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in a cross-slot microchannel: effects of inertia
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With an immersed-boundary lattice-Boltzmann method, we consider the transit of a
three-dimensional initially spherical capsule with a viscoelastic membrane through a
cross-slot microchannel. The capsule is released with a small initial off-centre distance in
the feeding channel, to mimic experiments where capsules or cells are not perfectly aligned
with the centreline. Our main objective is to establish the phase diagram of the capsule’s
deformation modes as a function of the flow inertia and capsule membrane viscosity. We
mainly find three deformation modes in the channel cross-slot. For a capsule with low
membrane viscosity, a quasi-steady mode occurs at low Reynolds numbers (Re), in which
the capsule can reach and maintain a steady ellipsoidal shape near the stagnation point,
for a considerable time period. With Re increasing to 20, an overshoot-retract mode is
observed. The capsule deformation oscillates on an inertial—elastic time scale, suggesting
that the dynamics is mainly driven by the balance of the inertial and membrane elastic
forces. The membrane viscosity slows down the capsule deformation and suppresses
the overshoot-retract mode. A capsule with high membrane viscosity undergoes a
continuous-elongation mode, in which its deformation keeps increasing during most of
its journey in the channel cross-slot. We summarise the results in phase diagrams, and
propose a scaling model which can predict the deformation modes of a viscoelastic
capsule in the inertial flow regime. We also discuss implications of the present findings for
practical experiments for mechanical characterisation of capsules or cells.
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1. Introduction

Cross-slot microchannels may be employed to generate an extensional flow with a
stagnation point at the centre of the cross-slot region. Such flow platforms have been
widely used to deform flexible microparticles, such as artificial capsules (de Loubens
et al. 2014, 2015; Maleki et al. 2021) or biological cells (Gossett et al. 2012; Guillou et al.
2016; Armistead et al. 2019), to probe their mechanical properties. In the experiments,
the flexible particles often need to be aligned with the centreline of the feeding channel,
through hydrodynamic approaches such as inertial (Di Carlo et al. 2007) or sheath-flow
focusing (Watkins et al. 2009), so that they can reach the close proximity of the stagnation
point. There, the particle is elongated by the extensional flow into an ellipsoidal shape,
with its major axis aligning with the direction of the principal strain.

The deformation of an initially spherical microcapsule in a channel cross-slot can be
determined by a number of factors, including the capsule’s mechanical properties, its
size relative to the channel dimension and initial position in the feeding channel, the
viscosity of the channel fluid, the flow strain rate and inertia. Extensive studies, with
experimental (Chang & Olbricht 1993; de Loubens et al. 2014, 2015; Maleki et al. 2021),
theoretical (Barthes-Biesel & Sgaier 1985) or numerical (Dodson & Dimitrakopoulos
2008, 2009; Dimitrakopoulos 2014) approaches, have been conducted for the deformation
of a capsule trapped at the stagnation point of a planar extension flow, in the Stokes flow
regime. The research has systematically considered the effects of the capsule’s size and
membrane constitutive law, the viscosity contrast between the fluids inside and outside
the capsule and the flow strain rate on the capsule’s steady deformation. Once the relation
is established, one can use the steady capsule profile and flow parameters measured in
experiments to inversely infer the mechanical properties of the capsule (de Loubens et al.
2015; Maleki et al. 2021).

In practical flow experiments, however, it is very difficult to perfectly align
microparticles to a desired position. In cross-slot microchannels, capsules or cells are
often slightly off centre before entering the cross-slot region. This imperfection in fact
allows these flexible particles to flow through the cross-slot within a short time period,
enabling one-by-one processing of a large number of particles. With a flow speed reaching
~1ms~!, Gossett er al. (2012) operated a cross-slot microchannel in the inertial flow
regime and characterised the stiffness of cells with a throughput rate of 2000 cells per
second. This is faster than classical approaches, such as atomic force microscopy or
micropipette aspiration, by several orders of magnitude.

However, from the fundamental point of view, the transient deformation of initially
off-centred capsules or cells flowing through the channel cross-slot region remains poorly
understood. In particular, the effects of the initial off-centre distance of a capsule in the
feeding channel, the flow inertia and the capsule’s membrane viscosity have not been
systematically studied. On the other hand, the membrane viscosity of artificial capsules
(Chang & Olbricht 1993; Walter, Rehage & Leonhard 2000; Diaz, Barthes-Biesel &
Pelekasis 2001) or biological cells (Fischer 1980; Tran-Son-Tay, Sutera & Rao 1984;
Evans & Yeung 1989) has been considered in other flow set-ups, and been shown to play
important roles in the transient deformation of these flexible particles (Barthes-Biesel &
Sgaier 1985; Yazdani & Bagchi 2013; Cordasco & Bagchi 2017; Guglietta et al. 2020; Li
& Zhang 2021).

