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IN EXPONENTIAL LÉVY MARKETS
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Abstract

In this paper, we discuss the problem of the pricing of American-style options in the
exponential Lévy security market model. This model is typically incomplete, and we
derive the explicit bounds of the interval of no arbitrage prices and the related optimal
stopping moments for American put options and American call options in both finite and
infinite horizon time. We consider a large class of Lévy processes.
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1. Introduction

In this paper we consider the traditional (B, S)-model of financial markets, in which a risky
asset (stock) St is defined as

St = S0 exp(Xt ),

with a constant initial price S0 and a Lévy return process Xt . There are a lot of papers where
the idea of Lévy distribution of returns is successfully based empirically (see Eberlein and
Keller (1995), Barndorff-Nielsen (1998), Eberlein and Prause (2002), and Carr et al. (2002)).
But the problem is that this model is usually incomplete. There typically exists a large set of
risk-neutral measures instead of the unique risk-neutral measure in complete cases, for example
in the Black–Scholes model, and a whole interval of no arbitrage prices goes here. The problem
of pricing in incomplete markets is obviously to characterize this interval somehow.

When European options are discussed, there are many works, both in discrete and continuous
time, on this topic. The upper and lower bounds of the interval of fair prices are derived. We
refer to Rüschendorf (2002) and Gushchin and Mordecki (2002) for results on this topic in
discrete time established by the Cox–Ross–Rubinstein model. Frey and Sin (1999) derived the
bounds for the stochastic volatility model. Bellamy and Jeanblanc-Picqué (2000) obtained the
trival upper and Black–Scholes lower prices of European call options for some special class
of jump-diffusion processes. See also Henderson and Hobson (2003). Lévy processes are
completely considered by Eberlein and Jacod (1997), for processes with vanishing continuous
part, and by Jakubénas (2002), for other types of processes. On this topic, see also Cherny and
Shiryaev (2002) and Selivanov (2004). For extensions of all mentioned results to the general
semimartingale framework, see Gushchin and Mordecki (2002) for the 1-risky asset model and
Bergenthum and Rüschendorf (2006) for the d-risky assets model.

For the case of American options, the results are much more limited. We can mention
only the papers Bellamy and Jeanblanc-Picqué (2000) and Ekström (2006), which considered
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a jump-diffusion model with Poisson jump measure and obtained the bounds based on the
American Black–Scholes pricing function for American options in finite time and for perpetual
American options respectively.

This paper deals with American options. We consider both American put options and
American call options in finite and infinite (i.e. perpetual options) horizon time models of
exponential Lévy markets. A large class of Lévy processes is discussed; in particular, both
purely discontinuous processes and the Lévy processes with nonnull Brownian part. The results
are given in the form of the bounds of intervals of no arbitrage prices and also optimal stopping
moments for them (see Theorem 1 and Theorem 2, below).

This paper is organized as follows. In Section 2, we introduce the necessary notation and
present our results; in Section 3, we provide the proofs of our results.

2. Results

As we mentioned above, our model has prices of nonrisky and risky assets given as

Bt = B0 exp(rt) and St = S0 exp(Xt ),

respectively, where B0 and S0 are constants, r > 0 is a risk-free interest rate, and X = (Xt )t≥0
is a Lévy process on some probability space with filtration (�, F , (Ft )t≥0, P). We denote
by (b, c, ν)H the triplet of characteristics of the process X taken with the truncation function
H(x) = x 1{|x|≤1} (where 1{·} denotes the indicator function), i.e.

EP[exp(iλXt )] = exp

(
t

(
iλb − cλ2

2
+

∫
R

(eiλx − 1 − iλH(x))ν(dx)

))
, λ ∈ R, (1)

where EP denotes the expectation with respect to P, ν({0}) = 0, and
∫

R

(x2 ∧ 1)ν(dx) < ∞.

