A Remark on a Modular Analogue of the Sato-Tate Conjecture

Wentang Kuo

Abstract

The original Sato-Tate Conjecture concerns the angle distribution of the eigenvalues arising from non-CM elliptic curves. In this paper, we formulate a modular analogue of the Sato-Tate Conjecture and prove that the angles arising from non-CM holomorphic Hecke eigenforms with non-trivial central characters are not distributed with respect to the Sate-Tate measure for non-CM elliptic curves. Furthermore, under a reasonable conjecture, we prove that the expected distribution is uniform.

1 Introduction

Let E be an elliptic curve over (\mathbb{O}) and Δ_{E} the discriminant of E. For a rational prime p, coprime to Δ_{E}, define

$$
N_{p}=p+1-a_{p}=\left|E\left(\mathbb{F}_{p}\right)\right|
$$

where $E\left(\mathbb{F}_{p}\right)$ is the set of rational points of E defined over the finite field \mathbb{F}_{p} and $\left|E\left(\mathbb{F}_{p}\right)\right|$ is the cardinality of $E\left(\mathbb{F}_{p}\right)$. For a rational prime $p \nmid \Delta_{E}$, a result of Hasse [13, Theorem 1.1] states that

$$
\left|a_{p}\right| \leq 2 p^{1 / 2}
$$

Thus, we can write

$$
a_{p}=2 p^{1 / 2} \cos \theta_{p}
$$

for a uniquely defined angle θ_{p} satisfying $0 \leq \theta_{p}<\pi$. A natural question to ask is how θ_{p} distributes in the interval $[0, \pi]$. For elliptic curves with complex multiplication, the answer to this question is well known [9]. On the other hand, for elliptic curves without complex multiplication, the problem remains open until today. Sato and Tate independently conjectured that

$$
\lim _{x \rightarrow \infty} \frac{1}{\pi(x)} \cdot \#\left\{p: p \leq x, \theta_{p} \in(\alpha, \beta)\right\}=\left(\frac{1}{\pi} \int_{\alpha}^{\beta} 2 \sin ^{2} \theta d \theta\right)
$$

where $\pi(x)$ is the number of primes less than or equal to x. It is called the Sato-Tate conjecture and it has many classical origins. For instance, it is related to how often a quadratic form is a prime in a certain region [4] and the distribution of primes in quadratic progressions [8].

We can also extend this conjecture to modular forms. Let

$$
\mathcal{H}=\{z \in \mathbb{C}, \operatorname{Im}(z)>0\}, \quad \mathcal{H}^{*}=\mathcal{H} \cup \text { cusps }
$$

[^0]be the upper half plane and the upper half plane with cusps, respectively. Let Γ be a modular group.

Definition 1.1 Let ω be a non-trivial primitive Dirichlet character. A (holomorphic) Hecke eigenform f of Γ with the Nebentypus ω is a complex valued function on \mathcal{H}^{*} satisfying
(i) There is an integer $k \geq 0$ such that for each $\gamma=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \Gamma$ we have the modular transformation law $f(\gamma z)=\omega(d)(c z+d)^{k} f(z)$.
(ii) The function f is holomorphic on \mathcal{H} and extends holomorphically to every cusp of Γ. It also vanishes on cusps.
(iii) By (i), we have the Fourier expansion

$$
f(z)=\sum_{n=1}^{\infty} a_{n} e^{2 \pi i n z}
$$

Define the L-function $L(s, f)$ of f as

$$
L(s, f)=\sum_{n=1}^{\infty} a_{n} \cdot n^{-s}
$$

Let \mathcal{P} be the set of rational primes. Then there is a finite subset $\mathcal{P}(f)$ of \mathcal{P} such that

$$
L(s, f)=\prod_{p \in \mathcal{P} \backslash \mathcal{P}(f)}\left(1-a_{p} p^{-s}+\omega(p) p^{k-1} p^{-2 s}\right)^{-1} \prod_{p \in \mathcal{P}(f)} l_{p}(s)^{-1}
$$

where $l_{p}(s)$ are polynomials in p^{-s} with $l_{p}(0) \neq 0$. In other words, f admits an Euler product.
We denote by $H(\Gamma, \omega)$ the set of all Hecke eigenforms of Γ with the Nebentypus ω.
The Ramanujan conjecture on $H(\Gamma, \omega)$ can be stated as follows:
Conjecture 1.2 (Ramanujan) For each $f \in H(\Gamma, \omega)$, we can rewrite the Euler product as