In the present study, we consider the transit of an initially spherical capsule with
a viscoelastic membrane through a cross-slot microchannel, by means of a well-tested
three-dimensional immersed-boundary lattice-Boltzmann method (LBM) (Wang et al.
2016; Lu et al. 2021). The capsule is released in the feeding channel with a small
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Figure 1. Geometry of the cross-slot channel. The shadow represents the cross-slot region. Top left inset is
the three-dimensional view.

initial off-centre distance, to mimic the experimental situation that capsules or cells are
imperfectly aligned. We mainly focus on the effects of the flow inertia and capsule
membrane viscosity on the capsule’s transient deformation in the channel cross-slot,
with an aim of establishing a phase diagram of the capsule’s deformation modes as a
function of these parameters. To the best of our knowledge, it is the first three-dimensional
computational study of its kind.

The paper is organised as follows: the flow geometry, governing equations and main
dimensionless parameters are detailed in § 2; the numerical method and mesh convergence
study are presented in § 3. The simulation results of the effects of the initial off-centre
distance, flow inertia and capsule membrane viscosity are presented in §4. We propose
a scaling model to predict the deformation modes of a viscoelastic capsule in the inertial
flow regime, and discuss practical implications of the present findings in §5. We then
conclude the paper in § 6.

2. Problem statement

As shown in figure 1, we consider an initially spherical capsule with radius a flowing
through a cross-slot microchannel. The four inflow and outflow channel branches all have
a constant square cross-section with a side length of 2/, and a channel length of 8/. A
three-dimensional Cartesian coordinate system is used with the x- and z-directions along
the axes of the inflow and outflow channels, respectively, and x = y = z = 0 at the centre
of the cross-slot region. The fluid motion is governed by the Navier—Stokes equations
and the no-slip boundary condition is imposed at the channel walls. At the channel inlets
Si1, Sip and outlets S,1, Sy, the fluid velocity profiles are set as the fully developed
channel flow with the same flow rate Q. The detailed velocity profiles can be found from
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Pozrikidis & Jankowski (1997) and Hu, Salsac & Barthes-Biesel (2012). The present set-up
corresponds to experiments where the flow rates are controlled by multiple syringe pumps.

The capsule is enclosed by a viscoelastic membrane with a small bending stiffness.
The interior and suspending fluids are both incompressible Newtonian liquids with
identical viscosity u and density p. The capsule is released in an inflow channel from the
cross-section S, which is 2/ from the inlet S;;. There is a small initial off-centre distance
dy. along the —z direction, to mimic the experimental situation where a capsule is not
perfectly aligned with the centreline of the feeding channel.

For the viscoelastic membrane of the capsule, the total membrane stress 7 is assumed
to be the sum of the elastic and viscous stresses

T=1°+1". 2.1)

The membrane elasticity is governed by the strain-hardening Skalak law (Skalak et al.
1973), which has a strain energy function

G
W= [(1% 4o — 212) + C1§] , 2.2)

where W is the strain energy density per unit undeformed surface area and Gy is the surface
shear elasticity modulus; /1 and I, are the strain invariants of the Green’s strain tensor

E=1(F"-F-1), (2.3)
where F = dx/0X is the deformation gradient of the deformed capsule configuration
x with respect to the undeformed configuration X; I and I, are defined as
I =242+ 12 =2, = (1112)% — 1, where 4, A, are the two principal extension ratios.
The term C is a constant and is related to the membrane area dilatation modulus K by

K; = (1 +2C)Gy. We set C = 1 in the present study.
The elastic stress tensor T¢ can be obtained from

‘=11 Qe+ 102 Q e, (2.4)
where
1 oW 1 oW
=20 =20 (2.5a.b)
Ay 044 A1 042

are the two principal stresses and eq, e> are their corresponding directions, which can be
obtained from the unit eigenvectors of the left Cauchy—Green deformation tensor G =
F.F'.

The membrane viscous stress TV has contributions from the shear viscosity i and area
dilatational viscosity u; (Barthes-Biesel & Sgaier 1985)

7' = ug[2D — tr(D)P] + ., tr(D)P, (2.6)

where D is the membrane strain rate tensor, tr(D) is the area dilatation rate and P = I — nn
is the projection tensor of the deformed membrane, with n as the unit normal vector.
In the present study, we set u; = 3, so that the relaxation times corresponding to the
membrane shear and dilatational viscosity are equal (i.e. us/Gs = }/Ky).

The bending resistance of the membrane is modelled using Helfrich’s formulation
(Zhong-Can & Helfrich 1989)

ke
Ep = —< / (2H — ¢)? dA, 2.7
2 Ja

where k. is the bending modulus, H is the mean curvature, cg is the spontaneous curvature
and A is the surface area. A small bending stiffness k. = 0.004Ga” is used in the present
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study to prevent the formation of membrane wrinkles. We set cg as zero. The bending force
density derived from the bending energy formulation is (Zhong-Can & Helfrich 1989;
Guckenberger & Gekle 2017)

£y = ke [2H(2H2 —2kg) + VsV, (2H)] n, (2.8)

where «, is the Gaussian curvature.
The present problem is governed by the following dimensionless parameters:

(i) the flow Reynolds number Re = 2pUl/u, where U is the average flow speed in the

inflow/outflow channels;

(ii) the capillary number Ca = nU/G;, which measures the relative importance of the
fluid viscous and membrane elastic forces;

(iii) the dimensionless capsule membrane viscosity n = s/ua;

(iv) the capsule confinement ratio a/l, which compares the size of the capsule relative
with the channel; and

(v) the dimensionless initial off-centre distance d,/!.

