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Abstract

The aim of this article is to classify two-dimensional split trianguline representations of
p-adic fields. This is a generalization of a result of Colmez who classified two-dimensional
split trianguline representations of Gal(Q̄p/Qp) for p 6= 2 by using (ϕ, Γ)-modules over
a Robba ring. In this article, for any prime p and for any p-adic field K, we classify
two-dimensional split trianguline representations of Gal(K̄/K) using B-pairs as defined
by Berger.
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Introduction

0.1 Background

Let p be a prime number. In this article, we study two-dimensional trianguline representations
of any p-adic field K, i.e. a finite extension of Qp. A trianguline representation is a class of p-adic
representations of GK := Gal(K̄/K), which has turned out to be an important notion. The
trianguline representation was defined by Colmez and is defined by using (ϕ, ΓK)-modules over
a Robba ring B†rig,K which is non-canonically isomorphic to a ring of Laurent power series which
converge in some annulus and is equipped with a Frobenius ϕ action and with ΓK := Gal(K∞/K)
actions. Here K∞ :=K(ζp∞) is the extension of K obtained by adjoining pnth roots of unity ζpn
for every n ∈ N. The (ϕ, ΓK)-modules over B†rig,K are defined as finite free B†rig,K-modules with
semi-linear ϕ and ΓK actions. By the work of Kedlaya [Ked04], the notion of slopes of ϕ-modules
over a Robba ring is very important and we say that a (ϕ, ΓK)-module over B†rig,K is étale if
it is pure of slope zero as a ϕ-module. Using the works of Fontaine [Fon90], Cherbonnier and
Colmez [CC98] and Kedlaya [Ked04], the category of p-adic representations of GK is equivalent
to the category of étale (ϕ, ΓK)-modules over B†rig,K . This equivalence enables us to see the
category of p-adic representation of GK as a full subcategory of the category of (ϕ, ΓK)-modules
over B†rig,K (without slope conditions). We say that a p-adic representation V of GK is split
trianguline if Drig(V ), the (ϕ, ΓK)-module corresponding to V , is a successive extension of rank-
one objects in the category of (ϕ, ΓK)-modules over B†rig,K . We also say V is trianguline if V is
split trianguline after making a finite extension of coefficients.

Trianguline representations can be seen as generalizations of ordinary representations.
However, many interesting irreducible representations can be trianguline. For example, all
semi-stable representations are trianguline. Moreover, there are many interesting trianguline
representations which are not de Rham. For example, when K = Qp, Kisin showed that
two-dimensional p-adic representations of GQpattached to finite-slope overconvergent modular
forms are trianguline, and this fact was key to his p-adic Hodge theoretic approach to
the study of Coleman–Mazur eigencurves [Kis03]. Recently Belläıche–Chenevier generalized
Kisin’s method and studied higher-dimensional trianguline representations of GQp to study
higher-dimensional eigenvarieties [BC06]. Another example is Colmez’s p-adic Langlands
correspondence for GL2(Qp): trianguline representations are at the heart of his theory of
p-adic Langlands correspondence. When K = Qp and p 6= 2, he classified two-dimensional
split trianguline representations of GQp and, based on this classification, he proved that the
sets of points corresponding to trianguline representations are Zariski dense in deformation
spaces of two-dimensional p-adic representations of GQp . By combining some constructions of
Colmez and of Berger–Breuil, we obtain the p-adic Langlands correspondence for trianguline

866

https://doi.org/10.1112/S0010437X09004059 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004059


Two-dimensional split trianguline representations of p-adic fields

representations [BB06, Col04, Col07]. The correspondence for trianguline representations and the
Zariski density of trianguline points played essential roles in his construction of p-adic Langlands
correspondence for GL2(Qp) (see [Col08b]).

The main purpose of this article is the complete classification of two-dimensional split
trianguline representations of GK for any finite extension K of Qp for any prime p (we do not need
to assume that p 6= 2). We determine the parameter space of all split trianguline representations
and we also determine the parameter space of potentially crystalline or potentially semi-stable
split trianguline representations, then we explicitly describe the filtered (ϕ, N, GK)-modules
associated with them. Currently, the only interesting examples of trianguline representations are
in the case K = Qp. The author hopes that this article will be useful in giving many interesting
examples of trianguline representations in the general K 6= Qp case. For example, we want to
know whether p-adic representations attached to finite-slope overconvergent Hilbert modular
forms are trianguline or not. In this article, we could not attack the problem regarding the
Zariski density of trianguline representations as the author does not know whether the set of
trianguline points is Zariski dense or not in the general K 6= Qp case. These problems will be the
subject of study in future works.

0.2 Layout of the article

In § 1, we define trianguline representations and split trianguline representations by using B-pairs
instead of (ϕ, ΓK)-modules over B†rig,K for some technical reasons. The B-pair was defined by
Berger [Ber08b]. We writeBe :=Bϕ=1

cris . An E–B-pair (the E-coefficient version of aB-pair; here E
is a finite extension of K which contains the Galois closure of K) is a pair W := (We, W

+
dR) where

We is a finite free Be ⊗Qp E-module with a continuous semi-linear GK-action such that W+
dR ⊆

WdR :=BdR ⊗Be We is a GK-stable B+
dR ⊗Qp E-lattice of WdR. In [Ber08b, Theorem 2.2.7],

Berger established an equivalence between the category of E–B-pairs and the category of
E-(ϕ, ΓK)-modules over B†rig,K , which are also the E-coefficient version of (ϕ, ΓK)-modules.
The category of E representations of GK (the E-coefficient version of p-adic representations)
is embedded in the category of E–B-pairs by V 7→W (V ) := (Be ⊗Qp V, B+

dR ⊗Qp V ). So, to
define trianguline representations, we can use both B-pairs and (ϕ, ΓK)-modules. In this article,
we choose to use B-pairs for some technical reasons. Then, we say that an E–B-pair W
is split trianguline if W is a successive extension of rank-one E–B-pairs. We say that an
E-representation V is split trianguline if W (V ) is split trianguline. We say that an E–B-pair
W (respectively, an E-representation V ) is trianguline if W ⊗E E′ (respectively, V ⊗E E′) is
split trianguline for a finite extension E′ of E. The main purpose of this article is the complete
classification of two-dimensional split trianguline E-representations of GK . The classification is
made through the following steps.

Step 1: Classification of rank-one E–B-pairs.

Step 2: Calculation of the dimensions of extension groups dimE Ext1(W2, W1) for any rank-one
E–B-pairs W1, W2.

Step 3: Determination of the conditions for W to be étale, here W is an extension of W1 by W2

as in Step 2.

Step 4: Classification of de Rham split trianguline E-representations.

We describe Step 1 in § 1, Step 2 in § 2, Step 3 in § 3 and Step 4 in § 4.

From now on, we explain these steps more precisely.
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For Step 1, let δ :K×→ E× be a continuous character with respect to p-adic topology on
both sides. Then we can define a rank-one E–B-pair W (δ) as follows. Let πK be a uniformizer
of K. We decompose δ into δ := δ0δ1 such that δ0|O×K = δ|O×K , δ0(πK) := 1, δ1|O×K is a trivial

character, δ1(πK) := δ(πK). Then δ0 :K×→O×E is a unitary character, so by local class field
theory we obtain a character δ̃0 :Gab

K →O
×
E such that δ0 = δ̃0 ◦ recK , here recK :K×→Gab

K is
the reciprocity map such that πK is mapped to a lifting of the inverse of the qth power Frobenius
(here, q := pf , f := [K0 : Qp], K0 is the maximal unramified extension of Qp in K). For δ1, we
define a rank-one E–B-pair W (δ1) such that D(δ1), the (ϕ, ΓK)-module corresponding to W (δ1),
is defined by D(δ1) :=B†rig,K ⊗Qp Eeδ1 , ϕf (eδ1) := δ1(πK)eδ1 , γ(eδ1) := eδ1 for any γ ∈ ΓK . We
define W (δ) :=W (δ0)⊗W (δ1). We can show that W (δ) does not depend on the choice of πK
(see Remark 1.44). Then the main theorem of § 1 is as follows.

Theorem 0.1 (Theorem 1.45). Let W be a rank-one E–B-pair of GK . Then there exists unique
continuous character δ :K×→ E× such that W

∼→W (δ).

Remark 0.2. We can see this theorem as a natural generalization of one-to-one correspondence
{δ :K×→O×E : continuous character} ∼→{δ̃ :Gab

K →O
×
E : continuous character}, which is

induced by local class field theory. This theorem is also a generalization of [Col08a,
Proposition 3.1].

For Step 2, from this theorem, it suffices to calculate dimEExt1(W (δ2), W (δ1)) for any
continuous characters δ1, δ2 :K×→ E×. In § 2, for this purpose we define the Galois cohomology
of E–B-pairs. Let W := (We, W

+
dR) be an E–B-pair. Put WdR :=BdR ⊗Be We. Then we define

the Galois cohomology H∗(GK , W ) of W as the Galois cohomology of the complex We ⊕
W+

dR→WdR : (x, y) 7→ x− y, here We ⊕W+
dR sits in the zeroth part of this complex. These

cohomology groups are finite-dimensional E-vector spaces. We can show in the usual way that
there is a natural isomorphism Ext1(BE , W ) ∼→H1(GK , W ), here BE := (Be ⊗Qp E, B+

dR ⊗Qp E)
is the trivial E–B-pair. By Bloch–Kato’s fundamental short exact sequence 0→Qp→Be ⊕
B+

dR→BdR→ 0, for any E-representation V , we have a natural isomorphism H∗(GK , V ) ∼→
H∗(GK , W (V )). So we can see this cohomology as a natural generalization of Galois cohomology
of p-adic representations. As in the classical case, this cohomology satisfies the Euler–Poincaré
characteristic formula and Tate local duality theorem. For this, we review the results of Liu
[Liu08] concerning these theorems for (ϕ, ΓK)-modules over B†rig,K . By using his theorems, we
can calculate all of the extension groups that we want. For any embedding σ :K ↪→ E and
k ∈ Z, we define σ(x)k :K×→ E× : y 7→ σ(y)k. We define NK/Qp :K×→Q×p : y 7→

∏
σ:K↪→E σ(y),

| − | : Q×p → E : p 7→ 1/p, a 7→ 1 for any a ∈ Z×p , |NK/Qp(x)| := | − | ◦NK/Qp . Then the main result
of § 2 is as follows.

Theorem 0.3 (Theorem 2.15). Let δ1, δ2 :K×→ E× be continuous characters.

Then dimEExt1(W (δ2), W (δ1)) is equal to:

(1) [K : Qp] + 1 if δ1/δ2 =
∏
σ:K↪→E σ(x)kσ such that kσ ∈ Z50 for any σ;

(2) [K : Qp] + 1 if δ1/δ2 = |NK/Qp(x)|
∏
σ:K↪→E σ(x)kσ such that kσ ∈ Z=1 for any σ;

(3) [K : Qp] otherwise.
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Remark 0.4. This theorem is a generalization of the dimension formula of Galois cohomology of
one-dimensional p-adic representations. This is also a generalization of [Col08a, Theorem 2.9].

From this theorem we can determine all of the split trianguline E–B-pairs of rank
two. Let W (s) be a split trianguline E–B-pair which is an extension corresponding to s ∈
PE(Ext1(W (δ2), W (δ1))); here for any finite-dimensional E-vector space M we put PE(M) :=
{[v] | v ∈M − {0}, [v] = [v′] ⇐⇒ v′ = av for some a ∈ E×}. Then the isomorphism class of W (s)
as an E–B-pair depends only on s.

For Step 3, we must determine the conditions on (δ1, δ2) and s for W (s) to be étale,
i.e. to be W (s) ∼→W (V (s)) for an E-representation V (s). In § 3, we determine all of the
conditions by using Kedlaya’s slope filtration theorem of ϕ-modules over a Robba ring. The
idea is essentially the same as Colmez’s when K = Qp and p 6= 2 (see the proof of [Col08a,
Proposition 4.7]), but we have to deal with all of the additional complications which come
from working with K 6= Qp. In fact, in the general K 6= Qp case, the parameter space of split
trianguline representations is more complicated than that of the K = Qp case. For any two
continuous characters δ1, δ2 :K×→ E×, we put S(δ1, δ2) := PE(Ext1(W (δ2), W (δ1))). We put
S+ := {(δ1, δ2) | δ1, δ2 :K×→ E× continuous characters such that valp(δ1(πK)) + valp(δ2(πK)) =
0, valp(δ1(πK))≥ 0} (here valp is a valuation of E such that valp(p) := 1). For any (δ1, δ2) ∈ S+,
in § 3 we explicitly define a certain subspace S′non-ét(δ1, δ2)⊆ S(δ1, δ2) which corresponds to non-
étale split trianguline E–B-pairs. All of these spaces S+ and S′non-ét(δ1, δ2) naturally appear when
we consider the slope zero conditions by using Kedlaya’s slope filtration theorem. Then our main
result of § 3 is as follows.

Theorem 0.5 (Lemma 3.1 and Theorem 3.4). Let δ1, δ2 :K×→ E× be continuous characters.
Let W (s) be the split trianguline E–B-pair corresponding to s ∈ S(δ1, δ2).

(1) If W (s) is étale, then (δ1, δ2) ∈ S+.

(2) The following conditions are equivalent:

(i) W (s) is étale, i.e. W (s) ∼→W (V (s)) for an E-representation V (s);
(ii) s /∈ S′non-ét(δ1, δ2).

Remark 0.6. This theorem is a generalization of [Col08a, Proposition 4.7]. The space Sncl
+

in [Col08a, § 0.2] corresponds to t(δ1,δ2)∈S+Snon-ét(δ1, δ2) in this article. Moreover, we can
determine the conditions when we have V (s) ∼→ V (s′) for distinct parameters s ∈ S(δ1, δ2) \
S′non-ét(δ1, δ2), s′ ∈ S(δ′1, δ

′
2) \ S′non-ét(δ′1, δ

′
2) under certain conditions (Theorem 3.7).

For Step 4, we have to determine the conditions on (δ1,δ2) ∈ S+ and s ∈ S(δ1, δ2) \
S′non-ét(δ1, δ2) for V (s) to be potentially semi-stable or potentially crystalline. In the p-adic
representations case, Bloch–Kato finite cohomology is useful for this kind of problems. We
define Bloch–Kato cohomology for a B-pair W as follows (Definition 2.4). By the definition
of H∗(GK , W ), we have natural maps H∗(GK , W )→H∗(GK , We)→H∗(GK , Bcris ⊗Be We)→
H∗(GK , BdR ⊗Be We). As in the classical case, we define H1

?(GK , W ) := Ker(H1(GK , W )→
H1(GK , B∗ ⊗Be We)), here when ? = e (respectively ? = f , respectively ? = g) then ∗= e
(respectively ∗= cris, respectively ∗= dR). By calculating these, in § 4 we explicitly define
the parameter spaces S ét

cris(δ1, δ2), Sst(δ1, δ2)⊆ S(δ1, δ2) for any (δ1, δ2) ∈ S+ such that δi =∏
σ:K↪→E σ(x)ki,σ δ̃i such that ki,σ ∈ Z and δ̃i are locally constant characters for i= 1, 2. Then

the conditions for V (s) to be potentially semi-stable are as follows.
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Theorem 0.7 (Lemma 4.1 and Proposition 4.4). Let s ∈ S(δ1, δ2) \ S′non-ét(δ1, δ2). Let V (s) be
the split trianguline E-representation corresponding to s.

(1) If V (s) is potentially semi-stable, then δi =
∏
σ:K↪→E σ(x)ki,σ δ̃i such that ki,σ ∈ Z for any σ

and δ̃i are locally constant characters for i= 1, 2.

(2) If (δ1, δ2) ∈ S+ satisfies the condition in (1), then the following conditions are equivalent:

(i) V (s) is potentially crystalline;
(ii) s ∈ S ét

cris(δ1, δ2).
(3) If (δ1, δ2) ∈ S+ satisfies the condition in (1), then the following conditions are equivalent:

(i′) V (s) is potentially semi-stable and not potentially crystalline;
(ii′) s ∈ Sst(δ1, δ2).

Remark 0.8. These parameter spaces S ét
cris(δ1, δ2), Sst(δ1, δ2) are generalizations of Scris

+ or Sst
+

defined in [Col08a, 0.2]. We can also see these spaces as the parameter spaces of weakly admissible
filtrations of a (ϕ, N, GK)-module corresponding to V (s). Moreover, we can explicitly calculate
the filtered (ϕ, N, GK)-modules associated with V (s) as above (Theorems 4.6 and 4.8).

