4, e)) dt
J p=0 0

j=1¢ —oo

+ r
Jj=1J -

SC0,. e dt .
p=0 0

This is our basic equality in proving the main theorem.
From now on, we fix n (integer) such that

(4.13) n>1/2 +1/2m — 1.
Let {a,(t, &)};-, be eigenvalues of the operator E(t,£). Then, we have

LEMMA 4.1. For any r > 1/2 + 1/2m, there exist positive constants
Ci(r) and C,(r) independent of h > 2 such that
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< Cz(,r)hl/2+1/2m—r .

C(Hp2+m=T < o o v O<m<1)
dt 4+ h t, &) "d
Ci()h*"log h < {1=1 f-x I-w &+ R+ ot O)77de < Cy(rht-"logh .
(m=1)

LEMMA 4.2.

Z.o: jm dtj’” &+ h+ a,(t, £))-2n+Dde
J=1J —e -
~E [ atf @it ey, s b oo

The proofs of the above lemmas will be given in this section after
the proof of Theorem 1.1. In what follows, we shall state two lemmas

concerning the estimates for i r lla;(&, o) dt and Iw i} 154,0(¢, )|} dt.
Jj=1J ~o —o0 j=1

These lemmas will be proved in the following two sections.

LEMMA 4.3. For any ¢ >0 and any sufficiently large r, there exists
a constant C(r,e) such that

) et omdt— @mien S [T at[" @+ b+ a )
< C(r,oh™ .

LEMMA 4.4. For any sufficiently small § >0, we can take <(8) small
enough and h() large enough so that for any h > h(5),

i r 05,5, @)t dt < gh'/2+1/2m=2m+D 0O<m<1.
J=14J =00
(L o~ * ™V ]log b (m = 1).) O<p<n).
Now we shall prove Theorem 1.1.

Proof of Theorem 1.1:
From (4.12) it follows that for any sufficiently small d > 0, there
exists a constant C(6) such that

n ngl (¢ + h)-2n+D — ; Jt:o las(E, o} dtl
<o g latora + co % [T Sibit k.

Hence, by virtue of Lemmas 4.1,4.3 and 4.4, we can first choose &(0)
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small enough and next %(5) large enough so that for any A > k(o)

3

Jj=

g+ e — @0t [T at[ @+ bt at, o) erde

< Shl/2*t1/m=2(n+1D) O<m<1).
< 6BV log R m=1).

(4.13)

Furthermore, by using Lemmas 4.1 and 4.2, we have

@1 %G+ e ~ oo [ at|T @+ b+ e eds
7=1 —oco -0
as h— oo .
Now we are in a position to apply the Tauberian theorem due to Keldysh

(see [5]) to (4.14). Then, we have

N ~ (@) f;f (h — Ca@))"de  as h— oo,
is1d e
which completes the proof. Q.E.D.
Next we shall prove Lemmas 4.1 and 4.2.

Proof of Lemma 4.1:

An argument similar to the proof of Lemma 2.3 shows that for any
ue 24y,

C((Eu, w)y + (1 + [TP™)(Au, u)y)
< (Eu,w), + (E®, Hu, u),
< C((Eu, w), + A + [Ef™(Agu, w),) .

Hence, we have
(4.15)  CE + ;A + [tf™) < & + a;(¢,8) < CE + ;A + [tf™) .
By using (4.15), we have

o I GER R R

_<_ Ci C;l/zm(Cj _I_ h)l/z+1/2m—r S Chl/2+1/2m—r (0 < m < 1) R
j=1
(< Cht"logh (m =1).)

Thus we have obtained the estimate from above. Similarly we can get
the estimate from below. Q.E.D.

Proof of Lemma 4.2:
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We shall give only an outline. As was remarked in §2, coefficients
of P(t) are uniformly bounded. Hence, for any sufficiently small ¢ > 0,
there exists R(¢) such that for || > R(¢) and u e 2(AY?),

(4.16) |P@ully < eq@®~" || Ay
From (4.16) it readily follows that for |t] > R(e),

A =CaE + h + a0 <&+ kb + ayt,§)

4.17)
<A+ CIE + b+ L9 .

On the other hand, for any bounded interval I, we have
@18 3 f dtr’ (& + b + ayt, )4+ 0de < C(Dh-2n+o
Jj=1J1I -0
By combining (4.17) and (4.18), we obtain the proof. Q.E.D.

§5. Proof of Lemma 4.3.

Lemma 4.3 is proved with the aid of the following lemma.