$$
L(s, f)=\prod_{p \in \mathcal{P} \backslash \mathcal{P}(f)}\left(1-\alpha_{p} \cdot p^{(k-1) / 2} p^{-s}\right)^{-1}\left(1-\beta_{p} \cdot p^{(k-1) / 2} p^{-s}\right)^{-1} \prod_{p \in \mathcal{P}(f)} l_{p}(s)^{-1}
$$

where α_{p} and β_{p} are the roots of the quadratic polynomial $x^{2}-\left(a_{p} / p^{(k-1) / 2}\right) x+\omega(p)$. Then $\left|\alpha_{p}\right|=\left|\beta_{p}\right|=1$.

The above conjecture is proved by Deligne [1]. Therefore, for each $f \in H(\Gamma, \omega)$, we have $\left|\alpha_{p}\right|=\left|\beta_{p}\right|=1$ for all rational primes $p \in \mathcal{P} \backslash \mathcal{P}(f)$. Since $\left|\alpha_{p}\right|=\left|\beta_{p}\right|=1$, we can write α_{p} and β_{p} as polar forms

$$
\alpha_{p}=e^{i \theta_{p}}, \quad \beta_{p}=e^{i \psi_{p}}, \quad 0 \leq \theta_{p}, \psi_{p}<2 \pi
$$

The question now is how θ_{p}, ψ_{p} distribute on $[0,2 \pi]$.

2 Distributions and L-Functions

Definition 2.1 ([10, Appendix to Ch. 1]) Let X be a compact topological space and $C(X)$ the set of all continuous functions on X. Let S be a sequence $\left\{x_{i}\right\}_{i \in I} \subseteq X$ with the index set I equipped with a norm map $N: I \rightarrow \mathbb{N}$ satisfying the property that for all $n \in \mathbb{N}, N^{-1}(n)$ is a finite set. For all positive real numbers x, define

$$
\mathcal{N}^{S}(x):=\{i \in I \mid N(i) \leq x\}
$$

Let μ be a distribution on X and for all $g \in C(X)$, define

$$
\mu_{x}(g):=\frac{1}{\left|\mathcal{N}^{S}(x)\right|} \sum_{i \in \mathcal{N}^{s}(x)} g\left(x_{i}\right)
$$

We say that S is distributed with respect to a distribution μ on X, if for all $g \in C(X)$

$$
\lim _{x \rightarrow \infty} \mu_{x}(g)=\mu(g)
$$

In our case, $X=S^{1} \cong \mathbb{R} / 2 \pi$. We have the following handy criterion [10, Corollary 2, Appendix to Chapter 1]:

Theorem 2.2 (Generalized Weyl Criterion) Let f be a piece-wise continuous function on \mathbb{R} of period 2π whose the Fourier expansion is

$$
f(\theta)=\frac{1}{2 \pi} \sum_{m=-\infty}^{m=\infty} c_{m} e^{-i m \theta}, \quad \text { and } \quad \sum_{m=-\infty}^{m=\infty}\left|c_{m}\right|^{2}<\infty
$$

Let S be a sequence $\left\{x_{i}\right\}_{i \in I}$ of real numbers between 0 and 2π with a norm map $N: I \rightarrow \mathbb{N}$. Then S is distributed with respect to a distribution $\int f(\theta) d \theta$ if and only if for all $m \in \mathbb{Z}, x \in \mathbb{R}^{+}$,

$$
\sum_{i \in \mathcal{N}^{S}(x)} e^{i m x_{i}}=c_{m}\left|\mathcal{N}^{S}(x)\right|+\mathbf{o}\left(\left|\mathcal{N}^{S}(x)\right|\right)
$$

as x tends to infinity. In particular, if all $c_{m}=0$ except for $m=0$, then S is distributed with respect to the standard Lebesgue measure. In this case, we say that S is uniformly distributed.