By this theorem, we complete the classification of two-dimensional split trianguline
E-representations. This is the main content of this article.

In Appendix A, we study a relation between two-dimensional potentially semi-stable
trianguline representations and local Langlands correspondence for GL2(K). Let V be a
two-dimensional potentially semi-stable E-representation of GK . Fontaine defined a two-
dimensional Weil–Deligne representation D̄pst(V ) :=Dpst(V )⊗Kun

0 ⊗QpE K̄ of K from the filtered
(ϕ, N, GK)-module Dpst(V ) := ∪K⊆L,finite(Bst ⊗Qp V )GL . By local Langlands correspondence
for GL2(K), we can attach an irreducible smooth admissible representation π(D̄pst(V )ss) of
GL2(K) (here D̄pst(V )ss is the Frobenius semi-simplification of D̄pst(V )). Irreducible smooth
admissible representations of GL2(K) are classified into supercuspidal representations and non-
supercuspidal representations (i.e. one-dimensional representations, principal series or special
series). Then the main result of Appendix A is as follows.

Theorem 0.9 (Theorem A4). Let V be a potentially semi-stable E-representation. Then the
following conditions are equivalent:

(1) V is trianguline, i.e. V ⊗E E′ is split trianguline for some finite extension E′ of E;

(2) π(D̄pst(V )ss) is non-supercuspidal.

Notation
Let p be a prime number. We use: K to denote a finite extension of Qp; K̄ to denote a fixed
algebraic closure of K; K0 to denote the maximal unramified extension of Qp in K; Knor to
denote the Galois closure of K in K̄. We use GK := Gal(K̄/K) to denote the absolute Galois
group of K equipped with profinite topology. Here OK is the integer ring of K, πK ∈ OK is
a uniformizer of K, k :=OK/πKOK is the residue field of K, q = pf := ]k is the order of k,
and K∞ :=K(ζp∞) is the extension of K obtained by adjoining the pnth roots of unity ζpn

for every n ∈ N. We use K ′0 to denote the maximal unramified extension of Qp in K∞, so
K0 ⊂K ′0. We have HK := Gal(K̄/K∞), ΓK :=GK/HK = Gal(K∞/K), and χ :GK → Z×p is the

p-adic cyclotomic character which factors through the inclusion ΓK ↪→ Z×p (i.e. g(ζpn) = ζ
χ(g)
pn for

any pnth roots of unity ζpn and for any g ∈GK). Here Cp := ̂̄K denotes the p-adic completion
of K̄, which is an algebraically closed p-adically complete field, and OCp is its integer ring. We
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use E to denote a finite extension of Qp such that Knor ⊂ E. In this paper, we write E as a
coefficient of representations. We use χLT :GK →O×K ↪→ E× to denote the Lubin–Tate character
associated with the uniformizer πK . Here recK :K×→Gab

K is the reciprocity map of local class
field theory such that recK(πK) is a lifting of the inverse of qth power Frobenius of k, then
χLT ◦ recK :K×→O×K satisfies χLT ◦ recK(πK) = 1 and χLT ◦ recK |O×K = idO×K

.

1. B-pairs and (ϕ, ΓK)-modules.

In this section, we recall the definitions and some properties of B-pairs and (ϕ, ΓK)-modules.
In particular, we recall the results of Berger concerning the equivalence between the category of
B-pairs and the category of (ϕ, ΓK)-modules over a Robba ring.

1.1 Review of p-adic period rings and the definition of B-pairs

We begin this section by recalling some p-adic period rings [Fon94a, Fon94b, Ber02] and by
recalling the definition of a B-pair [Ber08b]. First let Ẽ+ := lim←−n OCp = lim←−n OCp/pOCp , where

the limits are taken with respect to pth power maps. It is known that Ẽ+ is a complete valuation
ring of characteristic p whose valuation is defined by val(x) := valp(x(0)) (here x= (x(n)) ∈
lim←−n OCp and valp is the valuation on Cp such that valp(p) = 1). In this paper, we fix a system
of pnth roots of unity {ε(n)}n=0 such that ε(0) = 1, (ε(n+1))p = ε(n), ε(1) 6= 1. Then ε := (ε(n))

is an element of Ẽ+ such that val(ε− 1) = p/(p− 1). Ẽ := Ẽ+[1/(ε− 1)] is the fraction field of
Ẽ+, which is known to be an algebraically closed complete valuation field of characteristic p
containing the subfield Fp((ε− 1)). Here GK acts on these rings in natural way. We put Ã+ :=
W (Ẽ+), Ã :=W (Ẽ), where, for a ring R, W (R) is the Witt ring of R. We put B̃+ := Ã+[1/p],
B̃ := Ã[1/p]. These rings also have natural continuous GK-actions and Frobenius actions ϕ,
here the topologies of these rings are defined by the p-adic topology on Ã+ and Ã. Then we
have a continuous GK-equivariant surjection θ : Ã+→OCp :

∑∞
k=0 p

k[xk] 7→
∑∞

k=0 p
kx

(0)
k , where

[ ] : Ẽ+→ Ã+ is the Teichmüller character. By inverting p, we obtain a surjection B̃+→ Cp. We
put B+

dR := lim←−n B̃+/(Ker(θ))n, which is a complete discrete valuation ring with residue field Cp

and is equipped with the projective limit topology of the p-adic topology on B̃+/(Ker(θ))n.
Let Amax be the p-adic completion of Ã+[[p̃]/p], where p̃ := (p(n)) is an element in Ẽ+ such
that p(0) = p, (p(n+1))p = p(n). We put B+

max :=Amax[1/p]. Here Amax and B+
max have continuous

GK-actions and Frobenius actions ϕ, and the topology on these rings is also p-adic topology.
We have a natural continuous GK-equivariant embedding B+

max ↪→B+
dR. If we put t := log([ε]),

then we can see that t ∈Amax, ϕ(t) = pt, g(t) = χ(g)t for any g ∈GK and Ker(θ) = tB+
dR ⊂B

+
dR

is the maximal ideal of B+
dR. If we put Bmax :=B+

max[1/t], BdR :=B+
dR[1/t], which are equipped

with the inductive limit topology of (1/tn)B+
max and (1/tn)B+

dRfor any n ∈ N, we have a natural
continuous embedding Bmax ↪→BdR. We put Be :=Bϕ=1

max , (Be ⊆)B̃+
rig :=

⋂∞
n=0 ϕ

n(Bmax)⊂Bmax

(these are closed sub-rings of Bmax), FiliBdR := tiB+
dR for any i ∈ Z. We put

log([p̃]) := log(p) +
∞∑
n=1

(−1)(n−1)

n

(
[p̃]
p
− 1
)n
∈B+

dR,

where log : C×p → Cp is a branch of log which we fix in this article. Let Blog :=Bmax[log([p̃])]⊆
BdR. There is a derivation N :Blog→Blog over Bmax such that N(log([p̃])) :=−1. We have the
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following fundamental short exact sequence [BK90, Proposition 1.17]

0→Qp→Be ⊕B+
dR→BdR→ 0.

Definition 1.1. An E-representation of GK is a finite-dimensional E-vector space V with a
continuous E-linear action of GK . We use the term E-representation for simplicity when there
will be no risk of confusion regarding K.

Next we define the E–B-pair of GK , which is the E-coefficient version of a B-pair.

Definition 1.2. An E–B-pair of GK is a couple W = (We, W
+
dR) such that:

(1) We is a finite Be ⊗Qp E-module with a continuous semi-linear GK-action which is free as
Be-module;

(2) W+
dR ⊆WdR :=BdR ⊗Be We is a GK-stable B+

dR ⊗Qp E-lattice, i.e. W+
dR is a finitely

generated B+
dR ⊗Qp E-module that generates WdR as a BdR ⊗Qp E-module.

Here GK acts on B? ⊗Qp E by g(x⊗ y) := g(x)⊗ y for any g ∈GK , x ∈B?, y ∈ E for ? ∈ {e, dR}.

We use the term E–B-pair for simplicity when there will be no risk of confusing regarding K.
We simply use the term B-pair when E = Qp, then this definition is the same as that of
Berger [Ber08b, Introduction].

Remark 1.3. Later we prove that We is also free over Be ⊗Qp E (Lemma 1.7) and that W+
dR is

also free over B+
dR ⊗Qp E (Lemma 1.8).

Definition 1.4. Let Wj := (We,j , W
+
dR,j) be E–B-pairs for j = 1, 2. Then a morphism of E–

B-pairs f :W1→W2 is defined as a Be ⊗Qp E-linear GK-equivariant morphism f :We,1→We,2

such that idBdR
⊗Be f :BdR ⊗Be We,1→BdR ⊗Be We,2 maps W+

dR,1 to W+
dR,2.

Remark 1.5. Let V be an E-representation of GK . Then W (V ) := (Be ⊗Qp V, B+
dR ⊗Qp V ) is

an E–B-pair of GK . By the fundamental short exact sequence 0→Qp→Be ⊕B+
dR→BdR→ 0,

it is easy to see that the functor V 7→W (V ) is a fully faithful functor from the category of
E-representations of GK to the category of E–B-pairs of GK [Ber08b, Introduction].

Next, we prove a technically important lemma concerning the Bézout property of Be ⊗Qp E.
This lemma is a generalization of [Ber08b, Proposition 1.1.9] to any coefficient case.

Lemma 1.6. We have that Be ⊗Qp E is a Bézout domain, i.e. a domain and every finitely
generated ideal is generated by one element.

Proof. The proof is essentially same as that of [Ber08b, Proposition 1.1.9]. First, we have

a natural isomorphism of rings Be ⊗Qp E
∼→Be ⊗Qp (E0 ⊗E0 E) ∼→Bϕf

′
=1

max ⊗E0 E. (Here E0 is
the maximal unramified extension of Qp in E and f ′ = [E0 : Qp].) Because the natural map

Bϕf
′
=1

max ⊗E0 E ↪→BdR is injective by [Col02, Proposition 7.14], so Be ⊗Qp E is a domain. Next,

we show that for any f, g ∈Bϕf
′
=1

max ⊗E0 E, the ideal generated by f and g in Bϕf
′
=1

max ⊗E0 E is
generated by one element. For this, we first note that B̃†rig ⊗E0 E (for the definition of B̃†rig, see
Definition 1.2 of this paper) is a Bézout domain by [Ked05, Theorem 2.9.6]. (In the definition
of [Ked05, § 2.1], if we take K0 := kE the residue field of E, O :=OE , σ := ϕf

′ ⊗W (kE) idOE ,

then Γalg
an,con

∼→ B̃†rig ⊗E0 E.) Because we have the injection Bϕf
′
=1

max ⊗E0 E ↪→ B̃†rig[1/t]⊗E0 E,
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for large n ∈ Z=0 we have tnf, tng ∈ B̃†rig ⊗E0 E. Because B̃†rig ⊗E0 E is Bézout, there exists

an h ∈ B̃†rig ⊗E0 E such that tnfB̃†rig ⊗E0 E + tngB̃†rig ⊗E0 E = hB̃†rig ⊗E0 E. And hB̃†rig ⊗E0 E

is a σ-module over B̃†rig ⊗E0 E because tnf, tng are preserved by σ-action. So, by [Ked05,
Proposition 3.3.2], we can choose the generator h such that σ(h) = πkEh for some k ∈ Z. By using
the element tE ∈B+

max ⊗E0 E defined in [Col02, Proposition 8.10] and by [Col02, Lemma 8.17],

we obtain h/tkE ∈ (B̃†rig[1/t])ϕ
f ′=1 ⊗E0 E =Bϕf

′
=1

max ⊗E0 E (here, for the last equality, we use the

fact (B̃†rig[1/t])ϕ
f ′=1 =Bϕf

′
=1

max , see [Ber08b, Lemma 1.1.7]). Then we can show that the ideal

generated by f and g in Bϕf
′
=1

max ⊗E0 E is generated by h/tkE in the same way as in [Ber08b,
Proposition 1.1.9]. 2

From the above lemma, we obtain the following lemmas which are also technically important.

Lemma 1.7. Let We be a finite Be ⊗Qp E-module which is free over Be. Then We is also free

over Be ⊗Qp E. In particular, for any E–B-pair W := (We, W
+
dR), We is finite free over Be ⊗Qp E.

Proof. Because We is finitely generated over Be ⊗Qp E which is Bézout domain, by the remark
after [Ked04, Lemma 2.4] it suffices to show that We is torsion free over Be ⊗Qp E. Let
FracBe be the fraction field of Be. Because Be ⊗Qp E is a domain and (FracBe)⊗Qp E is
a localization of Be ⊗Qp E, then (FracBe)⊗Qp E is also a domain and the natural map
Be ⊗Qp E ↪→ (FracBe)⊗Qp E is injective. In addition, because (FracBe)⊗Qp E is finite over the
field FracBe, then (FracBe)⊗Qp E is also a field. Because We is free over Be by assumption,
the natural map We ↪→ FracBe ⊗Be We is injective. Of course, FracBe ⊗Be We is also torsion free
over (FracBe)⊗Qp E which is a field. By these remarks, we conclude that We is torsion free over
Be ⊗Qp E. 2

Lemma 1.8. Let W := (We, W
+
dR) be an E–B-pair. Then W+

dR is finite free over B+
dR ⊗Qp E.

Proof. By Lemma 1.7, We is free over Be ⊗Qp E. So WdR :=BdR ⊗Be We is also free over
BdR ⊗Qp E. Because E ⊆B+

dR, we have natural isomorphisms B+
dR ⊗Qp E

∼→⊕σ:E↪→B+
dR
B+

dR : a⊗
b 7→ (aσ(b))σ (a ∈B+

dR, b ∈ E) and BdR ⊗Qp E
∼→⊕σ:E↪→B+

dR
BdR. By using these decompositions,

we obtain decompositions W+
dR
∼→⊕σ:E↪→B+

dR
W+

dR,σ and WdR
∼→⊕σ:E↪→B+

dR
WdR,σ (W+

dR,σ and

WdR,σ are the σ-components). Then, for each σ, W+
dR,σ is a B+

dR-lattice of WdR,σ. So W+
dR,σ is

finite free over B+
dR of same rank as that of WdR,σ over BdR because B+

dR is a discrete valuation
ring. Also, because WdR is free over BdR ⊗Qp E, then WdR,σ have the same rank for any σ. So
W+

dR,σ also have the same rank for any σ. So W+
dR is finite free over B+

dR ⊗Qp E. 2

By using these lemmas, we can define rank, tensor products and duals of E–B-pairs.

Definition 1.9. We make the following definitions.

(1) Let W := (We, W
+
dR) be an E–B-pair, then we define the rank of W by rank(W ) :=

rankBe⊗QpE(We).

(2) Let W1 := (We,1, W
+
dR,1) and W2 := (We,2, W

+
dR,2) be E–B-pairs. Then we define the tensor

product of W1 and W2 by W1 ⊗W2 := (We,1 ⊗Be⊗QpE We,2, W
+
dR,1 ⊗B+

dR⊗QpE
W+

dR,2).
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(3) Let W := (We, W
+
dR) be an E–B-pair. Then we define the dual of W by W∨ :=

(HomBe(We, Be),HomB+
dR

(W+
dR, B

+
dR)). Here, we define the E-action on W∨ by af(x) :=

f(ax) for any a ∈ E, f ∈HomBe(We, Be) (respectively f ∈HomB+
dR

(W+
dR, B

+
dR)), x ∈We

(respectively x ∈W+
dR).

Lemma 1.10. Let W1, W2 be finite free Be ⊗Qp E-modules with continuous semi-linear GK-
actions. Let f :W1→W2 be a Be ⊗Qp E-linear GK-morphism. Then Ker(f), Im(f) and Cok(f)
are all finite free over Be ⊗Qp E.

Proof. Because Im(f) is a finite torsion free Be ⊗Qp E-module, it is free by the remark following
[Ked04, Lemma 2.4]. From this, we obtain a splitting (as Be ⊗Qp E-modules) of the short exact
sequence 0→Ker(f)→W1→ Im(f)→ 0. So Ker(f) is finite over Be ⊗Qp E, and Ker(f) is finite
torsion free over Be ⊗Qp E. So Ker(f) is also finite free. By [Ber08b, Lemma 2.1.4], Cok(f) is
free over Be. Then by Lemma 1.7, Cok(f) is free over Be ⊗Qp E. 2

The category of E–B-pairs is not an abelian category since cokernels of morphisms do not
exist in general. We define the exactness in the category of B-pairs.