LEMMA 5.1. Let a be any mon-negative integer and let n be the

fixed integer by (4.13). Then, the operator (d%y(sz + h + E(t, &)~ ®*v

belongs to B,(X) and satisfies the following estimate:

m (%)a(gz + h + E(t, &)~V

< Clm@ + B (3 @ + b+ at, 7o)

The proof of this lemma will be given at the end of this section

Proof of Lemma 4.3:
By virtue of Proposition 3.1, we have

5 etk = [ IKSE ~ 55 Dgu, I ds

61 = [" ke — s migds

+ |7 K — 55 WIE @usr — Vs,
= I(t) + II(?) .
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We first investigate the term I(f). By means of the Parseval equality
we see that

I(t) = ( )¥2m)™ j 11 + 1 + B, &)~2*0||2 de
5.2)

= (n!1)’@r)~ Z (.{-‘2 1k o+ a(t, ) de

Next we shall deal with the term II(f). We note that
(t _ S)aK(n)(t — 83 h) Cj‘ ez(t s)é( ) (&2 + h + E(t S)) 2(n+1)d§

By using Lemma 5.1 and this equality, we calculate as follows:
NIK(E — s;5 )|l
69 <Clt—s[_@+nr (5@ + hragt o) e,

<Clt— srﬂh-“ﬂ“/‘(Z Je& -+ 1+t eae)”
=1
(Schwarz’ inequality)

Furthermore, by virtue of Lemma 4.1 and (5.3), we have

[ im@iat < conn S [T at[" @+ n+ at e d
—c0 j=l —00 -0
(5.4) g C(s)h—a+l+l/2’m—2(n+l) (0 < m < 1) .
(< C(h~=*2-2n+D Jog (m =1).)
(We have used the inequality f "1t — s ()t — 1] ds < C(s).)

By combining (5.2) and (5.4), we get the proof since « is arbitrary.
In order to prove Lemma 5.1, we have to prepare the following two
lemmas

LEMMA 5.2. For any non-negative integer a, the following estimates

hold:
(5.5) m(—d%)(e + b+ E, s))-lmo < C@(@E + k)
Go  ||Po(L LY@+ 1+ B0 Hp—

Replacing P(t) by P*(t) in (5.6), we have the same estimate as (5.6).
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Proof. We shall make induction on «. It is clear that (5.5) and
(5.6) hold when a«=0. Assuming that (5.5) and (5.6) are valid for « <k,
we shall prove (5.5) when « = k& 4+ 1. For the sake of simplity, we set
&+ h+ Et,8) "= F(t,£&. Then, a direct calculation yields

(%)(M)F(t, g = _(d%)"{p(t, £)@2¢ — iP(t) + iP*@)F(E, &)}
=2¢ éﬁo C(p)(—d%)pF(t, 9(7%)@_%“’ &)
5.7 + z C(q)(%)"f«’(t, .s)(d%)""“q’F(t, D)

+ rZ::) C(T)<“(%)TF(1‘;’ S)(—%P(t) + 1,P*(t))

'(—‘%)(k_T)F(t, 5.

By the assumption of induction, (5.7) implies (5.5) with « = k + 1. By
multipying (5.7) by P(t) from the left, we obtain (5.6) with « = k& + 1.
Q.E.D.

LEMMA 5.3. For any non-negative integer o, (;E)"(ez +h+ EE &)

belongs to B(X) (y > 2) with the estimate

d

T

|||(i§)(s + b+ Bt &)

(5.8) o r
< Cla, P& + h)-«ﬂ(jgl @+ 1 + a(t, s))-r) .

Proof. As in the proof of the above lemma, we shall give the proof
by induction on «. It is clear that (5.8) is valid for « = 0. Under the
assumption that (5.8) is true for « < k&, we shall show that (5.8) holds
also when @« = k + 1. Noting that if A e B(X) and B¢ B(X), then A.B
belongs to B/(X) with the estimate [|A-BJ||, < [||A]l,[|Blll, we have, by
means of Lemma 5.2 and (5.7), the desired result. Q.E.D.

Now we shall prove Lemma 5.1.

Proof of Lemma 5.1. As in the proof of Lemma 5.2, we set F(t, &) =
&+ h 4+ E{,8)'. Then, a simple calculation gives
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<d;d§)aF(t, S)(n+l)

CB, -- -,ﬁM)(—jg)"‘F(t, g - (%)““F(t, 9.