Note here that the representation (1) can also take place with any other truncation function
h = h(x), but the first component of the triplet changes. That is, for two truncation functions
h and h′ we have the following for the first components of the triplets:

b(h) − b(h′) =
∫

R

(h(x) − h′(x))ν(dx).

Set

b̃ = b −
∫

R

H(x)ν(dx);

we can see that b̃ is not defined here if the following equalities both hold at the same time:

∫ 1

0
xν(dx) = ∞ and

∫ 0

−1
xν(dx) = −∞.

Also, we define a set of Lévy processes

S+ =
{
X ∼ (b, 0, ν)H : ν(−∞, 0) = 0, 0 <

∫ 1

0
xν(dx) < ∞

}
.
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On the pricing of American options in exponential Lévy markets 411

If X ∈ S+ has the first characteristic with respect to the zero truncation function b̃ ≥ 0, then
X is a subordinator (see e.g. Sato (1999, Theorem 21.5)). We can understand S+ as a set of
subordinators with drift. We also define

S− = {−X : X ∈ S+}.
In contrast to European contingent claims, American contingent claims can be exercised at

any moment of the life of a contract. For some K > 0, the American call option has payoffs
ft = (St − K)+, and the American put option has payoffs ft = (K − St )

+. If the set M(P) of
equivalent martingale measures is nonempty, then the upper (seller) and lower (buyer) prices
of such option are

V = sup
Q∈M(P)

sup
τ∈MT

0

B0 EQ

[
fτ

Bτ

]
= sup

Q∈M(P)

sup
τ∈MT

0

EQ[e−rτ fτ ]

and
V = inf

Q∈M(P)
sup

τ∈MT
0

EQ[e−rτ fτ ],

respectively, where we use a ‘martingale’ no arbitrage concept introduced by Sin (1996) and
Yan (1998). Here, MT

0 denotes the set of all stopping moments τ ∈ [0, T ] in the case of finite T

and the set of all τ ∈ [0, ∞) for perpetual options. On the definition of the low price, we refer
to Harrison and Kreps (1979, Section 7) or Kramkov (1996, Theorem 3.3), the usual property
V (f ) = −V (−f ), and the fact that if there is a unique martingale measure Q, to obtain

V = V = sup
τ∈MT

0

EQ[e−rτ f (Sτ )].

We denote the upper and lower prices of the American put option in finite horizon time by

V p and V p,

respectively, and we denote the upper and lower prices of the perpetual American put option by

V
∞
p and V ∞

p ,

respectively. For the American call option the equivalent terms are

V c, V c, V
∞
c , V ∞

c .

Next, for a measure Q ∈ M(P), we set

V (Q) = sup
τ∈MT

0

EQ[e−rτ fτ ]

for T ∈ [0, ∞]. We say that a stopping moment τQ is the V (Q)-optimal stopping moment if

V (Q) = EQ[exp(−rτQ)fτQ
]. (2)

Note that a τQ defined in this way is the optimal stopping moment for the buyer of the option
(see, for example, Shiryaev (1999, Section VI.2c)). We denote the optimal stopping moments
for the related upper and lower prices of put options and call options by

τT
p , τ T

p , τ∞
p , τ∞

p , τ T
c , τ T

c , τ∞
c , τ∞

c .
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Theorem 1. If X is not in S+ or S− and is not a Brownian motion with drift, then

V p = V
∞
p = K and V c = V

∞
c = S0.

The optimal stopping moments τT
p and τ∞

p do not exist. However, for any δ > 0, there exists
the δ-optimal stopping moment

τT
p (δ) = τ∞

p (δ) = 1

r
log

K

K − δ
(P-almost surely),

such that
sup

Q∈M(P)

EQ[exp(−rτT
p (δ))(K − SτT

p (δ))
+] ≥ K − δ.

We have
τT

c = T

and, for any � > 0,
sup

Q∈M(P)

EQ[e−r�(S� − K)+] = S0.