We are mainly interested in the capsule deformation in the channel cross-slot region
(=l <x,y,z <1, shown in figure 1), where the capsule is elongated into an ellipsoidal
shape. We quantify its deformation using the Taylor deformation parameter

Dx7 = , (2.9)

where a; and a3z are the maximum dimensions of the capsule along the x- and z-axes,
respectively, in the symmetric y = 0O plane.

3. Numerical method

The present study is based on an immersed-boundary LBM that has been verified
extensively for a capsule with a hyperelastic or viscoelastic membrane in shear or channel
flows (Sui et al. 2008; Wang et al. 2016, 2018; Lu et al. 2021; Lin et al. 2021). Here,
we only provide a brief introduction. The fluid domain is governed by the Navier—Stokes
equations that are solved by a three-dimensional nineteen-velocity LBM with a grid size of
Ax = Ay = Az = 21/80. The no-slip boundary condition at the walls is implemented by a
second-order bounce-back scheme (Bouzidi, Firdaouss & Lallemand 2001). At the channel
inlets and outlets, the velocity boundary conditions are implemented with a second-order
non-equilibrium extrapolation method (Guo, Zheng & Shi 2002).

The interaction between the fluid and capsule is solved by an immersed-boundary
method (Peskin 2002). The capsule membrane is discretised into 8192 flat triangular
face elements, which are connected with 4098 nodes, following Ramanujan & Pozrikidis
(1998). In the immersed-boundary method, the no-slip boundary condition at the capsule
membrane is satisfied by letting the membrane move at the same velocity as the fluid
around it. Since the membrane area is not conserved, the capsule will deform from
its initial spherical shape. For the membrane viscoelastic stress, previous studies have
shown that directly solving (2.1) leads to numerical instabilities (Yazdani & Bagchi 2013;
Li & Zhang 2019). Here, we follow the method of Yazdani & Bagchi (2013) where a
slightly modified mechanical system is employed to approximate equation (2.1). Details
of the implementation can be found in Yazdani & Bagchi (2013) and pertinent literature
(Holzapfel 2000; ABAQUS/Standard Theory Manual 2002). To calculate the membrane
bending force in (2.8), a quadratic surface fit has been used to evaluate the curvatures and
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Figure 2. Effects of the LBM mesh size and capsule’s initial deformation on the time evolution of the Taylor
deformation parameter Dy of a capsule with a// = 0.4 and d, = 0.02/. Atz = 0 the capsule starts to enter the
cross-slot region; the circle symbols mark the moments when the capsule completely leaves the region. Other
parameters are: (a) Re = 1, Ca = 0.1 and n = 0; (b) Re = 80, Ca = 0.1 and n = 40.

normal direction at each membrane node, following the approaches of Garimella & Swartz
(2003) and Yazdani & Bagchi (2012).

Since the present numerical method has been well tested previously, here, we evaluate
the effect of the LBM grid size on the transient deformation of capsules with a hyperelastic
or viscoelastic membrane and a/l = 0.4, d,. = 0.02/, in both viscous and inertial flow
regimes. Three mesh resolutions Ax = 21/64, 21/80 and 2//100 have been tested, and the
time evolutions of the Taylor deformation parameter Dxz are presented in figure 2. In
all figures of the present study on the time evolution of Dxz, we set = 0 as the time
when a capsule starts to enter the cross-slot region, i.e. any membrane element reaches the
plane x = —/. We use a circle symbol to mark the time when the entire capsule leaves the
cross-slot. From figure 2, we can see that the time evolutions of Dyz almost superimpose
for all three flow meshes. We also test the effect of membrane mesh size, and find that
increasing the number of membrane elements to 32 768 does not lead to any visible change
to the results. In all simulations, the volume change of the capsule is within 0.2 %. The
capsule also remains symmetric approximately along the y = 0 plane, with the deviation

between the capsule’s mass centre and the y = 0 plane less than 1 x 107/,

With the present computational domain, a capsule with a highly viscous membrane
(i.e. n > 40) cannot reach its steady deformation in the feeding channel. It is therefore
interesting to check how this will affect the capsule’s transient deformation in the channel
cross-slot. With the same parameters of figure 2, we consider capsules that are already in
steady deformed shapes when released from S, to mimic the situation that the feeding
channel is long enough for the capsules to reach their steady deformation. The time
evolutions of Dxz are added to figure 2. The results suggest that the capsule deformation
in the cross-slot region is little affected by the initial deformation state.

