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THE DIFFERENTIABILITY OF CONVEX FUNCTIONS
ON TOPOLOGICAL LINEAR SPACES

BERNICE SHARP

In this paper topological linear spaces are categorised according to the differentia-
bility properties of their continuous convex functions. Mazur's Theorem for Ba-
nach spaces is generalised: all separable Baire topological linear spaces are weak
Asplund. A class of spaces is given for which Gateaux and Fre'chet differentiability
of a continuous convex function coincide, which with Mazur's theorem, implies that
all Montel Fre'chet spaces are Asplund spaces. The effect of weakening the topology
of a given space is studied in terms of the space's classification. Any topological
linear space with its weak topology is an Asplund space; at the opposite end of the
topological spectrum, an example is given of the inductive limit of Asplund spaces
which is not even a Gateaux differentiability space.

INTRODUCTION

This paper synthesises two areas of research: the differentiability of functions on
topological linear spaces, and the differentiability of convex functions on Banach spaces.

The study of differentiability properties of convex functions on normed linear spaces
essentially began with Mazur in 1933 [11]. Asplund, in his innovative paper of 1968,
[1], categorised Banach spaces according to the differentiability properties of their real
valued continuous convex functions. He nominated two classes: "strong differentiability
space", now called Asplund space, and "weak differentiability space" or weak Asplund
space, for a Banach space, X, with the property that every continuous convex function
is Frechet, or in the weak case, Gateaux, differentiable on a dense Gg subset of its
open convex domain in X. In this paper, similar classifications are given, and theorems
proved, for topological linear spaces. All spaces are Hausdorff.

0. PRELIMINARIES

For a topological linear space X and an open convex subset D of X, a real valued
function / on D is said to be convex whenever for all x,y £ D and for all A 6 [0,1],

/(Ax + (1 - A)y) ^ A/(x) + (1 - \)f(y)
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202 B. Sharp [2]

and locally Lipschitz whenever for all e > 0, there exists a neighbourhood U of 0 in X
such that for all a € [0,1] and for all u,v E(x + U)nD,

u — v € aU implies | / ( u ) — f{v)\ < a£-

If X is a normed space, the latter definition coincides with the standard one. Contin-
uous convex functions on a topological linear space are locally Lipschitz ([4], 2.4).

The continuous dual of a topological linear space X is denoted by X*. Let U be
an open subset of X and Ai be a bornology on X, that is, a class of bounded subsets
containing all singletons. A real valued function f on U is M -differentiable at x £ U
whenever there exists u 6 X* such that, for all M £ M, for all e > 0, there exists
8 > 0, such that for all y € M, for all t: 0 < |t| < S,

ty)-f(x)
<£.

The map u : U —• R is uniquely determined by / and x and is denoted by f'(x).

If M is the class of all bounded subsets of X then / is Frechet differentiable at x.

This is the weakest of all possible choices for the derivative which coincide, when X is
a normed space, with the standard Frechet derivative. If M. is the class of all compact

subsets of X then / is Hadamard differentiable at x; if AA is the class of all singleton

subsets of X then / is Gateaux differentiable at x.

It is not difficult to show that a continuous convex function / is Gateaux differen-
tiable at x € X if and only if the function <f>: X —> R defined by

exists for all y 6 X, that is, <f> is linear and continuous.

In 3.1 we will see that for continuous convex functions, Hadamard and Gateaux dif-
ferentiability coincide, so in the sequel "Hadamard" could often replace "Gateaux"; how-
ever we will use the latter to more obviously compare our results with those known for
Banach spaces. Clearly the above derivatives are given in decreasing order of strength;
in general the three are distinct (see [2], p.102 and [3], p.209).

1. T H E CLASSIFICATION OF DIFFERENTIABILITY SPACES

A topological linear space will be classified, using the following abbreviations, ac-
cording to the differentiability properties of the specified class of real valued convex
functions. (A generic set in D is one which contains a dense Gs subset of D.)
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ASP (WASP): Asplund (Weak Asplund): every continuous convex function with
domain a nonempty open convex subset is Frechet (Gateaux) differentiable on a generic
set in that domain.