Note that (denoting the upper price of the European put option by V Ep) we have, from
the ‘call-put parity’ and the results of Eberlein and Jacod (1997) and Jakubénas (2002), that
V Ep = e−rT K < V p if r > 0. As usual, European call options and American call options are
tallied.

Theorem 2. Assume that the triplet of characteristics (b, 0, ν)H of X satisfies at least one of
the following conditions:

(i) ν(0, ε) > 0, for any ε > 0 and −∞ < b̃ − r < 0, or ν(−ε, 0) > 0, for any ε > 0 and
0 < b̃ − r < ∞,

(ii) b̃ = ∞ or b̃ = −∞,

(iii) b̃ is not defined.

Then

V p = V ∞
p = (K − S0)

+,

τ T
p = τ∞

p = 0

and

V c = (S0 − e−rT K)+, V ∞
c = S0,

τ T
c = T .

The optimal stopping moment τ∞
c does not exist, but for any δ > 0 there exists the δ-optimal

stopping moment

τ∞
c (δ) = 1

r
log

K

δ
(P-almost surely),

such that
inf

Q∈M(P)
EQ[exp(−rτ∞

c (δ))(Sτ∞
c (δ) − K)+] ≥ S0 − δ.
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Let the assumptions of both Theorem 1 and Theorem 2 be satisfied for the triplet of
characteristics of Xt . Then we have for American put options a wider interval of fair prices
〈(K − S0)

+, K〉, instead of 〈(e−rT K − S0)
+, e−rT K〉 for European put options. For perpetual

American call options, the interval of fair prices becomes the point S0. And for perpetual
American put options we have the same interval as in finite horizon time. Moreover, on the
optimal stopping we can see that if a holder of an American put option wants to guarantee
themselves, they have to stop at zero time. And for the American call option, we need to
continue to observe it for as long as possible.

Remark 1. The price of a perpetual American option can be defined in a different way as well.
In this case, the set M

∞
0 of all stopping moments τ ∈ [0, ∞] is considered instead of M∞

0 (see
Shiryaev (1999, Section VIII.2) and Ivanov (2005)). Here, the event {τ = ∞} means that the
option is not exercised and, for example, the lower price of an American put option is

V ∞
p = inf

Q∈M(P)
sup

τ∈M
∞
0

EQ[e−rτ fτ 1{τ<∞}].

Looking at the results of Theorems 1 and 2, we can observe that it could happen that V ∞
p > V ∞

p ,
since M∞

0 ⊂ M
∞
0 . In fact, V ∞

p = V ∞
p (see (11), below).

Remark 2. In this paper we use a martingale no arbitrage concept. However, if we impose
the set of admissible strategies to appropriate restrictions (see Delbaen and Schachermayer
(1998) and Shiryaev (1999)) and substitute the set M(P) by the set of equivalent σ -martingale
measures, the results of Theorem 1 and Theorem 2 do not change. In fact, in the proofs we
obtain the bounds of intervals of fair prices and then derive sequences of martingale measures
which give the sequences converging to these bounds. Obviously, these sequences of measures
are also σ -martingales, and the results follow.

Note finally that if the interest rate r = 0, then both processes (St −K)+ and (K −St )
+ are

submartingales with respect to any Q ∈ M(P) by Jensen’s inequality, and the American call
option and the American put option coincide with the appropriate European options.

3. Proofs

For simplicity, we set Yt = Xt − rt . For a sequence of random variables Fn we denote its
weak convergence to F by Fn

w−→ F .

3.1. Proof of Theorem 1

First we prove the case of a put option in the finite interval [0, T ]. For any Q ∈ M(P) and
any τ ∈ MT

0 , we have
EQ[e−rτ (K − Sτ )

+] ≤ K;
therefore,

V p ≤ K.

