COMPOSITIO MATHEMATICA

Classification of two-dimensional split
trianguline representations of p-adic fields

Kentaro Nakamura

Compositio Math. 145 (2009), 865-914.

doi:10.1112/50010437X 09004059

FOUNDATION The London | oP<y
COMPOSITIO Mathematical (/\ p
MATHEMATICA Society | 5557

https://doi.org/10.1112/50010437X09004059 Published online by Cambridge University Press


http://dx.doi.org/10.1112/S0010437X09004059
https://doi.org/10.1112/S0010437X09004059

G/ § Compositio Math. 145 (2009) 865 914
©

doi:10.1112/S0010437X 09004059

Classification of two-dimensional split
trianguline representations of p-adic fields

Kentaro Nakamura

ABSTRACT

The aim of this article is to classify two-dimensional split trianguline representations of
p-adic fields. This is a generalization of a result of Colmez who classified two-dimensional
split trianguline representations of Gal(Q,/Q,) for p # 2 by using (¢, I')-modules over
a Robba ring. In this article, for any prime p and for any p-adic field K, we classify
two-dimensional split trianguline representations of Gal(K /K) using B-pairs as defined

by Berger.
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0.1 Background

Let p be a prime number. In this article, we study two-dimensional trianguline representations
of any p-adic field K, i.e. a finite extension of Q,. A trianguline representation is a class of p-adic
representations of G := Gal(K/K), which has turned out to be an important notion. The
trianguline representation was defined by Colmez and is defined by using (¢, Ik )-modules over
a Robba ring Bji& ;¢ Which is non-canonically isomorphic to a ring of Laurent power series which
converge in some annulus and is equipped with a Frobenius ¢ action and with I' g := Gal( K/ K)
actions. Here K := K ((pe) is the extension of K obtained by adjoining p™th roots of unity (,n
for every n € N. The (¢, I'k)-modules over B:i& x are defined as finite free BrTig x-modules with
semi-linear ¢ and 'k actions. By the work of Kedlaya [Ked04], the notion of slopes of p-modules
over a Robba ring is very important and we say that a (¢, I'k)-module over BL& i s étale if
it is pure of slope zero as a ¢-module. Using the works of Fontaine [Fon90], Cherbonnier and
Colmez [CC98] and Kedlaya [Ked04], the category of p-adic representations of G'i is equivalent
to the category of étale (¢, I'x)-modules over B;rig’ - This equivalence enables us to see the
category of p-adic representation of G as a full subcategory of the category of (¢, I'x)-modules
over BL& x (without slope conditions). We say that a p-adic representation V' of G is split
trianguline if Dyie(V'), the (o, I')-module corresponding to V, is a successive extension of rank-
one objects in the category of (p, 'k )-modules over B;ri& - We also say V' is trianguline if V' is
split trianguline after making a finite extension of coefficients.

Trianguline representations can be seen as generalizations of ordinary representations.
However, many interesting irreducible representations can be trianguline. For example, all
semi-stable representations are trianguline. Moreover, there are many interesting trianguline
representations which are not de Rham. For example, when K =Q@Q,, Kisin showed that
two-dimensional p-adic representations of Gg,attached to finite-slope overconvergent modular
forms are trianguline, and this fact was key to his p-adic Hodge theoretic approach to
the study of Coleman-Mazur eigencurves [Kis03]. Recently Bellaiche-Chenevier generalized
Kisin’s method and studied higher-dimensional trianguline representations of Gg, to study
higher-dimensional eigenvarieties [BC06]. Another example is Colmez’s p-adic Langlands
correspondence for GL2(Q,): trianguline representations are at the heart of his theory of
p-adic Langlands correspondence. When K =Q, and p# 2, he classified two-dimensional
split trianguline representations of Gg, and, based on this classification, he proved that the
sets of points corresponding to trianguline representations are Zariski dense in deformation
spaces of two-dimensional p-adic representations of Gg,. By combining some constructions of
Colmez and of Berger—Breuil, we obtain the p-adic Langlands correspondence for trianguline
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representations [BB06, Col04, Col07]. The correspondence for trianguline representations and the
Zariski density of trianguline points played essential roles in his construction of p-adic Langlands
correspondence for GLa(Q,) (see [Col08b]).

The main purpose of this article is the complete classification of two-dimensional split
trianguline representations of Gk for any finite extension K of Q,, for any prime p (we do not need
to assume that p # 2). We determine the parameter space of all split trianguline representations
and we also determine the parameter space of potentially crystalline or potentially semi-stable
split trianguline representations, then we explicitly describe the filtered (¢, N, Gk )-modules
associated with them. Currently, the only interesting examples of trianguline representations are
in the case K = Q. The author hopes that this article will be useful in giving many interesting
examples of trianguline representations in the general K # Q, case. For example, we want to
know whether p-adic representations attached to finite-slope overconvergent Hilbert modular
forms are trianguline or not. In this article, we could not attack the problem regarding the
Zariski density of trianguline representations as the author does not know whether the set of
trianguline points is Zariski dense or not in the general K # Q,, case. These problems will be the
subject of study in future works.

0.2 Layout of the article

In § 1, we define trianguline representations and split trianguline representations by using B-pairs
instead of (p, 'k )-modules over B;rig i for some technical reasons. The B-pair was defined by

Berger [Ber08b]. We write B, := B(frizsl. An E-B-pair (the E-coefficient version of a B-pair; here E
is a finite extension of K which contains the Galois closure of K) is a pair W := (W,, W) where
We is a finite free B, ®g, F-module with a continuous semi-linear G i-action such that WCTR -
War := Bar @B, We is a Gg-stable B;fR ®q, E-lattice of Wgyr. In [BerO8b, Theorem 2.2.7],
Berger established an equivalence between the category of E—B-pairs and the category of
E-(¢, 'k )-modules over Bjig’ 5> which are also the E-coefficient version of (¢, I')-modules.
The category of E representations of G (the E-coefficient version of p-adic representations)
is embedded in the category of E-B-pairs by V=W (V):= (B ®q, V, B:{R ®q, V). So, to
define trianguline representations, we can use both B-pairs and (¢, 'k )-modules. In this article,
we choose to use B-pairs for some technical reasons. Then, we say that an F—B-pair W
is split trianguline if W is a successive extension of rank-one E—B-pairs. We say that an
E-representation V is split trianguline if W (V') is split trianguline. We say that an E—B-pair
W (respectively, an E-representation V') is trianguline if W ® g E’ (respectively, V @g E') is
split trianguline for a finite extension E’ of E. The main purpose of this article is the complete
classification of two-dimensional split trianguline E-representations of G . The classification is
made through the following steps.

Step 1: Classification of rank-one E—B-pairs.

Step 2: Calculation of the dimensions of extension groups dimp Ext! (W5, W7) for any rank-one
E—B-pairs Wy, Wa.

Step 3: Determination of the conditions for W to be étale, here W is an extension of W7 by W
as in Step 2.

Step 4: Classification of de Rham split trianguline F-representations.

We describe Step 1 in §1, Step 2 in §2, Step 3 in §3 and Step 4 in §4.

From now on, we explain these steps more precisely.
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For Step 1, let § : K* — E* be a continuous character with respect to p-adic topology on
both sides. Then we can define a rank-one E—B-pair W (4) as follows. Let 7x be a uniformizer
of K. We decompose 0 into  := dgd; such that (50\0;{ :(5|le(, do(mr) =1, (51|le( is a trivial
character, 81 (7 ) := 0(mk). Then &y : K* — Oj, is a unitary character, so by local class field
theory we obtain a character b0 : G}‘}) — OF such that § = 80 © reck, here recg : K* — Gf}? is
the reciprocity map such that 7x is mapped to a lifting of the inverse of the gth power Frobenius
(here, q:=pf, f:=[Ky: Qp], Ko is the maximal unramified extension of Q, in K). For d;, we
define a rank-one E—B-pair W (d1) such that D(41), the (¢, 'k )-module corresponding to W (d1),
is defined by D(41) := B;ri&K ®q, Ees,, ¢ (es,) = 61(mk)es,, v(es,) == es, for any v €'k, We
define W () := W (dp) @ W(d1). We can show that W (J) does not depend on the choice of 7
(see Remark 1.44). Then the main theorem of § 1 is as follows.

THEOREM 0.1 (Theorem 1.45). Let W be a rank-one E—B-pair of G . Then there exists unique
continuous character § : K* — E* such that W = W (9).

Remark 0.2. We can see this theorem as a natural generalization of one-to-one correspondence
{6: KX — OF: continuous character} — {5:G4% — OF: continuous character}, which is
induced by local class field theory. This theorem is also a generalization of [Col08a,
Proposition 3.1].

For Step 2, from this theorem, it suffices to calculate dimpExt!(W (&), W (61)) for any
continuous characters d1, do : K* — E*. In §2, for this purpose we define the Galois cohomology
of E—B-pairs. Let W := (W, WjR) be an E—B-pair. Put WyR := Bqr ®p, We. Then we define
the Galois cohomology H*(Gg, W) of W as the Galois cohomology of the complex W, ®
Wik — War : (z,y) — z —y, here W, ® W sits in the zeroth part of this complex. These
cohomology groups are finite-dimensional FE-vector spaces. We can show in the usual way that
there is a natural isomorphism Ext!(Bg, W) = H! (G, W), here Bg := (B, ®q, E, Bji ®q, E)
is the trivial EF-B-pair. By Bloch-Kato’s fundamental short exact sequence 0 — Q, — B, ©
BSFR — Bgr — 0, for any E-representation V, we have a natural isomorphism H*(Gg, V) =
H*(Gg, W(V)). So we can see this cohomology as a natural generalization of Galois cohomology
of p-adic representations. As in the classical case, this cohomology satisfies the Euler—Poincaré
characteristic formula and Tate local duality theorem. For this, we review the results of Liu
[Liu08] concerning these theorems for (¢, I'k)-modules over Bji& - By using his theorems, we
can calculate all of the extension groups that we want. For any embedding ¢: K — E and
k € Z, we define o(z)* : K* — E* :y+ o(y)*. We define Nk,  K* = Q) ry—=Il,xepo),
| = [:Q) = E:p—1/p, ars 1foranya € Z,, [N q,(z)| :=| — | o Nk /g, Then the main result
of §2 is as follows.

THEOREM 0.3 (Theorem 2.15). Let 01,02 : K — E* be continuous characters.
Then dimgExt! (W (82), W (61)) is equal to:

(1) [K:Qp]+1if61/62 =]],.x.p o(x)k such that k, € Z<, for any o;
(2) [K:Qp] +11ifé1/02=|Ng,( )| [ls.xk o(x)* such that k, € Z, for any o;

(3) [K :Qp] otherwise.
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Remark 0.4. This theorem is a generalization of the dimension formula of Galois cohomology of
one-dimensional p-adic representations. This is also a generalization of [Col08a, Theorem 2.9].

From this theorem we can determine all of the split trianguline FE—B-pairs of rank
two. Let W (s) be a split trianguline F—B-pair which is an extension corresponding to s €
P (Ext! (W (82), W(61))); here for any finite-dimensional E-vector space M we put Pg(M) :=
{[v] |ve M — {0}, [v] = [v] <= v/ =awv for some a € E*}. Then the isomorphism class of W (s)
as an E—B-pair depends only on s.

For Step 3, we must determine the conditions on (01, d2) and s for W(s) to be étale,
i.e. to be W(s) = W(V(s)) for an E-representation V(s). In §3, we determine all of the
conditions by using Kedlaya’s slope filtration theorem of ¢-modules over a Robba ring. The
idea is essentially the same as Colmez’s when K =Q, and p#2 (see the proof of [Col08a,
Proposition 4.7]), but we have to deal with all of the additional complications which come
from working with K # Q,. In fact, in the general K # Q, case, the parameter space of split
trianguline representations is more complicated than that of the K =Q, case. For any two
continuous characters &1, dg : KX — E*| we put S(01, 62) := Pr(Ext! (W (d), W(61))). We put
St :={(61, d2) | 01,02 : K* — E* continuous characters such that val, (61 (7)) + val,(da2(mk)) =
0, val,(1(mk)) > 0} (here val, is a valuation of E such that val,(p) := 1). For any (d1, §2) € ST,
in § 3 we explicitly define a certain subspace S (81, d2) C S(1, d2) which corresponds to non-
étale split trianguline E—B-pairs. All of these spaces ST and """ (8,, 62) naturally appear when
we consider the slope zero conditions by using Kedlaya’s slope filtration theorem. Then our main
result of §3 is as follows.

THEOREM 0.5 (Lemma 3.1 and Theorem 3.4). Let 61, 62 : K* — E* be continuous characters.
Let W (s) be the split trianguline E—B-pair corresponding to s € S(d1, d2).

(1) If W(s) is étale, then (81, 02) € ST.
(2) The following conditions are equivalent:

(i) W(s) is étale, i.e. W(s) = W (V(s)) for an E-representation V(s);
(ii) s ¢ S""(dy, ba).

Remark 0.6. This theorem is a generalization of [Col08a, Proposition 4.7]. The space Sid
in [Col08a, §0.2] corresponds to U, s5,)cs+S" (01, d2) in this article. Moreover, we can

determine the conditions when we have V(s) SV (s') for distinct parameters s € S(d1, d2) \
SO (51, 82), 8" € S(87, 85) \ SOM(8), 0%) under certain conditions (Theorem 3.7).

For Step 4, we have to determine the conditions on (61,02) € ST and se€ S(dy,0d2) \
S/ (81, 5y) for V(s) to be potentially semi-stable or potentially crystalline. In the p-adic
representations case, Bloch—Kato finite cohomology is useful for this kind of problems. We
define Bloch-Kato cohomology for a B-pair W as follows (Definition 2.4). By the definition
of H*(Gg, W), we have natural maps H*(Gg, W) - H*(Gg, W) — H*(Gk, Beis @B, We) —
H*(Gk, Bar ®p, We). As in the classical case, we define H}(Gg, W) :=Ker(H (Gg, W) —
HY(Gk, B. ®p, We)), here when ?=e (respectively ? = f, respectively ?=g) then *=e
(respectively * = cris, respectively * =dR). By calculating these, in §4 we explicitly define
the parameter spaces St (81, d2), Sst(d1,02) C S(d1,d2) for any (d1,d2) € ST such that §; =
| o(x)¥28; such that ki, € Z and §; are locally constant characters for i =1, 2. Then
the conditions for V'(s) to be potentially semi-stable are as follows.
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THEOREM 0.7 (Lemma 4.1 and Proposition 4.4). Let s € S(81, 62) \ S (61, 62). Let V(s) be
the split trianguline E-representation corresponding to s.
(1) If V(s) is potentially semi-stable, then §; = [[,.jcp o(x)¥>28; such that k; , € Z for any o
and 0; are locally constant characters for i =1, 2.
(2) If (61, 02) € ST satisfies the condition in (1), then the following conditions are equivalent:
(i) V(s) is potentially crystalline;
(ii) s € S (61, 02).
(3) If (61, 02) € ST satisfies the condition in (1), then the following conditions are equivalent:
(i) V(s) is potentially semi-stable and not potentially crystalline;
(ii/) S € Sst<517 (52)

¢ (01, 62), Sst(81, 62) are generalizations of S or S5
defined in [Col08a, 0.2]. We can also see these spaces as the parameter spaces of weakly admissible
filtrations of a (¢, N, Gk )-module corresponding to V' (s). Moreover, we can explicitly calculate
the filtered (¢, N, G )-modules associated with V(s) as above (Theorems 4.6 and 4.8).

Remark 0.8. These parameter spaces S¢

By this theorem, we complete the classification of two-dimensional split trianguline
FE-representations. This is the main content of this article.

In Appendix A, we study a relation between two-dimensional potentially semi-stable
trianguline representations and local Langlands correspondence for GLo(K). Let V be a
two-dimensional potentially semi-stable FE-representation of Gg. Fontaine defined a two-
dimensional Weil-Deligne representation Dpst (V) := Dpst (V) @ Ki"®q, E K of K from the filtered

(¢, N, G )-module Dyt (V) := UgcL finite( Bst ®q, V)@L. By local Langlands correspondence
for GLa(K'), we can attach an irreducible smooth admissible representation m(Dps(V)**) of
GLy(K) (here Dpst(V)** is the Frobenius semi-simplification of Dps(V')). Irreducible smooth
admissible representations of GLg(K) are classified into supercuspidal representations and non-
supercuspidal representations (i.e. one-dimensional representations, principal series or special

series). Then the main result of Appendix A is as follows.

THEOREM 0.9 (Theorem A4). Let V' be a potentially semi-stable E-representation. Then the
following conditions are equivalent:

(1) V is trianguline, i.e. V ®p E’ is split trianguline for some finite extension E’ of E;

(2) m(Dpst(V)**) is non-supercuspidal.

Notation

Let p be a prime number. We use: K to denote a finite extension of Qp; K to denote a fixed
algebraic closure of K; Ky to denote the maximal unramified extension of Q, in K; K" to
denote the Galois closure of K in K. We use G := Gal(K/K) to denote the absolute Galois
group of K equipped with profinite topology. Here Ok is the integer ring of K, mx € Ok is
a uniformizer of K, k:= Ok /nxOfk is the residue field of K, q=p! :=tk is the order of k,
and Ko := K((p~) is the extension of K obtained by adjoining the p"th roots of unity (yn»
for every n € N. We use K{, to denote the maximal unramified extension of Q, in K., so
Ko C K{,. We have H := Gal(K/Ky,), T'x := Gk /Hi = Gal(Kw/K), and x : G — Z) is the
p-adic cyclotomic character which factors through the inclusion I'x < Z (i.e. g(Gpn) = {;ﬁgg ) for

any p"th roots of unity (pn and for any g € G k). Here C,, := K denotes the p-adic completion
of K, which is an algebraically closed p-adically complete field, and Oc, is its integer ring. We
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use F to denote a finite extension of @, such that K"°* C E. In this paper, we write F as a
coefficient of representations. We use xpr : Gg — Oj — E* to denote the Lubin-Tate character
associated with the uniformizer wy. Here recg : K* — G?}) is the reciprocity map of local class
field theory such that reck(mg) is a lifting of the inverse of gth power Frobenius of k, then
xrT o reck : K* — Oj satisfies xpr o reck(mg) =1 and xpr o 1re(:K|OIx< = id(,)lx(.

1. B-pairs and (¢, I'k)-modules.

In this section, we recall the definitions and some properties of B-pairs and (¢, Ik )-modules.
In particular, we recall the results of Berger concerning the equivalence between the category of
B-pairs and the category of (¢, I')-modules over a Robba ring.

1.1 Review of p-adic period rings and the definition of B-pairs

We begin this section by recalling some p-adic perioq rings [Fon94a, Fon94b, Ber(02] and by
recalling the definition of a B-pair [Ber08b]. First let ET := lim Oc, =lim Oc,/pOc,, where
the limits are taken with respect to pth power maps. It is known that ET is a complete valuation
ring of characteristic p whose valuation is defined by val(z) := val,(z(?)) (here z = () ¢
lim Oc, and val, is the valuation on C,, such that val,(p) =1). In this paper we fix a system
of p™th roots of unity {5(")},@0 such that @ =1, (5(”“))7” =) 7é 1. Then € := (8(”))
is an element of E* such that val(s — 1) =p/(p — 1). E:=E*[1/(c — 1)] is the fraction field of
]E+, which is known to be an algebraically closed complete valuation field of characteristic p
containing the subfield F »((e — 1)). Here Gk acts on these rings in natural way. We put AT :=
W (E ) A :=W(E), where, for a ring R, W(R) is the Witt ring of R. We put B := A*+[1/p],

B:= A[l /p]. These rings also have natural continuous Gg-actions and Frobenius actions ¢,
here the topologies of these rings are defined by the p-adic topology on AT and A. Then we
have a continuous G i-equivariant surjection 6 : AT o Oc, > e P Flag] — S22 heo D :L’,(i ), where
[ ]:ET — AT is the Teichmiiller character. By inverting p, we obtain a surjection B+ — Cp. We
put By := lim | B* /(Ker(6))", which is a complete discrete valuation ring with residue field Cp

and is equlpped with the projective limit topology of the p-adic topology on B+ / (Ker( )"

Let Amax be the p-adic completion of A*[[p]/p], where p:= (p™) is an element in ET such
that p(© = p, (p( V)P = p() . We put B := Apax[1/p]. Here Apax and B, have continuous
G i-actions and Frobenius actions ¢, and the topology on these rings is also p-adic topology.
We have a natural continuous Gg-equivariant embedding B, < Big. If we put ¢ := log([e]),
then we can see that ¢ € Amax, o(t) =pt, g(t) = x(g)t for any g € Gk and Ker(d) = tBi; C Bl
is the maximal ideal of BdR If we put BmaX = Bt [1/t], BdR = B:{R[l /t], which are equipped

max
with the inductive limit topology of (1/¢")B. ., and (1 / t")Bjgfor any n € N, we have a natural

continuous embedding Bpax <— Bqr. We put B, := Bmax, (B C)B;fg = Nprp ¢ (Bmax) C Bmax

(these are closed sub-rings of Byax), Fil'Bgg := t* B r for any i € Z. We put

(n 1) n
log([p]) := log(p Z <[p] - 1) € Biz.

where log : C;; — C,, is a branch of log which we fix in this article. Let Bog := Bmax[log([p])] €
Bgr. There is a derivation N : Biog — Biog over Bpax such that N(log([p])) := —1. We have the
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following fundamental short exact sequence [BK90, Proposition 1.17]
O—>Qp—>Be€BBJR—>BdR—>O.