Definition 1.11. Let Wi := (We,i, W
+
dR,i) be E–B-pairs of GK for i= 1, 2, 3. Let f :W1→

W2, g :W2→W3 be morphisms of E–B-pairs. Then we say that

0→W1→W2→W3→ 0

is exact if the following two sequences are exact in the usual sense

0→We,1→We,2→We,3→ 0,
0→W+

dR,1→W+
dR,2→W+

dR,3→ 0.

Lemma 1.12. Let W1 := (We,1, W
+
dR,1), W2 := (We,2, W

+
dR,2) be E–B-pairs. Let f :W1→W2 be

a morphism of E–B-pairs. We put Ker(f) := (Ker(fe :We,1→We,2),Ker(fdR :W+
dR,1→W+

dR,2)),
Im(f) := (Im(fe :We,1→We,2), Im(fdR :W+

dR,1→W+
dR,2)). Then Ker(f) and Im(f) are E–B-

pairs.

Proof. We know that Ker(fe) and Im(fe) are finite free Be ⊗Qp E-modules by Lemma 1.10. From
this, we obtain the canonical isomorphisms Ker(idBdR

⊗Be fe)
∼→BdR ⊗Be Ker(fe), Im(iddR ⊗Be

fe)
∼→BdR ⊗Be Im(fe). As for B+

dR-modules, BdR is a flat B+
dR-module because B+

dR is a principal
ideal domain. So we obtain the canonical isomorphisms Ker(idBdR

⊗B+
dR
fdR) ∼→BdR ⊗B+

dR

Ker(fdR), Im(idBdR
⊗B+

dR
fdR) ∼→BdR ⊗B+

dR
Im(fdR). So we obtain the natural isomorphisms

BdR ⊗Be Ker(fe)
∼→BdR ⊗B+

dR
Ker(fdR) and BdR ⊗Be Im(fe)

∼→BdR ⊗B+
dR

Im(fdR), i.e. Ker(f)
and Im(f) are B-pairs. As these maps are all E-linear, Ker(f) and Im(f) are E–B-pairs. 2

Definition 1.13. Let W1 ⊂W2 be two E–B-pairs such that W1 is a sub-E–B-pair of W2.
Then we say that W1 is saturated in W2 if W+

dR,2/W
+
dR,1 is a free B+

dR-module. Then W2/W1 :=
(We,2/We,1, W

+
dR,2/W

+
dR,1) is an E–B-pair by Lemma 1.10.

Lemma 1.14. Let W1 ⊂W2 be two E–B-pairs. Then there exists unique E–B-pair W sat
1 :=

(W sat
e,1 , W

+,sat
dR,1 ) such that W1 ⊂W sat

1 ⊂W2, We,1 =W sat
e,1 and W sat

1 is saturated in W2. We call

W sat
1 the saturation of W1 in W2.

Proof. We put W sat
e,1 :=We,1 and put W+,sat

dR,1 :=WdR,1 ∩W+
dR,2. Then it is easy to see that

W sat
1 := (W sat

e,1 , W
+,sat
dR,1 ) is an E–B-pair satisfying all of the desired conditions. Conversely,
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if W ′1 := (W ′e,1, W
′+
dR,1) satisfies the same conditions, it is easy to see that W ′+dR,1 satisfies

W ′+dR,1 =WdR,1 ∩W+
dR,2. The uniqueness of W sat

1 follows from this. 2

Now we can define trianguline or split trianguline E-representations and trianguline or split
trianguline E–B-pairs.

Definition 1.15. We make the following definitions.

(1) Let W be an E–B-pair. We say that W is a split trianguline E–B-pair if there is a filtration
0 =W0 ⊂W1 ⊂ · · · ⊂Wl =W by sub-E–B-pairs such that for any i, Wi is saturated in
Wi+1 and the quotient Wi+1/Wi is a rank-one E–B-pair.

(1′) Let W be an E–B-pair. We say that W is a trianguline E–B-pair if W ⊗E E′ := (We ⊗E
E′, W+

dR ⊗E E
′) is split trianguline for some finite extension E′ of E.

(2) Let V be an E-representation. We say that V is a split trianguline (respectively trianguline)
E-representation if W (V ) is a split trianguline (respectively trianguline) E–B-pair.

In this paper, we classify two-dimensional split trianguline E-representations.
Next we recall the generalization of the usual p-adic Hodge theory to the case of B-pairs

following [Ber08b, § 2.3]. First we recall the definition of a filtered (ϕ, N, GK)-module over K.

Definition 1.16. Let L be a finite Galois extension of K. An E-filtered (ϕ, N,Gal(L/K))-
module over K is a finite L0 ⊗Qp E-module D (where L0 is the maximal unramified extension
of Qp in L) such that:

(1) D has a Frobenius semi-linear operator ϕD :D ↪→D such that idL0 ⊗ ϕD : L0 ⊗ϕ,L0 D
∼→D

is an L0 ⊗Qp E-linear isomorphism (here ϕ acts on L0 ⊗Qp E by ϕ(x⊗ y) = ϕ(x)⊗ y for
any x ∈ L0, y ∈ E);

(2) N :D→D is an L0 ⊗Qp E-linear morphism such that pϕN =Nϕ;

(3) DL := L⊗L0 D has a decreasing filtration by sub-L⊗Qp E-modules FiliDL for i ∈ Z such
that Fil−iDL =DL and FiliDL = 0 for sufficiently large i≥ 0;

(4) Gal(L/K) acts on L0 ⊗Qp E (or L⊗Qp E)-semi-linearly on D (or DL) such that gϕ= ϕg

and gN =Ng and g(FiliDL) = FiliDL for any g ∈Gal(L/K) and i ∈ Z (here Gal(L/K) acts
on L⊗Qp E by g(x⊗ y) = g(x)⊗ y for any x ∈ L, y ∈ E and g ∈Gal(L/K)).

We call D an E-filtered (ϕ, N, GK)-module if D is an E-filtered (ϕ, N,Gal(L/K))-module for
some finite Galois extension L of K.

Definition 1.17. Let W := (We, W
+
dR) be an E–B-pair of GK and let L be a finite Galois

extension of K. Then we define DL
cris(W ) := (Bmax ⊗Be We)GL , DL

st(W ) := (Blog ⊗Be We)GL ,
DL

dR(W ) := (BdR ⊗Be We)GL , i.e. fixed parts of GL. As in the case of usual p-adic representations,
we can show that dimL′(DL

? (W ))≤ rankBe(We) where L′ = L0 if ? ∈ {cris, st} and L′ = L if
? = dR. We say thatW is potentially crystalline (respectively potentially semi-stable, respectively
de Rham) if dimL′(DL

? (W )) = rankBe(We) for ? = cris (respectively ? = st, respectively ? = dR)
for some finite Galois extension L of K.

For a potentially semi-stable E–B-pair W and for sufficiently large L such that
dimL0D

L
st(W ) = rankBeWe, we can equip DL

st(W ) with an E-filtered (ϕ, N,Gal(L/K))-module
structure as follows. The (ϕ, N,Gal(L/K))-module structure on DL

st(W ) is induced from the
action of ϕ and N on Blog and from the action of GK on Blog ⊗Be We. The filtration on
DL

dR(W ) ∼→ L⊗L0 D
L
st(W ) is defined by FiliDL

dR(W ) :=DL
dR(W ) ∩ tiW+

dR ⊆WdR. So we obtain
a functor W 7→DL

st(W ) from the category of potentially semi-stable E–B-pairs of GK which are
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semi-stable E–B-pairs of GL to the category of E-filtered (ϕ, N,Gal(L/K))-modules over K.
Berger generalized p-adic monodromy theorem and ‘weakly admissible implies admissible’
theorem to the case of B-pairs.

Theorem 1.18. We have the following results.

(1) All de Rham E–B-pairs are potentially semi-stable.

(2) The functor W 7→DL
st(W ) realizes an equivalence of categories between the category of

potentially semi-stable E–B-pairs of GK which are semi-stable E–B-pairs of GL to the
category of E-filtered (ϕ, N,Gal(L/K))-modules over K.

(3) The functor W 7→DL
cris(W ) realizes an equivalence of categories between the category of

potentially crystalline E–B-pairs of GK which are crystalline E–B-pairs of GL to the
category of E-filtered (ϕ,Gal(L/K))-modules over K.

Proof. See [Ber08b, Proposition 2.3.4 and Theorem 2.3.5]. 2

Remark 1.19. An inverse functor of DL
st is defined as follows. For an E-filtered

(ϕ, N,Gal(L/K))-module D over K, put We(D) := (Blog ⊗L0 D)ϕ=1,N=0 and W+
dR(D) :=

Fil0(BdR ⊗L DL). Then we can show that W (D) := (We(D), W+
dR(D)) is an E–B-pair of GK .

We know that D 7→W (D) is an inverse of W 7→DL
st(W ) (see [Ber08b, § 2.3]).

Remark 1.20. The proof of (2) and (3) of the above theorem is much easier than that in the case
of p-adic representations, because in this case there are no conditions about weakly admissibility
of filtered (ϕ, N, GK)-modules.

1.2 (ϕ, ΓK)-modules over a Robba ring

In [Ber08b], Berger established the equivalence between the category of B-pairs and the category
of (ϕ, ΓK)-modules over a Robba ring B†rig,K . In this section, we first recall the general facts
about ϕ-modules over Robba rings following [Ked08] and then recall the construction of a Robba
ring B†rig,K and the definition of (ϕ, ΓK)-modules over B†rig,K following [Ber02].

In applications of (ϕ, ΓK)-modules to p-adic Hodge theory, the notion of slope and the
slope filtration theorem of Kedlaya are very important. So we recall the general fact about
slopes of ϕ-modules over general Robba ring and the slope filtration theorem of Kedlaya
following [Ked08, § 1]. Let L be a complete discrete valuation field of characteristic zero, OL its
integer ring, kL the residue field of L and πL a uniformizer of L. Then we define the Robba ring
of L by RL := {f(x) :=

∑
k∈Z anx

n | an ∈ L, f(x) converges for any x ∈ L such that r ≤ |x|< 1
for some r < 1}. We assume that there is an endomorphism φL : L→ L which is a lifting of the
q = pf th power Frobenius on kL for some f ∈ N and we assume that there is a φL-semi-linear
endomorphism φ :RL→RL :

∑
k∈Z akx

k 7→
∑

k∈Z φL(ak)φ(x)k such that φ(x)− xq ∈RL has all
coefficients in πLOL.

Definition 1.21. A φ-module over RL is a finite free RL-module M equipped with φ-
semi-linear action φM :M →M such that idRL ⊗ φM :RL ⊗φ,RL M →M is an RL-linear
isomorphism.

The category of φ-modules over RL is not an abelian category because the cokernel of a
morphism is not a free RL-module in general. So it is important to know when the cokernel
is free.
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Definition 1.22. Let M1 ⊂M be a sub-φ-module of a φ-module M over RL. Then we say
that M1 is saturated in M if the quotient M/M1 is a free RL module. Then M/M1 is a φ-
module over RL.

Put Rbd
L := {f(x) ∈RL | |f(x)| is bounded in r ≤ |x|< 1 for some r < 1}= {f(x) =∑

k∈Z akx
k | {ak}k∈Z ⊂ L is bounded and f(x) converges for any x such that r ≤ |x|< 1 for some

r < 1}. Put Rint
L := {

∑
k∈Z akx

k ∈RL | ak ∈ OL for any k ∈ Z}. Then Rbd
L is a discrete valuation

field with the integer ring Rint
L and a valuation on Rbd

L is defined by w(f(x)) := infn∈Z{vL(an)}
for any f(x) =

∑
n∈Z anx

n ∈Rbd
L , where vL is the valuation of L such that vL(p) = 1. The

residue field of Rbd
L is kL((x)). By the above assumption on φ, φ(x) ∈Rint

L , φ preserves Rbd
L

and Rint
L and w(φ(f)) = w(f) for any f ∈Rbd

L . Moreover, it is known that R×L =Rbd,×
L (see

[Ked08, Example 1.4.2]).

Definition 1.23. For a φ-module M over RL of rank n, the top exterior power ∧nM has
rank one over RL. Let v be a generator of ∧nM and write φ(v) = rv for some r ∈R×L =Rbd×

L .
Define the degree of M by setting deg(M) := w(r), define the slope of M by setting µ(M) :=
deg(M)/rank(M). It is easy to check that deg(M) and µ(M) do not depend on the choice of the
generator of ∧nM .

If M1, M2 are φ-modules over RL, then we can see that µ(M1 ⊗RL M2) = µ(M1) + µ(M2)
(see [Ked08, Remark 1.4.5]). Next we define pure slope φ-modules. Before defining this, we need
to recall some definitions.

Definition 1.24. Let M be a φ-module over RL and let a be a positive integer. Then we define
the a-pushforward [a]∗M of M to be the φa-module M over RL such that the φa-semi-linear
morphism is defined by φaM :M →M .

If M is a φ-module over RL, then it is easy to see that [a]∗M is a φa-module over RL with
deg([a]∗M) = adeg(M), µ([a]∗M) = aµ(M). First we define pure slope zero φ-modules, which
are called étale φ-modules.

Definition 1.25. A φ-module M over RL is said to be étale if it can be obtained by base
extension from a φ-module over Rint

L , that is, M admits a φM -stable Rint
L -lattice N such that φM

induces an Rint
L -linear isomorphism Rint

L ⊗φ,Rint
L
N
∼→N .

From the above definition, if M is an étale φ-module over RL, then it is easy to see that
deg(M) = 0 and µ(M) = 0. On this setting, we define pure slope φ-modules as follows. (We
put eL the absolute ramified index of L.)

Definition 1.26. Let M be a φ-module over RL with slope s= c/deL where c, d are coprime
integers with d > 0. We say that M is pure of slope s if, for some φd-module N of rank one such
that deg(N) =−c/eL, ([d]∗M)⊗RL N is an étale φd-module.

Remark 1.27. In [Ber08b], the definition of pure slope φ-modules over a Robba ring is different
from this definition [Ber08b, § 1.2]. However, it is proved in the proof of [Ked08, Theorem 1.7.1]
that the two definitions are the same.

Now we can state the slope filtration theorem of Kedlaya.

Theorem 1.28. Let M be a φ-module over RL. Then M admits a unique filtration 0 =M0 ⊂
M1 ⊂ · · · ⊂Ml =M by sub φ-modules over RL such that Mi ⊂Mi+1 is saturated and Mi+1/Mi

is pure of slope si+1 for any 0≤ i≤ l − 1 with s1 < s2 < · · ·< sl.
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Proof. See [Ked08, Theorem 1.7.1]. 2

Next we recall the construction of a Robba ring B†rig,K and some related rings

following [Ber02]. First, for rational numbers 0≤ r ≤ s≤+∞, we put Ã[r,s] := Ã+{p/[π̄r], [π̄s]/p},
the p-adic completion of Ã+[p/[π̄r], [π̄s]/p] (here π := [ε]− 1, π̄ := ε− 1, so [π̄] = [ε− 1]).
When r = 0, we put p/[π̄r] := 1 and when s= +∞, we put [π̄s]/p := 1. We put B̃[r,s] :=
Ã[r,s][1/p]. Then we have natural continuous GK-action on Ã[r,s] and on B̃[r,s]. Frobenius
induces isomorphisms ϕ : Ã[r,s]

∼→ Ã[pr,ps] and ϕ : B̃[r,s]
∼→ B̃[pr,ps], here we equip these rings

with p-adic topology. For r ≤ r0 ≤ s0 ≤ s, it is known that the natural map Ã[r,s] ↪→
Ã[r0,s0] is injective. For r > 0, we put B̃†,r := B̃[r,+∞], B̃† := ∪r>0B̃

†,r, B̃†,rrig :=
⋂
r5s<+∞ B̃[r,s]

(equipped with Frechet topology defined by any B̃[r,s]) and B̃†rig :=
⋃
r>0 B̃

†,r
rig (equipped with

inductive limit topology). Then we have natural inclusions B̃†,r ⊂ B̃†,rrig , B̃† ⊂ B̃†rig and B̃† ⊂ B̃
(but B̃†rig 6⊆ B̃). Frobenius induces isomorphisms ϕ : B̃†,r ∼→ B̃†,pr, B̃†,rrig

∼→ B̃†,prrig , B̃† ∼→ B̃† and

B̃†rig
∼→ B̃†rig. Moreover, we can easily check that Amax = Ã[0,(p−1)/p], Bmax = B̃[0,(p−1)/p] and

B̃+
rig = B̃[0,+∞) :=

⋂
0<s<+∞ B̃[0,s]. The rings B̃†rig, B̃

† are respectively equal to Γalg
an,con, Γ

alg
con

defined by Kedlaya [Ked04]. We recall a relation between B̃†rig and BdR. It is easy to
see that B̃[(p−1)/p,(p−1)/p] = Ã+{p/[p̃], [p̃]/p}[1/p]. Then we have a natural continuous GK-
equivariant injective morphism B̃[(p−1)/p,(p−1)/p] ↪→B+

dR :
∑

k=0 ak(p/[p̃])
k +

∑
l=0 bl([p̃]/p)

l 7→∑
k=0 ak(p/[p̃])

k +
∑

l=0 bl([p̃]/p)
l. In particular, we have a natural continuous inclusion i0 :

B̃
†,(p−1)/p
rig =

⋂
(p−1)/p5r<+∞ B̃[(p−1)/p,r] ↪→ B̃[(p−1)/p,(p−1)/p] ↪→B+

dR. For any n ∈ N, we define a

continuous GK-equivariant injection in := i0 ◦ ϕ−n : B̃†,(p−1)pn−1

rig
∼→ B̃

†,(p−1)/p
rig ↪→B+

dR.