B1+p2c frnr1=a

Since each (dig)ﬁkF(t, & (k=1,2, ---,n+1) belongs to Byn,,(X), we have,

by means of Lemma 5.3,

[CIRCta |

<o, 5, @) re], (&) mes

< C@)(& + h)- "/2<Z (& + b + ayt, &))" zm+1)) &

2(n+1)

(We have used the well-known fact that if A € B,(X) and B € B,(X), then
A-BeB,(X)(1/p+1/q=1/r) and satisfies [||A-B|||, < C, DI Al [IBlle-)
Q.E.D.

§ 6. Proof of Lemma 4.4.

In this section we shall prove Lemma 4.4. For this purpose, re-
calling the definition of the operator B(t,s,¢) given by (4.8), we rewrite
B(t, s,¢) as follows:

B(t,s,¢) = B\(l,s,¢) — —;—S(P(t) — P(8))¢.,(8)
(6.1) + gs—(P*(t) — P*(8))¢.,(8) + (A() — A(9)¢,(s)

= Bl(t, S, 6) + ZZIHk(t, S, 3) ’
i=0

where

pit0 = [ (o] oo + [0

([,] stands for a commutator between two operators.)
Then, b,,,(t,¢) is rewritten as follows:

bt &) = (gy + B)="72+D r K{P(t — s; W)Bi(t, s, uy(s)ds
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6.2) + G+ Bymr [T KD — 83 0) 3 Hult, 5, Ouy(s)ds
-0 k=0
= dj,p(t9 5) + ej,p(t, e) + fj,p(t’ 5) + gj,p(t) 5) .
We note that for v(s) e Co(—co, o0 X) (the set of all X-valued smooth
functions with compact support) and »p > 1,
6.3) r K9 — s; h)ggv(s)ds = f‘” Fo(t — s; By(s)dt ,
where

6.4  Fot—s;0)=C [ o “E@ + b+ B(t, ) *de .

The relation (6.3) is easily obtained with the aid of the vector-valued
Fourier transform. The integral (6.4) is valid also for p = 0. In this
case, the integration must be taken in the weak sense. But we don’t
use this fact below. By virtue of (6.3), we can rewrite e, ,(f,¢) (p > 1)
as follows:

6156, = (s + W72 [ Pt — 55 WPG) — PO,y (5)ds
The following lemma plays an important role in the proof of

Lemma 4.4.

LEMMA 6.1. Let KP({t — s; h) and F®(t — s; h) be operators defined
by (4.5) and (6.4) respectively. Then, I\{?’(t — 8; hWA®), KP(t — s; h)A(t)V?
and FP @t — s; h)A@)? can be extended to bounded operators in X (t x s)
and satisfy the following estimates:

(6.5) IKPE — s; MA@l < Cp, )h7? |t — |7,

NEPE — s; WA@Y, < Co, )h™?7V2 [t — 5[,
< Cl, Hh~? |t — s

6.7  IFPE— s; AR, < CO, )72t — s, (=1

(6.6)

where constants C(p,x) and C(p,p) are independent of t,s and L, and
a and B are some constants satisfying 0 < a <2 and 0 < g <1 respec-
tively.

Proof. We shall give the proof only for (6.5) with p = 0, because
(6.5) with general p, (6.6),(6.6") and (6.7) can be proved in the same
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manner. Let § be a fixed number such that 0 <4 <1/8. Then, we
shall establish the following two assertions:

(6.3) KO — 55 MA@ul, < C@a@ " [[%lly21s
(6.9 [|KO( — s; HA@ul, < CO@)* |t — |72 ||ull_s , for ue 2(4,) .

All constants C appearing throughout the proof of this lemma may
depend only on §. If we can prove (6.8) and (6.9), the operator
K"t — s; h)A(f) can be extended to a bounded operator from s#,,,,; to
X and from s#_, to X since 2(4,) is dense in both spaces +#,,,, and
#_,. Hence, the application of the well-known interpolation theorem
(Proposition 3.2) shows that

NEKP@E —s; WMADIL, < Clt =9, (0<a<2).