DEFINITION 1.1. An FE-representation of Gk is a finite-dimensional F-vector space V with a
continuous E-linear action of Gx. We use the term E-representation for simplicity when there
will be no risk of confusion regarding K.

Next we define the E—B-pair of G, which is the F-coefficient version of a B-pair.
DEFINITION 1.2. An E-B-pair of Gk is a couple W = (W, W) such that:
(1) W is a finite B. ®q, F-module with a continuous semi-linear G rc-action which is free as
B.-module;
(2) WJFR C Wyr := Bqr ®p, W is a G-stable B(;FR ®q, E-lattice, i.e. W(;“R is a finitely
generated B;R ®q, E-module that generates Wyr as a Bygr ®q, F-module.
Here G'ic acts on By ®q, £ by g(z ® y) :=g(z) ® y for any g € G,z € By, y € E for 7 € {e, dR}.

We use the term E—B-pair for simplicity when there will be no risk of confusing regarding K.
We simply use the term B-pair when E =Q,, then this definition is the same as that of
Berger [Ber08b, Introduction].

Remark 1.3. Later we prove that W, is also free over Be ®q, E (Lemma 1.7) and that Wd+R is
also free over B;R ®q, F (Lemma 1.8).

DEFINITION 1.4. Let W; := (W, WJRj) be E—B-pairs for j =1,2. Then a morphism of E—
B-pairs f: W1 — W is defined as a B, ®q, E-linear G k-equivariant morphism f: We 1 — We 2
such that idp,, ®p, f: Bar @B, We,1 — Bar ®B, We2 maps WjR,l to W(;LRQ.

Remark 1.5. Let V be an E-representation of Gx. Then W (V) :=(B. ®q, V, Bz ®g, V) is
an I/-B-pair of G . By the fundamental short exact sequence 0 — Q, — B, © B:{R — Bar — 0,
it is easy to see that the functor V — W (V) is a fully faithful functor from the category of
E-representations of G to the category of E—B-pairs of Gx [Ber08b, Introduction].

Next, we prove a technically important lemma concerning the Bézout property of Be ®q, E.
This lemma is a generalization of [Ber08b, Proposition 1.1.9] to any coefficient case.

LEMMA 1.6. We have that B. ®q, E/ is a Bézout domain, i.e. a domain and every finitely
generated ideal is generated by one element.

Proof. The proof is essentially same as that of [BerO8b, Proposition 1.1.9]. First, we have
a natural isomorphism of rings B, ®q, F 5B, ®q, (Fo ®F, F) 5 Bl‘ff;lfl ®g, E. (Here Ey is
the maximal unramified extension of Q, in E and f’ = [Ep:Qp).) Because the natural map
Bﬁfa,x:l ®pg, E < Bgr is injective by [Col02, Proposition 7.14], so Be ®q, F is a domain. Next,
we show that for any f, g€ Blflj;;(zl ®p, E, the ideal generated by f and g in Br‘ff;’){:l ®p, E is
generated by one element. For this, we first note that Ejig ®p, E (for the definition of B!, o See

rig’

Definition 1.2 of this paper) is a Bézout domain by [Ked05, Theorem 2.9.6]. (In the definition
of [Ked05, §2.1], if we take Ky := kg the residue field of E, O :=Op, o := of’ OW (k) idog,

then FZECOH = E;rig ®p, E.) Because we have the injection Br“flj;le ®p, E— Ejig[l/t] ®R, E,
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for large n € Z>, we have t"f,t"g € Bl ®p, /. Because E;rig ®pg, £ is Bézout, there exists

rig
an h€ Bl ®p, E such that t"fB},, ®p, E+1"gBl, ®g, E=hB}, ®p, E. And hB},, ®p, E

rig rig rig
is a o-module over Bjig ®p, E because t"f, t"g are preserved by o-action. So, by [Ked05,
Proposition 3.3.2], we can choose the generator h such that o(h) = 7%k for some k € Z. By using
the element tg € B, ®p, E defined in [Col02, Proposition 8.10] and by [Col02, Lemma 8.17],

we obtain h/tk, € (E;rig[l/t])‘pf = @p, E = Brflj;le ®p, E (here, for the last equality, we use the

fact (Ejig[l/t])“"flzl = Blff;;l, see [Ber08b, Lemma 1.1.7]). Then we can show that the ideal

generated by f and ¢ in B?flj;x:l ®E, I is generated by h/t% in the same way as in [BerO8b,
Proposition 1.1.9]. O

From the above lemma, we obtain the following lemmas which are also technically important.

LEMMA 1.7. Let W, be a finite B, ®q, E-module which is free over Be. Then Wk is also free
over Be ®q, E. In particular, for any E-B-pair W := (W, WjR), W, is finite free over B, ®q, E.

Proof. Because W, is finitely generated over B, ®q, £/ which is Bézout domain, by the remark
after [Ked04, Lemma 2.4] it suffices to show that W, is torsion free over B.®q, E. Let
FracB. be the fraction field of B.. Because B, ®q, F is a domain and (FracB.)®q, E is
a localization of B.®q, E/, then (FracB.)®q, £/ is also a domain and the natural map
B. ®q, E — (FracB.) ®q, E is injective. In addition, because (FracB.) ®q, E is finite over the
field FracB,, then (FracB.) ®q, I is also a field. Because W, is free over B, by assumption,
the natural map W, — FracB. ® g, W, is injective. Of course, FracB. ® g, W, is also torsion free
over (FracB.) ®q, E which is a field. By these remarks, we conclude that W, is torsion free over
B, ®Qp E. O

LEMMA 1.8. Let W := (We, W) be an E-B-pair. Then W is finite free over Bjp ®q, E.

Proof. By Lemma 1.7, We is free over B. ®q, E. So Wyr := Bqr ®p, We is also free over
Bar ®q, E. Because E C Bj, we have natural isomorphisms Bj; ®qg, E = ®_ . . B(J{RB;R a4 ®
b (ac(b))s (a € Big, b€ E) and Bar ®q, E = @JZE‘—)B:{RBCIR' By using these decompositions,
we obtain decompositions W(;FR Seo o: BB W(;FR’U and Wyr = @ o Ees B;’RWdRJ (W(;_R,U and
WaRr,» are the o-components). Then, for each o, WJR, , 15 a B(TR—lattice of War,s- S0 WJR, o, 18
finite free over BSFR of same rank as that of Wygr , over Bygr because BOTR is a discrete valuation

ring. Also, because Wyr is free over Byr ®q, E, then Wyr , have the same rank for any o. So
WJFR , also have the same rank for any o. So W;’R is finite free over B(‘IR ®q, E. O

By using these lemmas, we can define rank, tensor products and duals of F—B-pairs.
DEFINITION 1.9. We make the following definitions.

(1) Let W :=(W,, Wjz) be an E-B-pair, then we define the rank of W by rank(W):=
rankBe®QpE(We).

(2) Let Wy = (We, Wik ) and Wo := (W2, Wi ,) be E-B-pairs. Then we define the tensor
product of Wy and Wy by Wi @ Wy := (We ®B.wg,E We.2, W;R,l ®Bd+r{®@pE WJFRQ).
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(3) Let W:=(W,, Wj;) be an E-B-pair. Then we define the dual of W by WV:=
(Homp, (W, B.), HomB:R(WJLR, BjR)). Here, we define the E-action on W by af(z):=
f(ax) for any a € E, f € Homp, (W,, Be) (respectively f € HomBgR(WjR, BiR)), z €W,
(respectively z € W3i).

LEMMA 1.10. Let Wy, Wy be finite free Be ®q, E-modules with continuous semi-linear G-

actions. Let f: W1 — W2 be a Be ®q, E-linear G k-morphism. Then Ker(f), Im(f) and Cok(f)
are all finite free over B. ®q, E.

Proof. Because Im(f) is a finite torsion free B, ®q, E-module, it is free by the remark following
[Ked04, Lemma 2.4]. From this, we obtain a splitting (as B. ®q, F-modules) of the short exact
sequence 0 — Ker(f) — W1 — Im(f) — 0. So Ker(f) is finite over B, ®q, F, and Ker(f) is finite
torsion free over Be ®g, E. So Ker(f) is also finite free. By [Ber08b, Lemma 2.1.4], Cok(f) is
free over Be. Then by Lemma 1.7, Cok(f) is free over B, ®q, E. O

The category of E—B-pairs is not an abelian category since cokernels of morphisms do not
exist in general. We define the exactness in the category of B-pairs.

DEFINITION 1.11. Let W;:= (W, WJRZ.) be E—B-pairs of G for i=1,2,3. Let f:W; —
Wa, g : Wo — W3 be morphisms of E—B-pairs. Then we say that
0—-Wi1 —>Wy —W3—0
is exact if the following two sequences are exact in the usual sense
0— We,l — We72 — We’g — 0,

0= Wiy = Wara = Wars — 0
LEMMA 1.12. Let Wy := (We1, Wiy |), Wa := (We2, Wik ,) be E-B-pairs. Let f: Wi — Wa be
a morphism of E~B-pairs. We put Ker(f) := (Ker(fe : We1 — We2), Ker(far : Wig ; = Wik o)),
Im(f) := (Im(fe : We1 — We2), Im(far : Wig | = Wik,)).- Then Ker(f) and Im(f) are E-B-
pairs.
Proof. We know that Ker(fe) and Im(fe) are finite free B, ®q, £-modules by Lemma 1.10. From
this, we obtain the canonical isomorphisms Ker(idp,, ®p, fe) = Bar ®p, Ker(fe), Im(idgr ®p,
fe) = Bar ®p, Im(f.). As for B;{R—modules, Byr is a flat B:{R—module because B(;FR is a principal
ideal domain. So we obtain the canonical isomorphisms Ker(idp,, ® BY, far) = Bar ® B

R R

Ker(far), Im(idp,, ® B, far) = Bar Dpt. Im(fqr). So we obtain the natural isomorphisms

Bar ®B, Ker(fe) = Bar ®BIR Ker(de) and Bggr ®B, Im(fe) = Bar ®B3LR Im(de), ie. Ker(f)
and Im(f) are B-pairs. As these maps are all E-linear, Ker(f) and Im(f) are E—B-pairs. O

DEFINITION 1.13. Let W7 C Wy be two E—B-pairs such that Wy is a sub-E—-B-pair of Wh.
Then we say that W is saturated in Wy if WJFR o/ W(;“R , is a free B(J{R—module. Then Wy /W; :=

(We2/Wei, Wik o/Wik ) is an E-B-pair by Lemma 1.10.

LEMMA 1.14. Let Wy C Wy be two E-B-pairs. Then there exists unique E—B-pair W' .=
(Wsat, W) such that Wy C Wi C W, We1 = W53 and Wi is saturated in Wy. We call

e

W32t the saturation of Wy in Wa.

Proof. We put I/Vesa‘lt :=We1 and put W;P’{S?t = War1 OW(;FRQ. Then it is easy to see that
Wwiat .= (stlt,W;P’fft) is an E-B-pair satisfying all of the desired conditions. Conversely,

e
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if Wi:=(W;, W(’g{ 1) satisfies the same conditions, it is easy to see that WdR , satisfies
Wf{{ 1 =War1 N VVdR o+ The uniqueness of W7 sat follows from this. O

Now we can define trianguline or split trianguline E-representations and trianguline or split
trianguline E—B-pairs.
DEFINITION 1.15. We make the following definitions.

(1) Let W be an E-B-pair. We say that W is a split trianguline E—B-pair if there is a filtration
0=WoCWyC---CW; =W by sub-E—-B-pairs such that for any ¢, W; is saturated in
Wi+1 and the quotient Wji1/W; is a rank-one E—B-pair.

(1) Let W be an E-B-pair. We say that W is a trianguline E—B-pair if W @ E' := (W, Qg
E', Wi ®g E') is split trianguline for some finite extension E’ of E.

(2) Let V be an E-representation. We say that V' is a split trianguline (respectively trianguline)
E-representation if W (V') is a split trianguline (respectively trianguline) E—B-pair.

In this paper, we classify two-dimensional split trianguline E-representations.

Next we recall the generalization of the usual p-adic Hodge theory to the case of B-pairs
following [Ber08b, §2.3]. First we recall the definition of a filtered (¢, N, Gk )-module over K.

DEFINITION 1.16. Let L be a finite Galois extension of K. An E-filtered (¢, N, Gal(L/K))-
module over K is a finite Lo ®g, F-module D (where Lg is the maximal unramified extension
of Q, in L) such that:

(1) D has a Frobenius semi-linear operator ¢p : D < D such that idp, ® ¢p : Lo ®¢ 1, D =D
is an Lo ®q, F-linear isomorphism (here ¢ acts on Lo ®g, E by ¢(z ®@y) = ¢(z) ®y for
any x € Lo, y € E);

(2) N:D — D is an Ly ®q, E-linear morphism such that ppN = N¢;

(3) Dr:=L ®r, D has a decreasing filtration by sub-L ®q, EF-modules Fil'D;, for i € Z such
that Fil=* Dy = Dy, and Fil'Dy, = 0 for sufficiently large i > 0;

(4) Gal(L/K) acts on Ly ®q, E (or L ®q, E)-semi-linearly on D (or Dr) such that go = pg
and gN = Ng and ¢(Fil'Dr) = Fil'Dy, for any g € Gal(L/K) and i € Z (here Gal(L/K) acts
on L ®q, £ by g(r®@y)=g(r)®y forany r € L,y € F and g € Gal(L/K)).

We call D an E-filtered (¢, N, Gi)-module if D is an E-filtered (¢, N, Gal(L/K))-module for
some finite Galois extension L of K.

DEFINITION 1.17. Let W := fR ) be an E—B-pair of GK and let L be a finite Galois
extension of K. Then we deﬁne DL (W) = (Bmax ®5, We)L, DE(W) = (Biog @5, We)92,
DgR(W) := (Bqr ®p, We)L, i.e. fixed parts of Gr. As in the case of usual p-adic representations,
we can show that dimp/ (DI (W)) <rankp, (W.) where L' = Lg if ? € {cris, st} and L' =L if
? = dR. We say that W is potentially crystalline (respectively potentially semi-stable, respectively
de Rham) if dimy, (D¥(W)) =rankp, (W,) for ? = cris (respectively ? = st, respectively ? = dR)
for some finite Galois extension L of K.

For a potentially semi-stable E—B-pair W and for sufficiently large L such that
dimp, DL (W) = rankg, W, we can equip DL (W) with an E-filtered (p, N, Gal(L/K))-module
structure as follows. The (p, N, Gal(L/K))-module structure on D% (W) is induced from the
action of ¢ and N on B, and from the action of Gg on Bjys ®p, We. The filtration on

DI (W) S L®p, DE(W) is defined by Fil' Dk (W) := DX (W) N ##W i, € Wyr. So we obtain
a functor W+ DL (W) from the category of potentially semi-stable F—B-pairs of G which are
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semi-stable E—B-pairs of G, to the category of E-filtered (¢, N, Gal(L/K))-modules over K.
Berger generalized p-adic monodromy theorem and ‘weakly admissible implies admissible’
theorem to the case of B-pairs.

THEOREM 1.18. We have the following results.

(1) All de Rham E—B-pairs are potentially semi-stable.

(2) The functor W + D% (W) realizes an equivalence of categories between the category of
potentially semi-stable E—B-pairs of G which are semi-stable E—B-pairs of G, to the
category of E-filtered (¢, N, Gal(L/K))-modules over K.

(3) The functor W — DL, (W) realizes an equivalence of categories between the category of
potentially crystalline E—B-pairs of Gg which are crystalline E—B-pairs of G to the

category of E-filtered (¢, Gal(L/K))-modules over K.

Proof. See [Ber08b, Proposition 2.3.4 and Theorem 2.3.5]. O

Remark 1.19. An inverse functor of DX is defined as follows. For an FE-filtered
(¢, N, Gal(L/K))-module D over K, put We(D):=(Big ®r, D)*=1N=0 and Wi (D):=
Fil’(Bgr ®1 Dr). Then we can show that W (D) := (W,(D), Wiz (D)) is an E-B-pair of Gk.
We know that D +— W (D) is an inverse of W + DL (W) (see [Ber08b, §2.3]).

Remark 1.20. The proof of (2) and (3) of the above theorem is much easier than that in the case
of p-adic representations, because in this case there are no conditions about weakly admissibility
of filtered (¢, N, G )-modules.

1.2 (¢, I'x)-modules over a Robba ring

In [Ber08b], Berger established the equivalence between the category of B-pairs and the category
of (¢, 'x)-modules over a Robba ring Bjig - In this section, we first recall the general facts
about p-modules over Robba rings following [Ked08] and then recall the construction of a Robba
ring Bjig’ 5 and the definition of (¢, I'x)-modules over Bjig’ . following [Ber02].

In applications of (¢, 'k )-modules to p-adic Hodge theory, the notion of slope and the
slope filtration theorem of Kedlaya are very important. So we recall the general fact about
slopes of ¢-modules over general Robba ring and the slope filtration theorem of Kedlaya
following [Ked08, §1]. Let L be a complete discrete valuation field of characteristic zero, Oy, its
integer ring, kz, the residue field of L and 77, a uniformizer of L. Then we define the Robba ring
of L by Ry :={f(x):=> jcz anz" | an € L, f(x) converges for any = € L such that r <|z| <1
for some r < 1}. We assume that there is an endomorphism ¢y, : L — L which is a lifting of the
q = p’th power Frobenius on kj, for some f € N and we assume that there is a ¢ -semi-linear
endomorphism ¢: Ry, — Rp > ey arz® — >y dr(ar)d(x)® such that ¢(z) — 27 € Ry has all
coefficients in 7;Oy,.

DEFINITION 1.21. A ¢-module over Ry is a finite free Rp-module M equipped with ¢-
semi-linear action ¢p; : M — M such that idg, ® ¢pr:Rp Q¢r, M — M is an Rp-linear
isomorphism.

The category of ¢-modules over R is not an abelian category because the cokernel of a

morphism is not a free Ry-module in general. So it is important to know when the cokernel
is free.
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DEFINITION 1.22. Let M; C M be a sub-¢-module of a ¢-module M over Ry. Then we say
that M is saturated in M if the quotient M /M is a free Ry module. Then M/M; is a ¢-
module over Ry,.

Put RY:={f(x) €Ry||f(x)| is bounded in r<|z|<1 for some r<1}={f(z)=
> rez @xz® | {ax}rez C L is bounded and f(z) converges for any x such that r < |z| <1 for some
r <1} Put RO := {3, , axz® € Ry | ay € Of for any k € Z}. Then RY is a discrete valuation
field with the integer ring R and a valuation on R% is defined by w(f(z)) := infpez{vr(an)}
for any f(z)=1Y,cz anz" € R, where vy is the valuation of L such that vy(p)=1. The
residue field of RPd is ky((x)). By the above assumption on ¢, ¢(z) € R, ¢ preserves RP4
and R and w(¢(f)) =w(f) for any f € RY. Moreover, it is known that R} :’R}Ed’X (see
[Ked08, Example 1.4.2]).

DEFINITION 1.23. For a ¢-module M over Ry of rank n, the top exterior power A"M has
rank one over Rr. Let v be a generator of A" M and write ¢(v) = rv for some r € R} = R*.
Define the degree of M by setting deg(M ) :=w(r), define the slope of M by setting u(M) :=
deg(M)/rank(M). It is easy to check that deg(M) and (M) do not depend on the choice of the
generator of A"M.

If My, My are ¢-modules over Ry, then we can see that pu(M; ®r, Ma) = pu(My) + p(Ms)
(see [Ked08, Remark 1.4.5]). Next we define pure slope ¢-modules. Before defining this, we need
to recall some definitions.

DEFINITION 1.24. Let M be a ¢-module over Ry, and let a be a positive integer. Then we define
the a-pushforward [a].M of M to be the ¢*-module M over Ry such that the ¢%-semi-linear
morphism is defined by ¢%,: M — M.

If M is a ¢-module over Ry, then it is easy to see that [a].M is a ¢®-module over R with
deg([a]. M) = adeg(M), u([a]«M)=au(M). First we define pure slope zero ¢-modules, which
are called étale ¢-modules.

DEFINITION 1.25. A ¢-module M over Ry is said to be étale if it can be obtained by base
extension from a ¢-module over R, that is, M admits a ¢ys-stable R'P-lattice N such that ¢/

induces an RiM-linear isomorphism R™ @ ine N = N.
L L “¢RE

From the above definition, if M is an étale ¢-module over Ry, then it is easy to see that
deg(M) =0 and u(M)=0. On this setting, we define pure slope ¢-modules as follows. (We
put ey, the absolute ramified index of L.)

DEFINITION 1.26. Let M be a ¢-module over Ry, with slope s = c¢/dey, where ¢, d are coprime
integers with d > 0. We say that M is pure of slope s if, for some ¢%module N of rank one such
that deg(N) = —c/er, ([d]«M) ®r, N is an étale ¢%-module.

Remark 1.27. In [BerO8b], the definition of pure slope ¢-modules over a Robba ring is different
from this definition [Ber08b, §1.2]. However, it is proved in the proof of [Ked08, Theorem 1.7.1]
that the two definitions are the same.

Now we can state the slope filtration theorem of Kedlaya.