Set τ = ε, where ε > 0 is an arbitrary number. Let us construct a sequence of measures
{Qn} ∈ M(P) such that

EQn [e−rε(K − Sε)
+] → e−rεK as n → ∞. (3)

We now consider the various cases of the triplet (b, c, ν)H of Yt .
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Case I. Suppose that ν(−∞, 0) > 0 and ν(0, ∞) > 0. Here, M(P) = ∅ (see e.g. Selivanov
(2004, Theorem 3.2)). With no restriction of generality, we suppose that the initial measure P
is a martingale, i.e. P ∼ (b, c, ν)H . Then we obtain

b + c

2
+

∫
R

(ex − 1 − H(x))ν(dx) = 0 (4)

(see Shiryaev (1999, Theorem 3, Section VII.3c)).
For some a > 0, we have ν(a, ∞) > 0 and ν(−∞, −a) > 0. If a > 1, set a = 1. We

rewrite (4) as

ba + c

2
+

∫
R

(ex − 1 − Ha(x))ν(dx),

with

ba = b −
∫

[−1,1]\[−a,a]
xν(dx),

Ha(x) = x 1{|x|≤a} .

We define a constant θ by

θ =
∫ ∞
a

(ex − 1)ν(dx)∫ −a

−∞(1 − ex)ν(dx)
(5)

and set
νn = ν + nν|(a,∞) + θnν|(−∞,−a).

The new measure Qn ∼ (ba, c, νn)Ha is a martingale for the process Yt for any n ≥ 1 since

ba + c

2
+

∫
R

(ex − 1 − Ha(x))νn(dx) = 0.

Let Yn be the process Y under Qn. By Sato (1999, Theorem 19.2), we can decompose Yn

as the sum of two independent Lévy processes, Yn,1 and Yn,2, with triplets of characteristics
(ba, c, ν)Ha and (0, 0, nν|(a,∞) + θnν|(−∞,−a))0, respectively. We see that Yn,1 has the same
distribution under Qn as Y has under P, and

EQn

[
exp

(
Yn,2

ε

2

)]
= exp

(
nε

[
θ

∫ −a

−∞
(ex/2 − 1)ν(dx) +

∫ ∞

a

(ex/2 − 1)ν(dx)

])
. (6)

From (5), (6), and the inequalities ex − 1 > 2(ex/2 − 1) and 2(1 − ex/2) > 1 − ex for x > 0,
we conclude that

EQn

[
exp

(
Y 2

ε

2

)]
= exp(nεξ), (7)

where ξ < 0. It follows from (7) that Yn,2
ε

w−→ −∞ and, therefore, Yn
ε

w−→ −∞ as n → ∞.
Therefore, (3) holds for the constructed sequence {Qn}.
Case II. Suppose that ν is concentrated on (0, ∞), c = 0, and

∫ 1
0 xν(dx) = ∞. Let Y ∼

(b, 0, v)H under the initial measure P. Choose 0 < a < 1, a ∈ supp ν. Define a sequence
εn → 0 satisfying

b −
∫ 1

εn

xν(dx) = −fn ≤ −n for n ∈ N.
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Let us construct a sequence {Qn} ∈ M(P), Qn ∼ (bn, c, νn)H , setting

νn|[0,εn] = ν|[0,εn),

νn|R\{[0,εn]∪[a−1/n,a+1/n]} such that
∫

R\{[0,εn]∪[a−1/n,a+1/n]}
(ex − 1)νn(dx) = 1

n
,

νn|[a−1/n,a+1/n] = θnν|(a−1/n,a+1/n),

where θn is defined by (4), which we rewrite as

bn +
∫

R

(ex − 1 − H(x))νn(dx) = 0, (8)

here. From (8), using Sato (1999, Equation (33.4)), we have

θn = fn + αn∫ a+1/n

a−1/n
(ex − 1)ν(dx)

,

where αn → 0 as n → ∞.
Then, for a fixed u, 0 < u < 1, we have

EQn [exp(uYε)] = exp

(
εfn

(
−u + ō(1) + eua − 1

ea − 1

))
as n → ∞.