Proof of (6.8): Since ||A®)"**ull, < Cq®)~*** || A¥***ul, for ue 2(4,)
by (2.9), it is sufficient to prove that

(6.10) K — s; WAD" [, < Cllvlo,  for ve 2 (477).
By the definition of K®(t — s; h), we have

6.1 KO(t — 53 WA®™ = C [ e + I + E(t, ) A} de .

On the other hand, we easily see that
(6.12) (€ + h + E(t, &)y 2A®) " |, < Clvly »
(6.13) 11 + h + E(t, &) 2|ll, < C* + 1)-mo

Hence, in view of (6.11),(6.12) and (6.13), we have (6.10).
Proof of (6.9): Since ||A(¢)ull, < Cq(®)” | Ay%, by (2.10), it suffices
to show that for w e 2(A(t)'*?),

(6.14) KO — 85 MA@ wll, < C |t — s [|wll .
The operator KO(t — s; h)A(t)'*° is represented as
KOt — s; A
O —o -9 [ ewor( L)@+t BG O A0

For brevity, we again put F(t,&) = (&2 + h + E(t, &))"
By the resolvent equation, we have
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(di&_)’F(t, § = (dif)z(ez +h+ A@)"
(6.16) + i(—gg)z{F(t, HEPWB(E + b + A®))
- z‘(—gg)’{lr(t, HEPXD(E + b + A®)}
=18 +111(t, &) —1III(L,8).
By inserting (6.16) into (6.15), we have
KO — 53 WAD™
6.17) =C@{ — 8)™? J: eI (8, 8) + ¢ I (¢, 8) — ¢ IIL (¢, £)A(E)'+°de

= C(t — 9 z KOt — s; WA@™

It is easy to see that for w e 2(A()'*?),

11 HA wll, < CE + D2 lw], .
This implies that
(6.18) IKQiE — s5 BA@ wll, < flwll, -

Next we shall investigate the term II (¢,8)A()'*°. A simple calcula-
tion yields

n¢eo= > (-L)'Feaere(-L) (@ + b+ Aty
d de

B1+p2=2

(6.19)
d \= d \** -1
+ 5 (f) weopo(L) @ + 1+ Aoy

ay+ag=1

We shall consider only the term (%){F(t, OPDE + b + A®D), be-
cause the other terms can be dealt with in the same way. Putting
2& — iP(t) + iP*(t) = T(t, &), we have,

d 2 -1
(d_g){m, YPHE + h + A®)
= —F@, T OF, HPM(E + h + A@).
We shall show that for w e 2(4(f)'*?),
(6.20) [|[F(t,O)P®)(E + b+ AD)TA@) wl, < CE + D |wlly .
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If we have proved (6.20), then we have

6.21) H {F(t OPDE + h + A) AR w

1 < O + D wl),

since [[|F(¢, )T, &)|ll, < C(E* + )™~
Since the other terms in (6.19) obey the estimate of the same type as
(6.21), we see that for w e 2(A()'?).

ITIL (¢, )A®) *wl, < CE* + D72 Jwl, .
This implies that
(6.22) K@ — s5 MA@ P wll, < Cllwl, -
Similarly we have
(6.23) | K3 — s5 WA@) wll, < Cllwl, .

Hence, by combining (6.18),(6.22) and (6.23), we have (6.14).
Now we shall prove (6.20). To this end, we rewrite F(t,&)P(t)
&+ h+ A@®)'A@)? as follows:

Ft, POE + b + A@) A
= [FE, OADIARD) ' POADZIE + b + A@)TAD)]
=1L (¢, & II, ) 1L (¢, &) .

The operators II, (f,&) and II, (, &) can be extended to bounded operators
in X and satisfy the estimates |[|IL, (¢, &)|]l, < C and |||IL, (, &)||l, < C(&¢ + 1)7°
respectively. Hence, in order to prove (6.20), it is sufficient to show
that II,(f) can be extended to a bounded operator in X and that
L, B]]l, < C. But this fact readily follows from Lemma 3.1. In fact,
we have for w e 2(A(H)%),

|A@)POA@D) w]|,
< CllA@® AR PRYAR) w ||y
< Ca@)* [|A@® 2 POAR) W25
< Ca@)? | Ay wll_os < Cllwllo

which implies that |||IL, ()|}l < C since 2(A()?) is dense in X. Q.E.D.

LEMMA 6.2. Let g,,t,09 (G =12,---,p=0,1,---,n) be the func-
tions defined in (6.2). Then, for any sufficiently small 6 >0, there exists
e(0) such that for e < &(9),
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i Iw ”gj,p(t, 8)”3 dt S 5h1/2+1/2m-2(n+1> (0 <m< 1) .
J=1Jd ~e
(L 6R'-*®+D Jog R (m =1).)
Here we should note that &(0) is taken independently of h > 2.

Proof. We shall consider only the case of 0 < m < 1. Two different
methods of estimates will be employed in proving this lemma.