Let f be a Hecke eigenform with a non-trivial Nebentypus ω and

$$
S_{f}=\left\{\theta_{p}, \psi_{p}\right\}_{p \in \mathcal{P} \backslash \mathcal{P}(f)}
$$

the set of angles arising from f, with the index set

$$
\bigcup_{p \in \mathcal{P} \backslash \mathcal{P}(f)}\{p, p\},
$$

and the natural norm map N defined by

$$
N(p)=p
$$

Thus, studying the distribution of S_{f} is equivalent to studying the asymptotic behavior of

$$
A^{m}(x)=\sum_{\substack{p \leq x \\ p \in \mathcal{P} \backslash \mathcal{P}(f)}}\left(e^{i m \theta_{p}}+e^{i m \psi_{p}}\right)=\sum_{\substack{p \leq x \\ p \in \mathcal{P} \backslash \mathcal{P}(f)}}\left(\alpha_{p}^{m}+\beta_{p}^{m}\right)
$$

where m is an integer. Note that

$$
A^{-m}(x)=\sum_{\substack{p \leq x \\ p \in \mathcal{P} \backslash \mathcal{P}(f)}}\left(e^{-i m \theta_{p}}+e^{-i m \psi_{p}}\right)=\overline{\sum_{\substack{p \leq x \\ p \in \mathcal{P} \backslash \mathcal{P}(f)}}\left(e^{i m \theta_{p}}+e^{i m \psi_{p}}\right)}=\overline{A^{m}(x)} .
$$

Therefore, we only need to consider the case when $m \geq 0$. We need the following lemma.

Lemma 2.3 Let $F(s)$ be a Dirichlet series of the Euler product

$$
F(s)=\prod_{p \in \mathcal{P} \backslash \mathcal{G}}\left(\prod_{i=1}^{m}\left(1-\alpha_{p}^{(i)} \cdot p^{-s}\right)^{-1}\right), \quad\left|\alpha_{p}^{(i)}\right|=1
$$

where \mathcal{G} is a finite subset of rational primes. If $F(s)$ has an analytic continuation to $\operatorname{Re}(s) \geq 1$ and is non-vanishing at $\operatorname{Re}(s)=1$, then

$$
\sum_{\substack{p \leq x \\ p \in \mathcal{P} \backslash \mathcal{G}}}\left(\sum_{i=1}^{m} \alpha_{p}^{(i)}\right)=\mathbf{o}(\pi(x)) .
$$

Proof Consider $F^{\prime}(s) / F(s)=(\log F(s) t)^{\prime}$.

$$
\begin{aligned}
-F^{\prime}(s) / F(s) & =-(\log F(s))^{\prime} \\
& =-\left(\sum_{p \in \mathcal{P} \backslash \mathcal{G}}\left(\sum_{i=1}^{m} \log \left(1-\alpha_{p}^{(i)} \cdot p^{-s}\right)\right)\right)^{\prime} \\
& =\sum_{p \in \mathcal{P} \backslash \mathcal{G}}\left(\sum_{i=1}^{m}\left(\sum_{k=1}^{\infty} k\left(\alpha_{p}^{(i)}\right)^{k}(\log p) p^{-k s}\right)\right) .
\end{aligned}
$$

Using the condition $\left|\alpha_{p}^{(i)}\right|=1$ to estimate the term for $k \geq 2$ and applying a Tauberian theorem, we obtain our result.

Let $\mathbb{A}_{\mathbb{Q}}$ be the ring of adeles of $\left(\mathbb{O}\right.$. Let $\pi=\bigotimes_{p} \pi_{p}$ be a cuspidal representation of $\mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$ with central character ω_{π}. Fix a positive integer m, and let

$$
\operatorname{Sym}^{m}: \mathrm{GL}_{2}(\mathbb{C}) \rightarrow \mathrm{GL}_{m+1}(\mathbb{C})
$$

be the m-th symmetric power representation of $\mathrm{GL}_{2}(\mathbb{C})$ on symmetric tensors of rank m (cf. [11, 12]). By the local Langlands correspondence, $\operatorname{Sym}^{m}\left(\pi_{p}\right)$ is well defined for every p. The Langlands functoriality in this case is equivalent to the fact that $\operatorname{Sym}^{m}(\pi)=\bigotimes_{p} \operatorname{Sym}^{m}\left(\pi_{p}\right)$ is an automorphic representation of $\mathrm{GL}_{m+1}\left(\mathbb{A}_{\mathbb{Q}}\right)$. Let $\mathcal{P}(\pi)$ be the set of places where π is ramified. One can define the L-function $L(s, \pi)$ associated to π as follows:

$$
L(s, \pi)=\prod_{p \in \mathcal{P} \backslash \mathcal{P}(\pi)}\left(1-\alpha_{p} p^{-s}\right)^{-1}\left(1-\beta_{p} p^{-s}\right)^{-1} \prod_{p \in \mathcal{P}(\pi)} h_{p}(s)^{-1}
$$

where $l_{p}(s)$ are polynomials in p^{-s} with $l_{p}(0) \neq 0$. Then it follows that

$$
L\left(s, \operatorname{Sym}^{m}(\pi)\right)=\prod_{p \in \mathcal{P} \backslash \mathcal{P}(\pi)} \prod_{i=0}^{m}\left(1-\alpha_{p}^{m-i} \beta_{p}^{i} p^{-s}\right)^{-1} \prod_{p \in \mathcal{P}(\pi)} g_{p}(s)^{-1}
$$

where $g_{p}(s)$ are polynomials in p^{-s} with $g_{p}(0) \neq 0$.

Remarks 1

(1) The generalized Ramanujan conjecture predicts that if π is a cuspidal representation of $\mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$, then for all $p \in \mathcal{P} \backslash \mathcal{P}(\pi),\left|\alpha_{p}\right|=\left|\beta_{p}\right|=1$.
(2) Let ω be a non-trivial primitive Dirichlet character. By Deligne [1], for any $f \in H(\Gamma, \omega), f$ is attached to a cuspidal representation π of $\mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}_{2}}\right)$ such that $L(s, f)=L(s, \pi)$.

3 Main Theorems

Definition 3.1 Let f be a Hecke eigenform with the Nebentypus ω, where ω is a non-trivial primitive character. We say that f is non-CM if there is no Grössencharacter χ such that $L(s, \chi)$ is equal to $L(s, f)$.

As in the case of elliptic curves, we consider only those f 's which are non-CM. Now we can state and prove our theorems.

Theorem 3.2 Let f be a non-CM Hecke eigenform with the Nebentypus ω, for a nontrivial primitive character ω. Then the sequence $S_{f}=\left\{\theta_{p}, \psi_{p}\right\}_{p \in \mathcal{P} \backslash \mathcal{P}(f)}$ is not distributed with respect to the Sato-Tate measure $(1 / 2 \pi) \int 2 \sin ^{2} \theta d \theta$.

Remark 2 Note that in the original Sato-Tate conjecture, the values of the sequences are between 0 and π. However, in our setting, those are between 0 and 2π. Therefore, the corresponding Sato-Tate measure is $(1 / 2 \pi) \int 2 \sin ^{2} \theta d \theta$.

Proof Suppose that S_{f} is distributed with respect to the Sato-Tate measure

$$
(1 / 2 \pi) \int 2 \sin ^{2} \theta d \theta
$$

Since $2 \sin ^{2} \theta=1-\cos 2 \theta$, and $\left|\mathcal{N}^{S_{f}}(x)\right|=2 \pi(x)+\mathbf{O}(1)$, we have

$$
A^{0}(x)=2 \pi(x)+\mathbf{o}(\pi(x)), \quad A^{1}(x)=\mathbf{o}(\pi(x)), \quad \text { and } \quad A^{2}(x)=-\pi(x)+\mathbf{o}(\pi(x))
$$

For $m=0$,

$$
A^{0}(x)=\sum_{\substack{p \leq x \\ p \in \mathcal{P} \backslash \mathcal{P}(f)}}\left(\alpha_{p}^{0}+\beta_{p}^{0}\right)=\left|\mathcal{N}^{S_{f}}(x)\right|=2 \pi(x)+\mathbf{O}(1)
$$

For $m=1$, let π be the cuspidal representation of $\mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$ attached to f. By $[3,5]$, $L(s, \pi)$ is entire and non-vanishing at $\operatorname{Re}(s)=1$. We can ignore the ramified places since there are only finitely many of them. Therefore, by Lemma 2.3,

$$
A^{1}(x)=\sum_{\substack{p \leq x \\ p \in \mathcal{P} \backslash \mathcal{P}(f)}} t\left(\alpha_{p}+\beta_{p}\right)=\mathbf{o}(\pi(x))
$$

For $m=2$, we claim first that π is not monomial, i.e., there is no non-trivial Grössencharacter η such that $\pi \otimes \eta \cong \pi$. If there is such a Grössencharacter η, then $\eta^{2}=1$ and η determines a quadratic extension E. According to [7], there is a Grössencharacter χ of E such that $L(s, \pi)=L(s, \chi)$, which is impossible since f is non-CM.