A function g(u) = −uea + u + eua − 1 has g(0) = 0 and g′(0) = −ea + 1 + a < 0; hence,
there exists u such that EQn [exp(uYε)] → 0 as n → ∞. Case II can be completed in a similar
way to Case I.

Case III. Suppose that ν is concentrated on (0, ∞) and c > 0. As in Case I we mean that P is
a martingale, P ∼ (b, c, ν)H . Take a ∈ supp ν and choose a sequence of numbers {θn} in such
a way so that

θnν

{[
a − 1

n
, a + 1

n

]}
= n.

Set

νn = ν + θnν|[a−1/n,a+1/n],

bn = b − θn

∫ a+1/n

a−1/n

(ex − 1 − H(x))ν(dx),

since c > 0. The process Yn taken under Qn ∼ (bn, c, νn)H can be decomposed into the sum
of two independent Lévy processes, Yn,1 ∼ (b, c, ν)H and Yn,2 ∼ (bn − b, c, νn − ν)H . Now,
we have

E

[
exp

(
Yn,2

ε

2

)]
= exp

(
−εθn

∫ a+1/n

a−1/n

(
1

2
ex − ex/2 + 1

2

)
ν(dx)

)
.

Since g(x) = 1
2 ex − ex/2 + 1

2 > 0 for any x > 0, we have E[exp(Y n,2
ε /2)] → 0 and we can

therefore deduce that Yn
ε

w−→ −∞ in a similar way to in Case I.

Case IV. If ν is concentrated on (0, ∞),
∫ 1

0 xν(dx) < ∞, and c = 0, we have the case of a
subordinator with drift.

Case V. If ν = 0 we have a Brownian motion with drift.
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The cases, where ν is concentrated on (−∞, 0), are proved in a similar way to Cases II–V.
From the arbitrariness of ε, we obtain our theorem for put options in finite horizon time.

For perpetual put options we obviously have

V
∞
p ≤ K and V

∞
p ≥ V p = K;

therefore, V
∞
p = K .

Finally, for call options we have the same proof as for put options, substituting the usual
argument of boundness of (K −St )

+ by Jakubénas (2002, Lemma 10). The part of the theorem
concerning optimal stopping moments clearly follows from (3).

3.2. Proof of Theorem 2

First, we prove Theorem 2 for put options. We have for the stopping moment τ0 = 0
(P-almost surely)

V p = inf
Q∈M(P)

sup
τ∈MT

0

EQ[e−rτ (K − Sτ )
+]

≥ inf
Q∈M(P)

EQ[exp(−rτ0)(K − Sτ0)
+]

= (K − S0)
+.

On the other hand,

V p ≤ inf
Q∈M(P)

sup
τ∈MT

0

EQ[(K − e−rτ Sτ )
+]

= inf
Q∈M(P)

EQ[(K − e−rT ST )+],

since (K − e−rtSt )
+ is submartingale by Jensen’s inequality. We construct a sequence of

measures {Qn} ∈ M(P) such that

EQn [(K − e−rT ST )+] → (K − S0)
+ as n → ∞. (9)

We now discuss the various cases of the triplet of characteristics of Yt .

Case I. Suppose that ν((0, ε)) > 0, for any ε > 0, and −∞ < b̃ < 0. That is, P ∼ (b, 0, ν)H .
Here, we construct a sequence of equivalent martingale measures Qn ∼ (bn, 0, νn)H such

that

EQn [(K − e−rT ST )] = E

[(
K − S0 exp

(
1

n
N(λ1/nT ) + b̃T

))+]
,

where λ1/n = −b̃/(e1/n − 1) and N(λ) denotes a Poisson process with intensity λ. Then we
can immediately use Jakubénas (2002, Lemma 4) to obtain (9).