4. Results
4.1. Effect of the initial off-centre distance d.

In practical experiments, it is always crucial to align capsules or biological cells to the
centreline of the feeding channel, so that these flexible particles can reach the close
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Figure 3. (a) Effect of the initial off-centre distance d,. on the time evolution of the Taylor deformation
parameter Dyz of a capsule with a/l = 0.4, n =0 at Re = 1, Ca = 0.1. The triangle symbol marks Dyg, the
steady Dyxz of the same capsule released at the stagnation point. The thick long dashed line is the result of
a capsule with an initial offset of 0.02/ in both the —y and —z directions. (b) Velocity magnitude |u| (colour
contour) of the unperturbed background flow of (a) in the plane y = 0. Dotted lines are the strain rate. The
maximum strain rate appears at the stagnation point and is represented by €. Trajectories of the mass centre
of the capsule of (a) are also presented in (b), using lines with the same legend as (a).

proximity of the stagnation point, where their maximum deformation is recorded and then
fitted to theoretical or computational model predictions, to inversely infer the particles’
mechanical properties (Armistead et al. 2019; Maleki et al. 2021). Often, these models only
consider particles that are centrally aligned. Significantly off-centred particles experience
different levels of fluid stresses and their maximum deformation in the cross-slot region
can be much smaller than that of centrally aligned particles (Hymel, Lan & Khismatullin
2020). In the present study, it is therefore important that we first consider the effect of the
initial off-centre distance, and establish the threshold d,., below which the capsule can be
considered as well aligned.

We conduct the test by considering the effect of the initial off-centre distance on
the transient deformation of a capsule with a/l = 0.4, n =0 at Re =1, Ca = 0.1. The
capsule is released from different initial off-centre positions with 0 < d,. < 0.16/ in the
—z direction. The time evolutions of the Taylor shape parameter Dxz, and the trajectories
of the capsule’s mass centre are presented in figures 3(a) and 3(b), respectively. We can
see that a perfectly aligned capsule (d,. = 0) reaches steady deformation and stays in close
proximity to the stagnation point. The steady Dy is identical to Dg, marked by the triangle
in figure 3(a), which represents the steady Taylor deformation parameter of the same
capsule initially released at the stagnation point. Note that this is in fact an unstable state,
and the numerical error in the computational simulation will eventually cause the capsule
to depart from the channel centreline and flow out of the cross-slot region. However,
for the time scale considered in the present study, until ¢/(21/U) = 2.5, the offset of the

capsule’s mass centre from z = 0 remains extremely small, i.e. less than 4 x 10731, With
d,. increasing, but remaining small, i.e. d,. < 0.04/, the capsule can reach a quasi-steady
state when it is near the stagnation point, and the quasi-steady Dxz is comparable to Dg
(see figure 3a). The time period that the capsule stays in the quasi-steady state is of the
order of 2//U, and decreases with d,.. Further increasing the initial off-centre distance
to d,. > 0.04/, the quasi-steady state can no longer be observed. The capsule reaches its
maximum deformation when getting closest to the stagnation point, with the peak Dyxz
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being considerably smaller than Dg, and then the Taylor deformation parameter drops
quickly as the capsule leaves the stagnation point.

We also consider the effect of a small initial off-centre distance along the —y direction
and an example is presented in figure 3(a), for a capsule with an initial off-centre distance
of 0.02/ along both the —y and —z directions. The result is visually identical to that of the
capsule with a 0.02/ offset only in the —z direction, suggesting that a small initial offset
along the —y direction has negligible effect on the capsule deformation.

The results of figure 3(a) can be understood by examining the unperturbed background
flow, which is presented in figure 3(b) for the flow strain rate ¢ and velocity magnitude |u|.
As expected, the maximum strain rate appears at the stagnation point, which we term as
€sp- Around the stagnation point, there is a circular region, with a radius of approximately
0.441, in which the strain rate slowly decreases with the distance to the stagnation point,
but remains very high, i.e. € > 0.9¢,. Outside the region, ¢ decreases much more quickly
with the distance to the stagnation point. The trajectory of a capsule with a larger d,. is
generally farther away from the stagnation point, which has two effects. Firstly, the capsule
experiences lower fluid stress that varies more rapidly with the distance to the stagnation
point; secondly, the capsule travels faster when passing the region near the stagnation
point. Both effects contribute to the observation that a quasi-steady state does not exist for
a capsule released with a large d,.

In the present study, we mainly consider capsules with d,. ~ 0.02/. With such small
initial off-centre distances, a capsule may reach a quasi-steady state at low flow Reynolds
numbers, and the quasi-steady deformation could be comparable to the steady deformation
of the same capsule released at the stagnation point. The condition could be easier to
achieve in experiments, compared with much smaller d,. ~ 0.001/, and capsules can flow
through the channel cross-slot more quickly, enabling a higher processing throughput rate.