FDS (GDS): Frechet (Gateaux) Differentiability Space: every continuous convex
function with domain a nonempty open convex subset is Frechet (Gateaux) differentiable
on a dense subset of that domain.

These classifications axe used in the literature for Banach spaces. In some special
cases the four are not distinct, for example for Banach spaces it is well known that the
points of Frechet differentiability of any continuous convex function form a Gg set in
its domain, so in this case ASP and FDS are equivalent.

2. A GENERALISATION OF MAZUR'S THEOREM

Theorem 2.1 is a generalisation of Mazur's Theorem, which states that every sep-
arable Banach space is WASP. This proof follows some of the ideas incorporated in the
original [11].

THEOREM 2 . 1 . All separable Baire topologicaJ linear spaces are WASP.

PROOF: Let X be a separable Baire topologicaJ linear space and let / be a con-
tinuous convex function on a nonempty open convex subset D of X. Let {xn : n £ N}
be a countable dense subset of D; denote by M the set of points in D where / is
Gateaux differentiable.

For each n € N, define Mn by

ists}.exists

It is immediate from the definitions that, for all n £ N, M C Mn.
oo

Conversely, if o £ f] Mn then for all n £ N, /+(a)(*n) = /l(a)(x»»)- Since / is
n=l

continuous at a, it is an easy consequence of the convexity of / that f'+(a) and f'_(a)

are continuous on X ([15], 2.3.5), so for all x £ X, f'+(a)(x) = f'_(a){x); thus aeM.
oo

Hence M = f| Mn.
n=l

For positive integers n,i,j, define Mntitj by

Mn,ij = {z £ D : for all i £ (0,}],

f(x + txn) - f(x) f{x) - f(x - txn) 11
t f " i/'

oo

These sets are closed in D and D \ Mn = \J Mniij, so each Mn is Gg in D.
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Since A" is a Baire space, M is a dense Gg subset if every Mn is a dense Gg

subset. It remains to show that each Mn is dense in D. Suppose a £ D and U is a
balanced neighbourhood of 0 such that a+U C D. Then for each n there exists 6 > 0
such that for all A G (-6,6), \xn € U. Let / = (-6,6) and define g : I -» R by

g(X)=f(a+Xxn).

Since g is continuous and convex, and R is WASP, there exists Ao £ / such that g is
Gateaux differentiable at Ao ; it follows that a + \oxn £ Mn, which confirms the density
of Mn in U. D

All complete metric spaces are Baire, so, for example, separable Frechet spaces are
WASP. It is well known that "separable" is not a necessary condition in 2.1: all weakly
compactly generated Banach spaces are WASP ([l], Theorem 2).

EXAMPLES 2.2.

(1) Denote by C(R) the set of real valued continuous functions on R with topology
denned by the set of seminorms {pn : n = 1,2,3...}, where

pn(x) = sup \x{t)\.
te{-n,n]

This space is separable and Baire, hence WASP, and provides a generalisation of [10],

problem 10.

(2) Let C(X) be the set of real valued functions continuous on the topological

space X with the topology of compact convergence on X, that is, the topology defined

by the family of semi norms
PA(X) = sup \x(t)\

A

where A ranges over all compact subsets of X. From 2.1, C(X) is WASP whenever

Baire and separable. (For C(X) to be separable it is sufficient that X be ©--compact

and metrisable).

(3) C°°(R), the space of indefinitely differentiable functions with the topology

defined by the set

{pm,n -m = 0 , l , . . . ;n = l ,2 , . . . }

of seminorms, where

Pm,n{*)= SUP l*("°(*)l.
t£[-n,n]

is a Montel Frechet space, hence is Baire and separable ([9], p.370) so is WASP.

(4) Let D be an open subset of the complex plane C and denote by H(D) the
set of all holomorphic functions from D into C. This is a subspace of C(D); consider
"H(D) with the induced topology of compact convergence. Then "H(D) is also a Montel
Frechet space and is WASP.