Case 1, 0<p<mn+1—1/4—1/4m: By the definition of g, ,(t,¢),
we have

o EERCBT LY
751 -

< 3 (uy + I)-amweD J - dt(r IEP(E — s; WHE 3, uy(s)], ds)z .
j=1 —o —w

Set 1(¢,s,7) = |K®({t — s; BHL(E, s,e)u;(s)|,. Then, by virtue of Lemma
6.1 and (2.14) in Lemma 2.2, I1(¢,s,7) is estimated as follows:

It,s,5) = |[KP(E — s; DADIAGD (AD) — A, ()]uy(8) ||
< Ch7? |t — sl ||uy (&), » for |t — 5| < 2.
(=0 for |t — s| > 2¢)

Hence, it follows that

r_"w dt(fl 1@,s, j)ds)z < Ch- r_"w dt(J‘”_SIS% It — == [[,(8) ds)z
< C’h‘“’f |8t~ dsf |rft-edr

|r1<2¢

7t + 9l +
< Ch™Pegt~a |

181<2e

(We have used that 0 <« <2 and j " st + 9w + Dl dE < 1

(Schwarz’s inequality).) On the other hand, we have proved in Proposi-

tion 2.1 that if 2(n — p + 1) > 1/2 + 1/2m,
- —2(n—-p+1) 1/2+1/2m—-2(n—-p+1)
(6.25) JZ=“1 (g + 1) < Ch AR

Hence, by combining (6.24) and (6.25), we have the desired estimate.
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Case 2, n>p>n+1—1/4—1/4m > (1/4 + 1/4m): (m < 1/3Y

It is easily seen that the operator K®(t — s; h)H,/(t,s,¢) belongs to
B,(X) since (&% + h + E(t, &) 'A(t) can be extended to a bounded operator
in X. Therefore, by virtue of Proposition 3.1, we have

219550 I < R 32
6.26) ' -

f‘” KD — s; DH(, s, e)uj(s)ds\r
—c0 0
— prampty j T EDE — 53 WHLE, s, o) ||E ds -

Furthermore, it follows from (2.14) in Lemma 2.2 that

NK®P@E — s; WH,(E, 8,9l
(6.27) = |||[IK®P( — s; HADBINAGD) (AR — A, ()]]]].
< Cel|||[KP(E — s; AD)]|, -

On the other hand, with the aid of the Parseval equality we have
[" nEEe — 55 mawig a

= Cr 1@E + ko + E(t, &)~ AW®)||E de
(6.28) e

< IiE +n+ Bt en-el s
=3 | @+ b+ eyt ) s
Hence, by combinig (6.27) and (6.28) with (6.26), we have

219556, DI < Ceh7n-2w0 527 (& b+ ay(t, ) 720dg

=1 -

which together with Lemma 4.1 implies that

i Im ng,p(t, &)|2 dt < CehVr+izm=2n+Dy
i=1d -e

This completes the proof. Q.E.D.

LEMMA 6.3. Let e;,,(t,¢) be the function defined in (6.2). Then, for
any sufficiently small § > 0, there exist (8) and h(d) such that for h > h(5),

5[ et conlas < owanemroes @ <m <1,
=1 -~

(< om-2mlogh  (m=1)
1) If m>1/3, it is enough to consider only the case 1.
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Proof.

Case 1, n>p>1:

By using (6.7) instead of (6.5), the proof is obtained exactly in the
same way as in the proof of Lemma 6.2.

Case 2, p =0:
Recalling the definition of H(¢, s, ) given by (6.1), we rewrite H,(t, s, ¢)
as follows:

Ht,s,e) = —(P(t) — P(S))soz,.(s)% — (P@) — P(8)¢;,{8) + P'(8)¢;,.(8)
=Lt +Lts o+ Ltse,
where we put P/(s) = %P(s) and ¢} .(s) = %go,,,(s). Then, e;q(t,¢) is
rewritten as follows:
esult, ) = (uy + B)- D I " KO@ — 53 1) 2 Lt 5, 9 (s)ds
= €5,0.(t, ) + €5,02(t,€) + €;,05(F,¢) .
(1) Case 2-1, estimate of ﬁfi e, 0at, OIE dt

We note that there exists a constant C independent of j such that

(6.29) Hgguj(s)

*ds < Cp, .
0

Put I, (¢, 8,7) = | KO — s; B) I, (£, 8, &)us(s)|h. Then, an argument similar
to the proof of the case 1 in Lemma 6.2 shows that
II, ¢, 8,79) < Ch V2|t — s~

d
—_ for [t — s8] < 2.
dsuj(s) or | 8| < 2

o b
(=0 , for |t — 8| > 2¢,)
Furthermore, by using (6.29) and this estimate, we obtain

r dt(r IL, ¢, s, j)ds)z < Ch-tet=y, .