Since π is not monomial, by [2], $\operatorname{Sym}^{2}(\pi)$ is cuspidal. Therefore, by [3, 5], $L\left(s, \operatorname{Sym}^{2}(\pi)\right)$ is entire and non-vanishing at $\operatorname{Re}(s)=1$. Thus, by Lemma 2.3

$$
\sum_{\substack{p \leq x \\ p \in \mathcal{P} \backslash \mathcal{P}(f)}}\left(\alpha_{p}^{2}+\alpha_{p} \beta_{p}+\beta_{p}^{2}\right)=\mathbf{o}(\pi(x))
$$

Then

$$
\begin{aligned}
A^{2}(x) & =\sum_{\substack{p \leq x \\
p \in \mathcal{P} \backslash \mathcal{P}(f)}}\left(\alpha_{p}^{2}+\beta_{p}^{2}\right) \\
& =\sum_{\substack{p \leq x \\
p \in \mathcal{P} \backslash \mathcal{P}(f)}}\left(\alpha_{p}^{2}+\alpha_{p} \beta_{p}+\beta_{p}^{2}-\alpha_{p} \beta_{p}\right) \\
& =\mathbf{o}(\pi(x))-\sum_{\substack{p \leq x \\
p \in \mathcal{P} \backslash \mathcal{P}(f)}} \omega(p) .
\end{aligned}
$$

By classical theorems, $L(s, \omega)$ is entire and non-vanishing at $\operatorname{Re}(s)=1$. Thus, applying Lemma 2.3, we get

$$
A^{2}(x)=\mathbf{o}(\pi(x))-\sum_{\substack{p \leq x \\ p \in \mathcal{P} \backslash \mathcal{P}(f)}} \omega(p)=\mathbf{o}(\pi(x)) \neq-\pi(x)+\mathbf{o}(\pi(x)) ;
$$

it contradicts the fact that $A^{2}(x)=-\pi(x)+\mathbf{o}(\pi(x))$ if the set $\left\{\theta_{p}, \psi_{p}\right\}$ distributes with respect to the Sato-Tate measure. This completes the proof of the theorem.

Now it is natural to ask what is the expected distribution of the sequence $S_{f}=$ $\left\{\theta_{p}, \psi_{p}\right\}_{p \in \mathcal{P} \backslash \mathcal{P}(f)}$ arising from a Hecke eigenform f with non-trivial Nebentypus. We need the following lemma.

Lemma 3.3 Let $\pi=\bigotimes_{p} \pi_{p}$ be a cuspidal automorphic representation of $\mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$ with central character ω_{π}. For two positive integers m and n, define

$$
S^{m}(x)=\sum_{\substack{p \leq x \\ p \in \mathcal{P} \backslash \mathcal{P}(\pi)}} \sum_{i=0}^{m} \alpha_{p}^{m-i} \beta_{p}^{i}, \quad \text { and } \quad \tilde{S}^{n}(x)=\sum_{\substack{p \leq x \\ p \in \mathcal{P} \backslash \mathcal{P}(\pi)}} \omega(p)\left(\sum_{i=0}^{n} \alpha_{p}^{n-i} \beta_{p}^{i}\right)
$$

Assume that the L-functions $L\left(s, \operatorname{Sym}^{m}(\pi)\right)$ and $L\left(s, \operatorname{Sym}^{n}(\pi) \otimes \omega_{\pi}\right)$ have analytic continuation for $\operatorname{Re}(s) \geq 1$, and are non-vanishing for $\operatorname{Re}(s) \geq 1$. Then

$$
S^{m}(x)=\mathbf{o}(\pi(x)), \quad \tilde{S}^{n}(x)=\mathbf{o}(\pi(x))
$$

Proof It is an application of Lemma 2.3. Note that we can ignore the contribution from ramified places.