It is shown later, in 3.5, that both C°°(R) and H(D) are ASP.
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3. THE COINCIDENCE OF FRECHET AND GATEAUX DIFFERENTIABILITY

In this section it is shown that for locally Lipschitz functions, and hence for con-
tinuous convex functions, on a topological linear space, Hadamard and Gateaux dif-
ferentiability coincide, that is, pointwise convergence of the difference quotient implies
convergence uniform on compact subsets of X.

Under what conditions do Frechet and Hadamard differentiability coincide? We
need to look at uniform convergence on compact, and on bounded, subsets, so the
sufficiency condition that bounded subsets be relatively compact, is intuitively suggested
by the definitions. In nonned linear spaces this is of little interest, since such spaces
are finite dimensional. However a large class of non-normable locally convex spaces has
this property.

THEOREM 3 . 1 . Let X be a topological linear space, and let f be a real valued
locally Lipschitz function on a nonempty open subset D of X. Hadamard and Gateaux
differentiability coincide for f.

PROOF: TO see the nontrivial direction, let M be a compact set in X; assume
that / is locally Lipschitz, and Gateaux differentiate at xo € D.

Let y G D and choose e > 0; then the following property holds. There is an open
neighbourhood Uy of 0, and a 6y > 0 such that for all z G y+Uy, for all t : 0 < |t| < Sy ,

(*)

To see this, define

If z G D,

f(xo+tz)-f(xo) < E.

F t { y ) =

\Ft(z) - f'(xo)(z)\ < \Ft(z) - Ft(y)\

+ \Ft(y)-f'(x0)(y)\
+ \f'M(y)-f'(xo)(z)\

= Aj + A2 + A3.

For Ai,

\Ft{z) - Ft(y)\ =
f(x0 + tz) - f(x0 + ty)

and since / is locally Lipschitz, there is a neighbourhood U\ of 0 and a 6\ > 0 such
that for all z G y + tfi for all t: 0 < |t| < St,

/(»o + fy) - / (z0 -(- tz)
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For A2, since / is Gateaux differentiable at x0 there is a S2 > 0 such that for all

For A s , since f'(x0) is linear, | / '(xo)(y) - f'(xo){z)\ = \f'(xo)(y - z)\; by continuity
there is a neighbourhood E/j of 0 such that for all z G y + l/j ,

Choose Sy = min{^1,^2} and Uy = Ui H Us, to confirm (•).

To establish convergence uniformly on M, for each y € M, choose an open neigh-
bourhood Uy of y and Sy > 0 satisfying (*). The family U = {Uy : y € M} is an open
covering of M, and since M is compact, a finite subset of U, say {Uyi, Uyj,... Uym},

covers M ; let 6 = min {6Vi : i — 1,2,. . . , m } .

For all y € M , for all t : 0 < |f| < S,

f{xo+tz)-f{xo)

which proves that / is Hadamard differentiable at x0 . D

THEOREM 3 . 2 . Let X be a topological linear space in which all bounded subsets
are relatively compact and f a reaZ valued function on a nonempty open subset D of
X. Frechet and Hadamard differentiability coincide for f.

PROOF: Suppose that M is a bounded set in X and that / is Hadamard differ-
entiable at xo E D. Since the closure of a bounded set is bounded, we will assume
without loss of generality that M is closed. Then by hypothesis M is compact, so we
have uniform convergence of the difference quotient on M as required. D

Theorem 3.3 is a consequence of Theorems 3.1 and 3.2.

THEOREM 3 . 3 . If X is a topological linear space in which bounded subsets are
relatively compact, and if f is a real valued locally Lipschitz function on a nonempty
open subset D of X, then for f, Frechet and Gateaux differentiability coincide.

Since continuous convex functions are locally Lipschitz, a continuous convex func-
tion defined on a nonempty open convex subset of a space in which bounded subsets
are relatively compact, Frechet and Gateaux differentiability coincide.

THEOREM 3 . 4 . Montel Frechet spaces are ASP.