THEOREM 1.28. Let M be a ¢-module over Ry. Then M admits a unique filtration 0 = My C
M, C---C M;= M by sub ¢-modules over Ry, such that M; C M;; is saturated and M;4,/M;
is pure of slope s;4+1 for any 0 <¢ <[ —1 with s1 <s3 <---< 5.
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Proof. See [Ked08, Theorem 1.7.1]. O

Next we recall the construction of a Robba ring BL&K and some related rings
following [Ber02]. First, for rational numbers 0 <r < s < 400, we put /T[m] = AT{p/[7"], [7*]/p},
the p-adic completion of AT[p/[7"], [7%]/p] (here 7m:=[] -1, 7:=e—1, so [7]= [e —1]).
When r=0, we put p/[7"]:=1 and when s=+oc0, we put [7°]/p:=1. We put By, :=

Appg[1/p]. Then we have natural continuous G g-action on A[r s and on B, . Frobenius
induces isomorphisms ¢ : A[T B —>A[pr ps) and @: B[r 5] —>B[p,4ps], here we equip these rings
with p-adic topology. For r<rg<sy<s, it is known that the natural map A[r g

A[To so] 1s injective. For r >0, we put Bhr .= B[T Foo]s Bt :=U >OBT” B;rlg = ﬂT§S<+OO B[T’s}

(equipped with Frechet topology defined by any B[ns]) and Brig =Ur0 le’g (equipped with

inductive limit topology). Then we have natural inclusions Bir ET’T Bt BT and Bf c B

(but leg Z B). Frobenius induces isomorphisms ¢ : B = Bf#r, BT e BT’p " BT = Bt and

Bl —>BJr Moreover, we can easily check that AmaX—A[O (r—1)/p]> BmaX—B[O (p—1)/p] and

_rig
Brlg B[O Foo) i= ﬂ0<s<+oo B[O E The rings BT BT are respectively equal to Fancon,l“g(l)%

defined by Kedlaya [Ked04]. We recall a relatlon between B;rlg and Bggr. It is easy to

see that B[(p 1) /p,(p—1)/p) —A+{p/[p] [pl/p}[1/p]. Then we have a natural continuous G-

equivariant injective morphism B[(p 1)/py(p—1)/p] — Bl > k20 ar(p/[p)* + 2120 bi([p)/p)! —
> ez0 ak(0/[P)* + X0 bi([B]/p)". In particular, we have a natural continuous inclusion i :

pt.(r—1)/
B " = Npe1) precoo Bito-1) /) = Bio-1)/mo-1)/0 ‘_>BdR For any n €N, we define a
continuous G g-equivariant injection ¢, :=igo @™ ": leg(p Dp" B;riép /r B(J{R.

Next we define B}(ng and BJr We put Ag, := {Zk> " apm® | ay € Ok,,ar — 0 (k— —o0)}
and By, := Ak,[1/p] where 7 :=[¢] — 1. Ak, is a complete discrete valuation ring such that p is
a prime element, the residue field is Ex, := k((¢ — 1)) and the fraction field is Bg,. We can show
that Ay, C A and By, C B. ¢ and the action of G on A preserves A, and p(m) =(r+1)P — 1
and g(m) = (m 4+ 1)X9) —1 for any g€ Gg. Let A be the p-adic completion of the maximal
unramified extension of Ag, in 1&, B be its fraction field. Then ¢ and the action of Gg
also preserve A and B. We put Ax := AHK By .= BHx, Bk = Bg N ET, Bkr = Bg N Bir, By
definition, these rings are equipped with natural continuous actions of ¢ and k. If we put
Ex = (ERr)Hx C E (here E¥P is the separable closure of Fp, in E), it is known that Ex is a
separable extension of Ey, of degree [Ko : Ko((pe)] by the theory of fields of norm. Here Ay
is a complete discrete valuation ring such that p is a prime element, the residue field is Fx
and the fraction field is Bg. Let K{; be the maximal unramified extension of Ky in K. For
sufficiently large r > 0 such that a prime element 7g, € Ek lifts to 7, € B}{, it is known that
BI(T = {Zk> . akwEK |ai € K, f(X):= Zk>_ ar X" is a bounded function on X € C, such

that p~1/mx <|X| < 1}. We put BI{;K the Frechet completion of By and B;rig x=Urso B;ri’;K.

Then it is known that BL’QK = {Zzﬁo - akﬁgK |a, € K, f(X):= zgioo arpX* converges on
X €C, such that p~/rex <|X|<1}. So Bl |,
in K{). We can show that BrTg x C B;rlg, B;rlg x C leg and the Frechet topology on BI’ K18 the

induced topology from that on BT and ¢ induces inclusions Br B;rl’gTK, B;rig K B;fig K

leg 5 are the Robba rings with coefficients
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~ _ n—1 _ n—1
and I' ¢ continuously acts on Bji’; o B:fig - By restricting i, : B;fi’g(p Dpt Bj; to Bji’g(;p Kl)p ,

we have a G -equivariant injection iy, : phe-Dr"t | pt
K-€q 3 n - Srig K dR"

Il
with a Frobenius semi-linear action ¢p and a continuous semi-linear action of I'xr suchthat D

. i . ot . . .
is free as a Bri&K module, ZdB;‘i&K ® pp: Brig’K ®<PvBrTig,K D — D is an isomorphism and that

DEFINITION 1.29. An E—(p, I'k)-module over BT.g’K is a finite BjigK ®q, £-module D equipped

the actions of ¢ and 'k commute. Here ¢ and 'k act on B;rig,K ®q, E as ¢ ®1id, v ®id for
any v € I'k.

When E = Q,,, we omit the notation @, in the above definition, i.e. we simply call (¢, I'x)-
modules over Bjig K-

f

Next we prove a lemma concerning the freeness over B]rig

Kk ®q, F of an E—p-module.

LEmMA 1.30. Let D be an E—p-module over BjigK. Then D is also free as a BjigK ®q, £-
module.

Proof. Let E|:=ENK(, f':=[E}:Qp] and I :={o: E| < E}. Then we have a canonical de-
composition B;rig Kk ®q, B 5 @UGIBIig K QB0 FEe,, where e, is the idempotent in B;rig Kk ®q, F

corresponding to 1 in Bjig K OO0 E. Then any component Bjig K O o FEe, is a Robba ring

with coefficients in F, i.e. they are non-canonically isomorphic to Rg. The action of ¢ is given

by ¢(a ®bes) = p(a) ® beg,-1|, for any a € Bjig x and b€ E and o € I. Because ¢|p; acts
0 b

transitively on I, so ¢ acts transitively on the components of this decomposition. Because
1 = f', @I preserves the component BjigK®E67g Fe, for any c€l. Let D be an E—¢-

module over Bjig i Then we also have a canonical decomposition D 5 @perD® Brfig < ®0, E
Bjig’K OF) o Eey = @gerD Qg0 Fe,. Then, for any o € I, the component D D)o Fe, is a

B;rig?K ®py o Eeg-module which is finite torsion free as a BLgK—module. So it is free as a

B;rig,K

in particular, it is a Bézout domain and because the natural map Bji

-module by [Ked04, Proposition 2.5]. Because BjigJ( QR o Fe, is also a Robba ring,
g K B;rig,K Opyo B s
injective, then it is easy to see that D Qg o Fe, is finite torsion free over Bjig,K QR o FEe,.
So it is free over BjigK ®p; o Ees for any o €I by [Ked04, Proposition 2.5|. Then we can
take a basis {vies, ..., vpes} of D ®p) o Ees over B:igj{ ®p o Ees for any fixed o € I. Then
{gol(vl)ewf”%, ceey goz(vk)ewﬂ%} is a basis of D ®E‘6’0<P7i|E6 Eewﬂ-‘E6 forany 0<i< f/'—1
by the Frobenius structure on D. Then {Z{;Bl goi(vl)ewfq%, ce Z{;_Ol gp"(vk)ewﬂ‘%} is a
basis of D over BL&K ®q, E. So D is a free B;rig,K ®q, F-module. O

By this lemma, we can define the rank and the tensor products and the duals of E—(¢, I'k)-
modules as follows.

DEFINITION 1.31. We make the following definitions.

(1) Let D be an E—(p, I'k)-module over BrTi&K. We define the rank of D by rank(D):=

rank (D), i.e. the rank of D as a free B;ri&K ®q, E-module.

rig,K®QpE

(2) Let Dy, D3 be E—(¢, Ik )-modules over Bjig’K. Then we define the tensor product of D; and
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Dy by Dy ® Dy := Dy ® Dy, which is a free Bl ;- ®g, E-module by Lemma 1.30,

. ®o, F rig,
rig, K Qp
on which ¢ and I'x act by vp,ep, = ¢D, ®Bjig @, B P2 and v @ gt 7 for any

r1g,K®Q
vyelk.
(3) Let D be an E-(p,I')-module over Bjig,K. Then we define the dual of D by DY :=

D, Bl : here the E-action on DV is defined by af(z) := f(ax) for any a € E,
rig, K
K ’

Next we prove the slope filtration theorem for E—(¢p, I'k )-modules over Bjig’ K-

THEOREM 1.32. Let D be an E—(yp, I')-module over B:fig k- Then D admits unique filtration

0=DoC D; C---C D;=D such that D; is an E—(p, 'k )-module over B;rig x> Di is saturated in
D;+1 and the quotient D;11/D; is pure of slope s; 41 for any 0 <i <1 —1 with s1 < s3<---< 5.
Here the slope of an E—(p, I')-module M is the slope of M as @-module over B:ig K-

Proof. Let D be an E—(p,T'k)-module over B;rig - Then, by the slope filtration theorem
(Theorem 1.28), D admits unique filtration 0 = Dy C Dy C - - - C D; = D by sub-p-modules over
Bjig, i such that D; is saturated in D;;1 and the quotient D;yq /D; is pure of slope ;11
for any 0 <¢<[—1 with s7 <s2 <---<s;. Then the action of E preserves D; for any ¢ by
uniqueness of filtration. So D; and D;41/D; are E—p-modules over B;rig’ i for any 7. For any
velk, 0Cy(Dy) C--- Cvy(D;) =D also satisfies the same conditions as 0 C D; C --- C D by
the commutativity of I'x and ¢. So we obtain y(D;) = D; for any i and € ' by uniqueness

of filtration. Hence, D; and D;;1/D; are E—(p, 'k )-modules over BjigK for any 1. O

In particular, it follows from the above theorem that when D is rank one, then D is pure of
slope s for some s € Q. Concerning this slope s, we know more precise information as follows,
which we need to classify rank-one F—B-pairs.

LEMMA 1.33. Let D be a rank one E—(p, 'x)-module. Then D is pure and the slope (D) is
contained in (1/(feg))Z.

Proof. The claim that D is pure follows from the above theorem. We prove that p(D) is contained
in (1/(feg))Z by using the 'k structure on D. First we consider the following short exact
sequence of finite groups

1 — Gal(E}/Ko) — Gal(E}/Q,) — Gal(Ko/Q,) — 1.

Here we put Ej) := EN Ky 2 Ko. We put f”:=[E{ : Ko] and f":= f " = [E{, : Q,]. Then we have
a natural surjection 'y — Gal(K)K/K) = Gal(K}/Ko) - Gal(E}/Kj). So, if we consider ¢
(which acts on Bjig’K) as an element in Gal(E}/Q,), there is a v €'k such that ¢/ =~
in Gal(E(/Kp). On this setting, we consider a rank-one E—(y,I'x)-module D over B;rig’K.
Put I:={o: E)— E} = Gal(Ej/Qp) and D, :=D ® i

rig,
Because D is rank one, D, is a rank-one free BrTig K Q) o E-module. Take a base e, of D,
for any o €I. Then ¢ sends D, to D,,-1 and v €Tk sends D, to D,,-1. We calculate

the slope of D as follows. Let e; be a base of D;; corresponding to id € Gal(E{|/Qp).

Then we have ¢f(e;) = ae s for some «a € BjigK @y - L. Because o =~ € Gal(E}/Ko)

T
@0, E Brig’K QK)o FE for any o€ [.
and ~ induces an isomorphism v : D;q — D, -1, there exists some [ € B:fig’ KO8 il such that
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v(Be1) = ae,-1. Because the actions of ¢ and 7 commute, we have 0% (e1) :gof(aeg,_f) =

¢!l (aey 1) = ¢! (v1(Ber)) = 1(! (B)@ (1)) = 4(! (B)7(Ber)) =v(#7 (8))7*(B)7*(e1). Repeating
this procedure, we obtain /7" (e1) = v(f "= D(B)A2(LI " =2(3)) - - 4" (B)7" (e1) := Beey
(here we put 3:=~(pf "D ()2 (! U"=D(B)) - - - 4" (8) and A" (e1) :=ces for some ce
B;[ig,K ®py.id B because A" =ide Gal(E(/Qp)). Then D;q is a rank-one o -module over
B;rig,K ®pyia £ of slope wy () + w1 (c), where w; is the valuation of (B;ri&K ®F; id E)Pd which is
the natural extension of the valuation of (BrTig K)bd = B}{. Because ¢ and v do not change
valuation, we have wi(03) = f"wi(B) € (f"/er)Z. Because ' acts continuously on D and
'k CZ;, we have w1 (¢) = 0. So the slope of D4 as goff//—module over B:igj{ Q) id F is contained
in (f"/er)Z. We can easily see that the slope of D;g as a off"-module over BrTigK ®py,iq L is the
same as the slope of Dyq as a ¢//"-module over Bjig,K' So Djq also has slope wy (8) € (f"/eg)7Z

as a o/f"-module over B:ig i+ Using the Frobenius structure on D, we can show that D, also

has slope wl(ﬁ) as a of"-module over BjigK for any o € I. So D also has slope wl(ﬁ) as
a of " -module over Bjig’K. Because p([ff"]«D) = ff"u(D) by [Ked08, Remark 1.4.5], D has

slope (wi(B)/ff") e (f"/ff"ep)Z= (1) feg)Z as a p-module over Bjig,K' We have finished the
proof of this lemma. O

Next we prove a lemma concerning a relation between tensor products and slopes.

LEMMA 1.34. Let Dy, Dy be E—(p, ')-modules over B;rigK which are pure of slope s1, so,
respectively. Then Dy ® Dy is pure of slope s1 + sa.

Proof. If we decompose B;rig,K ®q, F = @J:E(J%EBIig,K Qg0 Leg, we can decompose Dj, Ds

into ¢ components, D; — ®o.gy—EDio for i =1, 2, where D; , is the B;rig K ®E) o I component
of D;. Then, by the proof of Lemma 1.33 and by [Ked08, Lemma 1.6.3], we can see that D; ,
is a goff”—module over B;rigK Op o & which is pure of slope ff”s; for any o and i =1,2. So
D16 ®@pgt

rig,K®E6,o

by [Ked08, Corollary 1.6.4]. Because D; ® Dy = @U:E6<—>ED1,0 ®

pD2oisa o " -module over Bjig’K ®py o £ which is pure of slope ff”(s1 + s2)

B;rig,K®E(’),aE D5 5, we can show
that Dy ® Ds is a p-module over B;rig x Which is pure of slope s + s2 in the same way as the
proof of Lemma 1.33 and by using [Ked08, Lemma 1.6.3]. O

1.3 Equivalence between B-pairs and (¢, I'k)-modules

In this section, we recall a result of Berger on the equivalence between the category of B-pairs and
the category of (¢, ' )-modules over Bji& i+ First we recall the construction of a functor from
(¢, T'k)-modules to B-pairs [Ber08b, §2.2]. Let D be a (¢, ' )-module of rank d over B;rig’K.
Then Berger showed that W (D) := (Ejig[l/t] ®B;rig p D)#=! is a free B.-module of rank d (see
[Ber08b, Proposition 2.2.6]). It is equipped with a continuous semi-linear G x-action. On the other
hand, for sufficiently large rg > 0, we can take unique I'g-stable finite free B;fi’; -submodule

D" C D such that BjigvK ®BI{;K D" =D and Z.dBIi’gP,TK R pp: B;ri’gK ®%"»BJ{;K D" = DP for any
r > rq [Ber08a, Theorem 1.3.3]. Then Berger showed that the continuous G g-module Wi, (D) :=
Bix ®. ph-upnt DP=DP" gyer Bjy is independent of any n such that (p — 1)p"~! > ry and

”’Bng,K
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showed that there is a canonical G -isomorphism Bqr ®@p, We(D) = Byr ® B, Wik(D) (see
R

[Ber08b, Proposition 2.2.6]). We put W (D) := (W.(D), Wiz (D)). This is a B-pair of rank d.

This defines a functor from the category of (¢, I'k)-modules over B;ri& x to the category of

B-pairs of G.

Remark 1.35. We can also define an inverse functor from the category of B-pairs to the category
of (¢, I'k)-modules [Ber08b, §2.2], but the definition of this is very difficult. In this paper, we
do not need this construction, so we omit the definition of this functor. We denote this inverse
functor by W +— D(W).

THEOREM 1.36. The functor D — W (D) is an exact functor and this gives an equivalence of

categories between the category of E—(¢, I'x)-modules over B!

rig, )¢ and the category of E—B-pairs
of G K-

Proof. For the Qp-coefficient case, this result was proved by Berger [Ber08b, Theorem 2.2.7].
Let D be an E—(p,I'x)-module over B;rig ks @€ E. Then the multiplication by a gives an

endomorphism of D as Q,-(¢, 'k )-modules. From the functoriality, these multiplications give an
E-action on W(D). So W(D) is an E—B-pair. For any E—B-pair W, we can define in a similar
way the E-action on D(W). So we obtain the desired equivalence. O

If we restrict the functor D — W (D) to étale E—(¢, I'k)-modules, we obtain the following
theorem.

THEOREM 1.37. The functor D — W (D) gives an equivalence of categories between the category
of étale E—(p,T'k)-modules and the category of E-B-pairs of the form W(V) for some
FE-representation V.

Proof. See [Ber08b, Proposition 2.2.9]. O
DEFINITION 1.38. Let W be an E—B-pair and s € Q. Then we say that W is pure of slope s if
D(W) is pure of slope s.

Remark 1.39. In fact, we can define B-pairs with pure slope directly without using (¢, I'x)-
modules, but we omit this definition in this article (see [Ber08b, §3.2]).

The next theorem is the E—B-pair version of slope filtration theorem.

THEOREM 1.40. Let W be an E-B-pair. Then there exists unique filtration 0 = Wy C W1 C
-+ CW; =W by sub-E—B-pairs of W such that W; is saturated in W;y; and the quotient
Wit1/W; is pure of slope s; for any i with s1 < s9 <--- < s.

Proof. This follows from Theorems 1.32 and 1.36. O
LEMMA 1.41. Let W be a rank-one E—B-pair. Then W is pure and its slope is contained in
(1/fep)Z.

Proof. This follows from Lemma 1.33. O

1.4 Classification of rank-one E—B-pairs

In this section, we classify rank-one E—B-pairs. By Lemma 1.41, any rank one E—B-pairs are
pure and their slopes are contained in (1/fegr)Z. We fix a prime element g of E. First we
construct a special rank-one E—B-pair Wy which is pure of slope 1/ feg. To construct this, first
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we define a rank-one E-filtered p-module Dy over K, which corresponds to Wy by Dgis. (Here,
for any E-filtered (¢, N)-module D, we can define the rank of D by rank(D) := rankg,e,, £(D)
because we can show that D is a free Ko ®q, E-module in the same way as in the case of
E-(¢, 'k )-modules over B;rig,K') Let Dg:= Ko ®q, Fe = DokgpFes be a free rank-one
Ko ®q, E-module. We define a filtered ¢-module structure on Dy as follows. Define a Ko ®q,
E-semi-linear action of ¢ on Dy by ¢(eia) :=€,-1, plep-1) == ep-2, ..., p(ey—(r-2)) = €,-(s-1);
go(ew(fq)) = Tpeid, i.e. a g-module such that ¢f =7p. We define a decreasing filtration on
Dy i =K ®k, Dy by FilODQK =Dy kg, FillDo’K :=0. Then Dy is a filtered @-module over K
with a natural E-action. For any ¢ > 0, then D?i is the rank-one E-filtered ¢-module such that
o/ =7}y and Fil' D'} = D§y and Fil' DF' = 0. If we put D§~" := Dy the dual of Dy defined in
the same way as in the case of F—B-pairs, then we can see that Df)@_l is an E-filtered p-module
such that of = 71']51 and FilDD(@f;(1 = D(@f}l and Filng?}1 = 0. Moreover, if we define the tensor
products of E-filtered (¢, N)-modules in the same way as in the case of E-(p, I'k)-modules, then
we can see that Dgg_l ® Dy is the trivial E-filtered p-module. So DSM is well defined for any
i € Z and satisfies Dggi ® D?j = D?iﬂ for any i, j € Z.

By the ‘weakly admissible implies admissible’ theorem for B-pairs (Theorem 1.18(3)), Wy :=
W (Do) = (We(Dyo), Wiz (Do)) is the rank-one crystalline E-B-pair such that DX, (W) = D.

cris

LEMMA 1.42. We have that Wy is pure of slope 1/ feg.