Then we have the following theorem.
Theorem 3.4 Let π be a cuspidal representation of $\mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$ which satisfies the Ramanujan conjecture. Assume that for all positive integers m, the L-functions

$$
L\left(s, \operatorname{Sym}^{m}(\pi)\right) \quad \text { and } \quad L\left(s, \operatorname{Sym}^{m}(\pi) \otimes \omega\right)
$$

have analytic continuation for $\operatorname{Re}(s) \geq 1$, and are non-vanishing for $\operatorname{Re}(s) \geq 1$. Then the sequence $S_{f}=\left\{\theta_{p}, \psi_{p}\right\}_{p \in \mathcal{P} \backslash \mathcal{P}(\pi)}$ is uniformly distributed.

Proof According to Theorem 2.2, we need to prove $c_{0}=1$ and $c_{m}=0$ for all positive integers m 's. For c_{0}, we have

$$
A^{0}(x)=\sum_{\substack{p \leq x \\ p \in \mathcal{P} \backslash \mathcal{P}(\pi)}}\left(\alpha_{p}^{0}+\beta_{p}^{0}\right)=1 \cdot\left|\mathcal{N}^{S_{f}}(x)\right| .
$$

Thus, $c_{0}=1$.

For $m=1$, by $[3,5], L(s, \pi)$ is entire and non-vanishing at $\operatorname{Re}(s)=1$. By Lemma 2.3,

$$
A^{1}(x)=\sum_{\substack{p \leq x \\ p \in \mathcal{P} \backslash \mathcal{P}(\pi)}}\left(\alpha_{p}+\beta_{p}\right)=\mathbf{o}(\pi(x))=\mathbf{o}\left(\left|\mathcal{N}^{S_{f}}(x)\right|\right)=0 \cdot\left|\mathcal{N}^{S_{f}}(x)\right|+\mathbf{o}\left(\left|\mathcal{N}^{S_{f}}(x)\right|\right) .
$$

It implies that $c_{1}=0$.
For $m=2$, by our assumption, $L\left(s, \operatorname{Sym}^{2}(\pi)\right)$ has analytic continuation for $\operatorname{Re}(s) \geq 1$, non-vanishing at $\operatorname{Re}(s)=1$. Therefore, by Lemma 2.3,

$$
A^{2}(x)=\sum_{\substack{p \leq x \\ p \in \mathcal{P} \backslash \mathcal{P}(\pi)}}\left(\alpha_{p}^{2}+\beta_{p}^{2}\right)=\mathbf{o}(\pi(x))=\mathbf{o}\left(\left|\mathcal{N}^{S_{f}}(x)\right|\right)
$$

We obtain $c_{2}=0$. Now we consider $m \geq 3$. We have the following identity

$$
a^{m}+b^{m}=\sum_{i=0}^{m} a^{m-i} b^{i}-\sum_{i=1}^{m-1} a^{m-i} b^{i}=\sum_{i=0}^{m} a^{m-i} b^{i}-a b \sum_{i=0}^{m-2} a^{m-2-i} b^{i}
$$

Therefore, for $m \geq 3$

$$
A^{m}(x)=S^{m}(x)-\tilde{S}^{m-2}(x)=\mathbf{o}(\pi(x))=\mathbf{o}\left(\left|\mathcal{N}^{S_{f}}(x)\right|\right)
$$

This completes the proof of the theorem.
It is widely believed that the Ramanujan conjecture is true for cuspidal representations of $\mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$. However, the assumption in Theorem 3.4 is not always true. For instance, by [6], there is a cuspidal representation of $\mathrm{GL}_{2}\left(\mathbb{A}_{\mathrm{O})}\right)$ such that the L-functions of its symmetric powers might have poles at $s=1$. Yet, for the L-functions attached to Hecke eigenforms, it is expected to be true. More precisely,

Conjecture 3.5 Let π be a cuspidal automorphic representation of $\mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$ attached to a Hecke eigenform with the Nebentypus ω_{π}. Then for all positive integer m, the L-functions $L\left(s, \operatorname{Sym}^{m}(\pi)\right)$ and $L\left(s, \operatorname{Sym}^{n}(\pi) \otimes \omega_{\pi}\right)$ have analytic continuation for $\operatorname{Re}(s) \geq 1$, and are non-vanishing for $\operatorname{Re}(s) \geq 1$.