PROOF: Frechet spaces are Baire and Montel Frechet spaces are separable ([9],
p.370), so the conclusion follows from 2.1 and 3.3. D
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EXAMPLES 3.5. The spaces C°°(R) and "H{D) defined in 2.2 are Montel Frechet spaces
and so are ASP.

FINITE DIMENSIONAL SPACES. A normed space has bounded sets relatively compact if
and only if it is finite dimensional; so Frechet and Gateaux differentiability coincide for
locally Lipschitz functions on finite dimensional normed spaces. This, combined with
the generalisation of Mazur's Theorem, 2.1, provides another proof of the well known
fact that finite dimensional normed linear spaces are ASP.

4. VARYING THE TOPOLOGY

It is well known that differentiability properties of real valued functions on a normed
linear space are invariant for equivalent norms, that is, these properties depend only on
the topology. For a general topological linear space, it is relevant to ask how a change
of topology affects the classification of the space. The answer is more dramatic than
one might anticipate!

First we show how some differentiability properties relative to one topology are
retained relative to any weaker topology. It is easier to prove that a space is GDS or
FDS than WASP or ASP, since a Gg set in the given topology is not necessarily Gg in
a weaker topology.

THEOREM 4 . 1 . Suppose that 7 i , T2 are linear topologies on a linear space X

such that T\ is at least as strong as T2. Whenever (X,Ti) is GDS, so is (X,T2).

PROOF: Let / : X —* R be convex and 72-continuous on a 72-open convex subset
U of X. Then U is 71-open and / is 7i-continuous on U, so there is a T\ -dense
subset Df of J7, on which / is 71-Gateaux differentiate; and Df is 7^-dense in U.
Since / is 7i-Gateaux differentiate on Df, it remains only to show that f'(x0) is
^-continuous, but this is an easy consequence of the convexity of / and the fact that
/ is ^-continuous at XQ . D

THEOREM 4 . 2 . Suppose that 7̂  and T2 are again linear topologies on the linear
space X such that T\ is at least as strong as T2 and further that the 7i- and 72-
bounded sets coincide. Whenever (X,7i) is FDS, so is (X,T2).

PROOF: Suppose / : X —> R is convex and T2-continuous on a 7^-open convex
subset U. Then U is 7i-open, / is 7i-continuous and is 7i-Frechet differentiable on a
T^-dense, hence 7^-dense, set Df in U. Since / is 7^-Gateaux differentiable on Df, the
proof of Theorem 4.1 assures us that at each Xo £ Df the derivative is 72-continuous
and from the hypothesis that 7i- and 72-bounded sets coincide we conclude that / is
Ti-Frechet differentiable on Df. D

(Recall that the 71- and T2- bounded sets coincide whenever T\ and T2 generate
the same dual.)
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5. WEAK TOPOLOGIES

If A is a total subset of the algebraic dual of a linear space X, the weak topology

on X, a(X,A), is generated by the family of seminorms Q = {qa} denned by

qa{x)= sup \(x*,x)\

where G ranges over all finite subsets of the linear span of A.

Convex functions which are continuous on a topological linear space with a weak

topology have unexpectedly strong differentiability properties.

THEOREM 5 . 1 . Let X be a. linear space and let A be a total subset of the
algebraic dual of X. Consider X with the weak topology <r(X, A), let p be a continuous
seminorm on X, and let N be the null space of p. Then X/N is finite dimensional.

PROOF: Since p is continuous and convex, p is locally Lipschitz on X, that is, if
x G X there exist an open convex subset D of X, qp G Q and k ^ 0 such that, for all
xi,x2 G D,

(*) \p(xi) - p{x2)\ <: kqF(Xl - x2).

Hence if <7F(*I — x2) = 0 then p(zi) = p(x2)-

Let Np be the null space of qp; if x is in Np > 9F(X) = 0, hence from (*) p(x) = 0
and x e N; thus Np C N.