Proof. Because Wy is rank one, Wy is pure by Lemma 1.41. So it suffices to show that the slope of
Wy is equal to 1/ feg. In [Ber08a, §2.2], Berger defined a functor D — M (D) from the category
of filtered (¢, N, G )-modules to the category of (locally trivial) (¢, 'k )-modules over B;rig,K‘
In [Ber08b, Proposition 2.3.4], he showed that M(DL(W)) = D(W) for any potentially semi-
stable B-pair W and for sufficient large L. By this compatibility, we have D(Wy) = M(Dy).
On the other hand, for a rank-one filtered (¢, N)-module D, the slope of M(D) is equal
to tn(D) —tg(D) by [Ber08a, Theorem 4.2.1]. Here, for a rank-one filtered (¢, N)-module
D := Koe, we define tx(D) :=val,(p(e)/e) and define tg(D) as a unique integer k such that
Fil*(Dg) /Fil**1 (D) # 0. Because u(A'M) =iu(M) for a p-module M over a Robba ring,
we have u(D(Wy)) = u(M(Dyo)) = (1/[E : Q) u(AFIM(Do)) = (1/[E : Qp)) (tn (A Dy) —
tir (AP @I Dg)). By the definition of Dy, it is easy to see that ty (AP @Dy) = [E: Kol/ep,
trr (A QI Dg) = 0. So we obtain u(M(Dy)) = [E : Ko]/[E : Qpler = 1/fer. So the slope of Wy
is 1/ feg by the definition of the slopes of E—B-pairs. O

By using Wy, we can classify all of the rank-one E—B-pairs as follows. Let 6 : K* — E* be a
continuous character where K and E are equipped with p-adic topology. We put é(7g ) := uﬂ% for
uwe O and i € Z. We put &g : K* — O the unitary continuous character such that 50|le< = 5\0;(
and dg(mx) := u. Then by local class field theory, this extends uniquely to a continuous character
50 : G — O} such that So oTecy = 0o, here recg : K* — G%}D is the reciprocity map as in
the notation section. Then we put W (J):=W(E(d)) ® W' By the definitions of tensor
products and duals, we can see that these are compatible with tensor products and with duals,
ie. W(d1) ® W(de) = W (6162) and W(8;)Y = W(6;!) for any characters dy,dy: K* — E*.
In particular, we have W0®i = W(D(‘?i) for any i€ Z, so W(()X)i is pure of slope i/fegr by
Lemmas 1.34 and 1.42 for any ¢ € Z. Then we have the following lemma.

LEMMA 1.43. Let 6 : K* — E* be a continuous character. Then the E—B-pair W (0) does not
depend on the choice of a uniformizer g of I and on the choice of a uniformizer g of K.
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Proof. Because dp does not depend on the choice of a uniformizer 7 of K, then W(J) does not
depend on 7. Let 7y = vrg be another prime of E (v € OF). Let D{ be a rank-one E-filtered
¢-module over K defined by replacing mg with 7/; in the definition of Dy. Let W( := W (Dy) be
the corresponding E-B-pair. If we write §(7x ) = unk, = uv~'7'%, then 60](9;{ = 56|le( = 6](9;{ and
do(mr) = u and &y(mr) =uv™". Then it suffices to show that W (E (00)) @ W' S W (E(S))) ®
W, Because dy/d) 8! is a unramified character, it suffices to show that DE (E(30/5h)) = D¥' @
DY~ as E-filtered p-modules. By calculation, DX, (E(d0/5})) = Ko ®q, Ee on which ¢ acts by
(pf( )= 50/(56(7TK)6 = (u/uv—")e =v'e. By definition, ¢ acts on D' ® D§ ' = K ®q, Ee’ by
¢! (¢') = (n%y/mE)'e’ = vie’. So these are isomorphic as a ¢-module. Concerning the filtrations,
Fil'DX (E (00/05)) = D(E (0/%)) and FlllfoR( (30/8%)) = 0 because 30/50 is a unramified
character. On the other hand, Fil’Di% © DF ' = D% ® D'’ and Fil' D ® DF ' =0 by
the definition of Dy and Dj,. So, these are 1som0rphlc as E- ﬁltered @—modules. O

Remark 1.44. We can also show in the same way that W (J) defined here is isomorphic to W (6)
defined before Theorem 0.1 in the introduction.

The classification theorem of rank-one E—B-pairs is as follows.

THEOREM 1.45. Let W be a rank-one E—B-pair. Then there exists unique continuous character
§: K* — E* such that W = W (4).

Proof. Let W be a rank-one E—B-pair. Then, by Lemma 1.41, W' is pure of slope i/ fe for unique
i € Z. Because Wy is pure of slope 1/fep by Lemma 1.42, W @ W{™" is pure of slope zero by
Lemma 1.34. So, by Theorem 1.37, there exists unique continuous character 60 :Gr — (’)E such
that W @ W™ 5 W (E(d)). So W 5 W @ W(E(d)). If we define a continuous character
§: K* — E* such that §(mf) := dg o recy (mx ), 5\Ox =dpo I'eCK|O>< then we have W = W (9)

by the definition of W(J). The uniqueness of § follows from uniqueness of i and 8o above. a

Next we recall some facts about Sen’s theory for B-pairs to define Hodge—Tate weight of
B-pairs. Let U be a Cj,-representation of G, i.e. U is a finite-dimensional C,-vector space
equipped with a continuous semi-linear G g-action. Then the union Ufﬁf of finite-dimensional
sub- K o.-vector spaces of UH which are stable by 'y is the largest subspace with this property
and satisfies C, @, Ugf S U (cf. [Ber08b, §2.3] and the references therein). Then Ugf is
equipped with a K-linear operator Vi := log(7y)/ log(x(7)) for any v € Ik which is sufficiently

close to 1.

DEFINITION 1.46. Let W be a B-pair, then W JrR/tI/Vd*R is a C,-representation of G . We put
Dgen(W) := (Wi / thR)ﬁm and put Ogen,w = VWdJrR S Then we say that W is HodgeTate
if ©gen,w is diagonalizable and all of the eigenvalues are contained in Z. Then we call these
eigenvalues the Hodge—Tate weights of WW.

By using this definition, we calculate the Hodge—Tate weights of a rank-one E—B-pair. Let
W (5) be a rank-one E—B-pair for some continuous character 6 : K* — E*. If we put W (§) =
W (E (o)) ® WE* as above, then we have W(0)ir = Biz ®q, E E(bo) because W(de = Big ®q, E
by the definition of Wj. So W(TR((S) comes from an FE-representation E(SO). In particular,
Wi (0)/tWi (6) = C, ®q, E(8p) also comes from E(dy). Then, by Proposition 4.1.2 and the
remark following it in [BCO8], Dsen(W(4)) is a free Ko ®q, £-module of rank one and the
operator Ogep, () acts by multiplication by w(d) on Dgen(W(9)) for some w(d) € K ®q, E. If
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we decompose w(8) into o-components K ®g, E = ®o:x—pFes : w(0) — (w(6)ses). Then W(6)
is Hodge-Tate B-pair if and only if w(d), is contained in Z for any o.

DEFINITION 1.47. In the above situation, we say that the set of numbers {w(d),}s is the
generalized Hodge—Tate weight of W (9).

2. Calculations of cohomologies of E—B-pairs

For classifying two-dimensional split trianguline FE-representations, we need to calculate the
extension groups Ext!(Wy, W) of E-B-pairs of Wi by Wy for rank-one E-B-pairs Wy, Wh.
In this section, we define Galois cohomology H* (G, W) for any E-B-pair W and interpret
H'(Gg, W) as the extension group Ext'(Bg, W). (Here Bg := (B. ®q, E, Bz ®q, F) is the
trivial E—B-pair.) Next we review Liu’s results [Liu08] which are generalizations of Tate duality
and Euler—Poincaré characteristic formula to the case of (¢, I'x)-modules over BL& i+ Finally,
we calculate some Galois cohomologies of E—B-pairs which we need for the classification of
two-dimensional split trianguline E-representations.

2.1 Definition of Galois cohomology of E—B-pairs

Let W := (W,, W;;) be an E-B-pair. We define the complex of Gx-modules C*(W) by
So: COW) =W, @ Wi — C*W):=War : (z,y) —z —y, C{(W) =0 for i £0, 1.

DEFINITION 2.1. Let W := (W, WJR) be an F—B-pair. Then we define the Galois cohomology of

W by H(Gf, W) := H(Gg, C*(W)). Here the right-hand side is the usual Galois cohomology
of a complex of continuous Gx-modules which are computed by using continuous cochain
complexes.

By definition, we have the following long exact sequence
> H(Gg, W) = H(Gx, We) @ H(Gk, Wiy) = H (Gk, War) = H (G, W) — - - -
From this, we obtain the following results.
(1) We have H)(Gk, W) = (W. N W) 9x.
(2) There exists the exact sequence of E-vector spaces
0 — Wi /(W + W) — HY (Gx, W)
— Ker(H' (G, We) @ H' (Gg, Wi) — H (Gk, War)) — 0.
Next, for any E—B-pair, we construct a canonical isomorphism
HY (G, W) = Ext!(Bg, W),
where the right-hand side is the extension group in the category of EF—B-pairs. For any continuous
Gx-module V, we functorially define the diagram C°(V) = cl(v) o C2(V) as follows:
(1) CO(V):=V,
CYV):={f:G¥ — V a continuous function} for i =1, 2.
(2) do: COV) = CH(V) 1 (g — g — ),
01: CH (V) = C3(V): f = ((g1, 92) = f(g192) — f(91) — 91.f(92))-
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Then we have HO(GK, V) = Ker(do), HY (G, V) = Ker(61)/Im(dp). So, for any E-B-pair W,
we have HY (G, W) 5 Ker(01)/Im(dy), here g, 61 are defined by
do s COWe) & COWG) — CH(We) & CH(W ) @ CO(War) : (w, 9) = (o(), do(y), = — w),
01: C'(We) @ CH (W) ® CO(War) — C*(We) @ C* (W) © CH(War) : (fu, fa, @) =
(61(f1), 01(f2), f1 — f2 — do()).
By using this expression, we define a map H'(Gk, W) — Ext!(Bg, W) as follows. Let (f1, f2, @) €
Ker(d1). Then we define an E-B-pair X := (X, X i, 1) as follows:

(1) Xe: =W, ® (Be ®qQ, E)eqis on which Gg acts by g(x, aeeris) := (92 + gafi(g), gaecys) for
any x € We, a € Be ®q, F and g € Gk;

(2) XCTR = W (B;fR ®q, E)egr on which Gk acts by g(y, beqr) := (gy + gbfa(g), gbeqr) for
any y € Wde be B;R ®q, F and g € Gg;

(3) +: Bqr ®B, Xe — Bar gt Xt (z, aeais) — (tw(2) + aa, aeqr) for any € Bar ®p, We
and a € Bgr ®q, F; here, 1y : Bar ®@p, We 5 Bir ® B, WIR is the given isomorphism in
the definition of B-pair W = (W, Wi, tw).

(Here we see an E-B-pair W as a triple W := (W,, Wi, tw) such that W, (respectively W) is
finite free over B, ®Q E (respectively B} r ®q, F) with continuous semi-linear G'k-actions and
tw : Bar ®p, We 5 Bar ® B, WdR is a G-equivariant Bgr ®q, F-semi-linear isomorphism.

Then this definition is equivalent to Definition 1.2.) Because (fi, f2, a) € Ker(d;), we can easily
see that X is a well-defined E—B-pair which sits in the following short exact sequence

0—-W—-X—Bg—0.

So we can see the isomorphism class [X] of the extension X as an element in Ext! (B g, W). By
construction, we can easily see that this defines an E-linear morphism Ker(d;) — Ext!(B E, W).
Then, by a standard argument, we see that this morphism factors through Ker(d;)/Im(dy) —
Ext! (BE,W) and that this is, in fact, E-linear isomorphism. So we obtain the following
proposition.

PROPOSITION 2.2. Let W be an E-B-pair. Then we have the following functorial E-linear

isomorphisms:

(1) HY(Gk, W) S (We N Wi )9% = Hom(Bg, W), here Hom(Wy, Wa) is the E-vector space of
morphisms in the category of E—B-pairs from W1 to Wy for any E—B-pairs Wy, Wa;

(2) HY(Gg, W) = Ext!(Bg, W).

Proof. We have already proved part (2). For part (1), it is easy to see that (W, N WJR)GK =

Hom(Bg,, W) for any Q,-B-pair W. Because Hom(Bg,, W)= Hom(Bg, W) for any E-B-
pair W (here on the left-hand side, we see W as a Q,~B-pair), so we obtain part (1). a

~

Remark 2.3. In the case of W = W (V) for an E-representation V of Gk, we have HY(Gg, V) >
H'(Gg, W(V)): indeed, by the fundamental short exact sequence 0 — Q, — B, ® B;fR — Bqr —

0, we have a quasi-isomorphism V[0] = C*(W (V).
In the application to the classification of two-dimensional potentially semi-stable split

trianguline E-representations, we need to know when an extension is crystalline, semi-stable
or de Rham E—B-pair. So, as in the case of usual Galois cohomology of p-adic representations,
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we define Bloch-Kato’s cohomologies H! (G g, W), H}(GK, W), and H;(GK, W) (see [BK90, 3])
as follows.

DEFINITION 2.4. Let W := (W,, W) be an E-B-pair. Then we define:

— HY Gk, W) :=Ker(H (G, W) — H (Gg, We));

- H}(GK, W) :=Ker(H (G, W) — HY Gk, Buis @5, We));

— H)(Gg, W) :=Ker(H'(Gg, W) — H (Gk, War)).
Here the above maps are induced by the natural maps C*(W) — W, — Beis @, We — Bgr @B,
We = WyR, so we have natural injections H(G g, W) C H}(GK, W)CH, (G, W).

Remark 2.5. If W is a crystalline (respectively de Rham) E-B-pair, then [X] € Ext!(Bg, W) =
HY(Gg, W) is in H}(GK, W) (respectively in H;(GK, W)) if and only if X is a crystalline
(respectively de Rham) E—B-pair.

As in the case of usual p-adic representations, we have a dimension formula of H}(G K, W)
and H!(Gg, W). Before stating this, we prove the following lemma.

LEMMA 2.6. Let W be a de Rham E-B-pair. Then the canonical map HY(G, Wiy) —
HY (G, Wgr) is injective.

Proof. The proof is the same as that in the case of p-adic representation [BK90, Lemma 3.8.1],
but we give the proof for the convenience of readers. Consider the following short exact sequence
0 — Wi — WK — (War /W)oK,

From this we have
dimp(Dar(W)) < dimp(Wi ™) + dimp((War /W) %)

<) dimp(Cp(i) @, (Wil /tWik)) 9
1€EZ
= rank(W) = dimg(Dgr(W)).

Here we use the fact that the de Rham B-pair is Hodge—Tate and W is de Rham. So the map
WG%K — (War/Wiz) ¥ is surjective. Hence, the natural map HY (G, Wi;) — H (Gx, Wag) is
injective. O

The dimension formulas are as follows.
PRrRoOPOSITION 2.7. Let W be a de Rham E—B-pair. Then we have
dimp(H}(Gx, W)) = dimp(Dix (W) /Fi’ DI (W) + dimp(H(Gk, W),
dimp(H (Gx, W) /He(Gx, W) = dimp(Dig (W) /(1 = ¢) Dy (W)).

Proof. This proof is essentially the same as that of [BK90, Corollary 3.8.4]. First we consider the
following short exact sequence

1—¢
0 — B¢ — Beris — Beris — 0.

Tensoring by W, over B., we can easily see that C®(W) is naturally quasi-isomorphic
to C"*(W) :i= (Wepis ® WC;FR — Weris @ War s (z,y) — (1 — )z, z —y)) (here we put Wiy :=
Beiis @B, We). So, by the definition of Hjlc and by the above lemma, we have the following two
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exact sequences

0— HY(Gk, W) — DE (W) & Fil’ Dig (W) — D& (W) @ DIR (W) — Hy(Gk, W) — 0,

0— H(Gg, W) — DE (W)#=! @ Fi’ DI (W) — DX, (W) — HL(Gx, W) — 0.

cris

From these, we obtain the desired formulas. O

2.2 Euler—Poincaré characteristic formula and Tate local duality for B-pairs

In this section, we review Liu’s results generalizing some fundamental results of Tate on Galois
cohomology of p-adic representations, following [Ked07] and [Liu08]. Liu constructed a category
of B-quotients, which is a minimal abelian category in which the category of B-pairs is contained
as a full subcategory. Then he defined the Galois cohomology of B-quotients as the universal
d-functor of HY; (W) := Hom(Bg,, W) for any B-quotient W (here Hom is the set of morphisms

of B-quotients). In this paper, we denote this cohomology by H:. (G, W) for a B-quotient W.
Then it is shown in [Ked07] that there exists the isomorphism H{; (Gx, W)= Ext'(Bg,, W)
for any B-pair. So, for any B-pair W, we have isomorphisms H!(Gx, W) = H}, (Gk, W) and
HO(Gk, W) = HY. (Gk, W). For any Q,-representation V of Gk, it is shown in [Ked07] that
there is a functorial isomorphism H(Gg, V) = Hi, (Gk, W(V)) for any i € N. In this paper, we
review the results only for B-pairs.

THEOREM 2.8. Let W be a B-pair. Then:
(1) for i=0,1,2, Hi, (Gk, W) is finite dimensional over Q, and Hi. (G, W)=0 for i+
0,1,2;
(2) we have >_; (—1)'dimg, Hi; (Gx, W) = —[K : Q,Jrankp, (We);
(3) there is a natural perfect pairing
Lin(Gre, W) x Hi L (Gre, WY () = Higu (G, W @ WY (X)) — Hiu (G, W(Qp(X)) = Q-

Here x : G — Z, is the p-adic cyclotomic character and the last isomorphism is that which
appears in usual Tate duality.

Proof. See [Ked07, Theorem 8.1] and [Liu08, Theorems 4.3 and 4.7]. O

Remark 2.9. The above perfect pairing is defined by using (¢, I'x)-modules [Liu08, §4.2]) and
the equivalence between B-pairs and (¢, 'k )-modules [Ked07, p. 8]. On the other hand, for
Qp-B-pair W, we can define a pairing

HY (Gg, W) x HY (G, WY (x)) = H* (G, W @ WY (x)) — H* (G, W(Qp(x)) = Qp,

in the usual way by using cocycles. If we identify H' (G, W"(x)) = Hy;,(Gx, WY(x)) as above,
then we can check that both pairings are the same by using the fact that Hj, (G, W) is the
universal § functor [Ked07, Theorem 8.1] and H*(Gg, W) is a d-functor.

Let W be an E—B-pair. Then by Theorem 2.8(2) above and the remark before, we have
dimg, H' (G, W) = dimg, H{ (G, W)
— (K Q)E : Qylrank(W) + dimg, HY,, (G, W) + dimg, HE,, (G, W)
— [K : Q)IE : Qylrank(W) + dimg, HY,, (G, W) + dimg, HO,, (G, W (1))
= [K : Qy)[E : Qprank(W) + dimg, H(Gx, W) + dimg, H* (G, WY (x)).
Dividing this equality by [E : Q,], we obtain the following dimension formula.
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ProposITION 2.10. Let W be an E—B-pair. Then we have
dimpHY (G, W) = [K : Qplrank(W) + dimpH® (G, W) + dimpH" (G, WY (x)).
As in the case of p-adic representations, we have dualities between H}, H} and H;.

PROPOSITION 2.11. Let W be a B-pair. In the above perfect pairing in Theorem 2.8(3),
H (G, W) and H;(GK, WV (x)) are the exact annihilators of each other. The same statement
holds with e replaced by g and g by e and also when e and g are both replaced by f.

Proof. This proof is also essentially same as that in the case of p-adic representations (cf. [BK90,
Proposition 3.8]). O

2.3 Calculations of cohomologies of rank-one E—B-pairs

To classify rank-two split trianguline FE—B-pairs, we need to calculate the dimension of
Ext! (W (82), W (1)) for any continuous characters dy, dp : KX — EX . Twisting by W (,'), it is
isomorphic to Ext!(Bg, W (81/82)) = HY (G, W(61/52)). We calculate this in the following way.

LEMMA 2.12. For any embedding o : K — FE, we define a continuous character o(x): K* —
E* :yw o(y). Then for any {ky,}, (ks € Z for any o), we have an isomorphism of E—B-pairs

W( H G(CU)kU) :> (Be ®Qp E, @U:KwEtkdB(J{R ®K,U E)
o K—FE
Proof. First we prove that there is an isomorphism

W (id(x)) = (Be ®q, E, tBig ®k,id E ® ®p.x B £iaBig @Ko E),
here id : K — E is the given embedding. We decompose id(z) : K* — E* into id(z) := dpd1, here
60\OIX< = z'd|01x<, do(mg) :=1 and (51\0;( is trivial and 61 (7x) := k. The1~1, by the definition of the
reciprocity map reck : K* — G‘}? in the notation section, we have dy = xrr, i.e. the Lubin-
Tate character associated with 7. So we have W (&) = W(E(xrr)). Then DE (W (&)) :=
Ko ®q, Fe is the filtered ¢-module such that ¢ acts by ol (e) = 71'[_(16 and the filtration
on K ®p, DE,(W(d)) = K ®q, Fe = @s.xpEe, is defined by Fil ™! = K ®g, DX, (W (d)),

cris

Fil' = @J#d Fe, and Fil' = 0 by [Col02, Proposition 9.10 and Lemma 9.18]. On the other hand,

DE (W (61)) := Ko ®q, Ee’ is the filtered ¢-module such that ¢/(e’) =mge’ and Fil'(K ®p,
DLW (1)) = K @, D5 (W (61)), Fil' = 0. So we have D (id(x)) = D&ii(d0) © Dy (61) :=

Ko ®q, Ee” on which ¢ acts by ¢f(e”)=¢" and the filtration on K ®p, DX (id(z)) >
@0k pBe) is given by Fil ™' = K @k, DE; (id(x)), Fil’ = @,_;4 Eejy and Fil' = 0. Then, by
the definition of Dgis for E—B-pairs, it is easy to see that Dgis((Be ®q, E, tB:{R OKrid E®
Do sia Bl ®k. E)) = DX, (id(z)) as filtered ¢-modules. So, in this case, we have proved
the lemma. In the case where [] ;.. o(2)" =0o(z) for some o, we can prove the lemma
in the same way. By tensoring these, we can prove the lemma for any [] ... . o(z). O

Let Ng/g,(z): K* — Q, be the norm map and let | —[: Q) — E* be the absolute value
character such that |p[:=1/p, |u|:=1 for any u € Z, .