Next we define B†K,rig and B†K . We put AK0 := {
∑+∞

k=−∞ akπ
k | ak ∈ OK0 , ak→ 0 (k→−∞)}

and BK0 :=AK0 [1/p] where π := [ε]− 1. AK0 is a complete discrete valuation ring such that p is
a prime element, the residue field is EK0 := k((ε− 1)) and the fraction field is BK0 . We can show
that AK0 ⊂ Ã and BK0 ⊂ B̃. ϕ and the action of GK on Ã preserves AK0 and ϕ(π) = (π + 1)p − 1
and g(π) = (π + 1)χ(g) − 1 for any g ∈GK . Let A be the p-adic completion of the maximal
unramified extension of AK0 in Ã, B be its fraction field. Then ϕ and the action of GK
also preserve A and B. We put AK := AHK , BK := BHK , B†K :=BK ∩ B̃†, B†,rK :=BK ∩ B̃†,r. By
definition, these rings are equipped with natural continuous actions of ϕ and ΓK . If we put
EK := (Esep

K0
)HK ⊂ Ẽ (here Esep

K0
is the separable closure of EK0 in Ẽ), it is known that EK is a

separable extension of EK0 of degree [K∞ :K0(ζp∞)] by the theory of fields of norm. Here AK
is a complete discrete valuation ring such that p is a prime element, the residue field is EK
and the fraction field is BK . Let K ′0 be the maximal unramified extension of K0 in K∞. For
sufficiently large r > 0 such that a prime element πEK ∈ EK lifts to π̃EK ∈B

†,r
K , it is known that

B†,rK = {
∑+∞

k=−∞ akπ̃
k
EK
| ak ∈K ′0, f(X) :=

∑+∞
k=−∞ akX

k is a bounded function on X ∈ Cp such

that p−1/reK ≤ |X|< 1}. We put B†,rrig,K the Frechet completion of B†,rK and B†rig,K :=
⋃
r�0 B

†,r
rig,K .

Then it is known that B†,rrig,K = {
∑+∞

k=−∞ akπ̃
k
EK
| ak ∈K ′0, f(X) :=

∑+∞
k=−∞ akX

k converges on

X ∈ Cp such that p−1/reK ≤ |X|< 1}. So B†,rrig,K , B
†
rig,K are the Robba rings with coefficients

in K ′0. We can show that B†,rrig,K ⊂ B̃
†,r
rig , B†rig,K ⊂ B̃

†
rig and the Frechet topology on B†,rrig,K is the

induced topology from that on B̃†,rrig and ϕ induces inclusions B†,rrig,K ↪→B†,prrig,K , B†rig,K ↪→B†rig,K
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and ΓK continuously acts on B†,rrig,K , B†rig,K . By restricting in : B̃†,(p−1)pn−1

rig ↪→B+
dR to B†,(p−1)pn−1

rig,K ,

we have a GK-equivariant injection in :B†,(p−1)pn−1

rig,K ↪→B+
dR.

Definition 1.29. An E–(ϕ, ΓK)-module overB†rig,K is a finiteB†rig,K ⊗Qp E-moduleD equipped
with a Frobenius semi-linear action ϕD and a continuous semi-linear action of ΓK suchthat D
is free as a B†rig,K-module, id

B†rig,K
⊗ ϕD :B†rig,K ⊗ϕ,B†rig,K D→D is an isomorphism and that

the actions of ϕ and ΓK commute. Here ϕ and ΓK act on B†rig,K ⊗Qp E as ϕ⊗ id, γ ⊗ id for
any γ ∈ ΓK .

When E = Qp, we omit the notation Qp in the above definition, i.e. we simply call (ϕ, ΓK)-
modules over B†rig,K .

Next we prove a lemma concerning the freeness over B†rig,K ⊗Qp E of an E–ϕ-module.

Lemma 1.30. Let D be an E–ϕ-module over B†rig,K . Then D is also free as a B†rig,K ⊗Qp E-
module.

Proof. Let E′0 := E ∩K ′0, f ′ := [E′0 : Qp] and I := {σ : E′0 ↪→ E}. Then we have a canonical de-
composition B†rig,K ⊗Qp E

∼→⊕σ∈IB†rig,K ⊗E′0,σ Eeσ, where eσ is the idempotent in B†rig,K ⊗Qp E
corresponding to 1 in B†rig,K ⊗E′0,σ E. Then any component B†rig,K ⊗E′0,σ Eeσ is a Robba ring
with coefficients in E, i.e. they are non-canonically isomorphic to RE . The action of ϕ is given
by ϕ(a⊗ beσ) = ϕ(a)⊗ beσϕ−1|E′0

for any a ∈B†rig,K and b ∈ E and σ ∈ I. Because ϕ|E′0 acts
transitively on I, so ϕ acts transitively on the components of this decomposition. Because
]I = f ′, ϕf

′
preserves the component B†rig,K ⊗E′0,σ Eeσ for any σ ∈ I. Let D be an E–ϕ-

module over B†rig,K . Then we also have a canonical decomposition D
∼→⊕σ∈ID ⊗B†rig,K⊗QpE

B†rig,K ⊗E′0,σ Eeσ
∼→⊕σ∈ID ⊗E′0,σ Eeσ. Then, for any σ ∈ I, the component D ⊗E′0,σ Eeσ is a

B†rig,K ⊗E′0,σ Eeσ-module which is finite torsion free as a B†rig,K-module. So it is free as a

B†rig,K-module by [Ked04, Proposition 2.5]. Because B†rig,K ⊗E′0,σ Eeσ is also a Robba ring,

in particular, it is a Bézout domain and because the natural map B†rig,K ↪→B†rig,K ⊗E′0,σ E is

injective, then it is easy to see that D ⊗E′0,σ Eeσ is finite torsion free over B†rig,K ⊗E′0,σ Eeσ.

So it is free over B†rig,K ⊗E′0,σ Eeσ for any σ ∈ I by [Ked04, Proposition 2.5]. Then we can

take a basis {v1eσ, . . . , vkeσ} of D ⊗E′0,σ Eeσ over B†rig,K ⊗E′0,σ Eeσ for any fixed σ ∈ I. Then
{ϕi(v1)eσϕ−i|E′0

, . . . , ϕi(vk)eσϕ−i|E′0
} is a basis of D ⊗E′0,σϕ−i|E′0

Eeσϕ−i|E′0
for any 0≤ i≤ f ′ − 1

by the Frobenius structure on D. Then {
∑f ′−1

i=0 ϕi(v1)eσϕ−i|E′0
, . . . ,

∑f ′−1
i=0 ϕi(vk)eσϕ−i|E′0

} is a

basis of D over B†rig,K ⊗Qp E. So D is a free B†rig,K ⊗Qp E-module. 2

By this lemma, we can define the rank and the tensor products and the duals of E–(ϕ, ΓK)-
modules as follows.

Definition 1.31. We make the following definitions.

(1) Let D be an E–(ϕ, ΓK)-module over B†rig,K . We define the rank of D by rank(D) :=

rank
B†rig,K⊗QpE

(D), i.e. the rank of D as a free B†rig,K ⊗Qp E-module.

(2) Let D1, D2 be E–(ϕ, ΓK)-modules over B†rig,K . Then we define the tensor product of D1 and
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D2 by D1 ⊗D2 :=D1 ⊗B†rig,K⊗QpE D2, which is a free B†rig,K ⊗Qp E-module by Lemma 1.30,

on which ϕ and ΓK act by ϕD1⊗D2 := ϕD1 ⊗B†rig,K⊗QpE ϕD2 and γ ⊗
B†rig,K⊗QpE

γ for any

γ ∈ ΓK .

(3) Let D be an E-(ϕ, Γ)-module over B†rig,K . Then we define the dual of D by D∨ :=

Hom
B†rig,K

(D, B†rig,K); here the E-action on D∨ is defined by af(x) := f(ax) for any a ∈ E,

f ∈D∨, x ∈D.

Next we prove the slope filtration theorem for E–(ϕ, ΓK)-modules over B†rig,K .

Theorem 1.32. Let D be an E–(ϕ, ΓK)-module over B†rig,K . Then D admits unique filtration

0 =D0 ⊂D1 ⊂ · · · ⊂Dl =D such that Di is an E–(ϕ, ΓK)-module over B†rig,K , Di is saturated in

Di+1 and the quotient Di+1/Di is pure of slope si+1 for any 0≤ i≤ l − 1 with s1 < s2 < · · ·< sl.

Here the slope of an E–(ϕ, ΓK)-module M is the slope of M as ϕ-module over B†rig,K .

Proof. Let D be an E–(ϕ, ΓK)-module over B†rig,K . Then, by the slope filtration theorem
(Theorem 1.28), D admits unique filtration 0 =D0 ⊂D1 ⊂ · · · ⊂Dl =D by sub-ϕ-modules over
B†rig,K such that Di is saturated in Di+1 and the quotient Di+1/Di is pure of slope si+1

for any 0≤ i≤ l − 1 with s1 < s2 < · · ·< sl. Then the action of E preserves Di for any i by
uniqueness of filtration. So Di and Di+1/Di are E–ϕ-modules over B†rig,K for any i. For any
γ ∈ ΓK , 0⊂ γ(D1)⊂ · · · ⊂ γ(Dl) =D also satisfies the same conditions as 0⊂D1 ⊂ · · · ⊂D by
the commutativity of ΓK and ϕ. So we obtain γ(Di) =Di for any i and γ ∈ ΓK by uniqueness
of filtration. Hence, Di and Di+1/Di are E–(ϕ, ΓK)-modules over B†rig,K for any i. 2

In particular, it follows from the above theorem that when D is rank one, then D is pure of
slope s for some s ∈Q. Concerning this slope s, we know more precise information as follows,
which we need to classify rank-one E–B-pairs.

Lemma 1.33. Let D be a rank one E–(ϕ, ΓK)-module. Then D is pure and the slope µ(D) is
contained in (1/(feE))Z.

Proof. The claim that D is pure follows from the above theorem. We prove that µ(D) is contained
in (1/(feE))Z by using the ΓK structure on D. First we consider the following short exact
sequence of finite groups

1→Gal(E′0/K0)→Gal(E′0/Qp)→Gal(K0/Qp)→ 1.

Here we put E′0 := E ∩K ′0 ⊇K0. We put f ′′ := [E′0 :K0] and f ′ := ff ′′ = [E′0 : Qp]. Then we have
a natural surjection ΓK �Gal(K ′0K/K) ∼→Gal(K ′0/K0)�Gal(E′0/K0). So, if we consider ϕ

(which acts on B†rig,K) as an element in Gal(E′0/Qp), there is a γ ∈ ΓK such that ϕf = γ

in Gal(E′0/K0). On this setting, we consider a rank-one E–(ϕ, ΓK)-module D over B†rig,K .

Put I := {σ : E′0 ↪→ E} ∼→Gal(E′0/Qp) and Dσ :=D ⊗
B†rig,K⊗QpE

B†rig,K ⊗E′0,σ E for any σ ∈ I.

Because D is rank one, Dσ is a rank-one free B†rig,K ⊗E′0,σ E-module. Take a base eσ of Dσ

for any σ ∈ I. Then ϕ sends Dσ to Dσϕ−1 and γ ∈ ΓK sends Dσ to Dσγ−1 . We calculate
the slope of D as follows. Let e1 be a base of Did corresponding to id ∈Gal(E′0/Qp).
Then we have ϕf (e1) = αeϕ−f for some α ∈B†rig,K ⊗E′0,ϕ−f E. Because ϕf = γ ∈Gal(E′0/K0)

and γ induces an isomorphism γ :Did
∼→Dγ−1 , there exists some β ∈B†rig,K ⊗E′0,id E such that
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γ(βe1) = αeγ−1 . Because the actions of ϕ and γ commute, we have ϕ2f (e1) = ϕf (αeϕ−f ) =
ϕf (αeγ−1) = ϕf (γ(βe1)) = γ(ϕf (β)ϕf (e1)) = γ(ϕf (β)γ(βe1)) = γ(ϕf (β))γ2(β)γ2(e1). Repeating
this procedure, we obtain ϕff

′′
(e1) = γ(ϕf(f ′′−1)(β))γ2(ϕf(f ′′−2)(β)) · · · γf ′′(β)γf

′′
(e1) := β̃ce1

(here we put β̃ := γ(ϕf(f ′′−1)(β))γ2(ϕf(f ′′−2)(β)) · · · γf ′′(β) and γf
′′
(e1) := ce1 for some c ∈

B†rig,K ⊗E′0,id E because γf
′′

= id ∈Gal(E′0/Qp)). Then Did is a rank-one ϕff
′′
-module over

B†rig,K ⊗E′0,id E of slope w1(β̃) + w1(c), where w1 is the valuation of (B†rig,K ⊗E′0,id E)bd which is

the natural extension of the valuation of (B†rig,K)bd =B†K . Because ϕ and γ do not change
valuation, we have w1(β̃) = f ′′w1(β) ∈ (f ′′/eE)Z. Because ΓK acts continuously on D and
ΓK ⊆ Z×p , we have w1(c) = 0. So the slope of Did as ϕff

′′
-module over B†rig,K ⊗E′0,id E is contained

in (f ′′/eE)Z. We can easily see that the slope of Did as a ϕff
′′
-module over B†rig,K ⊗E′0,id E is the

same as the slope of Did as a ϕff
′′
-module over B†rig,K . So Did also has slope w1(β̃) ∈ (f ′′/eE)Z

as a ϕff
′′
-module over B†rig,K . Using the Frobenius structure on D, we can show that Dσ also

has slope w1(β̃) as a ϕff
′′
-module over B†rig,K for any σ ∈ I. So D also has slope w1(β̃) as

a ϕff
′′
-module over B†rig,K . Because µ([ff ′′]∗D) = ff ′′µ(D) by [Ked08, Remark 1.4.5], D has

slope (w1(β̃)/ff ′′) ∈ (f ′′/ff ′′eE)Z = (1/feE)Z as a ϕ-module over B†rig,K . We have finished the
proof of this lemma. 2

Next we prove a lemma concerning a relation between tensor products and slopes.

Lemma 1.34. Let D1, D2 be E–(ϕ, ΓK)-modules over B†rig,K which are pure of slope s1, s2,
respectively. Then D1 ⊗D2 is pure of slope s1 + s2.

Proof. If we decompose B†rig,K ⊗Qp E
∼→⊕σ:E′0↪→EB

†
rig,K ⊗E′0,σ Eeσ, we can decompose D1, D2

into σ components, Di
∼→⊕σ:E′0↪→EDi,σ for i= 1, 2, where Di,σ is the B†rig,K ⊗E′0,σ E component

of Di. Then, by the proof of Lemma 1.33 and by [Ked08, Lemma 1.6.3], we can see that Di,σ

is a ϕff
′′
-module over B†rig,K ⊗E′0,σ E which is pure of slope ff ′′si for any σ and i= 1, 2. So

D1,σ ⊗B†rig,K⊗E′0,σE
D2,σ is a ϕff

′′
-module over B†rig,K ⊗E′0,σ E which is pure of slope ff ′′(s1 + s2)

by [Ked08, Corollary 1.6.4]. Because D1 ⊗D2
∼→⊕σ:E′0↪→ED1,σ ⊗B†rig,K⊗E′0,σE

D2,σ, we can show

that D1 ⊗D2 is a ϕ-module over B†rig,K which is pure of slope s1 + s2 in the same way as the
proof of Lemma 1.33 and by using [Ked08, Lemma 1.6.3]. 2

1.3 Equivalence between B-pairs and (ϕ, ΓK)-modules
In this section, we recall a result of Berger on the equivalence between the category of B-pairs and
the category of (ϕ, ΓK)-modules over B†rig,K . First we recall the construction of a functor from

(ϕ, ΓK)-modules to B-pairs [Ber08b, § 2.2]. Let D be a (ϕ, ΓK)-module of rank d over B†rig,K .