4.2. Quasi-steady and overshoot—retract deformation of a hyperelastic capsule

Although experiments of cells flowing through cross-slot microchannels have been
regularly conducted in the inertial flow regime, where the flow Reynolds number in the
feeding channel can reach ~100 (Gossett et al. 2012; Armistead et al. 2019), the transient
cell dynamics in the channel cross-slot remains poorly understood. In particular, the
effects of flow inertia and cell membrane viscosity on the cell deformation have not been
systematically studied.

As a first attempt to understand these effects, in this section, we consider the transient
deformation of a capsule enclosed by a hyperelastic membrane in the cross-slot channel
with finite inertia. The capsule has a confinement ratio of a// = 0.4 and is released with
an initial off-centre distance d,,. = 0.02/. We fix the properties of the channel fluid and
the capsule, so that Ca/Re = 0.0025, and the inertial effect is studied by increasing the
flow velocity U. With the capillary number Ca increasing from Ca = 0.0025 to 0.2, Re
increases from 1 to 80.

The time evolutions of the Taylor deformation parameter of the capsule at different flow
Reynolds numbers are presented in figure 4(a). When Re < 10, the capsule can reach a
quasi-steady state when it is approaching the stagnation point, and the quasi-steady Dxz
is very close to the corresponding Ds, which is the steady Taylor deformation parameter
of the same capsule released from the stagnation point. For the two quasi-steady cases in
figure 4(a) at Re = 1 and 10, since the capsule deformation is small, we also compare the
quasi-steady Dyz with the predictions of the small deformation theory of Barthes-Biesel
& Sgaier (1985), considering the same capsule in planar extensional flow at Re = 0. The
differences are within 4 %.
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Figure 4. (a) Effect of flow inertia on the time evolution of the Taylor deformation parameter (left y-axis,
solid lines) of a capsule with a// = 0.4, n = 0 and Ca/Re = 0.0025. The horizontal bold lines mark Dg, which
is the steady Taylor deformation parameter of the same capsule released from the stagnation point under the
same flow condition. The diamond symbols represent the Taylor deformation parameter predicted by the small
deformation theory of Barthes-Biesel & Sgaier (1985) for the same capsule in planar extensional flow at Re =
0; 11,12, ..., tg are six dimensionless times at —0.01, 0.22, 0.47, 0.72, 0.90 and 1.28, respectively, when the
instantaneous capsule profiles will be shown in figure 5. The circle symbols mark the times when the capsule
completely leaves the cross-flow region. The dashed lines are the time evolutions of the distance between
the capsule’s mass centre and the stagnation point dcs (measured by the right y-axis). The inset provides a
clearer view of the results for the capsule at Re = 1. (b) Effect of the membrane shear elasticity G on the time
evolution of the Taylor deformation parameter of a capsule with a/l = 0.3 ~ 0.5, n = 0 at Re = 40. Note that
Gs; = nU/Ca. The deformation is compared with the corresponding Dg, marked by the horizontal bold solid
lines.

To show the transient capsule deformation in the quasi-steady mode, in figure 5(a) we
present the instantaneous shapes of the capsule at Re = 10 at six different time instances.
The animation of the capsule deformation can be found from supplementary movie 1
available at https://doi.org/10.1017/jfm.2023.298. It is seen that the capsule profiles are
almost identical between 3 and 5. In figure 5(a), we also present the trajectory of the
capsule’s mass centre, and use a bold line to highlight the part of the trajectory where
the capsule is in the quasi-steady state, i.e. the capsule is approximately at the maximum
deformation with Dxz > 0.95D¥7". We can see that the quasi-steady state takes place
when the capsule is near the stagnation point.

With the increase of flow inertia, the quasi-steady deformation of the capsule can no
longer be observed, as shown in figure 4(a) for Re > 20. Interestingly, we find that, after
entering the cross-slot region, the capsule quickly reaches its maximum deformation,
with D" being considerably larger than the corresponding Ds, and then Dy starts to
decrease, even when the capsule is still approaching the stagnation point. In general, the
time evolution of Dxz shows dampened oscillation. An example of this new deformation
mode is presented in figure 5(b) for the capsule at Re = 40, and the animation is shown
in supplementary movie 2. The capsule’s elongational deformation overshoots and peaks
at t3, before the capsule’s mass centre reaches the closest position to the stagnation
point. After t3, the capsule retracts with Dy decreasing to a local minimum at 74, and
then the capsule deformation starts to increase again. We name this deformation mode
overshoot—retract deformation.

In the overshoot—retract mode, we find that the dimensionless characteristic time scale
of the oscillation of Dyz, e.g. t4 — t3 = 0.25 for the capsule at Re = 40, is of the same
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Figure 5. Instantaneous profiles of the capsule of figure 4(a) at Re = (a) 10, (b) 40. The red solid lines are the
trajectories of the capsule’s mass centre; the bold blue lines mark the parts of trajectories where the capsule is
approximately at the maximum deformation (Dxz > 0.95D%7"). The time instances are provided in figure 4(a).

l

order as the inertial-elastic time

tic =+/pa®/Gs = 0.18. @.1)

The agreement suggests that the oscillation of the capsule deformation is mainly driven by
the balance of the flow inertial and membrane elastic forces.