LEMMA 2.13. There is an isomorphism W (E(x)) = W (Ng q, (2)| Nk /g, ()]).

Proof. When K = Qy, x : Gq, — Z, satisfies z|z| = x orecg, by local class field theory. So, in
the general case, x : Gx — OF corresponds to N /q, (2)|Ng/q, ()| by local class field theory. O
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The next proposition is a generalization of [Col08a, Proposition 3.1].

PROPOSITION 2.14. Let §: KX — E* be a continuous character. Then H*(Gg, W(§)) = E if
and only if § =[],.x..p 0()*e such that k, <0 for any o. Otherwise H*(Gx, W (§)) = 0.

Proof. If we assume that HY(G' ¢, W (§)) # 0, then there is a non-zero morphism f : Bg — W (J) of
E-B-pairs because H’(Gx, W (9)) = Hom(Bg, W(6)). Then, by Lemma 1.12, Ker(f) and Im(f)
are also F—B-pairs. Because Bg is a rank-one E—B-pair, one of Ker(f) and Im(f) must be zero.
Because f # 0 we have Im(f) # 0 so we have Ker(f) =0, i.e. f must be injective. So we have an
injection f: B. ®q, £ < W(0)e of free B. ®q, E-modules of the same rank. By Lemma 1.10,

the cokernel is also a free B, ®g, E-module. So the cokernel must be zero, so f: Be ®q, F =
W (6)e must be an isomorphism. Then W ()], is a Gg-stable Bjg-lattice in Bqr ®q, E with
FE-action which contains B(TR ®q, £ = @U;KQEB(TR QKo E. So W(é)j{R must be of the form
W(0)ix = ®o:k—pt" Bz ®k» E for some k, <0 for any 0. So W(8) =W ([[,.x_g o(x)*)
by Lemma 2.12. In this case, it is clear that Hom(Bg, W(d)) = E, so we have proved the
proposition. O

By this proposition and Liu’s Euler—Poincaré formula, we can calculate the dimension of
Ext! (W (d2), W (61)) as follows. This is a generalization of [Col08a, Theorem 3.9].

PROPOSITION 2.15. Let 61,09 : KX — E* be continuous characters. Then dimgExt!(WW(d),
W (1)) is equal to:

(1) [K:Qp] + 1 when 61/02 =[[,.5c.p 0()*e such that k, <0 for any o;
(2) Qp] + 1 when 61 /02 = [Nk, ()| [ .k 5 o(x)*e such that k, > 1 for any o;
(3) Qp] otherwise.
Proof. By Lemma 2.13 and Proposition 2.14, we have:
— H%Gk,W(8)) = E if and only if 6 = [],.;c..p o(z)* such that k, <0 for any o,
— H(Gr, W(6)"(x)) = H)(Gr, W(6~'Nijq, (@)|Nk/g,(z)])) =E if and only if §=
Nk/q, (a;)|NK/Qp (@) 1, kep o(x)*e such that k, > 1 for any o.
So we have the desired result by Corollary 2.10. a

K :
K :

To classify two-dimensional split trianguline FE-representations, we need to know which
extension class in Ext'(W(d2), W(d1)) is of the form [W (V)] for some two-dimensional
FE-representation V. For this problem, the next exact sequence is very important, which is the
B-pair analogue of the map iy defined in [Col08a, §3.7]. Let 6 : K* — E* be a continuous
character and let {k,}s. kg be k, € Z>, for any 0. We consider the natural inclusion of E—
B-pairs W(8) — W(8) @ W([[,.xp o(@) %) =W (S [1,. 5 (x) %) which is obtained by
tensoring with W (4) the natural inclusion Bg < W ([],.x..p o(x)*7). Then, by Lemma 2.12,
we have

Wik (5 11 U(m)_ko> =Wik(0) ®pt o, p (oxept™ By ©k.0 B).
o K—FE

As for the B. part, we can prove in the same way as the proof of Proposition 2.14 that
We(0) = We(8 [1,.x.p o(x)7*7). So we have the following short exact sequence of complexes of
G g-modules

0= cra(@) - (W(s T[T o) ™)) = Cosept™ Wi (0)a/Wi0)al0] 0.
o:K—FE

890

https://doi.org/10.1112/50010437X09004059 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X09004059

TWO-DIMENSIONAL SPLIT TRIANGULINE REPRESENTATIONS OF p-ADIC FIELDS

where Wi (0)s :== Wik (6) ® B0, B (Bji ®k,0 E) for any o where the last tensor product is

taken by the projection to the o-component of B(]LR ®q, £ = @U;K_,EB(]LR ®K,o E. From this
short exact sequence, we obtain the following long exact sequence

- —HY <GK, W<6 11 o(m)"@v)) — Bourc g HO (G, t R W (6)0 /Wi (6))
o K—FE

—>H1(GK,W(5))—>H1<GK,W<5 11 J(m)_k">>—>---

o K—E
The next lemma is a generalization of [Col08a, Proposition 3.18].

LEMMA 2.16. Let {w(d),}» be the generalized Hodge—Tate weight of W (0) defined in 1.47. Then
there is an isomorphism of E-vector spaces

@U;K@EHO(GK7 ko W(;FR((;)U/W;R((;)U) = EBcr,u)(é)a€{1,2,~-~ ,ka}Ee‘T‘

Here Fe, is a one-dimensional E-vector space with base e, .

Proof. 1t suffices to show that HY(Gg,t * Wi (8)s/Wik(6)s) = E if and only if w(d), €
{1,2,...,kos} and HY(Gg, t ** W (8)s/Wik(6)s) = 0 otherwise. However, by the definition of
generalized Hodge-Tate weight, for any i € Z and o, we have H(G g, t "W (6)o /t WL (8)0)
= Fif and only if w(8), = i and we have H*(G g, t "W (8)s /t " W (6)0) = 0 otherwise. From
this, the result follows. O

By definition, for any continuous character § : K* — E*, we have the following short exact
sequence

0 — DIR(W(5))/(DE(W(6))9=" + Fil’ D (W (6))) — HY Gk, W (9))

cris

— Ker(H Gk, We(9)) ® H (G, Wik (0)) — H Gk, War(9))) — 0.

LEMMA 2.17. Let 6: K — E* be a continuous character. Then the FE-vector space

DI (W(8))/(DE (W (5))?=t + Fil’ DL, (W (8))) is isomorphic to:

(1) @ow(),ezs, Peo/AE) when 6 =[], . o(z)k for some {k,}, such that k, €Z for
any o;

(2) @a,w(é)dezzlEeg otherwise.

Here A: E — ©4.4(5),c2-, Féo is the diagonal map.

Proof. By the definition of W(J), it is easy to see that Wyr(8) = Bgr ®q, E(d) for some
continuous character do:Gx — Op. If we decompose Bgr ®q, E(d) = Bo: ks EBAR QK o
E(8), we have (Byr ®k.o F(6))9% =0 if and only if w(8), ¢ Z. If w(d), €7Z, then we
have (t_w(a)“B;fR QKo E(80))9% = E and (t‘w((s)"“'lB:{R QKo E(80))9% =0. As for W(5), we
have DX, (W (8))?=! = W.(6)¢% #0 if and only if W.(6) = B, ®qg, E. Then W (5) = (B, ®q,
E, @U:K_)EtkC’B:R QKo E) for some {ky}, such that k, € Z for any o. Then, by Lemma 2.12,
we have 6 =[], . po(®)". In this case, we have DX (W (5))¥=! = E. Combining these
computations, we obtain the lemma. O

Next we compare the following two maps, one is the boundary map

0: ©okpH (Gr, T W (6)0 /Wi (6)5) — HY (Gr, W(9))
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of the exact sequence before Lemma 2.16 and the other is the natural map

v Dip(W(8))/Fil"Di (W () — Dir(W(9))/(Désis(W (8))~" + Fil’ Di (W (9)))

cris

— HY (G, W(6)).

From the proof of Lemma 2.17, we can see that the natural map f : DX (W (9))/Fil® DX, (W (5)) =
(War(0)/Wi(6))9% is an isomorphism. On the other hand, we have a natural map

@k H (G, TR W (8)0 / Wik (8)0) = H0<GK,W;R(5 H U(x)_k") /W;R(5)>
o K—FE

= (War(0)/ W (9)%".
LEMMA 2.18. With the above notation, we have 1o f~' o j=(—1)0.

Proof. This follows easily from a diagram chase. a

3. Classification of two-dimensional split trianguline E-representations

In this section, we classify two-dimensional split trianguline E-representations. As in [Col08a,
§0.2], we would like to explicitly determine the parameter spaces of two-dimensional split
trianguline E-representations.

3.1 Parameter spaces of two-dimensional split trianguline E-representations

Let W be a rank-two split trianguline E-B-pair such that [W] € Ext!(W (d2), W (61)) for some
continuous characters d1, dy : K* — E*. First we study a necessary condition on (d1, d2) in order
for W to be étale, i.e. of the form W =W (V) for some E-representation V.

LEmMMA 3.1. If[W] € Ext! (W (82), W (1)) is étale, then the pair (01, 62) satisfies val,(61(mr)) +
val,(d2(mk)) = 0 and val,(61(7x)) > 0. Here val, is the valuation of E such that valy(p) = 1.

Proof. Let W be of the form W =W (V) for some E-representation V. By definition, W (V') sits
in the following short exact sequence of E—B-pairs

0— W(d) —»W(V)—W(d)— 0.

Because W (V) is pure of slope zero, detW (V') = W (81d2) is also pure of slope zero, so we have
a condition (val,(01(mx)) + val,(d2(7x)))/f =0 because the slope of W (6) is (val,(d(mk)))/f-
By the slope filtration theorem for E—B-pairs (Theorem 1.40), W (4;) must be pure of slope =0.
This implies that (val,(d1(7x)))/f > 0. We have proved the lemma. O

To describe the classification of two-dimensional split trianguline FE-representations, let us
introduce some notation. First let us put

St = {(61,82) | 81,02 : K* — E* continuous characters such that val,(51 (7))
+valp(52(7rK)) = O, valp((51 (7‘1’[()) > 0}

By Lemma 3.1, to classify two-dimensional split trianguline FE-representations, it suffices
only to consider split trianguline F-B-pairs W such that [W] € Ext!(W (&), W(d1)) for some
(61,02) €S +,

First we classify two-dimensional split trianguline E-representations V' such that [W (V)] =
0 € Ext!(W(82), W(61)) for some (61, d2), i.e. W (V) =W (51) @ W ().
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LEMMA 3.2. Let (61,02) € ST. Then W(61) ® W (d2) is of the form W (V) for some two-
dimensional E-representation if and only if both W (d1) and W (d3) are pure of slope zero, i.e.
W(81) S W(V(E(61))) and W (d5) = W (V(E(d2))) for some continuous characters 01, 02 : Gy —
OF. In this case, V= E(31) @ E(d2).

Proof. The ‘if’ part is trivial. Let us assume that W (1) @ W(82) = W (V) for some two-
dimensional E-representation V. So W(d1) @& W(d2) is pure of slope zero. If W (4;) is not pure
of slope zero, then this is pure of slope u > 0 by the assumption that (41, d2) € ST. Then W (d3)
is pure of slope —u < 0 because (41, d2) € ST. Then we have the exact sequence

0— W<52) — W((Sl) D W((Sg) — W((51> — 0.

Then the slope filtration theorem for E—B-pairs (Theorem 1.40) implies that W (d1) & W (d2) is
not pure of slope zero. This is a contradiction. O

This lemma says that two dimensional split trianguline FE-representation V such that
[W(V)] =0 € Ext!(W(d2), W(61)) corresponds to two dimensional E-representations V' such
that V = E(d1) @ E(d2) for some continuous characters d1, 63 : Gx — OF. So, in this case, we
finish the classification.

From now on, we only consider split trianguline E-B-pairs W such that [WW]#0¢€
Ext!(W(82), W(61)). For any (61, d2) € ST, let us put

S(01, 62) :=Pr(HY(Gx, W(1/8))).
Here, for any finite-dimensional E-vector space M, we denote
Pr(M):={[v]|ve M — {0}, [v] = [v/] &= v = av for some a € E*}.
Next, for any (81, d2) € ST, we define a subset S’(d1, d2) C S(d1, d2) by
S'(81, 69) := P(Dgr (W (61/82))/(Dérss (W (61/82))7~" + Fil’ D (W (61/62)))),
here we see S’(d1, d02) as a subset of S(d1, d2) by the following natural inclusion

Dgr(W (81/82))/(Dgis(W (81/82))7~" + Fil’ D (W (81/82))) — H' (G, W (61/82))-

cris

Then, by Lemma 2.17, S’(d1, 62) is non-canonically isomorphic to:

(1) S'(61, 02) :>IP’E(@J7w(51/52)021Eeg/A(E)) when  61/82 =[],.x.po(x)* for some
{ks}o such that k, € Z for any o;

(2) S'(61,02) > IP’E(@U,w(gl/gQ)geZ;lEeg) otherwise;

here, these isomorphisms depend on the choice of E-linear isomorphisms in Lemma 2.17.

Finally we define the subset S’ét(dl, dz) of S'(61,02) as follows. When &1/02 #
[L,.cc.p o(x)k for any {k,} such that k, € Z for any o, we fix an isomorphism S’(d1, 63) —
PE(@G,w(Csl/&Q)JEZEIEeU) as above and identify these two spaces. Then let us put

(3 wi/o)

5 (61,82 = { (a06e)] € Po(@oyuis 2, )
0,a07#0

+eKvalp(52(7rK)) Z 0}.
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When 61 /82 = [[,.. g o(x)* for some {k,}, such that k, € Z for any o, we fix an isomorphism
S'(61, 62) = Pr(®g.w(s, /62),21E€0/A(E)) as above and identify these two spaces. Then let us put

5 (61,) s = { [{a0ta)a) € Po(Gorate 5, 21 Bea / AE)) ' (X woi/a)
0,a57#0
+eKvalp(52(7rK)) > 0

for any lifting (ayes)s € DBow (81 /62)0€2, Eeo Of [(ageg)g}}.

We put S™(81, 82) := S'(61, 62) \ S"°(1, 02). Then we can easily see that the subsets
S (81, 02), S (81, 62) € S(81, d2) do not depend on the choice of an isomorphism S'(8y, d2) ~
PE(®ow(s,/52)o>1 B0/ A(E)) or S'(31,02) = Pr(®ow(s: /52)s 25, Eeo)-

Remark 3.3. When K =Q,: S(01,02) is one point or Pg(E) and S’(d1,d2) is empty or one
point; Pg(E) and S’°(81, 02) is empty or one point; or Pg(E). If we compare this parameter
space and Colmez’s [Col08a, §4.3], then we have [ |5, 5,)cg+(5(01,62) \ S'(61,02)) = SyE LS,

|—|(61,62)GS+ S/ét(51, do) = Siris L Sj)rrd and |—|(61,62)65+ S/nOn-ét(517 5y) = Sucl.

For any s € S(d1, 02), we denote by W (s) an extension of W (d1) by W (d2) defined by s. The
isomorphism class of W (s) as a E—B-pair depends only on the class s. By definition, W (s) is a
split trianguline £—B-pair which sits in the following non-split short exact sequence of E—B-pairs

0— W(d1) — Wi(s) — W(d2) — 0.

We determine when W (s) is of the form W (V(s)) for some E-representation V(s). The
following theorem is a generalization of [Col08a, Proposition 4.7] and is the most important step
of the classification.

THEOREM 3.4. Let s € S(61, 62) for (61, d2) € ST. Then the following conditions are equivalent:

(1) W(s) is pure of slope zero, i.e. W(s) = W (V(s)) for a two-dimensional split trianguline
E-representation V (s);

(2) S §é S/non—ét((s17 (52>

Proof. First we prove the theorem in the case 61/82 # [[,..p o(x)* for any {ky}, such that
ks € Z for any o. Let us assume that W (s) is not pure of slope zero. Then, by the slope filtration
theorem for E—B-pairs (Theorem 1.40), there exist rank-one E—B-pairs W (d3), W (d4) such that
W (d3) is pure of slope u < 0, W(d4) is pure of slope —u > 0 and W (s) sits in the following short
exact sequence

0— W(d3) — Wi(s) — W(dg) — 0.

On the other hand, by definition, we have a following short exact sequence
0— W(d1) — Wi(s) — W(d2) — 0. (1)

We consider the restriction to W(d3) of the projection W(s) — W(d2), which we denote by
f:W(d3) — W(d2). We claim that f is an inclusion. Because Ker(f) and Im(f) are E-B-
pairs by Lemma 1.12 and because W (d3) is rank one, we have exactly one of the following two
cases, Ker(f) = W (d3) or W (83) = Im(f). If Ker(f) = W (d3), then the inclusion W (d3) — W (s)
factors through a non-zero map f’: W (d3) — W (d1). However, because the slope of W () is
strictly larger than the slope of W(d3) by assumption, so we have Hom(W (d3), W (d1)) =0 by
Proposition 2.14 or by [Ked07, Lemma 6.2]. This is a contradiction. So we have W (d3) = Im(f),
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i.e. f is an inclusion. Then, by Proposition 2.14, we have 3= s [[,.;cc.p o(z)k for some
{ks}o such that k, € Z>q for any o. Then, because det(W (s)) = W (d1d2) = W (304), we have
64 =01 [1,.5.p o(x) 7. The injectivity of f means that the exact sequence (1) splits after
pulling back by f: W (d3) — W(d2), i.e. we have

s € Ker (HI(GK, W (8,/85)) — H! <GK, W <U£E o(z) ko5, /52> )) .

This kernel is isomorphic to
Im(é? : HO(GK, @U:K%Et_kaW;R(51/52>0/W;—R(51/52)0) — H1 (GKa W(51/62)))

So, by Lemma 2.18, we have s = [(a5€s)o]| € PE(Dg,w(5,/65)0c25, Fo) = S’ (61, 62) such that any o
with a, # 0 satisfies w(91/92)s € {1, 2, ..., ks}. Then, (Zma;’éo w(01/02)s) + exvaly(d2(mx)) <
(3, ko) + exval,(d2(n)) = [K : Qp) (slope of W (d3)) < 0) by assumption. So s € §"(dy, da).

Next we assume that s = [(ageq)q] € S (01, 62). Then, by Lemma 2.18, we can see that
s is contained in the image of

01 @0, 20H (G, t 7O E (81 /62) 5 Wik (61/02)0) — H (G e, W (61/52)).

So we have

s € Ker(H' (G, W(8,/82)) — H! <GK, W< [T o) /%), /52> >
0,a57#0
So there is an injection g: W([], .. o o(x)®01/%2)0§5y) < W(s) such that f’g is the natural
inclusion W(I[, .. o o (z)w01/92) 5,) < W (8y) (here f': W (s) — W (ds) is the projection). If we

take the saturation W (d3) of this inclusion g (Lemma 1.14) and write the cokernel by W (d4),
we have the following short exact sequence

0— W(d3) = W(s) — W(ds) — 0.

Then, by Proposition 2.14, we have

(the slope of W (d3)) < <the slope of W( H 0(:16)“’(61/52)"52))
0,a657#0

_ 1 w valp(52 (71'[())
T KQ) (g’;ﬂ) (51/52)"> <!

because s € S (41, d2). So W (s) is not pure of slope zero by the slope filtration theorem.
So we have finished the proof when &;/82 # [[,..p o(x)* for any {k,} such that k, € Z for
any o.

Next we prove the theorem in the case 81/02 =[] .j..p 0(2)* for some {k,}, such that
ks € Z for any o. First let us assume that W(s) is not pure of slope zero. Then, as in the first
case, there are rank-one E—B-pairs W (d3), W (d4) such that the slope of W (d3):=u <0 and
W (s) sits in the following short exact sequence

0— W(d3) — Wi(s) — W(ds) — 0.
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Then we can prove as in the first case that the induced map W (d3) — W (d2) is injective and
83 =069 [1,. 50 o(z)k for some {k,}, such that k, € Z>q for any o. So we have

s € Ker '@ Wionjo) =1 (G W (T otar o) ))

o K—FE
= Im(8 : HO(GK, @J:KMEt_kUW;R(51/52)0/W;R(51/52)0) — Hl(GK, W((sl/&g)))

By Lemma 2.18, we can see that s corresponds to s = [(ac€s)o] € PE(®gw(s, /60), €75, Fo /A(E))
= S8’(61,02) such that there is a lifting [(aseys)s] of [(apes)s] such ‘that ap =0
for any o satisfying w(01/02)0 ¢ {1,2,...,ke}. So (32,4 20 w(d1/02)s) + exval,y(d2(7k)) <
(. ke ko) + exvaly(da(mx)) = [K : Qplu < 0. So s is contained in S (51, d2).

Next let us assume that se&S"°*(5y,05). Then, by definition, s=[(apes)s] €
PE(Bow(61/82)0 e, Eo/A(E)) = (1, 62) such that some lift [(aseq)s] of [(aves)s] satisfies
(20,0 W(01/02)) + exvaly(d2(mx)) < 0. Then, by Lemma 2.18, we have

5 eKer<H1(GK, W (61/82)) — H! <GK, W( 11 a(x)w(61/52)”51/52))).