For a fixed n > 0, 1/n ∈ supp ν, we define, for all sufficient large k, a Lévy measure νn,k

by ∫
R\[1/n−1/k,1/n+1/k]

(|ex − 1| + |H(x)|)νn,k(dx) = 1

k

and
νn,k|[1/n−1/k,1/n+1/k] = θn,kν|[1/n−1/k,1/n+1/k],
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where θn,k is defined due to the condition of Jakubénas (2002, Equation (33.4)) on an equivalent
martingale measure Qn,k ∼ (bn,k, 0, νn,k)H :

b −
∫

R

H(x)ν(dx) +
∫

R

(ex − 1)νn,k(dx) = 0;

hence,

θn,k = − b̃ + αk∫ 1/n+1/k

1/n−1/k
(ex − 1)ν(dx)

, (10)

where αk → 0 as k → ∞.
From (10) we obtain

bn,k → b̃ + λ1/nH

(
1

n

)
=: bn,

where λ1/n = −b̃/(e1/n − 1), and

(x2 ∧ 1)νn,k(dx)
w−→ (x2 ∧ 1)λ1/nδ1/n(dx) = (x2 ∧ 1)νn(dx) as k → ∞.

Therefore, from Jacod and Shiryaev (1987, Theorem VII.2.9), we have

EQn,k
[(K − S0 exp(YT ))+]

→ EQn [(K − e−rT ST )+] = E

[(
K − S0 exp

(
1

n
N(λ1/nT ) + b̃T

))+]
as k → ∞.

Case II. Suppose that b̃ = −∞ and P ∼ (b, 0, ν)H . We can choose a sequence 0 < εn → 0
such that ∫ 1/n

εn

xν(dx) =
∫ 1

1/n

xν(dx).

Set

νn|[−1/n,εn] = ν|[−1/n,εn],

νn|R\[−1/n,1/n] such that
∫

R\[−1/n,1/n]
(|ex − 1| + |H(x)|)νn(dx) = 1

n
,

νn|(εn,1/n] = θnν|(εn,1/n].

From the martingale condition on this measure Qn ∼ (bn, 0, νn)H , it is not difficult to obtain

θn → 2 as n → ∞;
therefore, θn is bounded. Finally, we have

(x2 ∧ 1)νn(dx)
w−→ 0 and bn = −

∫
R

(ex − 1 − H(x))νn(dx) → 0 as n → ∞.

Therefore, Yn
T

w−→ 0 and (9) follows.

The cases which deal with ν|(−∞,0) are considered in a similar way to Cases I–II.
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Case III. Suppose that b̃ is not defined and P ∼ (b, 0, ν)H . Then we can write Y under P as the
sum of two independent Lévy processes with triplets of characteristics (b, 0, ν|(−∞,−1)∪[0,1])H
and (0, 0, ν|[−1,0]∪(1,∞))H . We can use to them Case II and the symmetric of b̃ = ∞. Under
constructed {Qn}, we have

Y
n,1
T

w−→ 0 and Y
n,2
T

w−→ 0

for these two processes. Therefore, Yn
T

w−→ 0 and we again have (9).

For perpetual put options we have, for every Q ∈ M(P) and τ ∈ M∞
0 ,

EQ[e−rτ (K − Sτ )
+] = EQ[1{τ≤T } e−rτ (K − Sτ )

+] + EQ[1{τ>T } e−rτ (K − Sτ )
+] (11)

≤ EQ[e−r(τ∧T )(K − Sτ∧T )+] + e−rT K

for any T ∈ R
+.

For any ε > 0, we can choose T such that e−rT K < ε. Using the result for put options in
bounded intervals on [0, T ], we obtain

V ∞
p = (K − S0)

+.

For call options we have the same proof as for put options, substituting the argument of
boundness of (K−St )

+ by Jakubénas (2002, Lemma 10) and keeping in mind the submartingale
property e−rt (St − K)+.

For perpetual call options we have

V ∞
c ≥ (S0 − e−rT K)+, (12)

for any T ≤ 0, and, since V ∞
c ≤ V

∞
c , we obtain

V ∞
c = S0.

Finally, the form of optimal stopping moments follows from (2), the values of the lower
prices, and (12).
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