We also consider the effect of the membrane shear elasticity Gy on the transient
deformation of the capsule in the inertial flow regime. We present the results in figure 4(b)
for capsules at Re = 40, with different values of Gy that have led to Ca = 0.04, 0.1
and 0.2. Note that Gy = nU/Ca. Besides a/l = 0.4, we have also considered capsules
with different confinement ratios of 0.3 and 0.5 at Ca = 0.1. All cases are in the
overshoot—retract deformation mode. The maximum Dy, decreases with G, but increases
with the capsule size, and is always approximately 10 % larger than the corresponding
Dg. Interestingly, we find that the average of the values of Dyz at the peak and the
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Figure 6. Phase diagram of the deformation modes of a hyperelastic capsule as a function of Re and Ca/Re.
The dashed line is the approximate phase boundary.

following trough is only approximately 2 % larger than the corresponding Dg. We will
discuss practical implications of this observation in § 5.2.

We conduct extensive simulations for hyperelastic capsules with a/l = 0.4 at different
(Ca/Re, Re) combinations, and summarise the deformation modes in a phase diagram
in figure 6. At Ca/Re = 0.0025 and 1 < Re < 80, corresponding to figure 4(a), we also
consider capsules with different confinement ratios of @/l = 0.3 and 0.5. The deformation
modes are identical to those of capsules with a/l = 0.4. From the phase diagram, it is clear
that the quasi-steady mode only prevails when the inertial effect is very weak (e.g. Re < 1).
At high inertia, i.e. Re > 20, the capsule undergoes the overshoot-retract deformation.

4.3. Three deformation modes of a viscoelastic capsule

In this section, we focus on the effect of the membrane viscosity on the transient
deformation of a capsule in the channel cross-slot region. We use the capsule of figure 5(b)
at Re = 40, Ca = 0.1 as the baseline case and increase the membrane viscosity 1 from
0 to 40. Note that the range of n considered here is relevant to practical experiments.
For artificial capsules with a nylon or human serum albumin membrane, n ~ 6 and 12,
respectively, in the previous experiments of Chang & Olbricht (1993), Diaz et al. (2001)
and Gires et al. (2016). The membrane viscosity of human red blood cells measured in
experiments can range from 10~/ to 107N sm™! (Evans & Hochmuth 1976; Hochmuth,
Worthy & Evans 1979; Tran-Son-Tay et al. 1984). If one operates experiments using a
liquid with & = 0.01 Pas, and we assume the equivalent radius of a red blood cell is
3 wm, the dimensionless membrane viscosity will be 3.3 < n < 33. Granulocytes have
been found to have a higher membrane viscosity, of the order of 107> Nsm~!, which
could lead to n ~ 100.

The time evolutions of the Taylor deformation parameter of the capsule with increasing
n are presented in figure 7(a). It is clear from the results that the membrane viscosity tends
to slow down the capsule deformation and smooth the overshoot-retract deformation in
the inertial flow regime. At n = 5, the overshoot-retract mode has disappeared and the
capsule deformation is in the quasi-steady mode. The quasi-steady Dxy is still comparable
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Figure 7. (a) Effect of membrane viscosity on the time evolution of the Taylor deformation parameter (left
y-axis, solid lines) of a capsule with a// = 0.4 at Re =40 and Ca = 0.1. The horizontal bold line marks
Dg; 11, ta, ..., te are six dimensionless times at —0.01, 0.31, 0.59, 0.82, 1.06 and 1.28, respectively, when the
instantaneous capsule profiles are shown in figure 8. The circle symbols mark the times when the capsule
leaves the cross-slot region. The dashed lines are the time evolution of the distance between the capsule’s
mass centre and the stagnation point dcs (the right y-axis). (b,c) Phase diagram of the capsule’s deformation
modes depending on the membrane viscosity and flow inertia at Ca = (b) 0.1, (c¢) 0.04. Dashed lines are the
approximate phase boundaries.

to the corresponding Dgs. It should be noted that all capsules considered in figure 7(a)
share the same Dy, since the steady deformation of the capsules in the extensional flow is
unaffected by the capsules’ membrane viscosity.

As 71 continues to increase, a new deformation mode emerges, which we present in
figure 8 for the instantaneous shapes of the capsule of figure 7(a) with n = 40. The
animation of the transient deformation is shown in supplementary movie 3. A salient
feature of the new mode is that the capsule deformation keeps increasing, even when the
capsule has left the stagnation point and is approaching the exit of the channel cross-slot.
We thus name this deformation pattern the continuous-elongation mode. With n = 40, the
Taylor shape parameter of the capsule during its entire journey in the channel cross-slot is
considerably smaller than Dg. From figure 7(a), we also notice that the membrane viscosity
has little effect on the time evolution of dcg, which suggests that the capsule’s trajectory
is not sensitive to its membrane viscosity.