Then Berger showed that We(D) := (B̃†rig[1/t]⊗
B†rig,K

D)ϕ=1 is a free Be-module of rank d (see

[Ber08b, Proposition 2.2.6]). It is equipped with a continuous semi-linearGK-action. On the other
hand, for sufficiently large r0 > 0, we can take unique ΓK-stable finite free B†,rrig,K-submodule

Dr ⊂D such that B†rig,K ⊗B†,rrig,K
Dr =D and id

B†,prrig,K
⊗ ϕD :B†,prrig,K ⊗ϕ,B†,rrig,K

Dr ∼→Dpr for any

r ≥ r0 [Ber08a, Theorem 1.3.3]. Then Berger showed that the continuous GK-module W+
dR(D) :=

B+
dR ⊗in,B†,(p−1)pn−1

rig,K

D(p−1)pn−1
over B+

dR is independent of any n such that (p− 1)pn−1 ≥ r0 and
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showed that there is a canonical GK-isomorphism BdR ⊗Be We(D) ∼→BdR ⊗B+
dR
W+

dR(D) (see

[Ber08b, Proposition 2.2.6]). We put W (D) := (We(D), W+
dR(D)). This is a B-pair of rank d.

This defines a functor from the category of (ϕ, ΓK)-modules over B†rig,K to the category of
B-pairs of GK .

Remark 1.35. We can also define an inverse functor from the category of B-pairs to the category
of (ϕ, ΓK)-modules [Ber08b, § 2.2], but the definition of this is very difficult. In this paper, we
do not need this construction, so we omit the definition of this functor. We denote this inverse
functor by W 7→D(W ).

Theorem 1.36. The functor D 7→W (D) is an exact functor and this gives an equivalence of

categories between the category of E–(ϕ, ΓK)-modules over B†rig,K and the category of E–B-pairs
of GK .

Proof. For the Qp-coefficient case, this result was proved by Berger [Ber08b, Theorem 2.2.7].
Let D be an E–(ϕ, ΓK)-module over B†rig,K , a ∈ E. Then the multiplication by a gives an
endomorphism of D as Qp-(ϕ, ΓK)-modules. From the functoriality, these multiplications give an
E-action on W (D). So W (D) is an E–B-pair. For any E–B-pair W , we can define in a similar
way the E-action on D(W ). So we obtain the desired equivalence. 2

If we restrict the functor D 7→W (D) to étale E–(ϕ, ΓK)-modules, we obtain the following
theorem.

Theorem 1.37. The functorD 7→W (D) gives an equivalence of categories between the category
of étale E–(ϕ, ΓK)-modules and the category of E–B-pairs of the form W (V ) for some
E-representation V .

Proof. See [Ber08b, Proposition 2.2.9]. 2

Definition 1.38. Let W be an E–B-pair and s ∈Q. Then we say that W is pure of slope s if
D(W ) is pure of slope s.

Remark 1.39. In fact, we can define B-pairs with pure slope directly without using (ϕ, ΓK)-
modules, but we omit this definition in this article (see [Ber08b, § 3.2]).

The next theorem is the E–B-pair version of slope filtration theorem.

Theorem 1.40. Let W be an E–B-pair. Then there exists unique filtration 0 =W0 ⊂W1 ⊂
· · · ⊂Wl =W by sub-E–B-pairs of W such that Wi is saturated in Wi+1 and the quotient
Wi+1/Wi is pure of slope si for any i with s1 < s2 < · · ·< sl.

Proof. This follows from Theorems 1.32 and 1.36. 2

Lemma 1.41. Let W be a rank-one E–B-pair. Then W is pure and its slope is contained in
(1/feE)Z.

Proof. This follows from Lemma 1.33. 2

1.4 Classification of rank-one E–B-pairs
In this section, we classify rank-one E–B-pairs. By Lemma 1.41, any rank one E–B-pairs are
pure and their slopes are contained in (1/feE)Z. We fix a prime element πE of E. First we
construct a special rank-one E–B-pair W0 which is pure of slope 1/feE . To construct this, first
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we define a rank-one E-filtered ϕ-module D0 over K, which corresponds to W0 by DK
cris. (Here,

for any E-filtered (ϕ, N)-module D, we can define the rank of D by rank(D) := rankK0⊗QpE(D)
because we can show that D is a free K0 ⊗Qp E-module in the same way as in the case of
E-(ϕ, ΓK)-modules over B†rig,K .) Let D0 :=K0 ⊗Qp Ee

∼→⊕σ:K0↪→EEeσ be a free rank-one
K0 ⊗Qp E-module. We define a filtered ϕ-module structure on D0 as follows. Define a K0 ⊗Qp
E-semi-linear action of ϕ on D0 by ϕ(eid) := eϕ−1 , ϕ(eϕ−1) := eϕ−2 , . . . , ϕ(eϕ−(f−2)) := eϕ−(f−1) ,
ϕ(eϕ−(f−1)) := πEeid, i.e. a ϕ-module such that ϕf = πE . We define a decreasing filtration on
D0,K :=K ⊗K0 D0 by Fil0D0,K :=D0,K , Fil1D0,K := 0. Then D0 is a filtered ϕ-module over K
with a natural E-action. For any i≥ 0, then D⊗i0 is the rank-one E-filtered ϕ-module such that
ϕf = πiE and Fil0D⊗i0,K =D⊗i0,K and Fil1D⊗i0,K = 0. If we put D⊗−1

0 :=D∨0 the dual of D0 defined in
the same way as in the case of E–B-pairs, then we can see that D⊗−1

0 is an E-filtered ϕ-module
such that ϕf = π−1

E and Fil0D⊗−1
0,K =D⊗−1

0,K and Fil1D⊗−1
0,K = 0. Moreover, if we define the tensor

products of E-filtered (ϕ, N)-modules in the same way as in the case of E-(ϕ, ΓK)-modules, then
we can see that D⊗−1

0 ⊗D0 is the trivial E-filtered ϕ-module. So D⊗i0 is well defined for any
i ∈ Z and satisfies D⊗i0 ⊗D

⊗j
0
∼→D⊗i+j0 for any i, j ∈ Z.

By the ‘weakly admissible implies admissible’ theorem for B-pairs (Theorem 1.18(3)), W0 :=
W (D0) = (We(D0), W+

dR(D0)) is the rank-one crystalline E–B-pair such that DK
cris(W0) ∼→D0.

Lemma 1.42. We have that W0 is pure of slope 1/feE .

Proof. Because W0 is rank one, W0 is pure by Lemma 1.41. So it suffices to show that the slope of
W0 is equal to 1/feE . In [Ber08a, § 2.2], Berger defined a functor D 7→M(D) from the category
of filtered (ϕ, N, GK)-modules to the category of (locally trivial) (ϕ, ΓK)-modules over B†rig,K .
In [Ber08b, Proposition 2.3.4], he showed that M(DL

st(W )) =D(W ) for any potentially semi-
stable B-pair W and for sufficient large L. By this compatibility, we have D(W0) ∼→M(D0).
On the other hand, for a rank-one filtered (ϕ, N)-module D, the slope of M(D) is equal
to tN (D)− tH(D) by [Ber08a, Theorem 4.2.1]. Here, for a rank-one filtered (ϕ, N)-module
D :=K0e, we define tN (D) := valp(ϕ(e)/e) and define tH(D) as a unique integer k such that
Filk(DK)/Filk+1(DK) 6= 0. Because µ(∧iM) = iµ(M) for a ϕ-module M over a Robba ring,
we have µ(D(W0)) = µ(M(D0)) = (1/[E : Qp])µ(∧[E:Qp]M(D0)) = (1/[E : Qp])(tN (∧[E:Qp]D0)−
tH(∧[E:Qp]D0)). By the definition of D0, it is easy to see that tN (∧[E:Qp]D0) = [E :K0]/eE ,
tH(∧[E:Qp]D0) = 0. So we obtain µ(M(D0)) = [E :K0]/[E : Qp]eE = 1/feE . So the slope of W0

is 1/feE by the definition of the slopes of E–B-pairs. 2

By using W0, we can classify all of the rank-one E–B-pairs as follows. Let δ :K×→ E× be a
continuous character where K and E are equipped with p-adic topology. We put δ(πK) := uπiE for
u ∈ O×E and i ∈ Z. We put δ0 :K×→O×E the unitary continuous character such that δ0|O×K = δ|O×K
and δ0(πK) := u. Then by local class field theory, this extends uniquely to a continuous character
δ̃0 :GK →O×E such that δ̃0 ◦ recK = δ0, here recK :K×→Gab

K is the reciprocity map as in
the notation section. Then we put W (δ) :=W (E(δ̃0))⊗W⊗i0 . By the definitions of tensor
products and duals, we can see that these are compatible with tensor products and with duals,
i.e. W (δ1)⊗W (δ2) ∼→W (δ1δ2) and W (δ1)∨ ∼→W (δ−1

1 ) for any characters δ1, δ2 :K×→ E×.
In particular, we have W⊗i0

∼→W (D⊗i0 ) for any i ∈ Z, so W⊗i0 is pure of slope i/feE by
Lemmas 1.34 and 1.42 for any i ∈ Z. Then we have the following lemma.

Lemma 1.43. Let δ :K×→ E× be a continuous character. Then the E–B-pair W (δ) does not

depend on the choice of a uniformizer πE of E and on the choice of a uniformizer πK of K.
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Proof. Because δ0 does not depend on the choice of a uniformizer πK of K, then W (δ) does not
depend on πK . Let π′E = vπE be another prime of E (v ∈ O×E). Let D′0 be a rank-one E-filtered
ϕ-module over K0 defined by replacing πE with π′E in the definition of D0. Let W ′0 :=W (D′0) be
the corresponding E–B-pair. If we write δ(πK) = uπiE = uv−iπ′iE , then δ0|O×K = δ′0|O×K = δ|O×K and

δ0(πK) = u and δ′0(πK) = uv−i. Then it suffices to show that W (E(δ̃0))⊗W⊗i0
∼→W (E(δ̃′0))⊗

W ′⊗i0 . Because δ̃0/δ̃′0 is a unramified character, it suffices to show that DK
cris(E(δ̃0/δ̃

′
0)) ∼→D′⊗i0 ⊗

D⊗−i0 as E-filtered ϕ-modules. By calculation, DK
cris(E(δ̃0/δ̃

′
0)) =K0 ⊗Qp Ee on which ϕ acts by

ϕf (e) = δ̃0/δ̃′0(πK)e= (u/uv−i)e= vie. By definition, ϕ acts on D′⊗i0 ⊗D⊗−i0 =K0 ⊗Qp Ee′ by
ϕf (e′) = (π′E/πE)ie′ = vie′. So these are isomorphic as a ϕ-module. Concerning the filtrations,
Fil0DK

dR(E(δ̃0/δ̃
′
0)) =DK

dR(E(δ̃0/δ̃
′
0)) and Fil1DK

dR(E(δ̃0/δ̃
′
0)) = 0 because δ̃0/δ̃

′
0 is a unramified

character. On the other hand, Fil0D′⊗i0,K ⊗D
⊗−i
0,K =D′⊗i0,K ⊗D

⊗−i
0,K and Fil1D′⊗i0,K ⊗D

⊗−i
0,K = 0 by

the definition of D0 and D′0. So, these are isomorphic as E-filtered ϕ-modules. 2

Remark 1.44. We can also show in the same way that W (δ) defined here is isomorphic to W (δ)
defined before Theorem 0.1 in the introduction.

The classification theorem of rank-one E–B-pairs is as follows.

Theorem 1.45. Let W be a rank-one E–B-pair. Then there exists unique continuous character
δ :K×→ E× such that W

∼→W (δ).

Proof. Let W be a rank-one E–B-pair. Then, by Lemma 1.41, W is pure of slope i/feE for unique
i ∈ Z. Because W0 is pure of slope 1/feE by Lemma 1.42, W ⊗W⊗−i0 is pure of slope zero by
Lemma 1.34. So, by Theorem 1.37, there exists unique continuous character δ̃0 :GK →O×E such
that W ⊗W⊗−i0

∼→W (E(δ̃0)). So W
∼→W⊗i0 ⊗W (E(δ̃0)). If we define a continuous character

δ :K×→ E× such that δ(πK) := δ̃0 ◦ recK(πK)πiE , δ|O×K = δ̃0 ◦ recK |O×K , then we haveW ∼→W (δ)

by the definition of W (δ). The uniqueness of δ follows from uniqueness of i and δ̃0 above. 2

Next we recall some facts about Sen’s theory for B-pairs to define Hodge–Tate weight of
B-pairs. Let U be a Cp-representation of GK , i.e. U is a finite-dimensional Cp-vector space
equipped with a continuous semi-linear GK-action. Then the union UHKfini of finite-dimensional
sub-K∞-vector spaces of UHK which are stable by ΓK is the largest subspace with this property
and satisfies Cp ⊗K∞ UHKfini

∼→ U (cf. [Ber08b, § 2.3] and the references therein). Then UHKfini is
equipped with a K∞-linear operator ∇U := log(γ)/ log(χ(γ)) for any γ ∈ ΓK which is sufficiently
close to 1.

Definition 1.46. Let W be a B-pair, then W+
dR/tW

+
dR is a Cp-representation of GK . We put

DSen(W ) := (W+
dR/tW

+
dR)HKfini and put ΘSen,W :=∇W+

dR/tW
+
dR

. Then we say that W is Hodge–Tate
if ΘSen,W is diagonalizable and all of the eigenvalues are contained in Z. Then we call these
eigenvalues the Hodge–Tate weights of W .

By using this definition, we calculate the Hodge–Tate weights of a rank-one E–B-pair. Let
W (δ) be a rank-one E–B-pair for some continuous character δ :K×→ E×. If we put W (δ) ∼→
W (E(δ̃0))⊗W⊗i0 as above, then we have W (δ)+

dR
∼→B+

dR ⊗Qp E(δ̃0) because W+
0,dR

∼→B+
dR ⊗Qp E

by the definition of W0. So W+
dR(δ) comes from an E-representation E(δ̃0). In particular,

W+
dR(δ)/tW+

dR(δ) ∼→ Cp ⊗Qp E(δ̃0) also comes from E(δ̃0). Then, by Proposition 4.1.2 and the
remark following it in [BC08], DSen(W (δ)) is a free K∞ ⊗Qp E-module of rank one and the
operator ΘSen,W (δ) acts by multiplication by w(δ) on DSen(W (δ)) for some w(δ) ∈K ⊗Qp E. If

884

https://doi.org/10.1112/S0010437X09004059 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004059


Two-dimensional split trianguline representations of p-adic fields

we decompose w(δ) into σ-components K ⊗Qp E
∼→⊕σ:K↪→EEeσ : w(δ) 7→ (w(δ)σeσ). Then W (δ)

is Hodge–Tate B-pair if and only if w(δ)σ is contained in Z for any σ.

Definition 1.47. In the above situation, we say that the set of numbers {w(δ)σ}σ is the
generalized Hodge–Tate weight of W (δ).

2. Calculations of cohomologies of E–B-pairs

For classifying two-dimensional split trianguline E-representations, we need to calculate the
extension groups Ext1(W2, W1) of E–B-pairs of W1 by W2 for rank-one E–B-pairs W1, W2.
In this section, we define Galois cohomology Hi(GK , W ) for any E–B-pair W and interpret
H1(GK , W ) as the extension group Ext1(BE , W ). (Here BE := (Be ⊗Qp E, B+

dR ⊗Qp E) is the
trivial E–B-pair.) Next we review Liu’s results [Liu08] which are generalizations of Tate duality
and Euler–Poincaré characteristic formula to the case of (ϕ, ΓK)-modules over B†rig,K . Finally,
we calculate some Galois cohomologies of E–B-pairs which we need for the classification of
two-dimensional split trianguline E-representations.