0,a57#0

In particular, as in the proof of the first case, we can see that the natural inclusion
WL, 4,20 o ()@ ®1/92)7 5,) < W (5y) factors through an inclusion g : W(Il, a0 o(z)w01/%2)s5,)
— W(s). If we take the saturation W (d3) of g and write the cokenel by W (d4), then we have (the

slope of W (d3)) < (the slope of W(I], ,_ o o(z)w®1/%2)e5,)) = 1/[K : Qpl((Xg,a, 20 w(01/62)0) +
exvaly(d2(m))) < 0, where the first inequality follows from Proposition 2.14. So W (s) is not pure
of slope zero by the slope filtration theorem. Thus, we have finished the proof of this theorem in
all of the cases. O

By this theorem, we can determine all of the two-dimensional split trianguline FE-
representations. For any s € S(d1, d2) \ S""""(81, d2), we write V (s) as the two-dimensional split
trianguline E-representation such that W(V (s)) = W(s).

3.2 Irreducibility of V (s)
Next we determine when V'(s) is irreducible as a E-representation of G k. For this, we put

° SO+ :={(81, 62) € ST | val, (61 (7k)) = val,(d2(mx)) = 0};
o SF:=8T\5S4.
For any (81, d2) € S, we put:
(1) S’Ord(él, 62) = {[(aves)o] € S" (1, 52) | (Zmaﬂéo w(01/02)0) + exvaly(d2(mx)) = 0 for some

lifting [(as€0)o] of [(@r€s)s]} When 81/62 = [,. 5. o)k for some {ky}, such that k, € Z
for any o;

(2) S/ord((sh 52) = {[ao'eo'] S S’ét(&, (52) ‘ (20_7[10_#0 w(51/52)0) + eKvalp(ég(ﬂK)) = 0} otherwise.

We can easily see that the subset S’ Ord(él, d2) does not depend on the choice of an isomorphism
S'(61, 02) = Pr(Bow(s, /52)0>1 B0/ A(E)) or §'(31, 62) = Pr(Do (s, /62)0 25, E€o)-

Remark 3.5. When K = Q,, 84 in [Col08a, §4.3] is equal to |_|(51 52)EST Sord (51, 69) and Sy in
[Col08a, §4.3] is equal to |_|(51 s2)esi S(d1, 92).

The following proposition is a generalization of [Col08a, Propositions 5.7 and 5.8].
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PROPOSITION 3.6. Let (01,02) € ST and s€ S(81,09) \ S"**“(61,02). Then the following
conditions are equivalent:

(1) V(s) is irreducible;

(2) (81,82) ¢ S and s ¢ S°"(5y, 6).

Proof. First let us assume that V(s) is reducible and (&1, 62) ¢ Sy". Because V(s) is reducible,
there exist two continuous characters d3, 04 : Gxg — Oy, such that W(V (s)) sits in the following
short exact sequence

0— W(E(d3)) — W(V(s)) = W(E(d4)) — 0.

Then the fact that Hom(W (E(d3)), W(d1)) =0 (this follows from the fact that (the slope of
W(E(03))) =0 < (the slope of W(d1)) and from Proposition 2.14) implies that the natural
map W(E(d3)) < W (ds) is an inclusion. So we have &3 = dy [, o(@)F for some {k,},
such that k, € Z>( (here 83 1= d3 oreck : K* — E*). Then, as in the proof of the previous
theorem, we can see that s corresponds to [(ayeq)s] € S' (01, 02) (or [(ageq)s] € S(61, 62)) such
that (3, 0 w(01/02)0) + exvaly(0a(nk)) < (Xs.xe i ko) + exvalp(da(mi)) = [K : Qp] (slope
of W(E(d3))) =0 (for some lifting [(ases)s| Of [(as€s)s]). On the other hand, we have 0 <
(X0.ag20 W(01/02)0) + exvaly(da(mr)) because s € S"(81, 89). So s € S (81, by).

Next if (61, d2) € Sy, then W (d1) and W (d3) are pure of slope zero, hence V (s) is reducible
as a F-representation.

Next let us assume that (&y,d2) ¢ Sy and s€ 85, 6,). If we put s= [(ases)s] (or
[(aces)s]) such that (35, .qw(d1/02)s) +exvaly(d2(mk)) =0 (for some lift [(aces)s] of
[(as€s)s]) then, by the proof of Theorem 3.4, we have

s € Ker (Hl(GK, W (61/02)) — H! (GK, W( 11 J(x)_w(51/62)”51/52>)> .
0,a657#0
Then the matural inclusion W([], .. .o o(z)@1/%2)s65,) < W (5,) factors  through
W(Ils 4,0 o(z)®01/92)0§,) < W (s). We take the saturation W (ds) of this map and write the

cokernel by W(ds). Then we claim that the natural inclusion W([[,, .o o(2)001/92) 5y)
W (d3) is an isomorphism. If this is not an isomorphism, then by Proposition 2.14, W (d3) must
be pure of negative slope because W(HJ’%#O o (z)®(®1/%2)7 §5,) is pure of slope zero by assumption.

Then W (s) is not pure of slope zero, which contradicts the assumption that s € S*(d, d2). So
W(Ils.a, 20 o(z)w®1/%2) §y) < W (d3) is an isomorphism. Then both W (d3) and W (8,) are pure
of slope zero. So W(s) is reducible as a E-representation. Thus, we have finished the proof of
this proposition. O

3.3 The conditions for V(s) = V(s')

Next let us discuss when two split trianguline E-representations V(s), V(s’) are isomorphic
for different parameters s, s’. Unfortunately we cannot solve this problem in the case where
61/62 =1 .50y o(2)* for some {k,}, such that k, € Z for any o and s € S (51, d2). We
can solve this problem in all other cases. The following theorem is a generalization of [Col08a,
Proposition 4.9].

THEOREM 3.7. We have the following results.

(1) Let V(s), V(s') be two-dimensional trianguline E-representations associated to s €
5(51, 52) \ S/non—et(517 52), S, S S((Sg, 54) \ Smon_et((sg, 54) for some (51, (52), (53, (54) € S+.
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Moreover, we assume that s ¢ S’ (81, 82). Then V (s) = V(s') if and only if (81, §2) = (83, 64)
and s=s' € 8(51, 52)

(2) Let s=[(ase0)s] € S'“(61,02) where 81/63# [1,.x.po(x)ke for any {k,}, such that
ks € Z for any o. Then there exists unique ((d3,04),s") # ((01, 02), s) (here (J3,d4) € ST
and ' € S(03, 04) \ S (03, 84)) such that V(s) = V(s'). Such a ((83, 84), s') satisfies the
following:

(i) 93 =02 Ha,aa7$0 o‘(,x)w(51/52)a7 04 =01 H07a0¢0 O‘(:L')—w(fh/éz)a;
(ii) ' = [(boes)o] € S'(83, 04) satisties that {o: K «— E | by 20} ={0: K — E|a, # 0}.
Proof. First, we prove part (1). If V(s) = V(s'), then we have the following short exact sequence
0— W(d3) — Wi(s) — W(dq) — 0.

We consider the natural map f: W (d3) — W (d2) as in the proof of Theorem 3.4. Then we have
one of the following: Ker(f) = W (d3) or Im(f) = W (d3).

If Ker(f) = W (d3), then we have the following commutative diagram.

0 —> W (43) W (s) W(84) —=0
0—>W(i51) W(s) W(l@) —0

Then we claim that W (d3) — W (d;) and W (d4) — W (d2) are both isomorphisms. We can
see that We(83) = We(61), We(d4) = We(d2) are isomorphisms in the same way as the proof of
Proposition 2.14. For the W(;LR part, by the snake lemma of the above diagram, we have an
isomorphism Ker(W i (61) — Wi (62)) = Cok(W 35 (63) — Wik (1)) of Bjz-modules. However,
because the former is a torsion-free BIR—module and the latter is a torsion B;R—module,
so this must be zero. So W (d3) — W (d1) and W(ds) — W (d2) are both isomorphisms. Thus,
((51, 52) = (53, (54) and s =s' € 8(51, 52)

If Im(f) = W(d3), then &3 = 02 [[,. .. g 0(2)* for some {k, }, such that k, € Z>¢ for any o.
Then, by the proof of Theorem 3.4, we can see that s € §'(d1, 62). This is a contradiction. So we
have finished the proof of part (1) of this theorem.

Next, we prove part (2). Let us assume that V(s) > V(s') for some s'(#s)€
S(03,d4). Then, by the proof of part (1) above and the assumption s#s’, we can
see that W (d3) = Im(f:W(d3) — W (d)). So we have &3=][, .k .po(z)kdy for some
{ks}s such that k, €Zso for any o. So we obtain s=[(ases)s] € S “(d1,02) and
w(01/92)s €{1,2,...,ks} for any o such that a,#0. Then, by the proof of The-
orem 3.4, we can see that the natural inclusion W([[, . .o o ()W 01/02)7 5,) s W (8y)
factors through an inclusion g:W([[, , o o(z)®01/%2)e5,) < W (s). Because we have
Hom(W ([1,. e 0(@)*782), W(1)) =0 by the assumption on (&,82) and by Propo-
sition  2.14, we can see that got:W([[,. g o(®)d2) = W(s) is equal to the
given inclusion W([[,.x.po(z)k02) =W (d3) — W(s) (here v:W([[,.x.po(x)kd2) —
W(Ilsa, 20 o(x)®01/%2)05,) is the natural inclusion). Because W (d3) is saturated in W (s) so
W (03) = W(ll,.a, 20 o(z)@®1/%2)6,) must be isomorphic. So we have k, =w(8/d2)s for o
such that a,#0 and k, =0 for other o. Then we have 53:1_[0’%7&0 a(x)w(61/52)“52 and
61 =1I54,20 o(z)~w01/%2)s5, . We have w(03/04)e = w(d3)g — w(84)g = w(81/02)0 + w(d2)e —
(—w(01/02)0 + w(d1)s) = w(d1/02)s for any o such that a, #0 and w(d3/04)e = w(d2)s —
w(d1)e = —w(01/d2)s for other o. If we replace s by s and replace s’ by s in the above
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argument, we can see that s’ = [(bye,)s] € Slét(Hg,a(,;so o(z)w®1/02)0 5, 150,20 o(z)~w01/52)0 5
satisfies the condition that {o: K <— E|b, #0} ={0: K — E|a, #0}. If s"=[(bes)s] €
S/et(Ho‘,a[,#O o (z)w01/%2)e5,, | | P

o(x)~w(%1/%2)s5,) is another element such that V(s) = V(s”) and s # s”, then we can see that
s’ = §"” in the same way as in the proof of part (1) above. Thus, such an s’ is unique.

Next let us take any s = [age,] € S'*(81, 62). Then, by Lemma 2.18, we have

s € Ker (HI(GK, W (6,/55)) — H! <GK, W( 11 a(:c)—w@l/@)val/@) >> .
0,a57#0
So  the matural inclusion  W([],, .o o(z)®01/%2)e5,) — W (dy)  factors  through
W(Ily.a, 20 o(z)w®1/%2) 5,) < W (s). Then we can see that W(Ils a0 o (x)?1/02)05y) s W ()

is saturated (if not, then we have s = [a}e,] € S (31, 69) such that {o: K < E | a/, #0} & {o:
K — FE | ay # 0}, which cannot happen under the assumption on (d1, d2) in this theorem). If we
write the cokernel of this as W (d4), then we have 6y =[], , . o(z) ~w(91/92)7 5, and we have the
following short exact sequence

0— W(d3) — Wi(s) — W(ds) — 0.

This extension corresponds to some s’ = [bye,] € S’ (d3, 84). So we have V(s) = V(s'). We have
finished the proof of this theorem. O

Remark 3.8. When K =Q,, the exceptional cases where se€ S’ét(él, d2) and 01/d2 =
[L,..p o(x)" do not appear because S’*(d1, ) is empty set in this case.

4. Classification of two-dimensional potentially semi-stable split trianguline
E-representations

In this final section, we classify all of the two-dimensional potentially semi-stable split trianguline
E-representations. We explicitly describe the E-filtered (p, N, Gx)-modules associated with
potentially semi-stable split trianguline F-representations.

4.1 de Rham split trianguline E-representations
Before classifying two-dimensional de Rham split trianguline E-representations, we determine
all of the rank-one de Rham FE—B-pairs.

LEMMA 4.1. Let W(6) be a rank-one E—B-pair. Then the following conditions are equivalent:
(1) W(9) is Hodge—Tate;

(2) W(6) is de Rham;

(3) 6=0I1,.5.p o(2)* such that 6 : K* — E* is a locally constant character and k, € Z for

any o.

Proof. 1t is easy to see the implication (3) = (2) = (1). We prove that (1) implies (3). So we
assume that W(0) is Hodge-Tate with generalized Hodge-Tate weight {k,}, such that k, € Z
for any o. We write W(8) = W(E(d)) @ WS for some continuous character &y: Gx — OF
and i € Z as in Theorem 1.45. Because Wy := (W, W;R,o) satisfies WJR = B(J{R ®q, E, so we
have W (6)1z = Bir ©q, E(%). Then E(do [1,.xp o(xur) ") is Hodge Tate with all Hodge-
Tate weight zero. Then, by Sen’s theorem [Ber02, Proposition 5.24], 6o [1,.;cc.p o(xrr) " :
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Gk — Of is a potentially unramified character. Because o(xrr): Gx — Of corresponds to
the character K* — EX : g +— 1, u— o(u) for u € O, we have 6 =6 [[,.;c.. o(2)* for some
locally constant character § : K* — E*. So we have finished the proof of the lemma. a

Next let V(s) be a potentially semi-stable split trianguline FE-representation such that
s € S(31, 62) \ S (61, 82) for some (61,82) € ST. Then we have the following short exact
sequence

0— W(d1) — W(s) — W(d2) — 0.
Then, as in the case of usual E-representations, we can see that W (d;) and W (d2) are also
de Rham, in particular W(d;/d2) is de Rham. Next we compute H.(G, W(9)), H}(GK, W (6))
and H;(GK, W(5)) when W(9) is de Rham.

LEMMA 4.2. Let W (0) be a rank-one de Rham E-B-pair where § := 6 [1,.5p o(x)* such that
0: K* — E* is a locally constant character. Then we have a canonical isomorphism

DI, (W (8))/(DE (W (8))#=" + FI’ DI (W (6)) = H(G, W(5))
and dimgH! (G, W(9)) is equal to:
(1) #{o: K < E |k, € Z>1} when § is not the trivial character;
(2) t{o: K — E | ks € Z>1} — 1 when ¢ is the trivial character.

Proof. For general §, we have the following short exact sequence
0 — DI (W (8))/(DE (W (6))#=" + Fil DI (W (9))) — H'(Gk, W(5))
— Ker(H (G g, We(0)) ® HY (Gk, Wi (0)) — H Gk, War(5))) — 0.
When W (4) is de Rham, we proved in Lemma 2.6 that H' (G, Wi (6)) — HY (G, War(9)) is

injective. So we have
H: (G, W(3)) = Ker(H' (G, W(9)) — H' (G, We(d)))
= Ker(H' (G, W(9)) — (H (G, We(9)) @ H' (G, Wi (9))))
= Dir(W(6))/(Deis(W(6))#~" + Fil’Dif (W (9))).-

We can compute the dimension of H!(Gx, W (§)) by using this isomorphism. O

LEMMA 4.3. Let W(9) be a rank-one de Rham E-B-pair. Then we have:
(1) Hy(Gr, W(0)) =H}(Gx, W(3)) and dimgH}(Gx, W(8)) = dimgH} (G, W(0)) + 1 when
0= 1lpxep ol2);
(2) H}(GK, W(6)) =HL(Gk, W (0)) and dimpH} (G, W (8)) = dimEH}(GK, W(d))+ 1 when
0 =Nk /g, (@) [lo.xep o(x)*;
(3) Hy(Gx, W(0)) = H}(GK, W(0)) =HL(Gk, W(d)) otherwise.

Proof. This follows from a calculation using Lemmas 2.7 and 2.11. O

For the explicit description of potentially semi-stable split trianguline FE-representations,
we fix an extension whose class is contained in H}(GK,W(ci))\Hé(GK,W(é)) when § =

[I, o(z)k and fix an extension whose class is contained in H;(GK, W(é))\H}(GK, W (6))
when & = |Ng/q, (%) [], o(z)ke as follows. First we treat the case where & =[], o(z)k.
In this case, we have W (0)=(B.®q, E, ®ot" Biz ®k,s E) by Lemma 2.12. We fix an
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element agrs € Oéun such that Frobg, (aeris) = @eris + 1. We define an extension W (s({ks}o5)) :=
P
(We(s({ko}o)), Win(s({ks}ts)),t) whose class s({ko}o):=[W(s({ko}s))] is contained in
H}(GK, W (I, o(z)k)) \ HY (G, W(I], o(x)*)) as follows:
(1) We(s({ks}o)) := (Be @q, E)e1r © (Be ®q, E)eais such that g(e1) =e1, g(ecis) = €eris
+ fdeg(g)ey for any g € Gk, here f=[Kq:Qy);
(2) Wik(s({ko}s)) := (®ot*e Bz @Ko E)er ® (Bjg ®g, E)ear such that g(e1) =e; and
g(ear) = ear for any g € G;
(3) t:Bar @5, We(s({ks}o)) = Bar ®pt Wik (s({ks}o)) is the isomorphism defined by
L(el) =e€1 and L(ecris) = €qR + Qcris€1-
We can easily see that s({ks},) := [W(s({ks}s))] is contained in H}(GK, W(5)) \ HL(Gk, W (6)).
Next we treat the case where § = [Ny g, (z)| [, o(x)*. We define a continuous one cocycle ¢ :
Gk — Qp(x) by g(log([p])) =log([p]) + c(g)t for any g € G . In this case, we define an extension

W(s({ko}o)) := (We(s({ko}o)), W;R(S({ka}o))a 1) whose class s({ks}o) := [W(s({ko}o))] is in
HY (G, W (N, (@) 1, 0(@)')) \ BY(Grc. W ([Nicjg, @) T, o(2)) as follows:
(1) We(s({ko}o)) == (Be ®q, E(x))e1 @ (Be ®Q, E)ecis such that g(e1) = x(g)e1, g(€cris) =
€eris + ¢(g)eq for any g € G;
(2) Wik(s({ko}s)) = (86t ' Bl ®K.s E(x))e1 ® (Big ®q, E)ear  such  that  g(e1)
=x(9)e1, g(eqr) = eqr for any g € Gk;
(3) t:Bar @5, We(s({ks}o)) = Bar ®pt Wi (s({ks}o)) is the isomorphism defined by
t(e1) =ex, t(ewis) = eqr + (log[(p)]/t)e.
We can easily see that s({ks}o) := [W(s({ks}o))] is contained in HY (G, W (6)) \ H}(GK, W (9)).
By using these classes, we can determine all of the potentially crystalline split trianguline

E-representations and all of the potentially semi-stable split trianguline E-representations which
are not potentially crystalline. For this, let us:

— put
S"(61,02) :={s€ 5(d1,09) | s € PE(H}(GK, W (61/82)) \ S'(61,02)}
when 41 /83 = [, o(x)*;
— put
Sst (01, 02) :={s € S(01,02) | s € PE(H;(GK, W (61/82)) \ S'(61,62))}
when 61 /0 = |Ng q, ()| [1, o(x)k.
Then, by Lemma 4.3 and the above constructions, we have:

o 8"(d1,02) = s({ko}e) + Dl (W (61/82) /(D5 (W(81/62))#=" + Fil® D (W (61/62)));

o S(01,02) = s({koto) + D (W(61/62)/ (D83 (W (81/82)) =" + Fil° Dy (W (61/52))).-
PROPOSITION 4.4. Let (61, 2) € ST such that W(d1) and W (d2) are de Rham E-B-pairs. Let
V(s) be a split trianguline E-representation associated with s € S(d1, 62) \ S"""(1, 82). Then
the following conditions are equivalent:

(1) V(s) is potentially crystalline;
(2) s€ 8% (1, 9) := S"(61, 62) U S (81, 62) when &1 /52 =[], o(x)ke;
(61, 02) := S'*(81, 02) otherwise.

s € Scéltis
The following conditions are equivalent:

901

https://doi.org/10.1112/50010437X09004059 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X09004059

K. NAKAMURA

(3) V(s) is potentially semi-stable and not potentially crystalline;
(4) (51/(52 = ’NK/QP(.r)’ HU U(IL‘)k" and s € Sst(él, (52)

Proof. This easily follows from Lemma 4.3. We prove in the case 61/02 = [Nk /q, ()| [], o(x)ke.
(Other cases can be proved in the same way.) First we prove that part (1) is equivalent
to part (2). If s € 5(8;,d2) then V(s) is potentially crystalline by Remark 2.5. If V(s) is
potentially crystalline, then V (s) is de Rham. So [W(V (s))] is contained in H}](GK, W(d1/62)).
If W(V(s))] ¢ H}(GK, W (61/02)), then, by the above remark, we can assume that [W(V(s))] =
s({ko}o) + = for some € DL (W(61/62)/(DE, (W (51/52))?=" + Fil’ DL, (W (61/62))). From
this and from the construction of s({ks},), we can easily see that W (V(s))|q, ¢
H}(GL, W (61/02)|c,) for any finite extension L of K. (Here, W(d1/02)|q, is the E—B-pair of
G, obtained by restriction.) This implies that V(s) is not potentially crystalline. This is a
contradiction. So W(V(s)) is contained in H}(GK, W(61/83)), i.e. s € §°(81, 62). We can prove
the equivalence between (3) and (4) in the same way. O
Remark 4.5. When K = Q), S in [Col08a, §4.3] is equal to L, 5,)es+ S (61, d2) and S is
equal to U, s,)es+Sst (01, d2). Here, for (41, d2) € St such that d1/d2 # [Nk, ()| T, o(x)ke,
we put St (01, 02) := 0, the empty set.