Since F is a finite subset of the linear span of A, F is of the form

F = {x*i G A : i < n}

and it follows that

Without loss of generality we will assume that the xf's are linearly independent.
Hence there exist i ; £ l such that {x\,Xj) = 6{j ([14], Chapters 2, 5); consider the
map x i-» ({x\,x), (x2,x),... (x^,x)) to see that X/NF is finite dimensional. Since NF

is a subset of N, X/N is finite dimensional. D

In Theorem 5.2 similar methods are used to give an analogous result for any con-
tinuous convex function. The following lemma, which is an easy consequence of the
convexity inequalities, will be needed.

LEMMA. Let X be a linear space, W a linear subspace of X, U a nonempty
convex subset of X, x G X, f : U —> R convex and x + W C U. If f is bounded above
on x + W then f is constant on x + W.
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PROOF: Since W is a linear subspace of X, for all w £ W, for all r e R, rw G W,

and x + W C U so x+rw 6 17. Choose m 6 R such that for all to € W , / ( z + to) ^ m.
By convexity of / , for all a E (0,1) , for all ueW,

-a(m - /(*)) ^ / (* + an) - /(x) ^a(m- / (x)) .

Let « = 7 and u = rw; for all r > 1, for all w 6 W,

- (m - /(*)) ^ r (/(x + w) - /(*)) < (m - / (*)) .

If /(x + to) — /(x) ^ 0, taking r sufficiently large provides a contradiction. D

NOTATION. For the rest of Section 5, X is a topological space with the weak topology
a(X,A) generated by A, a total subset of the algebraic dual of X. For each finite
linearly independent subset F of A, and each e > 0, define V(F,e) by

V(F,e) = {xeX:\(x*,x)\<e, x* G F}.

The V(F, e) form a neighbourhood base at the origin. Denote the cardinality of F by
\F\ and let {ex* : x* € -F} be a basis for RlFl. Define 2> : * -» RlFl by

The map Tp is continuous, open and onto.

THEOREM 5 . 2 . Let f be a continuous real valued convex function on a nonempty
open convex subset U of X. There is a finite linearly independent subset F of A such
that, for each finite linearly independent superset H of F, there exists a continuous
convex map fjj : Tn [17] —+ R for which

f = fH° TH;

TH[U] is a convex, nonempty, open subset of

PROOF: Let x0 € U; since / is continuous at x0,

/ ' ' [ / ( s o ) + (-1,1)]

is open and contains x0 , so there exist a finite linearly independent subset F of A, and
an e > 0, such that

x0 + V(F, e) C ( r 1 [/(x0) + (-1,1)] D V) C U.
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If H is any finite linearly independent superset of F then

V{H,e) C V(F,e)

so / is bounded on xo+W, where W denotes H*-. Let x 6 U. Since U is open there
exists t > 0 such that

z = (1 + t)x - tx0 e U;

that is

Let w £ W and let w' = —-—w, then w' €W and «0 + v>' G i/; w = w', and

t .
X + W = X + T-Tl1"

since U is convex, x + w £ U. Hence x + Wc U.
Also,

where M = f(xo) + 1, so / is bounded on x + W.
From the preceding lemma, since / is continuous and convex, and bounded on

x + W CU, f is constant on x + W, that is for all w G W,

f(x+w) = f(x).

If X/W is identified with RlHl then TH(x) = x + W, fH : U/W -> R defined by
+ W) = f(x) is a well defined function and

f(x) = (fHoTH)(x);

further, fn is continuous (since TJJ is open, continuous and onto) and convex. D
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REMARK 5.3. Using the notation of 5.2, / is Gateaux differentiable at x 6 U if and
only if fH is Gateaux differentiable at 2 H ( X ) ; if / « is Frechet differentiable at 2W(z)
then / is Frechet differentiable at x.

The reverse implication for Frechet differentiability requires additional conditions.
For example it suffices that TH is bound covering, that is, for each bounded set B in
RlHl there exists a bounded set M in X such that TH[M] D B. (This concept was
suggested to me by Prof I Namioka.)

THEOREM 5 . 4 . In a topological linear space with a weak topology, Gateaux and
Frechet differentiability coincide for continuous convex functions. (This was shown to
me by Dr. R. Eyland.)