2.1 Definition of Galois cohomology of E–B-pairs

Let W := (We, W
+
dR) be an E–B-pair. We define the complex of GK-modules C•(W ) by

δ0 : C0(W ) :=We ⊕W+
dR→ C1(W ) :=WdR : (x, y) 7→ x− y, Ci(W ) = 0 for i 6= 0, 1.

Definition 2.1. LetW := (We, W
+
dR) be an E–B-pair. Then we define the Galois cohomology of

W by Hi(GK , W ) := Hi(GK , C•(W )). Here the right-hand side is the usual Galois cohomology
of a complex of continuous GK-modules which are computed by using continuous cochain
complexes.

By definition, we have the following long exact sequence

· · · →Hi(GK , W )→Hi(GK , We)⊕Hi(GK , W+
dR)→Hi(GK , WdR)→Hi+1(GK , W )→ · · · .

From this, we obtain the following results.

(1) We have H0(GK , W ) = (We ∩W+
dR)GK .

(2) There exists the exact sequence of E-vector spaces

0→WGK
dR /(WGK

e +W+GK
dR )→H1(GK , W )

→Ker(H1(GK , We)⊕H1(GK , W+
dR)→H1(GK , WdR))→ 0.

Next, for any E–B-pair, we construct a canonical isomorphism

H1(GK , W ) ∼→ Ext1(BE , W ),

where the right-hand side is the extension group in the category of E–B-pairs. For any continuous
GK-module V , we functorially define the diagram C0(V )−→

δ0
C1(V )−→

δ1
C2(V ) as follows:

(1) C0(V ) := V ,

Ci(V ) := {f :G×iK → V a continuous function} for i= 1, 2.

(2) δ0 : C0(V )→ C1(V ) : x 7→ (g 7→ gx− x),

δ1 : C1(V )→ C2(V ) : f 7→ ((g1, g2) 7→ f(g1g2)− f(g1)− g1f(g2)).
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Then we have H0(GK , V ) ∼→Ker(δ0), H1(GK , V ) ∼→Ker(δ1)/Im(δ0). So, for any E–B-pair W ,
we have H1(GK , W ) ∼→Ker(δ̃1)/Im(δ̃0), here δ̃0, δ̃1 are defined by

δ̃0 : C0(We)⊕ C0(W+
dR)→ C1(We)⊕ C1(W+

dR)⊕ C0(WdR) : (x, y) 7→ (δ0(x), δ0(y), x− y),

δ̃1 : C1(We)⊕ C1(W+
dR)⊕ C0(WdR)→ C2(We)⊕ C2(W+

dR)⊕ C1(WdR) : (f1, f2, x) 7→
(δ1(f1), δ1(f2), f1 − f2 − δ0(x)).

By using this expression, we define a map H1(GK , W )→ Ext1(BE , W ) as follows. Let (f1, f2, α) ∈
Ker(δ̃1). Then we define an E–B-pair X := (Xe, X

+
dR, ι) as follows:

(1) Xe :=We ⊕ (Be ⊗Qp E)ecris on which GK acts by g(x, aecris) := (gx+ gaf1(g), gaecris) for
any x ∈We, a ∈Be ⊗Qp E and g ∈GK ;

(2) X+
dR :=W+

dR ⊕ (B+
dR ⊗Qp E)edR on which GK acts by g(y, bedR) := (gy + gbf2(g), gbedR) for

any y ∈W+
dR, b ∈B+

dR ⊗Qp E and g ∈GK ;

(3) ι :BdR ⊗Be Xe
∼→BdR ⊗B+

dR
X+

dR : (x, aecris) 7→ (ιW (x) + aα, aedR) for any x ∈BdR ⊗Be We

and a ∈BdR ⊗Qp E; here, ιW :BdR ⊗Be We
∼→BdR ⊗B+

dR
W+

dR is the given isomorphism in

the definition of B-pair W = (We, W
+
dR, ιW ).

(Here we see an E–B-pair W as a triple W := (We, W
+
dR, ιW ) such that We (respectively W+

dR) is
finite free over Be ⊗Qp E (respectively B+

dR ⊗Qp E) with continuous semi-linear GK-actions and
ιW :BdR ⊗Be We

∼→BdR ⊗B+
dR
W+

dR is a GK-equivariant BdR ⊗Qp E-semi-linear isomorphism.

Then this definition is equivalent to Definition 1.2.) Because (f1, f2, α) ∈Ker(δ̃1), we can easily
see that X is a well-defined E–B-pair which sits in the following short exact sequence

0→W →X →BE → 0.

So we can see the isomorphism class [X] of the extension X as an element in Ext1(BE , W ). By
construction, we can easily see that this defines an E-linear morphism Ker(δ̃1)→ Ext1(BE , W ).
Then, by a standard argument, we see that this morphism factors through Ker(δ̃1)/Im(δ̃0)→
Ext1(BE , W ) and that this is, in fact, E-linear isomorphism. So we obtain the following
proposition.

Proposition 2.2. Let W be an E–B-pair. Then we have the following functorial E-linear
isomorphisms:

(1) H0(GK , W ) ∼→ (We ∩W+
dR)GK ∼→Hom(BE , W ), here Hom(W1, W2) is the E-vector space of

morphisms in the category of E–B-pairs from W1 to W2 for any E–B-pairs W1, W2;

(2) H1(GK , W ) ∼→ Ext1(BE , W ).

Proof. We have already proved part (2). For part (1), it is easy to see that (We ∩W+
dR)GK =

Hom(BQp , W ) for any Qp-B-pair W . Because Hom(BQp , W ) = Hom(BE , W ) for any E–B-
pair W (here on the left-hand side, we see W as a Qp–B-pair), so we obtain part (1). 2

Remark 2.3. In the case of W =W (V ) for an E-representation V of GK , we have Hi(GK , V ) ∼→
Hi(GK , W (V )): indeed, by the fundamental short exact sequence 0→Qp→Be ⊕B+

dR→BdR→
0, we have a quasi-isomorphism V [0] ∼→ C•(W (V )).

In the application to the classification of two-dimensional potentially semi-stable split
trianguline E-representations, we need to know when an extension is crystalline, semi-stable
or de Rham E–B-pair. So, as in the case of usual Galois cohomology of p-adic representations,
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we define Bloch–Kato’s cohomologies H1
e(GK , W ), H1

f (GK , W ), and H1
g(GK , W ) (see [BK90, 3])

as follows.

Definition 2.4. Let W := (We, W
+
dR) be an E–B-pair. Then we define:

– H1
e(GK , W ) := Ker(H1(GK , W )→H1(GK , We));

– H1
f (GK , W ) := Ker(H1(GK , W )→H1(GK , Bcris ⊗Be We));

– H1
g(GK , W ) := Ker(H1(GK , W )→H1(GK , WdR)).

Here the above maps are induced by the natural maps C•(W )→We→Bcris ⊗Be We→BdR ⊗Be
We

∼→WdR, so we have natural injections H1
e(GK , W )⊆H1

f (GK , W )⊆H1
g(GK , W ).

Remark 2.5. If W is a crystalline (respectively de Rham) E–B-pair, then [X] ∈ Ext1(BE , W ) ∼→
H1(GK , W ) is in H1

f (GK , W ) (respectively in H1
g(GK , W )) if and only if X is a crystalline

(respectively de Rham) E–B-pair.

As in the case of usual p-adic representations, we have a dimension formula of H1
f (GK , W )

and H1
e(GK , W ). Before stating this, we prove the following lemma.

Lemma 2.6. Let W be a de Rham E–B-pair. Then the canonical map H1(GK , W+
dR)→

H1(GK , WdR) is injective.

Proof. The proof is the same as that in the case of p-adic representation [BK90, Lemma 3.8.1],
but we give the proof for the convenience of readers. Consider the following short exact sequence

0→W+GK
dR →WGK

dR → (WdR/W
+
dR)GK .

From this we have

dimE(DdR(W )) 5 dimE(W+GK
dR ) + dimE((WdR/W

+
dR)GK )

≤
∑
i∈Z

dimE(Cp(i)⊗Cp (W+
dR/tW

+
dR))GK

= rank(W ) = dimE(DdR(W )).

Here we use the fact that the de Rham B-pair is Hodge–Tate and W is de Rham. So the map
WGK

dR → (WdR/W
+
dR)GK is surjective. Hence, the natural map H1(GK , W+

dR)→H1(GK , WdR) is
injective. 2

The dimension formulas are as follows.

Proposition 2.7. Let W be a de Rham E–B-pair. Then we have

dimE(H1
f (GK , W )) = dimE(DK

dR(W )/Fil0DK
dR(W )) + dimE(H0(GK , W )),

dimE(H1
f (GK , W )/H1

e(GK , W )) = dimE(DK
cris(W )/(1− ϕ)DK

cris(W )).

Proof. This proof is essentially the same as that of [BK90, Corollary 3.8.4]. First we consider the
following short exact sequence

0→Be→Bcris
1−ϕ−−→Bcris→ 0.

Tensoring by We over Be, we can easily see that C•(W ) is naturally quasi-isomorphic
to C ′•(W ) := (Wcris ⊕W+

dR→Wcris ⊕WdR : (x, y) 7→ ((1− ϕ)x, x− y)) (here we put Wcris :=
Bcris ⊗Be We). So, by the definition of H1

f and by the above lemma, we have the following two
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exact sequences

0→H0(GK , W )→DK
cris(W )⊕ Fil0DK

dR(W )→DK
cris(W )⊕DK

dR(W )→H1
f (GK , W )→ 0,

0→H0(GK , W )→DK
cris(W )ϕ=1 ⊕ Fil0DK

dR(W )→DK
dR(W )→H1

e(GK , W )→ 0.

From these, we obtain the desired formulas. 2

2.2 Euler–Poincaré characteristic formula and Tate local duality for B-pairs
In this section, we review Liu’s results generalizing some fundamental results of Tate on Galois
cohomology of p-adic representations, following [Ked07] and [Liu08]. Liu constructed a category
of B-quotients, which is a minimal abelian category in which the category of B-pairs is contained
as a full subcategory. Then he defined the Galois cohomology of B-quotients as the universal
δ-functor of H0

Liu(W ) := Hom(BQp , W ) for any B-quotient W (here Hom is the set of morphisms
of B-quotients). In this paper, we denote this cohomology by Hi

Liu(GK , W ) for a B-quotient W .
Then it is shown in [Ked07] that there exists the isomorphism H1

Liu(GK , W ) ∼→ Ext1(BQp , W )
for any B-pair. So, for any B-pair W , we have isomorphisms H1(GK , W ) ∼→H1

Liu(GK , W ) and
H0(GK , W ) ∼→H0

Liu(GK , W ). For any Qp-representation V of GK , it is shown in [Ked07] that
there is a functorial isomorphism Hi(GK , V ) ∼→Hi

Liu(GK , W (V )) for any i ∈ N. In this paper, we
review the results only for B-pairs.

Theorem 2.8. Let W be a B-pair. Then:

(1) for i= 0, 1, 2, Hi
Liu(GK , W ) is finite dimensional over Qp and Hi

Liu(GK , W ) = 0 for i 6=
0, 1, 2;

(2) we have
∑2

i=0(−1)idimQpH
i
Liu(GK , W ) =−[K : Qp]rankBe(We);

(3) there is a natural perfect pairing

Hi
Liu(GK , W )×H2−i

Liu (GK , W∨(χ))→H2
Liu(GK , W ⊗W∨(χ))→H2

Liu(GK , W (Qp(χ)) ∼→Qp.

Here χ :GK → Z×p is the p-adic cyclotomic character and the last isomorphism is that which
appears in usual Tate duality.

Proof. See [Ked07, Theorem 8.1] and [Liu08, Theorems 4.3 and 4.7]. 2

Remark 2.9. The above perfect pairing is defined by using (ϕ, ΓK)-modules [Liu08, § 4.2]) and
the equivalence between B-pairs and (ϕ, ΓK)-modules [Ked07, p. 8]. On the other hand, for
Qp-B-pair W , we can define a pairing

H1(GK , W )×H1(GK , W∨(χ))→H2(GK , W ⊗W∨(χ))→H2(GK , W (Qp(χ)) ∼→Qp,

in the usual way by using cocycles. If we identify H1(GK , W∨(χ)) ∼→H1
Liu(GK , W∨(χ)) as above,

then we can check that both pairings are the same by using the fact that Hi
Liu(GK , W ) is the

universal δ functor [Ked07, Theorem 8.1] and Hi(GK , W ) is a δ-functor.

Let W be an E–B-pair. Then by Theorem 2.8(2) above and the remark before, we have

dimQpH
1(GK , W ) = dimQpH

1
Liu(GK , W )

= [K : Qp][E : Qp]rank(W ) + dimQpH
0
Liu(GK , W ) + dimQpH

2
Liu(GK , W )

= [K : Qp][E : Qp]rank(W ) + dimQpH
0
Liu(GK , W ) + dimQpH

0
Liu(GK , W∨(χ))

= [K : Qp][E : Qp]rank(W ) + dimQpH
0(GK , W ) + dimQpH

0(GK , W∨(χ)).

Dividing this equality by [E : Qp], we obtain the following dimension formula.
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Proposition 2.10. Let W be an E–B-pair. Then we have

dimEH1(GK , W ) = [K : Qp]rank(W ) + dimEH0(GK , W ) + dimEH0(GK , W∨(χ)).

As in the case of p-adic representations, we have dualities between H1
e, H1

f and H1
g.

Proposition 2.11. Let W be a B-pair. In the above perfect pairing in Theorem 2.8(3),
H1
e(GK , W ) and H1

g(GK , W
∨(χ)) are the exact annihilators of each other. The same statement

holds with e replaced by g and g by e and also when e and g are both replaced by f .

Proof. This proof is also essentially same as that in the case of p-adic representations (cf. [BK90,
Proposition 3.8]). 2

2.3 Calculations of cohomologies of rank-one E–B-pairs
To classify rank-two split trianguline E–B-pairs, we need to calculate the dimension of
Ext1(W (δ2), W (δ1)) for any continuous characters δ1, δ2 :K×→ E× . Twisting by W (δ−1

2 ), it is
isomorphic to Ext1(BE , W (δ1/δ2)) ∼→H1(GK , W (δ1/δ2)). We calculate this in the following way.

Lemma 2.12. For any embedding σ :K ↪→ E, we define a continuous character σ(x) :K×→
E× : y 7→ σ(y). Then for any {kσ}σ (kσ ∈ Z for any σ), we have an isomorphism of E–B-pairs

W

( ∏
σ:K↪→E

σ(x)kσ
)
∼→ (Be ⊗Qp E,⊕σ:K↪→Et

kσB+
dR ⊗K,σ E).

Proof. First we prove that there is an isomorphism

W (id(x)) ∼→ (Be ⊗Qp E, tB+
dR ⊗K,id E ⊕⊕σ:K↪→E,6=idB

+
dR ⊗K,σ E),

here id :K ↪→ E is the given embedding. We decompose id(x) :K×→ E× into id(x) := δ0δ1, here
δ0|O×K := id|O×K , δ0(πK) := 1 and δ1|O×K is trivial and δ1(πK) := πK . Then, by the definition of the

reciprocity map recK :K×→Gab
K in the notation section, we have δ̃0 = χLT, i.e. the Lubin–

Tate character associated with πK . So we have W (δ0) =W (E(χLT)). Then DK
cris(W (δ0)) :=

K0 ⊗Qp Ee is the filtered ϕ-module such that ϕ acts by ϕf (e) = π−1
K e and the filtration

on K ⊗K0 D
K
cris(W (δ0)) =K ⊗Qp Ee

∼→⊕σ:K↪→EEeσ is defined by Fil−1 =K ⊗K0 D
K
cris(W (δ0)),

Fil0 =
⊕

σ 6=id Eeσ and Fil1 = 0 by [Col02, Proposition 9.10 and Lemma 9.18]. On the other hand,
DK

cris(W (δ1)) :=K0 ⊗Qp Ee′ is the filtered ϕ-module such that ϕf (e′) = πKe
′ and Fil0(K ⊗K0

DK
cris(W (δ1))) =K ⊗K0 D

K
cris(W (δ1)), Fil1 = 0. So we have DK

cris(id(x)) ∼→DK
cris(δ0)⊗DK

cris(δ1) :=
K0 ⊗Qp Ee′′ on which ϕ acts by ϕf (e′′) = e′′ and the filtration on K ⊗K0 D

K
cris(id(x)) ∼→

⊕σ:K↪→EEe
′′
σ is given by Fil−1 =K ⊗K0 D

K
cris(id(x)), Fil0 =

⊕
σ 6=id Ee

′′
σ and Fil1 = 0. Then, by

the definition of DK
cris for E–B-pairs, it is easy to see that DK

cris((Be ⊗Qp E, tB
+
dR ⊗K,id E ⊕⊕

σ 6=id B
+
dR ⊗K,σ E)) ∼→DK

cris(id(x)) as filtered ϕ-modules. So, in this case, we have proved
the lemma. In the case where

∏
σ:K↪→E σ(x)kσ = σ(x) for some σ, we can prove the lemma

in the same way. By tensoring these, we can prove the lemma for any
∏
σ:K↪→E σ(x)kσ . 2

Let NK/Qp(x) :K×→Q×p be the norm map and let | − | : Q×p → E× be the absolute value
character such that |p| := 1/p, |u| := 1 for any u ∈ Z×p .