At Ca = 0.1 for capsules with a// = 0.4 and n = 0-40, we vary the flow Reynolds
number from 1 to 80, and present the phase diagram of the capsule deformation modes
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Figure 8. Instantaneous profiles of the capsule of figure 7(a) with n = 40. The red solid line is the trajectory
of the capsule’s mass centre. The six time instances are provided in figure 7(a).

as a function of the membrane viscosity and flow Reynolds number in figure 7(b). At
Re =1 and 40, and 0 < n < 40, we also consider capsules with different confinement
ratios of a/l =0.3 and 0.5. The deformation modes are identical to those of capsules with
a/l =0.4 and are therefore not shown in the phase diagram. We find that capsules with low
membrane viscosity (i.e. n < 2) respond to the flow like a hyperelastic capsule, with the
deformation transiting from the quasi-steady to overshoot—retract mode with Re increasing.
For capsules with a highly viscous membrane, i.e. n > 10, the continuous-elongation mode
becomes the dominant mode of capsule deformation. In the inertial flow regime (Re > 20),
the transition from the overshoot-retract to continuous-elongation mode due to an increase
of n happens via the quasi-steady mode. At higher Re, larger membrane viscosity is needed
for this transition to take place. We will further discuss the transition in the following
§5.1. We also consider stiffer capsules with all other parameters the same as those of
figure 7(b), and the phase diagram for Ca = 0.04 is presented in figure 7(c). A noticeable
difference, compared with figure 7(b), is that the threshold 7 for the continuous-elongation
mode has increased, which suggests that a stiffer membrane promotes the quasi-steady and
overshoot—retract modes for viscoelastic capsules.

With d,. = 0.01/ and all other parameters remaining the same as those of figure 7(b),
we conduct simulations to test the effect of a smaller initial off-centre distance on the
capsule’s deformation phase diagram. We find that the phase diagram remains unchanged.

5. Discussion
5.1. A scaling model for capsule deformation in inertial flow regime

We propose a scaling model to predict the deformation mode of a capsule in the inertial
flow regime at Re > 20. In this model, we assert that a capsule’s deformation mode is
mainly determined by the competition of the inertial-elastic time scale t;, = /pa3/G;
and the membrane viscosity time scale t,, = s/Gs, which are associated with the
overshoot—retract and continuous-elongation modes, respectively. The capsule will adopt
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Figure 9. Comparison of the predictions using the scaling model with the phase diagram of figure 7(b,c)
at Re > 20 and Ca = (a) 0.1, (b) 0.04. Symbols are obtained from direct numerical simulations. The light
blue and yellow regions are the scaling model-predicted parametric space for the overshoot-retract and
continuous-elongation modes, respectively. The solid lines are the scaling model-predicted phase boundaries
at which t,,, = t;. (or n- Oh = 1), the dashed lines mark the (1, Re) combination at which - Oh = 0.5.

the mode associated with the longer time scale, and the transition between the two modes
will take place when the two time scales are comparable, i.e. t,,,, /tic ~ 1.

We test the scaling model by predicting the phase diagrams of figure 7(b,c) for Re > 20,
and the results are shown in figures 9(a) and 9(b), respectively. In the figures, the solid
lines mark the (77, Re) combination at which t,,, = t;.. In the light blue regions, t;; > ty,,
and a capsule should be largely in the overshoot—retract mode according to the model.
While in the yellow regions, t,,,, > f;., the deformation of a capsule is predicted to be the
continuous-elongation mode. Our model seems to predict the phase diagram of capsule
deformation reasonably well.

Interestingly, when t,,,, /t;c ~ 1, we have

n-Oh~1, (5.1)

where Oh = /+/pG;a is the Ohnesorge number, which measures the relative importance
of the fluid viscous force to the inertial and membrane elastic forces. Note that (5.1) is a
scaling argument. From figure 9, it is seen that the transition from the overshoot-retract to
the continuous-elongation mode happens when t,,,, /#; is in the range of 0.5-1. Equation
(5.1) indicates that the effect of higher capsule membrane viscosity needs to be balanced
by stronger inertia (a smaller Oh), otherwise the membrane viscous effect will play the
dominant role and the capsule will be in the continuous-elongation mode. This agrees
with our observation from the phase diagrams of figure 9.

It is worth mentioning that the present study has assumed equal viscosity between the
fluids inside and outside the capsule, and this viscosity w has been used to normalise the
membrane viscosity py with n = u/pa. Therefore, at high 5, the viscous effect that has
led to the continuous-elongation mode mainly comes from the capsule membrane, and the
viscous time scale is defined by the membrane viscosity.

5.2. Practical implications of the present findings

Here, we discuss the implications of the present results for flow experiments, in which
microcapsules or biological cells are stretched by the extensional flow in the microchannel
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cross-slot, and their deformation is recorded and fitted to theoretical or computational
models to inversely infer the mechanical properties.