PROOF: Using the same notation, let / be a continuous convex function on U

and let x € U be a Gateaux differentiability point of / . By 5.2 there exist F and fp

such that f — fp o Tp. From 5.3, Tp(x) is a Gateaux differentiability point of fp;
since R'^l is finite dimensional, from 3.6 Tp[x) is a Frechet differentiability point of
fp. Using 5.3 again, x is a Frechet differentiability point of / . D

For the dual of a Banach space with the weak* topology, and for a reflexive Banach
space with the weak topology, Theorem 5.4 can also be seen as a consequence of Theorem
3.3.

THEOREM 5 . 5 . Any topological linear space X with a weak topology is ASP.

PROOF: It suffices to show that X is WASP (5.4). Again using the same notation,
let / be a continuous convex function on U. From 5.2 there exists a finite linearly
independent subset F of A such that / = fpoTp. Since R| F | is WASP, /j? is
Gateaux differentiable on a dense G$ subset G of Tp[U). It follows from 5.3 that
the set of Gateaux differentiability points of / is Tj^fG] and the continuity of Tp

guarantees that this set is a G$ subset of U.

It remains to show that Tp"x[G] is dense in U. Let x £ U and let Nx be a
neighbourhood of x in X. There exist a finite linearly independent subset H of A,

and an £ > 0, such that

x + V(H,e)cNt.

Without loss of generality, assume that F C B. Denote by B(e) the "e-box" round
T/f(x) in RlH' , thatis,

B(e) = TH(x) -

From 5.2, / = fu ° TJI , and fn is Gateaux differentiable on a dense subset, say GH ,
of Tn[U], so GH H B(e) is nonempty.
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The set T^1[GH^B(e)] = T^1[GrH]nT^1[5(e)] is nonempty. Using 5.3, T^[GH]

is the set of Gateaux differentiability points of / , so T^IGH] = Tf1^]. Since
T^1 [B(e)] = x + V{H, e), Nx contains a point of Tf1 [G]. D

EXAMPLES 5.6. Any Banach space with its weak topology is ASP; the dual of a Banach
space with the weak or weak* topology is ASP. The space l\ with its norm topology
is not FDS ([13], 1.14); with its weak topology, or, when considered as the dual of c0,
its weak* topology, i\ is ASP. Perhaps the most striking example is 1^, which with
its norm topology is not even GDS ([13], 1.21), but with its weak or weak* topology
is ASP.

It is an interesting question which convex functions are continuous on a Banach
space with its weak topology: Theorem 5.2 shows that such functions factor through
Rn, for some n.

6. THE INDUCTIVE LIMIT TOPOLOGY

Consider a family of locally convex spaces, {Xy = 7 6 F}, where for each 7, X7

is a subspace of a linear space X and such that their union spans X. The strongest
locally convex topology on X for which each of the injection maps

iy : X7 -> X

is continuous is the inductive limit topology on X\ a base of neighbourhoods at 0 for
this topology is the set of convex subsets U of X such that for each 7, i~x{JJ) is a
neighbourhood of 0 in Xy.

The interesting problem of whether the inductive limit of Asplund Spaces is itself
an Asplund space was suggested to me by Dr. S. Yamamuro. From the following
example we conclude that the inductive limit of Asplund Spaces need not even be a
Gateaux Differentiability Space.

EXAMPLE 6.1. Let /C(N) be the set of real valued functions of finite support on N.
For each n £ N , define /Cn(N) by

/Cn(N) = {xe /C(N) : the support of x C {0,1,2,.. .n}}.

Each /Cn(N) is finite dimensional. Consider each /Cn(N) with its unique norm topology
and £(N) with the inductive limit topology induced by the family {£n(N) : n £ N}.

Each £n(N) is ASP, from Theorem 3.6. Let / be the £x norm on /C(N); / is con-
tinuous as a norm on ^ , hence as a function restricted to /C(N) it is a fortiori continuous
for this stronger topology, and is Gateaux differentiable at x = (xi,x2,x3>...) 6 l i ,
if and only if each coordinate x, is nonzero (this follows using the method of proof of
[13] 1.4(b)). Hence / is nowhere Gateaux differentiable on £(N).
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