Lemma 2.13. There is an isomorphism W (E(χ)) ∼→W (NK/Qp(x)|NK/Qp(x)|).

Proof. When K = Qp, χ :GQp → Z×p satisfies x|x|= χ ◦ recQp by local class field theory. So, in
the general case, χ :GK →O×E corresponds to NK/Qp(x)|NK/Qp(x)| by local class field theory. 2
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The next proposition is a generalization of [Col08a, Proposition 3.1].

Proposition 2.14. Let δ :K×→ E× be a continuous character. Then H0(GK , W (δ)) ∼→ E if
and only if δ =

∏
σ:K↪→E σ(x)kσ such that kσ ≤ 0 for any σ. Otherwise H0(GK , W (δ)) = 0.

Proof. If we assume that H0(GK , W (δ)) 6= 0, then there is a non-zero morphism f :BE →W (δ) of
E–B-pairs because H0(GK , W (δ)) = Hom(BE , W (δ)). Then, by Lemma 1.12, Ker(f) and Im(f)
are also E–B-pairs. Because BE is a rank-one E–B-pair, one of Ker(f) and Im(f) must be zero.
Because f 6= 0 we have Im(f) 6= 0 so we have Ker(f) = 0, i.e. f must be injective. So we have an
injection f :Be ⊗Qp E ↪→W (δ)e of free Be ⊗Qp E-modules of the same rank. By Lemma 1.10,
the cokernel is also a free Be ⊗Qp E-module. So the cokernel must be zero, so f :Be ⊗Qp E

∼→
W (δ)e must be an isomorphism. Then W (δ)+

dR is a GK-stable B+
dR-lattice in BdR ⊗Qp E with

E-action which contains B+
dR ⊗Qp E =⊕σ:K↪→EB

+
dR ⊗K,σ E. So W (δ)+

dR must be of the form
W (δ)+

dR =⊕σ:K↪→Et
kσB+

dR ⊗K,σ E for some kσ ≤ 0 for any σ. So W (δ) =W (
∏
σ:K→E σ(x)kσ)

by Lemma 2.12. In this case, it is clear that Hom(BE , W (δ)) = E, so we have proved the
proposition. 2

By this proposition and Liu’s Euler–Poincaré formula, we can calculate the dimension of
Ext1(W (δ2), W (δ1)) as follows. This is a generalization of [Col08a, Theorem 3.9].

Proposition 2.15. Let δ1, δ2 :K×→ E× be continuous characters. Then dimEExt1(W (δ2),
W (δ1)) is equal to:

(1) [K : Qp] + 1 when δ1/δ2 =
∏
σ:K↪→E σ(x)kσ such that kσ ≤ 0 for any σ;

(2) [K : Qp] + 1 when δ1/δ2 = |NK/Qp(x)|
∏
σ:K↪→E σ(x)kσ such that kσ ≥ 1 for any σ;

(3) [K : Qp] otherwise.

Proof. By Lemma 2.13 and Proposition 2.14, we have:

– H0(GK , W (δ)) = E if and only if δ =
∏
σ:K↪→E σ(x)kσ such that kσ ≤ 0 for any σ,

– H0(GK , W (δ)∨(χ)) ∼→H0(GK , W (δ−1NK/Qp(x)|NK/Qp(x)|)) = E if and only if δ =
NK/Qp(x)|NK/Qp(x)|

∏
σ:K↪→E σ(x)kσ such that kσ ≥ 1 for any σ.

So we have the desired result by Corollary 2.10. 2

To classify two-dimensional split trianguline E-representations, we need to know which
extension class in Ext1(W (δ2), W (δ1)) is of the form [W (V )] for some two-dimensional
E-representation V . For this problem, the next exact sequence is very important, which is the
B-pair analogue of the map ik defined in [Col08a, § 3.7]. Let δ :K×→ E× be a continuous
character and let {kσ}σ:K↪→E be kσ ∈ Z=0 for any σ. We consider the natural inclusion of E–
B-pairs W (δ) ↪→W (δ)⊗W (

∏
σ:K↪→E σ(x)−kσ) =W (δ

∏
σ:K↪→E σ(x)−kσ) which is obtained by

tensoring with W (δ) the natural inclusion BE ↪→W (
∏
σ:K↪→E σ(x)−kσ). Then, by Lemma 2.12,

we have

W+
dR

(
δ
∏

σ:K↪→E
σ(x)−kσ

)
=W+

dR(δ)⊗B+
dR⊗QpE

(⊕σ:K↪→Et
−kσB+

dR ⊗K,σ E).

As for the Be part, we can prove in the same way as the proof of Proposition 2.14 that
We(δ)

∼→We(δ
∏
σ:K↪→E σ(x)−kσ). So we have the following short exact sequence of complexes of

GK-modules

0→ C•(W (δ))→ C•
(
W

(
δ
∏

σ:K↪→E
σ(x)−kσ

))
→⊕σ:K↪→Et

−kσW+
dR(δ)σ/W+

dR(δ)σ[0]→ 0,
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where W+
dR(δ)σ :=W+

dR(δ)⊗B+
dR⊗QpE

(B+
dR ⊗K,σ E) for any σ where the last tensor product is

taken by the projection to the σ-component of B+
dR ⊗Qp E

∼→⊕σ:K↪→EB
+
dR ⊗K,σ E. From this

short exact sequence, we obtain the following long exact sequence

· · · →H0

(
GK , W

(
δ
∏

σ:K↪→E
σ(x)−kσ

))
→⊕σ:K↪→EH0(GK , t−kσW+

dR(δ)σ/W+
dR(δ)σ)

→H1(GK , W (δ))→H1

(
GK , W

(
δ
∏

σ:K↪→E
σ(x)−kσ

))
→ · · · .

The next lemma is a generalization of [Col08a, Proposition 3.18].

Lemma 2.16. Let {w(δ)σ}σ be the generalized Hodge–Tate weight of W (δ) defined in 1.47. Then
there is an isomorphism of E-vector spaces

⊕σ:K↪→EH0(GK , t−kσW+
dR(δ)σ/W+

dR(δ)σ) ∼→⊕σ,w(δ)σ∈{1,2,··· ,kσ}Eeσ.

Here Eeσ is a one-dimensional E-vector space with base eσ.

Proof. It suffices to show that H0(GK , t−kσW+
dR(δ)σ/W+

dR(δ)σ) ∼→ E if and only if w(δ)σ ∈
{1, 2, . . . , kσ} and H0(GK , t−kσW+

dR(δ)σ/W+
dR(δ)σ) = 0 otherwise. However, by the definition of

generalized Hodge–Tate weight, for any i ∈ Z and σ, we have H0(GK , t−iW+
dR(δ)σ/t−i+1W+

dR(δ)σ)
= E if and only if w(δ)σ = i and we have H0(GK , t−iW+

dR(δ)σ/t−i+1W+
dR(δ)σ) = 0 otherwise. From

this, the result follows. 2

By definition, for any continuous character δ :K×→ E×, we have the following short exact
sequence

0→ DK
dR(W (δ))/(DK

cris(W (δ))ϕ=1 + Fil0DK
dR(W (δ)))→H1(GK , W (δ))

→ Ker(H1(GK , We(δ))⊕H1(GK , W+
dR(δ))→H1(GK , WdR(δ)))→ 0.

Lemma 2.17. Let δ :K→ E× be a continuous character. Then the E-vector space
DK

dR(W (δ))/(DK
cris(W (δ))ϕ=1 + Fil0DK

dR(W (δ))) is isomorphic to:

(1) ⊕σ,w(δ)σ∈Z=1
Eeσ/∆(E) when δ =

∏
σ:K↪→E σ(x)kσ for some {kσ}σ such that kσ ∈ Z for

any σ;

(2) ⊕σ,w(δ)σ∈Z=1
Eeσ otherwise.

Here ∆ : E→⊕σ.w(δ)σ∈Z=1
Eeσ is the diagonal map.

Proof. By the definition of W (δ), it is easy to see that WdR(δ) ∼→BdR ⊗Qp E(δ0) for some
continuous character δ0 :GK →O×E . If we decompose BdR ⊗Qp E(δ0) ∼→⊕σ:K↪→EBdR ⊗K,σ
E(δ0), we have (BdR ⊗K,σ E(δ0))GK = 0 if and only if w(δ)σ /∈ Z. If w(δ)σ ∈ Z, then we
have (t−w(δ)σB+

dR ⊗K,σ E(δ0))GK ∼→ E and (t−w(δ)σ+1B+
dR ⊗K,σ E(δ0))GK = 0. As for We(δ), we

have DK
cris(W (δ))ϕ=1 =We(δ)GK 6= 0 if and only if We(δ)

∼→Be ⊗Qp E. Then W (δ) ∼→ (Be ⊗Qp
E,⊕σ:K↪→Et

kσB+
dR ⊗K,σ E) for some {kσ}σ such that kσ ∈ Z for any σ. Then, by Lemma 2.12,

we have δ =
∏
σ:K↪→E σ(x)kσ . In this case, we have DK

cris(W (δ))ϕ=1 ∼→ E. Combining these
computations, we obtain the lemma. 2

Next we compare the following two maps, one is the boundary map

∂ :⊕σ:K↪→EH0(GK , t−kσW+
dR(δ)σ/W+

dR(δ)σ)→H1(GK , W (δ))
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of the exact sequence before Lemma 2.16 and the other is the natural map

ι :DK
dR(W (δ))/Fil0DK

dR(W (δ))→ DK
dR(W (δ))/(DK

cris(W (δ))ϕ=1 + Fil0DK
dR(W (δ)))

→ H1(GK , W (δ)).

From the proof of Lemma 2.17, we can see that the natural map f :DK
dR(W (δ))/Fil0DK

dR(W (δ)) ∼→
(WdR(δ)/W+

dR(δ))GK is an isomorphism. On the other hand, we have a natural map

j :⊕σ:K↪→EH0(GK , t−kσW+
dR(δ)σ/W+

dR(δ)σ) = H0

(
GK , W

+
dR

(
δ
∏

σ:K↪→E
σ(x)−kσ

)
/W+

dR(δ)
)

↪→ (WdR(δ)/W+
dR(δ))GK .

Lemma 2.18. With the above notation, we have ι ◦ f−1 ◦ j = (−1)∂.

Proof. This follows easily from a diagram chase. 2

3. Classification of two-dimensional split trianguline E-representations

In this section, we classify two-dimensional split trianguline E-representations. As in [Col08a,
§ 0.2], we would like to explicitly determine the parameter spaces of two-dimensional split
trianguline E-representations.

3.1 Parameter spaces of two-dimensional split trianguline E-representations
Let W be a rank-two split trianguline E–B-pair such that [W ] ∈ Ext1(W (δ2), W (δ1)) for some
continuous characters δ1, δ2 :K×→ E×. First we study a necessary condition on (δ1, δ2) in order
for W to be étale, i.e. of the form W =W (V ) for some E-representation V .

Lemma 3.1. If [W ] ∈ Ext1(W (δ2), W (δ1)) is étale, then the pair (δ1, δ2) satisfies valp(δ1(πK)) +
valp(δ2(πK)) = 0 and valp(δ1(πK))≥ 0. Here valp is the valuation of E such that valp(p) = 1.

Proof. Let W be of the form W =W (V ) for some E-representation V . By definition, W (V ) sits
in the following short exact sequence of E–B-pairs

0→W (δ1)→W (V )→W (δ2)→ 0.

Because W (V ) is pure of slope zero, detW (V ) ∼→W (δ1δ2) is also pure of slope zero, so we have
a condition (valp(δ1(πK)) + valp(δ2(πK)))/f = 0 because the slope of W (δ) is (valp(δ(πK)))/f .
By the slope filtration theorem for E–B-pairs (Theorem 1.40), W (δ1) must be pure of slope =0.
This implies that (valp(δ1(πK)))/f ≥ 0. We have proved the lemma. 2

To describe the classification of two-dimensional split trianguline E-representations, let us
introduce some notation. First let us put

S+ := {(δ1, δ2) | δ1, δ2 :K×→ E× continuous characters such that valp(δ1(πK))
+valp(δ2(πK)) = 0, valp(δ1(πK))≥ 0}.

By Lemma 3.1, to classify two-dimensional split trianguline E-representations, it suffices
only to consider split trianguline E–B-pairs W such that [W ] ∈ Ext1(W (δ2), W (δ1)) for some
(δ1, δ2) ∈ S+.

First we classify two-dimensional split trianguline E-representations V such that [W (V )] =
0 ∈ Ext1(W (δ2), W (δ1)) for some (δ1, δ2), i.e. W (V ) =W (δ1)⊕W (δ2).
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Lemma 3.2. Let (δ1, δ2) ∈ S+. Then W (δ1)⊕W (δ2) is of the form W (V ) for some two-
dimensional E-representation if and only if both W (δ1) and W (δ2) are pure of slope zero, i.e.
W (δ1) ∼→W (V (E(δ̃1))) and W (δ2) ∼→W (V (E(δ̃2))) for some continuous characters δ̃1, δ̃2 :GK →
O×E . In this case, V

∼→ E(δ̃1)⊕ E(δ̃2).

Proof. The ‘if’ part is trivial. Let us assume that W (δ1)⊕W (δ2) ∼→W (V ) for some two-
dimensional E-representation V . So W (δ1)⊕W (δ2) is pure of slope zero. If W (δ1) is not pure
of slope zero, then this is pure of slope u > 0 by the assumption that (δ1, δ2) ∈ S+. Then W (δ2)
is pure of slope −u < 0 because (δ1, δ2) ∈ S+. Then we have the exact sequence

0→W (δ2)→W (δ1)⊕W (δ2)→W (δ1)→ 0.

Then the slope filtration theorem for E–B-pairs (Theorem 1.40) implies that W (δ1)⊕W (δ2) is
not pure of slope zero. This is a contradiction. 2

This lemma says that two dimensional split trianguline E-representation V such that
[W (V )] = 0 ∈ Ext1(W (δ2), W (δ1)) corresponds to two dimensional E-representations V such
that V = E(δ̃1)⊕ E(δ̃2) for some continuous characters δ̃1, δ̃2 :GK →O×E . So, in this case, we
finish the classification.

From now on, we only consider split trianguline E–B-pairs W such that [W ] 6= 0 ∈
Ext1(W (δ2), W (δ1)). For any (δ1, δ2) ∈ S+, let us put

S(δ1, δ2) := PE(H1(GK , W (δ1/δ2))).

Here, for any finite-dimensional E-vector space M , we denote

PE(M) := {[v] | v ∈M − {0}, [v] = [v′] ⇐⇒ v′ = av for some a ∈ E×}.

Next, for any (δ1, δ2) ∈ S+, we define a subset S′(δ1, δ2)⊆ S(δ1, δ2) by

S′(δ1, δ2) := PE(DK
dR(W (δ1/δ2))/(DK

cris(W (δ1/δ2))ϕ=1 + Fil0DK
dR(W (δ1/δ2)))),

here we see S′(δ1, δ2) as a subset of S(δ1, δ2) by the following natural inclusion

DK
dR(W (δ1/δ2))/(DK

cris(W (δ1/δ2))ϕ=1 + Fil0DK
dR(W (δ1/δ2))) ↪→H1(GK , W (δ1/δ2)).