Combining Theorem 3.4 and the conjecture above, we have
Theorem 3.6 Let ω be a non-trivial primitive Dirichlet character and f a Hecke eigenform with the Nebentypus ω. Let π be a cuspidal automorphic representation of $\mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}_{2}}\right)$ attached to f. Assume that for all positive integers m, the L-functions $L\left(s, \operatorname{Sym}^{m}(\pi)\right)$ and $L\left(s, \operatorname{Sym}^{m}(\pi) \otimes \omega\right)$ have analytic continuation for $\operatorname{Re}(s) \geq 1$, and are non-vanishing for $\operatorname{Re}(s) \geq 1$. Then the sequence $S_{f}=\left\{\theta_{p}, \psi_{p}\right\}_{p \in \mathcal{P} \backslash \mathcal{P}(f)}$ is uniformly distributed.

We conclude this paper with several remarks.
(1) Our results can be extended to any number field.
(2) The Ramanujan conjecture in Theorem 3.4 is a part of the Langlands program. It is conjectured to be held for any cuspidal representation of $\mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$.
(3) For Conjecture 3.5, the existence of the meromorphic continuation of L-functions for symmetric powers is also a part of the Langlands program. Therefore, it is conjectured to be true in general. As we remarked before, the holomorphic condition on $\operatorname{Re}(s)=1$ is not true in general. However, a deeper conjecture predicts that if π is a cuspidal representation attached to a non-CM Hecke eigenform, then for all positive integers $n, \operatorname{Sym}^{n}(\pi)$ are cuspidal as well. This explains why it is a general belief that Conjecture 3.5 should be true even if it is not true in general.
(4) In the cases of non-CM elliptic curves, by [9], the assumption of non-vanishing can be removed. It should be possible to remove this assumption from Theorem 3.6. We plan to investigate it in future work.

4 Acknowledgment

I would like to thank Ram Murty for valuable discussions and comments about this work. This work was started during my stay at the Fields institute in 2003. I would like to thank the institute for their hospitality.

References

[1] P. Deligne, La conjecture de Weil. I. Inst. Hautes Études Sci. Publ. Math. 43(1974), 273-307.
[2] S. Gelbart and H. Jacquet, A relation between automorphic representations of GL(2) and GL(3). Ann. Sci. École Norm. Sup. (4) 11(1978), no. 4, 471-542.
[3] R. Godement and H. Jacquet, Zeta Functions of Simple Algebras. Lecture Notes in Mathematics 260, Springer-Verlag, Berlin, 1972.
[4] E. Hecke, Mathematische Werke. Springer-Verlag, Göttingen, 1959.
[5] H. Jacquet and J. Shalika, A non-vanishing theorem for zeta functions of GL_{n}. Invent. Math. 38(1976), no. 1, 1-16.
[6] H. Kim and F. Shahidi, Cuspidality of symmetric powers with applications. Duke Math. J. 112(2002), no. 1, 177-197.
[7] J.-P. Labesse and R. P. Langlands, L-indistinguishability for SL(2). Canad. J. Math. 31(1979), no. 4, 726-785.
[8] B. Mazur, Rational points of abelian varieties with values in towers of number fields. Invent. Math. 18(1972), 183-266.
[9] V. Kumar Murty, On the Sato-Tate conjecture. In: Number Theory Related to Fermat's Last Theorem Progr. Math. 26, Birkhauser, Boston, MA, 1982, pp. 195-205.
[10] J.-P. Serre, Abelian l-adic Representations and Elliptic Curves. Benjamin, New York, 1970.
[11] F. Shahidi, Third symmetric power L-functions for GL(2). Compositio Math. 70(1989), no. 3, 245-273.
[12] \longrightarrow, Symmetric power L-functions for GL(2). In: Elliptic Curves and Related Topics. CRM Proc. Lecture Notes 4, American Mathematical Society, Providence, RI, 1994, pp. 159-182.
[13] J. Silverman, The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics 106, Springer-Verlag, New York, 1986.

Department of Pure Mathematics
Faculty of Mathematics
University of Waterloo
Waterloo, ON
N2L 3G1
e-mail: wtkuo@math.uwaterloo.ca

[^0]: Received by the editors January 15, 2005.
 The author's research was partially supported by an NSERC grant.
 AMS subject classification: 11F03, 11F25.
 Keywords: L-functions, Elliptic curves, Sato-Tate.
 (C)Canadian Mathematical Society 2007.