For practically unknown capsules, it is probably most convenient to carry out the
experiment in the low-inertia flow regime, i.e. Re < 1, where the quasi-steady deformation
mode could be observed for capsules that have been largely aligned with the centreline
in the feeding channel. The quasi-steady mode, taking place near the stagnation point
in the cross-slot, provides a time window of the order of 2//U, during which the
quasi-steady shape of the capsule can be recorded. It is very encouraging to see from
the present study that in case d,. is below a threshold, the quasi-steady Dxz of an
imperfectly aligned capsule can be very close to the corresponding Dgs. Therefore,
it is still possible to fit the deformation to model predictions, which often only
consider perfectly aligned capsules, to infer the membrane elastic properties of the
capsule.

Operating experiments in the inertial flow regime is often favourable, due to the
potentially much higher throughput rate, for applications that require measurement
of a large-population heterogeneous capsules. However, a capsule could undergo the
overshoot—retract mode of deformation, in which Dyz varies quickly with time. As a result,
it becomes difficult to infer mechanical properties with one instantaneous deformation
profile of the capsule. In this highly unsteady mode, the maximum deformation is still
a good indicator of the capsule’s elasticity; however, unlike in the low-inertia flow
regime, one should not directly fit the maximum deformation to model predicted steady
deformation to infer properties, since the former can be considerably larger. Instead, one
could use the average value of Dxz when the capsule deformation is at the peak and the
following trough, during the overshoot-retract deformation, which has been shown to be
very close to Dyg.

The present study also indicates that a capsule with a highly viscous membrane will
undergo the continuous-elongation mode of deformation. One will then have to use the
deformation history to infer the capsule’s elasticity and viscosity. Recently, Lin et al.
(2021) proposed such an approach, which combines a deep convolutional neural network
with mechanistic capsule models, and could in principle be used for high-throughput
characterisation of the membrane elasticity and viscosity of capsules flowing in a branched
microchannel. However, one needs to note that direct numerical simulation of capsule
deformation is often time consuming. For example, in the present study, a typical
simulation took ~30 hours on an HPC cluster with parallel computing using 16 cores
(AMD 2.25 GHz CPU). Many hundreds of cases may be needed to build a data bank to
inversely infer the mechanical properties of capsules in experiments.

We expect that the discussion above would also apply to biological cells, although the
present mechanical model is still qualitative as a cell model. Indeed the model has not
taken into account the cell nucleus, which could limit the cell deformation. However, these
details should not qualitatively affect the balance between the flow inertia, cell elastic and
viscous forces, which is the fundamental determinant of the cell’s deformation mode.

6. Conclusions

The present work is the first three-dimensional computational study of the transient
deformation of a viscoelastic capsule flowing through a cross-slot microchannel, focusing
on the effects of the flow inertia and capsule membrane viscosity. To mimic the
experimental condition that capsules or cells are often not perfectly aligned with the
centreline in the feeding channel, we have considered a capsule that is released with a small
initial off-centre distance. For a capsule with low membrane viscosity (e.g. n < 2), our
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computational results show that there are mainly two modes of deformation, quasi-steady
and overshoot-retract, with increasing inertial effect. At low flow inertia with Re < 10, the
capsule can reach a quasi-steady state near the stagnation point of the cross-slot region,
which lasts for a time period of the order 2//U. The quasi-steady Taylor deformation
parameter is comparable to the corresponding Dg, which is the steady Dxz of the same
capsule released at the stagnation point. These salient features make the quasi-steady mode
favourable to experiments in which a capsule’s deformation profile near the stagnation
point can be recorded and fitted to model predictions to inversely infer its membrane elastic
properties.

With the flow inertia increasing to Re > 20, the deformation of the capsule could transit
to an overshoot—retract mode, a deformation mode that has not been reported for capsules
or cells in cross-slot channels. The capsule’s shape oscillates, when it is passing the
stagnation point, on an inertial-elastic time scale, suggesting that the dynamics is mainly
driven by the balance of the flow inertial and membrane elastic forces. In this highly
unsteady mode, the maximum Dyz can be considerably larger than the corresponding
Dgs. However, interestingly, we find that the average of Dxz when the capsule deformation
is at the peak and the following trough is very close to Dg. Thus the average Taylor shape
parameter could be calculated from experimental data and be used to infer the capsule’s
mechanical properties.

Regarding the effect of the capsule membrane viscosity, we find it tends to slow down
the capsule deformation, postpone the onset of the maximum deformation and suppresses
the overshoot-retract mode in the inertial flow regime. A highly viscous membrane, i.e.
n > 10, can lead to a transition from the quasi-steady or overshoot—retract mode to a
continuous-elongation mode, where the capsule deformation keeps increasing even when
the capsule is leaving the stagnation point. The continuous-elongation mode is also a new
pattern of capsule deformation in the cross-slot channel flow that is first reported in the
present study. In this mode, one will need to record the deformation history of the capsule
for characterisation of its elasticity and viscosity.

To conveniently predict the deformation mode of a viscoelastic capsule in the inertial
flow regime, we have also proposed a scaling model, based on the competition of the
inertial-elastic and membrane viscosity time scales. The model can predict the capsule
deformation phase diagram reasonably well.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.298.
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