4.2 Potentially crystalline split trianguline E-representations

In this section, we explicitly describe the filtered (¢, Gx)-modules of potentially
crystalline split trianguline FE-representations. First we define parameter spaces of
potentially crystalline split trianguline E-representations. We put:

Tois 1= {(51, 82, {ks o) | 01,02 : K™ — E* locally constant characters, k, € Z for any o,

such that ( Z kg) + egvaly(01 (1)) = —exval,(d2(mg)) > 0}.

For any locally constant character § : K* — E* we define n(d) € Z>o as the minimal n € Z>
such that 0[14xn 0 is trivial. We write for any o:

- G(6):= Z'yeGal(Kn<5)/K) Y(Tp(s)) @ 6(7v 1) € Ky @0 E when n(6) > 1;
- G(0)y :=1€ K ®k,, E when n(d) =0.

(Here m, is an element in K such that [7x](mu41) =, for any n € N and [rg](m1) =0, i.e.
a system of 7} torsion points of Lubin-Tate group associated with 7x, and K, := K(m,) for
n € Z>1 and we identify Gal(K,,/K) = Oy /1+ n' Ok via the Lubin-Tate character ypr.) For
any (81, 82, {ko}o) € Teris, we define the parameter space Tek (81, 82, {ks }o) of weakly admissible
filtrations as follows. First, when §; # J2, we define:

- Tcris((Sh 52; {ka}a) = PE(@U,RUZLE@T);
— T55(01, 02, {ko o) = {[(a0€0)o] € Teris(01, 02, {ko}o) | (32,4, 20 ko) + exvaly(d2(mi)) > 0}
When 61 = §o, we define:

(61,6 Tho}o) = P, 21 Ben | AE));

- Tliiis(‘sh 62, {ko}o) = {{(@5€s) o] € T"cris(01, 02, {ko}o) | (Za,ag;éo ko) + exvaly(d2(m)) 2 0
for any lift (aseq)s € Bok, >1E€5 of [(ares)s]};
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- Tﬂiils(élvé% {kd} )': @ongIEea/A( )
— T&(61, 0, {ko}o) i= T'yis (61, 8, {ko }o) U T i5(81, 02, {o}o).

Cris Cris

For any x € T¢ (01, 02, {ko}s) We want to define a rank-two E-filtered (o, Gal(K,ys, 5,)/K))-
module D5, 5, (ko}o)e- Here we put n(d1, d2) :=max{n(d1),n(d2)}. However, we cannot
canonically construct these. We must fix one more parameter for any (41, d2, {kos }o) € Teris. For

this, we consider the following short exact sequence
0— E* 25 (Ko ®g, B)* % (Ko ®g, B)* £ EX =0, (2)

here g1 : E* — (Ko ®q, £)* is the canonical inclusion, gs:(Ko®q, £)* — (Ko ®q, E)*
i @(z)/z and g3:(Ko®q, E)* — E* 12+ H{;OI ¢'(z) where ¢:Ko®q, E— Ko®q, F:
Y Ti®yi— Y p(ri) ®y;. We can easily prove that this sequence is exact by using the
assumption Ko C E. Then we fix (o, )€ (Ko ®q, £)* x (Ko ®q, E)* such that g3(a)=
01(mk), g3(B) = d2(mx) when 1 # 2. We fix a € (Ko ®q, E)* such that gz(a) = d1(nx) and
put 8 =« when 01 = 2. Then we define D(s, s, (k,},),. as follows:

(0) D562 (ko }o ) *= (Ko ®q, F)e1 ® (Ko ®q, E)e2;

(1) N(e1) =0, N(e2)=0;

(2) when 01 # 65 or when 01 = &y and x € T'S% (61, 82, {ko }o), we put p(e1) = aer, @(ez) = fes
(then @/ (e1) = di(mx)er, @/ (e2) = d2(mi)ea);

(2') when 6; = 65 and z € T"55,. (01, 02, {ko }o), we put @(e1) = aeq, ez) = ales + ey);

(3) gler) =d1(xrr(g))er, gle2) = d2(xrr(g))es for any g € Gk
(4) we put

Ko(51,60) @Ko D(51.65. (ko }o) e = (EKn(s1.6,) ®0, E)er @ (Kp(s,6,) ®q, E)e2
= B0k E(Kn(s,,6,) k.0 Bere ® (Kps, 50) QK0 B)eao
=: ®sDy,
then:
(i) for o such that k,< — 1, we put Fil’D, = D,, Fil' D, = - - . =Fil % D, = Kn(51,85) OK,o
Eeyq, FilT* 1D, =0;
(ii) for o such that k, =0, we put Fil’D, = D,, Fil'! D, = 0;
(iii) for o such that ks, >1, we put Fil™*D,=D,, Fil%*'D,=...=Fil’D, =
Kn(51,62) ®K,a E(aaG(52/51)a€1,a + 62,0)7 FﬂlDU =0.

Here when & # 82, then (ases)s € Dok, >1F€, is a lift of = [(aves)s] € Tik (61, 02, {ko}o) =
Pe(®sk,>1Fe;) and when d; =02, then (ases)s € Boi,>1Fe, is a lift of [(ares)s] €
T/E;m(‘sl: 02, {ko}s) = PE(@ok,>1Ee5/A(E)) or is a lift of (ares)s € T//g;m(él: 92, {ko}o) =
@oky>1Ee5/A(E). Then we claim that the isomorphism class of D5, s, (k,},),e does not
depend on the choice of a lift (a,e,),. We prove this claim in the case where d; =dy and
z = (agey)e € T". (81, 02, {ko}s). Let us take two lifts (apes)s, (a)eq)s € Do kyez, Fes of
T = (ageq)e € T"5(01, 02, {ko}o). Then there exist a € E and b€ E* such that a), = ba, + a
for any o such that ks € Z>1. We denote Dy := (Ko ®q, E)e1 @ (Ko ®q, E)es and Dj:=
(Ko ®q, E)e; © (Ko ®q, E)e) as the filtered (¢, Gx)-modules Dys, 5, (k,1,),» defined by using
the lifts (ayeq)s and (aleq)s, respectively. Then it is easy to see that the map Dy — Dy : e —
be, ea — €5 + ae) is an isomorphism of filtered (¢, G )-modules. We can easily prove this claim
in other cases.
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Next we note the dependence of the choice of (a, 5) as above. We only treat the case
01 # d2. Let us take another (o, #') € (Ko ®q, E)* x (Ko ®q, E)* such that g3(a) = d1(7k),
93(8") = d2(7 ). Then, by the above exact sequence (2), there exist o, 8o € (Ko ®q, E)* such
that a = a’ga(ap), B='g2(8p). For stressing the dependence of the choice of («, 3), we write
Tcertls((slv b2, {kO'}O'7 (Oé, ﬂ))a D(61,52,{ka}0,(a,6)) instead of Tcertls((sla d2, {ka}a), D(51,§2’{k0}0)7x. Then
we can easily sce that the 1ap Dis, s, (1o (o), [(co)o] ~* Dot il 5)) (50 (20,5 )]
e1 — e}, ea— Poeh, is an isomorphism of filtered (p, Gx)-modules for any [(aseq)s] €
T (01, 02, {ko}os (a, B)). (Here €] is the basis of Dis, 5, {ko}o.(a',8)).[(a0 (@00 /Bo.0)es)o] defined in
the same way as in the case (o, 3) and ag,», 80,0 € £ is the o-components of ag, fo € (Ko ®q,
E)* — (K ®q, E)* = [1,. KB Ee.) The other cases are the same. So we have an isomorphism
L TE (61, 62, {ko}os (o, B)) = T (61, 02, {ko o, (', ') between parameter spaces such that
D (51,62, (koo (cs8))a — Di(61,62, (ko }or(o! ) ux) Tor any @ € Tk (61, 02, {ko}o, (a, B)).

Henceforth, we fix a (a, ) for any (01, 92, {ko}s) € Teris- In the proof of the next theorem,
we prove that these are weakly admissible filtered (p, Gx)-modules. So, by the ‘weakly
admissible imply admissible’ theorem [Ber08a, Theorem B|, for any x € T¢' (81, 62, {ko }+), there
exists a unique (up to isomorphism) two-dimensional potentially crystalline F-representation

V(<51,62,{ka}o),:c such that Dcrg(al’@(‘/(61752,{160}0),96) :>D(517527{k0}0)7x. Then our main result of

classification concerning potentially crystalline split trianguline E-representations is as follows.

THEOREM 4.6. Let V' be a two-dimensional E-representation. Then the following conditions are
equivalent:

(1) V is split trianguline and potentially crystalline;
(2) there exist (81, 02, {ko }o) € Teris and @ € T (61, 82, {ko }o) and {wg }o such that w, € Z for

Cris

any o, such that V= 1/(51752,{1%}0),2(Ha o(x1))-

Proof. First we prove that condition (1) implies condition (2). Let us assume that V is
a split trianguline and potentially crystalline FE-representation. Then, by Proposition 4.4,
there exists a (d1,02) € ST and an s€ S (41,52) such that V = V(s). Twisting V
by a suitable [[, o(xrr(z)!), we may assume that W(d2) has generalized Hodge—
Tate weight {0},. If we write the generalized Hodge-Tate weight of W(é1) as {kos}o,
then we have & =d; I o(x)*s and 89 =0 for some locally constant characters o1, d :

K* — E*. Then the condition that (d1,d2) € ST is equivalent to the condition that
~ ~ K ~ o~
(01,02, {ko}o) € Teris: Now  we expllcltly calculate D192 (V). First we compute this

cris

in the case where 517&62 or & =09 and sES’iils(él,ég) Then, by the definition
of §'6is(01,02) = Pr(DIG (W (61/62))/ (DK (W (61/62))¢=" + Fil’ DI, (W (61/62))) and by the
definition of the boundary map DX (W (01/62))/(DE, (W (61/82))¢=1 + Fil’ DX, (W (61/62)) —

HY (G, W(81/82)), W(s) is given as follows:

(1) We(s):=We(d1) ® We(d2) such that g(z,y):= (gz,gy) for any g€ Gg,x € Wc(d),y €
We(02);

(2) WCIR(S) = W35 (61) @ Wik (82) such that g(z, y) := (g, gy) for any g € G, x € Wi (61),y €
WdR(52)§

(3) ¢: Bar ®@p, We(s) = Bar ®pt Wik(s) is given by (z,y):=(z+a®y,y) for any
x € B4r ®pB, We(51) Y € Bar ®p, We(02); here, a€ DX (61/52) is a lifting of ae
DI (W (61/62))/(DE (W (61/82))7=F + FllODdR( (61/62)) corresponding to s.
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By the definition of W(J) for any §: K* — E*, we have Dcrl’;(al 2) (W(61)) = (Ko ®q, E)e1,
K, 5 ~
D_"2 (W (8,)) = (Ko ®q, E)e2 such that:

Cris

— ¢l(e1) = di(mi)er, o (e2) = Sa(mic)ea;

— gler) = 810xum(9))er, g(ez) = d2(xur(g))es for any g € Gk
Then we can take a basis e, ez such that ¢(e1) = aer, p(e2) = Be, here (o, () is the fixed pair
as in Theorem 4.6 for (01,02, {ko}o) € Teris. By part (1) in the above description of W (s), we
have Dgg(6~1’6~2>(V) = D§17;<81,52>(W(5 ) & Dcr:;(él 62)(W(52)) as a (¢, Gg)-module. We compute
the filtration on DK"(51 W (s) S K5, 5,) Ok DL (17 (6)) % (K (6,50 ©0, E)er @
<Kn(51,52) ®q, E)ey = @U;K_)E(Kn(ghgz) Oro Eers @ (Kn(gl’&) OKr,o E)es s =1 ®yDy (here we
put Do := (K, 5, 5,) @Ko E)ero @ (K, 5, 5,) OKk.0 E)ez). Because DI (W (61/62))
= (War(61/82))“% = @6 (War(01/62) @ Bugeo, £ Bar @Ko E)°%  and  Fil' DI (W(61/62))
= @ (Wi (01/02) ® Bt 00, E B @Ko B)°% 5 @, <o(War (01/62) ®Bypeg, B Bar @0 E)°F

so we can take a € DI (W (01/82)) in (3) as a = (ar) € Bo(War(51/82) ®Bar®q, B Bar @K o E)Cx
such that a, = 0 for any o such that k,<0. Then, for any ¢ such that k,<0 or k, > 1 and a, =0,
we have

Fil'D, = Fil'D "(6162>(W(51)) @ Fil'D "(6162)(W(52))0.
(Here

K ~ ~
DG (W(5,)) = @ D) (W (1)) DK, ;5,5 @0 E K5, 5y) k0 B

K
—. @UD n(éy, 52)(W(51))g

for i € {1, 2}.) Because we have
K, ;5 5 K, ;5 5
_ Fll_ "D n(51 52) (W(él))g — D n<51,52)(W((51))U’ Fﬂ—ka—HD n<51,52)(W(51))U — O;
— RO D 0 (W(82)) = Dyt (W (82)), FilL D %) (W (63)) = 0;

we obtain the filtration on D, as in parts (i), (i), (iii) of Theorem 4.6(4) for such o.
Finally, we calculate the filtration on D, for ¢ such that k, >1 and a, #0. Then we
have Fil™* D, =D, and Fil'D, =0. For any ze; o tyess €Dy (z,y€ Kn(Sl 5,) OKo E),
K
we have zej » + yes » € Fil’D, if and only if ze; ot ya, ey, € FlloD "<51 52) (W(01))e =0 and
ye2,o € Fil’ Dar (W (62))s = D4 "(51 %2) (W (82)),. Because a, € DX (W (51/62))0 = E is non-zero,
it is a base of DL (W (51/52))0 as an FE-vector space. So it 1s a base of D, ”(51 62)( (01/62))e
as a K n(1,5) QKo E-module. So a, ® ez, is a base of DdR 41 52>(W(51)). So there exists
unique z € (Kn(51 5) QKo E)* such that a, ® ez, =z2e1,. Then zei s+ yar ® ez, = (x +
2Y)eél,q, SO Fil k1D, = Fil°D, = Kn(& 5,) OK.0 E(—ze1 s + €2,4). By comparing G g-actions on

ar @ ez, = z€1 5, We can see that g(z) = (52(XLT( ))/01(xrr(g)))z for any g€ Gg. So there

exists unique b, € EX such that z=—b,G(02/d1)s. By combining all of these calculations,
K -

we obtain Dmf1 2)(V(s)) 5 D5, 5, ks o) (here = [(byey)o] € T (01, 02, {ko}o) OF =

[(bo€a)s] € T'E (01, 02, {ko}s)). So V(s) S V6160 {koto)o (Here we put by =0 if ag = 0.) From
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this, we know that D( 51,62,k Yoo is weakly admissible for such x. So we can prove that part (1)

implies part (2) in the case 6109 or 01 =609 and s € 5751, 82).

Next we compute in the case where §; = 05 and s € S”(61, 02). Then, by the construction of
s({ko}o) and by the definition of S” (81, d2) before Proposition 4.4, W (s) := (We(s), Wik (s), ¢)
is given as follows:

(1) We(s) :=We(d1) ® We(d2) such that g(z,y) := (g9x + fdeg(g)gy, gy) for any g € Gk, x €
We(61), y € We(d2) (here we use the fact that d1/d2 =[], o(z)*e implies that W.(d1) =
We(62); see Proposition 2.14);

(2) Wik(s) :=Wik(61) & Wik (62) such that g(z,y):= (gz, gy) for any g € Gk, x € Wi (61),
W+ (5 )
Y € dr\92),
(3) ¢: Bar ®B, We(s) = Bgr ®B;_R W(;FR(S) is given by t(z,y) := (z + (aeris + @)y, y) for any
z € Bar ©B, We(01), y € Bar ®B, We(d2); here, a € DI (W(61/62)) = (Bar ®q, E)°F =
K ®q, E is a lifting of ae€ DdR( ((51/52))/( crls( ((51/52)) +F110D£(R( ((51/52)))
corresponding to s = s({ky}o) + a.

Then we have

K _ x _ ~ _ K =
D -n,(él) (W((Sl)) = (Bcris ®Be We((sl))GKn((h) — (Bcris ®Be We((sg))GKn(zh) =D -n,(él) (W(ég))

Cris Cris

~ K -
because W, (51) = W, (d2). So we have following isomorphisms of (¢, G )-modules D" (W (8;))
~ K, s -
— (Ko ®q, E)e1, D "D (W (82)) S (Ko ®q, E)e, such that:

(1) @(e1) = aer, p(es) = aeh;

(2) gler) = o1(xur(9))er, g(eh) = d1(xur(g))e for any g € G

(Here o € (Ko ® E)* is fixed such that g3(a) = 1 (7x) as defined before Theorem 4.6.) Then, by
part (1) in the definition of W (s), we have Dgls 51>(W(s)) = (Ko ®q, E)e1 © (Ko ®q, E)(—¢, +
aerise1). So if we put eg := —el, + aerise1, we have DCI;’;(S” (W(s)) = (Ko ®q, F)e1 @ (Ko ®q, E)e2
such that:

(1) @(e1) = aer, p(ez) = afez + e1);

(2) gle1) = d1(xrr(9))er, g(e2) = b1(xrr(g))er for any g € Gic.

K =
We compute the filtration on K, 5 ) ®x, D1V (W(s)) = (K61 @0, Bler @ (K, 5, ®qg, E)es

as follows. We can take a:= (a,) € D R (01/02) = @O—(DgR ®Keg, B Biar @Ko E) such that a, =
0 for any o such that k, € Z<,. Then we can compute the filtration as in the previous

case. Then we have D "(51>(W( )) = D5, 55 {ko}o) . for some = (byeq)o € e T8 (09, {ko}o) =

Cris Cris
Dok, >1Fes/A(E) such that a lift (byes)s of (bres)s satisfies {U | by #0} = {0 | a, #0}. So, for
this 2, D5, 5, (x.1,), 1 weakly admissible and we have Vi(s) > V61,62, {ko }o)a- SO We have proved

that condition (1) implies condition (2) in all cases.

Next we prove that condition (2) implies condition (1). Let us take (d1,d2, {ko}o) € Teris-
We prove this in the case 01 # d2. (We can prove the other cases in the same Wa~y.) Let us
take [(byes)s] € Tcelfls(él, 02, {ko}o) CPE(®ok,>1Ees). If we put 61 =01 [[, o(x)ke, 6y = 5y, we
can see that (d1,02) € St. From the argument of the proof of the claim that condition (1)
implies condition (2), we can see that there exists an element s = [(age,)s] € 5’81, 02) such that

K, ~ .
D12 (W (s)) = D (5,55 {ko}o),[(boes)s]- Moreover, from the previous argument, we can also
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see that {o | a, #0} = {0 | by # 0}. This implies that s is contained in S’ (1, 02), i.e. W(s) =
W(V(s)) for some split triaBguline E-representation. So we have that D(s, 5, (ko1o),[(beeo)s] 15
weakly admissible and V' (s) — V{5, 5, (ko 1o),[(boes)o]- Ve have finished the proof of the theorem. O

The following is the corollary of Theorem 3.7.
COROLLARY 4.7. We have the following results.

(1) Let (01,02, {ko to) € Teris such that 01 # 09. Let [(aves)o] € TS (61, b2,
{ks}o). Then there exists unique ((81, 0%, {k} }»), ©, {ws }o) where (67, 6%, {kl }o) € Teris, T €

T (01, 05, {kG Yo), wo € Z, satistying Vis, s, (ko to) (asea)e] — V16,85 4k0 o) e ([ Lo o(xur)™?)
and ((01, 03, {ko}o), 2, {woto) # ((01, 62, {ko}s), [(a0es)o), {0}s). Such unique ((47, 5,
{kl.}o), x, {ws,},) satisfies:
(1) 51|@§:52‘(9}X(755|@;(:51‘0;{;’ . .
(i) &1 (mx) = 62(7K) [15.0,=0 or ko<0 O (TK)™, 05(mK) = 01(7K) [ 150, =0 or ky<0 T(TK)™;
(ii) k. =ko if ay #0, k. = —k, for other o;
(iv) we =0 if ay # 0, wy = ks for other o;
(v) unique suitable x = [(aes)s] € T (81, 85, {kL}») such that {c | a,, # 0} = {o | as # 0}.
(2) Let (81,62, {ko}o), (87,8, {k,}o) € Tenis such that &1 =3, Let x € T"s(81, 62, {ko}o),
ye T (67,05, {k,}s), {wo}s such that w, € Z for any o. Then we have an isomor-
phlsm ‘/(61,62,{160-}0-),1 :> W5175§,{kg}a),y(na O'(XLT)wa) 1f and only If ((6/1, (5&, {ké}o.), y) =
((01, 02, {ks}s), z) and w, =0 for any o.