Hence, by virtue of Proposition 2.1, it readily follows that

5 [ lesmatt, i dt < Chet 35 Gy 4 W=y,
< Ch—ls4—2ahl/2+1/2'm,—2n—l .
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Choosing () in the above estimate so that Ce~%* <4, we can get

the desired estimate for the term 31|  [le;.0.:(t, o[ dt.
i=1J —w

(2) Case 2-2, estimate of i N lleg0.2(t, &)} dt:
i=1J -

Set IL, (¢, s, = | KO — s; m) 1, (£, 8,9)ui(8)|,. Then, by virtue of
(6.6) in Lemma 6.1, we have

6.30) II,(t,s,7) < CER2|t — s =||uys)] » for |t — s| < 2e.
(=0 for |t — 8| > 2¢.)

Hence, as in the proof of the above case 2-1, we have
il r ll€,0.2(t; )5 At < C(e) - R hMAH12m=2mtD)
Jj=1J -

Choosing & such that C(e)h~! <45, we have have the desired estimate for
the term 31 [ lle;oa(t, O dt.
7=1J -

Similarly we can see that i} r lles0st o) dt is estimated as in
=1d -

2| lesnat, Ol dt.
j=1J -

Combining the results of the cases 2-1 and 2-2, the proof is com-
pleted. Q.E.D.

A method similar to those given in the proofs of Lemmas 6.2 and
6.3 can be applied also to d;,(t,e) and f,,(¢t,¢). Thus the proof of
Lemma 4.4 is completed.

7. Generalizations.

The method developed in the preceding sections can be applied to
more general problems.

7.1. Multi-dimensional case.
Let us consider the following problem:

(7.1) —-Z u—du=2u, ue H(D) ,

n 2
where 4, = ]Zi ;’)%
- J

Here we impose the following assumptions on a domain 2 in R"*%,
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(A-1) 9 is a domain of the form 2 = {(x,y)|z € R*, ¥ € 2(x) C R"},
where Q2(x) is a bounded domain for each fixed x ¢ R®.

(A-2) There exists a family of differentiable mappings of class C>,
{9(x, ¥) = (9:(x, Y)7-,}, from Q2(x) onto £(0) satisfying the following as-
sumptions:

Let m be a positive constant such that 0 <m < k/n and let C be
a positive constant independent of z,v ¢ 2(x) and & ¢ R".

(1) For the Jacobian J(x,y) = ’det (az g9:(z, y))
Fi

b

CA + [zp™ < J(@,y) < CA + [zh™" .

@ For g.,, 1) = -2g:(, v),
0Y;

n

CA + |zh™ |&F < ( 37 gis(@,s y)si)z < O + |zh™|g): .

i,j=1

(3) For any multi-index « with |a]| <2,

(aix)“gi(x, y)] < C(1 + |z,

If a domain £ satisfies the above assumptions (A-1) and (A-2), we
say that 2 belongs to D(m).

THEOREM 7.1. Let 2 be a domain belonging to D(m) with 0 <m < k/n.
Let {a;j(®)};., be eigenvalues of the operator —d4, with the domain of
definition 2(4,) = Hy(2(x)) N HY(2(x)). N(h) denotes the number of
etgenvalues less than h of the problem (7.1). Then,

Mm~cif (h — a,@)dz  as h— oo,
J=1J 2;n)

where C = (2vVa)*I'(L + k/2))™* and 2,(h) = {x € RF|a,(x) > h}.

7.2. Case of domains with a finite number of holes:
Consider the following eigenvalue problem:

1.2) & P =2 HYQ
. —wu—gy—zu_u, ue H(D) .

Here we assume that an open domain 2 = {(z,y)| —c0 <z < o0,y € 2(x)}
with the smooth boundary is decomposed into

(=00, =R) X (0,q(2)) U 2, U (B, o) X (0,9(2)) ,
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where R is some constant and g¢(x) is a smooth function belonging to
K(m), while £, is not necessarily a simply connected domain but may have
a finite number of holes.

THEOREM 7.2, Let 2 be an open domain satisfying the above as-

2
sumptions. Let {a;(x)}7., be eigenvalues of the operator —-aa? with the

domain of definition HiY(Q2(x)) N H*(2(x)). Then,

N) ~ (n)“f ( )(h — a; (X)) *dx as h— co .
24
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