Proof. Part (1) is the corollary of Theorem 3.7(2). Because 61 # da, then by the proof of the above
theorem, we have V{5, 5, (ko }o).[(ases)s] — V (8) Where s = [(boes)o] € e (01 [T, o(x)Fe, 6) for

some [(byey)o] such that {o | by # 0} = {0 | ay # 0}. Then, by Theorem 3.7, we have V (s) = V(s')
for unique s’ # s such that

s'=[<b:,eg>aJes’iLs( 1 o) I] o(x)kaom’%al)

0,b57#0 0,b57#0
~ 50 ( I1 ot [ olelwa)
0,b57£0 0,ks<0 or by=0
such that {o|b) #0} ={o|b, #0}. By the proof of the above theorem, we can see that s’
corresponds 0 Vig; g, (k3. l(ae0)o) (Ilo,as =0 or 1, <0 (xzr)") such that

ko
Olox = Blox, Blox =0lpx. di(m) =[] o(mk)*ba(nx), &(mx)
0,a40=0 or ks<0

= I o)) K =k,
o,a40=0 or k<0
if a, #0, k., = —k, for other o and {o | a, #0} = {0 | b, #0}. So we have finished the proof of
part (1).
Part (2) follows from the above theorem and Theorem 3.7(1). O

4.3 Potentially semi-stable and non-crystalline split trianguline E-representations

In this section, we explicitly describe the E-filtered (¢, N, Gk )-modules of potentially semi-
stable split trianguline E-representations which are not potentially crystalline. First we define
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the parameter spaces of potentially semi-stable split trianguline E-representations. We put

Tst :={(0,{ko}s) | 6 : K* — E* a locally constant character, k, € Z for any ¢ such that
(>, ko) + 2egval,(0(mk)) + [K : Qp] = 0}.
For any (9, {ks}s) € Tst, we define the parameter space T (9, {ks}s) of weakly admissible
filtrations as follows. We define

TSt(éa {ko}a) = @g’kozlEea—.

For any (ases)s € Tst(6, {ko}o) we define a rank-two E-filtered (o, N, Gal(K,4)/K))-module
D5(ko1o) (areo), - HOWever, as in the potentially crystalline case, the construction depend on the
choice of one more parameter. For any (6, {k,}o) € Ty, we fix a € (Ko ®q, £)* such that g3(a) =
d(mr), where g3 is as before. Then we define D5 (1, },),(aves)s = (Ko ®q, E)e1 ® (Ko ®q, E)ea
as follows:

(1) N(ez2) =e1, N(e1) =0;
(2) ¢(e1) = (a/p)er, p(e2) = ey for the fixed o€ (Ko®qg, E)*, so we have ¢f(e1)=
(6(m)/a)er, ! (e2) = d(mr)ea;
(3) gle1) =d(xur(g))er, gle2) = d(xrr(g))ez for any g € Gi;
(4) we put K5y @Ky D5, {ko o) (aves)s = EKn(s) @, E)er © (Ky5) @q, E)ez = ©o(Kps) OK0
E)eLg ) (Kn(é) ®K,a E)€2’g = @UDC,, then:
(i) for o such that ke <-1, we put Fil°D,=D,, Fil'D,=-..-=Fil %D, =
(Kn(E) ®K,o E)62,a'a Fﬂ_ka—HDo‘ = 0;
(ii) for o such that k, =0, we put Fil’D, = D,, Fil'! D, = 0;
(iii) for o such that ke >1, we put Fil™*D,=D, Fil**tp, =...=
Fil’D, = (K5 ®k,0 E)(ase1,6 + €2,), Fil' Dy = 0.
We prove in the proof of the next theorem that these are weakly admissible. So, by
‘weakly admissible implies admissible’ theorem [Ber08a, Theorem B], there exists a unique
(up to isomorphism) two-dimensional potentially semi-stable, not potentially crystalline
. K, ~
E-representation V(s (r,1) (aves), Such that Dy (5>(V(57{k0}0)’(a060)0) = D(5 {ko}o),(aves)o: LhEN
our main result on the classification of potentially semi-stable split trianguline E-representations
is as follows.

THEOREM 4.8. Let V be a two-dimensional E-representation. Then the following conditions are
equivalent:

(1) V is split trianguline, potentially semi-stable and not potentially crystalline;
(2) there exist (0,{ks}o) € Twt, (av€s)s € Tt (0, {ks}o) and {w,}s with w, € Z for any o, such
that V' —= V(5 (ky}o) (aea)o (Lo oOXTD))-
w/

Moreover, we have an isomorphism V(s (.1.) (aveo)o = Vs 1kt yo ) (ater)s (s o(X1;7)) if and only
it (8, {k.}o), (ales)s) = ((6, {ko}o), (aves)s) and w) =0 for any o.

Proof. First we prove that condition (1) implies condition (2). Let V be as in
condition (1). Then, by Proposition 4.4, we have V = V(s) for some s € Sg(d1,d2) such
that d1/d2 = [Nk g, ()| 1, o(x)* for some k, € Z for any . Twisting V by some suitable
[1, o(xur)lr, we may assume that (61, d2) = ([[, o ()" |NKk/q, ()|, §) for some locally constant
character §: K* — E* and for some k, € Z for any o. By the definition of Sg(d1,d2) =
s({ko}o) + DX (W (81/02))/Fil° DX, (W (81/82)), s corresponds to s({ko}s)+b for some b€
DX (W (81/62))/Fil’ DI (W (81/52)). So W(s) is given as follows:
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(1) We(s) :=We(d1) ® We(d2) such that g(z,y) = (g2 +c(g)gy, gy) for any g€Gk, z€
WE.(61), y€ WL (62) (here c(g) is defined in the definition of s({k,},) and we use the

fact that We(d1) = We(d2)(x) which we can see from Lemma 2.13);

(2) W(;J:R(s) = Wik (61) ® Wik (82) such that g(z, y) = (gz, gy) for any g € G,z € Wi (61),y €
WdR(52);

(3) ¢:Bar ®p,We(s) = Bar ®BIRW;R<S) is an isomorphism given by ¢(z, y) = (x + (log([p])/t)y

+b®4y,y), here b= (by) € DI (W (81/82)) is the lift of b such that b, =0 for any o such
that k, <O.

We calculate DSIE"(‘S)(V(S)) as follows. First, if we take a base €' € DK"(5>(W(52)) C Bais @B,

We(d2), then we have e’ := (1/t)e’ € Dgi';(é) (W (61)) because W, (61) = We(d2)(x). Then f (¢/) =

d(mr)e’, ¢! (e") = (3(mk)/q)e" and g(e') = d(xir(9))e’, g(e") = (xrr(9))e” for any g€ G

Moreover, we can take a base e’ such that ¢(e¢’) = ae’ for the fixed a. Then D§"<5)(W(s)) =
(Ko ®q, E)e" @ (Ko ®q, E)(e' —log([p])e”). If we put ej:=¢€" , ey:=e —log([p])e”, then
N(ez) =e1. Next we calculate the filtration on K, ®x, Dslt("m (W(s)) = (Kn(s) ®q, E)er @
(Kn(5) ®g, E)ea. By the definition of ¢ in part (3) of the definition of W (s), we have we; +
yeg € Fil' for z, y € K,,(5) ®q, E if and only if ze” 4 y(u(e') — log([p])e") = ze” +y(e' +b® " +
log([5])e” — log([pl)e”) = (ze” + yb @ €") + ye' € Fili D@ (W (81)) & Fili Dyt ® (W (8,)). So we
can calculate the filtration similarly as in the proof of Theorem 4.6. Then we can show
that Dg"(é)(V(s)) = D5ty }o)(aves)s fOT SOME (a5€s)s € Tst(0, {ko}o) = Bok,>1E€s such that
{olas# 0} ={0]bs #0}. S0 D5 {k,}0),(ases), 1S Weakly admissible for such a (aseq)s and we
have V(s) = V(5 {ky }o),(ases), - Thus, we have proved that condition (1) implies condition (2).

Next we prove that condition (2) implies condition (1). Let us take (0, {ks}s) € Tit
and (ages)o € Tt (9, {ks}s). Then we can see that (61, d2) := ([, J(x)k(’]NK/Qp(x)M, §)esSt.
Moreover, it is easy to see from the above argument that there exist some s:= (byes)s €

Sst(61, 02) such that D5 .1.) (ave)o = D:En(é)(V(S)). S0 D5 (ko }o),(ases)o 18 Weakly admissible
and V() = Vi ko }o),(a0e0)a-

Finally, we prove the uniqueness of ((9, {ks}s), (@s€s)s, {Ws}o). This easily follows from the
above argument and from Theorem 3.7. We have finished the proof of the theorem. O
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Appendix A. A relation between two-dimensional potentially semi-stable
trianguline FE-representations and classical local Langlands
correspondence for GL3(K).

In this appendix, we show that a simple relation between two-dimensional potentially semi-stable
trianguline E-representations and classical local Langlands correspondence for GLa(K).

A.1 Classical local Langlands correspondence for GL2(K)

First we briefly recall classical local Langlands correspondence for GLy(K). Let Wi C Gk be
the Weil group of K, i.e. the inverse image of (Frobg)z C Gal(k/k) by the natural surjection
G — Gal(k/k). (Here (Frobg)z is the subgroup of Gal(k/k) generated by the g = p/th power
Frobenius Froby of k.) Here W is a topological group such that the inertia Ix := Ker(Gg —
Gal(k/k)) equipped with usual profinite topology is an open subgroup of W

DEFINITION Al. Let L be a field of characteristic zero. We say that a finite-dimensional L-
vector space D with discrete topology is an L-Weil-Deligne representation of K if D is equipped
with:

(1) a continuous L-linear action of Wi, i.e. there is a continuous morphism p : Wx — Autr(D);

(2) anilpotent L-linear operator N : D — D such that Np(g) = q_deg(g)p(g)N for any g € W;
here we define deg(g) € Z such that g = Frob 489 e Gal(k/k) for any g € W.

We say that an L-Weil-Deligne representation D := (D, p, N) is semi-simple if (D, p) is a semi-
simple representation of Wi

Next we recall Fontaine’s recipe to construct a K-Weil-Deligne representation from a
potentially semi-stable E-representation of Gg. Let V' be a potentially semi-stable d-dimensional
E-representation of Gi. Then Dy (V) := U1, finite(Blog ®q, V)% is a free K™ ®q, E-module
of rank d equipped with the natural (¢, N, Gx)-action on which ¢ and Gk act semi-linearly
and N acts linearly. We define a continuous action of Wy on Dyst (V) by p(g)z := o~/ deg(9) g
for any g € Wi and x € Dpst(V'). We can see that this action is K" ®q, E-linear and satisfies
Np(g) = ¢80 p(g)N for any g € Wy. By using the fixed embeddings F — K and K" — K,
we define a map K" ®q, F — K. Extending the scalar by this map, we obtain a K-Weil -
Deligne representation Dyt (V) := Dpst (V) ® K"@g, E K of K of dimension d. So we obtain a
functor V — Dyt (V) from the category of potentially semi-stable E-representations of G to
the category of K-Weil-Deligne representations of K.

Next, for a K-Weil-Deligne representation D of K, we recall the definition of an L-factor
of D. Let us fix an isomorphism K = C. By this isomorphism, we can see D as a C-Weil-
Deligne representation of K. Put J:= DV=%Ik=1the subspace of D on which N =0 and
Iy acts trivially. Let 0 € Wy be an element such that deg(c) = —1. Then o acts on .J and
this action does not depend on the choice of a lifting 0. Then we define the L-factor of D by
L(D, s) :=det(1 — oq%| ;)" .

For a two-dimensional semi-simple K-Weil-Deligne representation D, we can define an
irreducible smooth admissible representation 7(D) of GLo(K) as in [BH06, §33.1] (if we
fix a non-trivial additive smooth character ¢ : K — C*). The irreducible smooth admissible
representations of GLo(K) are classified into non-supercuspidal representations (i.e. one-
dimensional representations or principal series representations or special series representations)
and supercuspidal representations. We do not recall these definitions here. We only need the
following proposition concerning this correspondence.
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PROPOSITION A2. Let D be a K-Weil-Deligne representation of K. Let D% be the semi-
simplification of D. Then the following conditions are equivalent:

(1) 7(D?*%) is non-supercuspidal;
(2) the representation (D, p) of Wi is reducible;

(3) there is a continuous character § : Wi — K* such that L(D ®g K(6),s) #0, here K is
equipped with discrete topology.

Proof. This follows from [BH06, Proposition 33.2]. O

A.2 Two-dimensional trianguline representations and non-supercuspidal represen-
tations

Let V' be a two-dimensional potentially semi-stable E-representation of Gx. Then 7(Dpgt(V)*®)
is an irreducible smooth admissible representation of GLy(K). In this section, we prove a
relation between two-dimensional potentially semi-stable trianguline E-representations and non-
supercuspidal representations of GLa(K).

Before stating the main result of this appendix, we give another useful characterization of
two-dimensional split trianguline E-representations in terms of Dgis. This characterization is
also a generalization of [Col08a, Proposition 5.3].

PRrROPOSITION A3. Let V be a two-dimensional E-representation of Gg. Then the following
conditions are equivalent:

(1) V is a split trianguline E-representation;

(2) there exists a continuous character § : Gx — E* and an element o € (Ko ®q, E)* such that
DE(V(6))7=" £ 1.

cris

Proof. First we prove that condition (1) implies condition (2). Assume that V' is a split trianguline
E-representation. By definition, W (V) sits in a following short exact sequence of E—B-pairs

0—W; - W(V)—Wy—D0.

Here W; are rank-one E—B-pairs for ¢ = 1, 2. By Theorem 1.45 and by the construction of W (J)
for any 0 : K* — E*, if we fix a uniformizer g of E then there exist (d;, k;) where §; : Gxg — E*
are continuous characters and k; € Z for i = 1, 2 such that W; = W(E(5;)) @ W ki here Wy is
defined before Theorem 1.45. If we twist the above exact sequence by the character 6, Land apply
the left exact functor DX, we obtain an inclusion D$* € DK (V(671)) of E~p-modules of K. If

cris? cris

we put Ko ®q, £ = ®0§i§f—1 Ko ®p, i Fei, Dg@kl = Go<i<f-1Ko ®p, i Eeik,, then we have

oleop, +- - +er1p)= (ﬂ%le() +e1+---+es_1)(eor + - +ef_1k ). In particular, (egr, +
k

bepig) € DE(V(6Y))#=mE cotertter 1) and (nhleg 4 e + - - - +epo1) € (Ko ®g, B)*X

cris
So we have proved that condition (1) implies condition (2).

Next we prove that condition (2) implies condition (1). Assume that DX, (V(8))?=% #£0 for a
character § : Gxg — E* and a € (Ko ®q, E)*. Because V is split trianguline if and only if V'(0)
is split trianguline, we may assume that V =V (4). Let us take a non-zero x € DX, (V)¥=. We

consider the sub-E-filtered ¢-module Dy C DX, (V) of rank one which is generated by x. Then,

cris
by Theorem 1.18(3), we have a natural inclusion of E-B-pairs W(D;) — W (DX, _(V)) — W (V).
W (D) is an E-B-pair of rank one by Theorem 1.18(3). Taking the saturation W (D;)%* of
W(D;) in W(V) (Lemma 1.14), we obtain a short exact sequence of E—B-pairs

0— W(D1)** — W (V) — Wy — 0.
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Here W is the cokernel of W(D;)%" — W (D), which is an E—B-pair of rank one. So V is a split
trianguline E-representation. We have finished the proof of this proposition. O

The main theorem of this appendix is as follows.

THEOREM A4. Let V be a two-dimensional potentially semi-stable E-representation of G .
Then the following conditions are equivalent:

is trianguline, i.e. V ®g E' is a split trianguline E'-representation for some finite extension
1) V is trianguline, i.e. V @p E' is a split trianguline E' tation f finite extensi
of E' of E;

(2) the representation (Dpst(V), p) of Wi is reducible;
(3) m(Dpst(V)*%) is a non-supercuspidal representation of GLa(K).

Proof. By Proposition A2, it suffices to show equivalence between conditions (1) and (3). The
proof of this is a modified version of the proof of [Kis03, Lemma 1.3]. First we prove that
condition (1) implies condition (3). Assume that V' ®g E’ is a split trianguline E'-representation
for a finite extension E’ of E. By construction, we have m(Dpst(V @ E')**) = m(Dpst(V)5).
So we may assume that F'=F and V is a split trianguline FE-representation. Then, by
Proposition A3, there exist a € (Ko ®g, E)* and ¢ : Gg — E* such that DX, (V(8))?=> 0.
In this case, we claim that we can take § which is a potentially crystalline character. We show
this claim as follows. In the proof of Proposition A3, W (V) sits in a following short exact sequence
of E—B-pairs
0—-W, —>W(V)—Wy—0,

where Wy := W @ W(E(&')) and Wa are rank-one E-B-pairs. In this case, because W (V)
is a potentially semi-stable E—B-pair, W; is also a potentially semi-stable E—B-pair. Because
Wy is a crystalline E-B-pair, by definition, so W (E(¢')) = Wi @ WS M is also potentially semi-
stable. So ¢’ is a potentially crystalline character because rank-one semi-stable E-representations
are crystalline. Then, as in the proof of Proposition A3, if we put §:= 4!, then we have
DE(V(8))#=* # 0 for some a € (Ko ®q, E)*. So we have proved the claim. For this d, we have

Cris
Dpst(V(8)) = Dpst (V) ® g Dpsi(E(6)) because both V' and E(6) are potentially semi-stable. So,
by Proposition A2, it suffices to show that L(Dpst(V (8)), s) # 1. Put J := Dygt (V(8))V=0Ix =1,
If we put J := Dyt (V(0))V=015=1 then we have J = UgcrcrxmDE (V(5)), here K" is the
maximal unramified extension of K By using the fact that N is nilpotent on Dy (V(9))
and that Ix acts discretely on it, we can easily see that J = .J BKyneq, g K. Moreover,

because Gal(K"/K) = Gal(K{®/Ky) acts on J discretely and semi-linearly, so we have J —
JGal(K*/K) ®OKowg, B (K§" ®g, E) by Hilbert’s theorem 90. Because we have JGAUE/K) —

DE. (V(6)), we have J = Deys(V(0)) OKowg, E K. Finally, if we take a non-zero element x €
Deyis(V (6))?=* and consider the action of o on x as a Weil-Deligne representation (here o
is an element in Wx such that deg(c)= —1), then we have p(o)(z)=p/o(x) =p/(z)=
/"N a) - - p(a)az = Bz, here we put B:= /" 1(a) - - p(a)a € (Ko ®q, E)*)¢~! = E*. So J
has a non-zero eigenvector of o, hence we obtain L(Dps(V(0)), s) # 1. Thus, we have proved
that condition (1) implies condition (3) by Proposition A2.

Next we prove that condition (3) implies condition (1). Let V be a two-dimensional
potentially semi-stable E-representation such that W(Dpst(V)Ss) is non-supercuspidal. Then, by
Proposition A2, L(Dpst(V) @ K(8), s) #1 for a character ¢ : Wi — K*. By this we can take
a non-zero eigenvector x € (Dpst(V) @5 K(8))V=0I5=1 of o0 € Wi with a non-zero eigenvalue
B e K*. If we take E large enough, we may assume that S € E* and that there exists a

potentially crystalline character ¢’ : Gx — E* such that Dpg(F(8')) = K(5). Then we can
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prove that there is an isomorphism (Dpst(V) @z K(0))V=015=1 5 (Dpg (V()))N=0Ix=1 5
DE (v(8") ® Ko®g, F K in the same way as the argument in the proof of condition (1) implies
condition (3). If we decompose DX, (V(8')) = @;.x,—pDrer, then we have DX, (V (")) ®Ko®g, E
K =D;; ®p K. So, if we take E large enough, we may assume that x is contained in D;ge;q.
If we put e: —:c+<p( )+ —l—(pf Yz )G 697 Ko—rDrer = DE_(V(8')), then we have ¢i(z) €

D-iey—i and p(e) = (Bejq + e, + -+ e _(-1)€e, where (Bej,+---+ eip,(f,l)) € (Ko ®q,

E) = (@o<i<i Ee ). So, by Proposmon A3, V(&) is a split trianguline E-representation.
Thus, V is also a split trlanguhne FE-representation. We have finished the proof of the theorem. O

Appendix B. List of notation

Here is a list of the main notation of the article, in the order of the section in which it appears.

0.1: p, K, Gk, p, Ko, '

0.2: E, k, Ko, K|, x, Cp, xur, reck.

11: EF, A, A, BT, B, By, Amax: [P, Biax: t» Bumax, Bar, Be, BJiy, Fil'Bar, log[p], Biog, N,
vV, W, We, WC;FR, War, W(V), leg, rank(W), Wy @ Wa, WY, Wiat, DL (W), DL (W),
DﬁR(W) W(D).

1.2: Bl o, Ri, o, RY, R, vy, w, deg(M), (M), [al.M, Ay, By, BV, B, B, BY,
in, Aky: By, A, B, Ag, Bi, B, BY', Ex, B (o BY 1,

1.3: We(D), Wik (D), W(D), D(W).

1.4: Dy, Wy, 6, W (6), Uﬁnl » Vi, Dsen(W), Osenvs {weo}o-

2: Bg.
215 C2(W), COW), CLW), H*(G e, W), Ext! (Wa, W1), HL(Ge, W), HY (G, W), HY (G, W),
2.3 O—(:U)7 NK/Qp(x)a | - |7 ‘NK/QP(:U)’7 0.

3.1: ST, (51, 62), P(M), §'(81,62), (51, 62), S (51, 8), W (s), V(s).

3.2: Sf, Sf, S"°rd(61, 62).

4.1: S§"(81,62), Sst(01, 02), Scﬁls(él,ég)

4.2 Teris, G(0)os Teris(01, 02, {ko}o)s Tepis (015 02, {ko }o)s D5y 62,1k }o) s Vibr.62.{ko}o) e
4.3: Tats Tso(0, {ko}o)s D5 tkoto)(aoeo)ss Vio{koto)s(aoes)o

Al: Wk, Ik, Dpst(V), Dpst(V) L(D, s), (D).
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