Then, by Lemma 2.17, S′(δ1, δ2) is non-canonically isomorphic to:

(1) S′(δ1, δ2) ∼→ PE(⊕σ,w(δ1/δ2)σ=1Eeσ/∆(E)) when δ1/δ2 =
∏
σ:K↪→E σ(x)kσ for some

{kσ}σ such that kσ ∈ Z for any σ;

(2) S′(δ1, δ2) ∼→ PE(⊕σ,w(δ1/δ2)σ∈Z=1
Eeσ) otherwise;

here, these isomorphisms depend on the choice of E-linear isomorphisms in Lemma 2.17.
Finally we define the subset S′ét(δ1, δ2) of S′(δ1, δ2) as follows. When δ1/δ2 6=∏

σ:K↪→E σ(x)kσ for any {kσ} such that kσ ∈ Z for any σ, we fix an isomorphism S′(δ1, δ2) ∼→
PE(⊕σ,w(δ1/δ2)σ∈Z=1

Eeσ) as above and identify these two spaces. Then let us put

S′
ét(δ1, δ2) :=

{
[(aσeσ)σ] ∈ PE(⊕σ,w(δ1/δ2)σ∈Z=1

Eeσ)
∣∣∣∣ ( ∑

σ,aσ 6=0

w(δ1/δ2)σ

)

+eKvalp(δ2(πK))≥ 0
}
.
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When δ1/δ2 =
∏
σ:K↪→E σ(x)kσ for some {kσ}σ such that kσ ∈ Z for any σ, we fix an isomorphism

S′(δ1, δ2) ∼→ PE(⊕σ,w(δ1/δ2)σ=1Eeσ/∆(E)) as above and identify these two spaces. Then let us put

S′
ét(δ1, δ2) : =

{
[(aσeσ)σ] ∈ PE(⊕σ·w(δ1/δ2)σ≥1Eeσ/∆(E))

∣∣∣∣ ( ∑
σ,aσ 6=0

w(δ1/δ2)σ

)
+eKvalp(δ2(πK))≥ 0

for any lifting (aσeσ)σ ∈ ⊕σ,w(δ1/δ2)σ∈Z=1
Eeσ of [(aσeσ)σ]

}
.

We put S′non-ét(δ1, δ2) := S′(δ1, δ2) \ S′ét(δ1, δ2). Then we can easily see that the subsets
S′ét(δ1, δ2), S′non-ét(δ1, δ2)⊆ S(δ1, δ2) do not depend on the choice of an isomorphism S′(δ1, δ2) ∼→
PE(⊕σ,w(δ1/δ2)σ≥1Eeσ/∆(E)) or S′(δ1, δ2) ∼→ PE(⊕σ,w(δ1/δ2)σ∈Z≥1

Eeσ).

Remark 3.3. When K = Qp: S(δ1, δ2) is one point or PE(E) and S′(δ1, δ2) is empty or one
point; PE(E) and S′ét(δ1, δ2) is empty or one point; or PE(E). If we compare this parameter
space and Colmez’s [Col08a, § 4.3], then we have

⊔
(δ1,δ2)∈S+(S(δ1, δ2) \ S′(δ1, δ2)) = Sng

+ t Sst
+ ,⊔

(δ1,δ2)∈S+ S′
ét(δ1, δ2) = Scris

+ t Sord
+ and

⊔
(δ1,δ2)∈S+ S′

non-ét(δ1, δ2) = Sncl.

For any s ∈ S(δ1, δ2), we denote by W (s) an extension of W (δ1) by W (δ2) defined by s. The
isomorphism class of W (s) as a E–B-pair depends only on the class s. By definition, W (s) is a
split trianguline E–B-pair which sits in the following non-split short exact sequence of E–B-pairs

0→W (δ1)→W (s)→W (δ2)→ 0.

We determine when W (s) is of the form W (V (s)) for some E-representation V (s). The
following theorem is a generalization of [Col08a, Proposition 4.7] and is the most important step
of the classification.

Theorem 3.4. Let s ∈ S(δ1, δ2) for (δ1, δ2) ∈ S+. Then the following conditions are equivalent:

(1) W (s) is pure of slope zero, i.e. W (s) ∼→W (V (s)) for a two-dimensional split trianguline
E-representation V (s);

(2) s /∈ S′non-ét(δ1, δ2).

Proof. First we prove the theorem in the case δ1/δ2 6=
∏
σ:K↪→E σ(x)kσ for any {kσ}σ such that

kσ ∈ Z for any σ. Let us assume that W (s) is not pure of slope zero. Then, by the slope filtration
theorem for E–B-pairs (Theorem 1.40), there exist rank-one E–B-pairs W (δ3), W (δ4) such that
W (δ3) is pure of slope u < 0, W (δ4) is pure of slope −u > 0 and W (s) sits in the following short
exact sequence

0→W (δ3)→W (s)→W (δ4)→ 0.
On the other hand, by definition, we have a following short exact sequence

0→W (δ1)→W (s)→W (δ2)→ 0. (1)

We consider the restriction to W (δ3) of the projection W (s)→W (δ2), which we denote by
f :W (δ3)→W (δ2). We claim that f is an inclusion. Because Ker(f) and Im(f) are E–B-
pairs by Lemma 1.12 and because W (δ3) is rank one, we have exactly one of the following two
cases, Ker(f) ∼→W (δ3) or W (δ3) ∼→ Im(f). If Ker(f) ∼→W (δ3), then the inclusion W (δ3) ↪→W (s)
factors through a non-zero map f ′ :W (δ3)→W (δ1). However, because the slope of W (δ1) is
strictly larger than the slope of W (δ3) by assumption, so we have Hom(W (δ3), W (δ1)) = 0 by
Proposition 2.14 or by [Ked07, Lemma 6.2]. This is a contradiction. So we have W (δ3) ∼→ Im(f),

894

https://doi.org/10.1112/S0010437X09004059 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004059


Two-dimensional split trianguline representations of p-adic fields

i.e. f is an inclusion. Then, by Proposition 2.14, we have δ3 = δ2
∏
σ:K↪→E σ(x)kσ for some

{kσ}σ such that kσ ∈ Z≥0 for any σ. Then, because det(W (s)) =W (δ1δ2) ∼→W (δ3δ4), we have
δ4 = δ1

∏
σ:K↪→E σ(x)−kσ . The injectivity of f means that the exact sequence (1) splits after

pulling back by f :W (δ3) ↪→W (δ2), i.e. we have

s ∈Ker
(

H1(GK , W (δ1/δ2))→H1

(
GK , W

( ∏
σ:K↪→E

σ(x)−kσδ1/δ2

)))
.

This kernel is isomorphic to

Im(∂ : H0(GK ,⊕σ:K↪→Et
−kσW+

dR(δ1/δ2)σ/W+
dR(δ1/δ2)σ) ↪→H1(GK , W (δ1/δ2))).

So, by Lemma 2.18, we have s= [(aσeσ)σ] ∈ PE(⊕σ,w(δ1/δ2)σ∈Z=1
Eeσ) = S′(δ1, δ2) such that any σ

with aσ 6= 0 satisfies w(δ1/δ2)σ ∈ {1, 2, . . . , kσ}. Then, (
∑

σ,aσ 6=0 w(δ1/δ2)σ) + eKvalp(δ2(πK))≤
(
∑

σ kσ) + eKvalp(δ2(πK)) = [K : Qp] (slope of W (δ3))< 0) by assumption. So s ∈ S′non-ét(δ1, δ2).

Next we assume that s= [(aσeσ)σ] ∈ S′non-ét(δ1, δ2). Then, by Lemma 2.18, we can see that
s is contained in the image of

∂ :⊕σ,aσ 6=0H0(GK , t−w(δ1/δ2)σW+
dR(δ1/δ2)σ/W+

dR(δ1/δ2)σ)→H1(GK , W (δ1/δ2)).

So we have

s ∈Ker(H1(GK , W (δ1/δ2))→H1

(
GK , W

( ∏
σ,aσ 6=0

σ(x)−w(δ1/δ2)σδ1/δ2

))
.

So there is an injection g :W (
∏
σ,aσ 6=0 σ(x)w(δ1/δ2)σδ2) ↪→W (s) such that f ′g is the natural

inclusion W (
∏
σ,aσ 6=0 σ(x)w(δ1/δ2)σδ2) ↪→W (δ2) (here f ′ :W (s)→W (δ2) is the projection). If we

take the saturation W (δ3) of this inclusion g (Lemma 1.14) and write the cokernel by W (δ4),
we have the following short exact sequence

0→W (δ3)→W (s)→W (δ4)→ 0.

Then, by Proposition 2.14, we have

(the slope of W (δ3)) ≤
(

the slope of W
( ∏
σ,aσ 6=0

σ(x)w(δ1/δ2)σδ2

))

=
1

[K : Qp]

( ∑
σ,aσ 6=0

w(δ1/δ2)σ

)
+

valp(δ2(πK))
f

< 0

because s ∈ S′non-ét(δ1, δ2). So W (s) is not pure of slope zero by the slope filtration theorem.
So we have finished the proof when δ1/δ2 6=

∏
σ:K↪→E σ(x)kσ for any {kσ} such that kσ ∈ Z for

any σ.

Next we prove the theorem in the case δ1/δ2 =
∏
σ:K↪→E σ(x)kσ for some {kσ}σ such that

kσ ∈ Z for any σ. First let us assume that W (s) is not pure of slope zero. Then, as in the first
case, there are rank-one E–B-pairs W (δ3), W (δ4) such that the slope of W (δ3) := u < 0 and
W (s) sits in the following short exact sequence

0→W (δ3)→W (s)→W (δ4)→ 0.
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Then we can prove as in the first case that the induced map W (δ3) ↪→W (δ2) is injective and
δ3 = δ2

∏
σ:K↪→E σ(x)kσ for some {kσ}σ such that kσ ∈ Z≥0 for any σ. So we have

s ∈ Ker
(

H1(GK , W (δ1/δ2))→H1

(
GK , W

( ∏
σ:K↪→E

σ(x)−kσδ1/δ2

)))
= Im(∂ : H0(GK ,⊕σ:K↪→Et

−kσW+
dR(δ1/δ2)σ/W+

dR(δ1/δ2)σ)→H1(GK , W (δ1/δ2))).

By Lemma 2.18, we can see that s corresponds to s= [(aσeσ)σ] ∈ PE(⊕σ,w(δ1/δ2)σ∈Z≥1
Eeσ/∆(E))

∼→ S′(δ1, δ2) such that there is a lifting [(aσeσ)σ] of [(aσeσ)σ] such that aσ = 0
for any σ satisfying w(δ1/δ2)σ /∈ {1, 2, . . . , kσ}. So (

∑
σ,aσ 6=0 w(δ1/δ2)σ) + eKvalp(δ2(πK))≤

(
∑

σ:K↪→E kσ) + eKvalp(δ2(πK)) = [K : Qp]u < 0. So s is contained in S′non-ét(δ1, δ2).

Next let us assume that s ∈ S′non-ét(δ1, δ2). Then, by definition, s= [(aσeσ)σ] ∈
PE(⊕σ,w(δ1/δ2)σ∈Z≥1

Eeσ/∆(E)) ∼→ S′(δ1, δ2) such that some lift [(aσeσ)σ] of [(aσeσ)σ] satisfies
(
∑

σ,aσ 6=0 w(δ1/δ2)σ) + eKvalp(δ2(πK))< 0. Then, by Lemma 2.18, we have

s ∈Ker
(

H1(GK , W (δ1/δ2))→H1

(
GK , W

( ∏
σ,aσ 6=0

σ(x)−w(δ1/δ2)σδ1/δ2

)))
.

In particular, as in the proof of the first case, we can see that the natural inclusion
W (
∏
σ,aσ 6=0 σ(x)w(δ1/δ2)σδ2) ↪→W (δ2) factors through an inclusion g :W (

∏
σ,aσ 6=0 σ(x)w(δ1/δ2)σδ2)

↪→W (s). If we take the saturation W (δ3) of g and write the cokenel by W (δ4), then we have (the
slope of W (δ3))≤ (the slope of W (

∏
σ,aσ 6=0 σ(x)w(δ1/δ2)σδ2)) = 1/[K : Qp]((

∑
σ,aσ 6=0 w(δ1/δ2)σ) +

eKvalp(δ2(πK)))< 0, where the first inequality follows from Proposition 2.14. So W (s) is not pure
of slope zero by the slope filtration theorem. Thus, we have finished the proof of this theorem in
all of the cases. 2

By this theorem, we can determine all of the two-dimensional split trianguline E-
representations. For any s ∈ S(δ1, δ2) \ S′non-ét(δ1, δ2), we write V (s) as the two-dimensional split
trianguline E-representation such that W (V (s)) =W (s).

3.2 Irreducibility of V (s)
Next we determine when V (s) is irreducible as a E-representation of GK . For this, we put

• S+
0 := {(δ1, δ2) ∈ S+ | valp(δ1(πK)) = valp(δ2(πK)) = 0};

• S+
∗ := S+ \ S+

0 .

For any (δ1, δ2) ∈ S+
∗ , we put:

(1) S′ord(δ1, δ2) := {[(aσeσ)σ] ∈ S′et(δ1, δ2) | (
∑

σ,aσ 6=0 w(δ1/δ2)σ) + eKvalp(δ2(πK)) = 0 for some
lifting [(aσeσ)σ] of [(aσeσ)σ]} when δ1/δ2 =

∏
σ:K↪→E σ(x)kσ for some {kσ}σ such that kσ ∈ Z

for any σ;
(2) S′ord(δ1, δ2) := {[aσeσ] ∈ S′ét(δ1, δ2) | (

∑
σ,aσ 6=0 w(δ1/δ2)σ) + eKvalp(δ2(πK)) = 0} otherwise.

We can easily see that the subset S′ord(δ1, δ2) does not depend on the choice of an isomorphism
S′(δ1, δ2) ∼→ PE(⊕σ,w(δ1/δ2)σ≥1Eeσ/∆(E)) or S′(δ1, δ2) ∼→ PE(⊕σ,w(δ1/δ2)σ∈Z≥1

Eeσ).

Remark 3.5. When K = Qp, Sord
+ in [Col08a, § 4.3] is equal to

⊔
(δ1,δ2)∈S+

∗
S′ord(δ1, δ2) and S0 in

[Col08a, § 4.3] is equal to
⊔

(δ1,δ2)∈S+
0
S(δ1, δ2).

The following proposition is a generalization of [Col08a, Propositions 5.7 and 5.8].
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Proposition 3.6. Let (δ1, δ2) ∈ S+ and s ∈ S(δ1, δ2) \ S′non-ét(δ1, δ2). Then the following
conditions are equivalent:

(1) V (s) is irreducible;

(2) (δ1, δ2) /∈ S+
0 and s /∈ S′ord(δ1, δ2).

Proof. First let us assume that V (s) is reducible and (δ1, δ2) /∈ S+
0 . Because V (s) is reducible,

there exist two continuous characters δ3, δ4 :GK →O×E such that W (V (s)) sits in the following
short exact sequence

0→W (E(δ3))→W (V (s))→W (E(δ4))→ 0.
Then the fact that Hom(W (E(δ3)), W (δ1)) = 0 (this follows from the fact that (the slope of
W (E(δ3))) = 0< (the slope of W (δ1)) and from Proposition 2.14) implies that the natural
map W (E(δ3)) ↪→W (δ2) is an inclusion. So we have δ̃3 = δ2

∏
σ:K↪→E σ(x)kσ for some {kσ}σ

such that kσ ∈ Z≥0 (here δ̃3 := δ3 ◦ recK :K×→ E×). Then, as in the proof of the previous
theorem, we can see that s corresponds to [(aσeσ)σ] ∈ S′ét(δ1, δ2) (or [(aσeσ)σ] ∈ S′ét(δ1, δ2)) such
that (

∑
σ,aσ 6=0 w(δ1/δ2)σ) + eKvalp(δ2(πK))≤ (

∑
σ:K↪→E kσ) + eKvalp(δ2(πK)) = [K : Qp] (slope

of W (E(δ3))) = 0 (for some lifting [(aσeσ)σ] of [(aσeσ)σ]). On the other hand, we have 0≤
(
∑

σ,aσ 6=0 w(δ1/δ2)σ) + eKvalp(δ2(πK)) because s ∈ S′ét(δ1, δ2). So s ∈ S′ord(δ1, δ2).

Next if (δ1, δ2) ∈ S+
0 , then W (δ1) and W (δ2) are pure of slope zero, hence V (s) is reducible

as a E-representation.
Next let us assume that (δ1, δ2) /∈ S+

0 and s ∈ S′ord(δ1, δ2). If we put s= [(aσeσ)σ] (or
[(aσeσ)σ]) such that (

∑
σ,aσ 6=0 w(δ1/δ2)σ) + eKvalp(δ2(πK)) = 0 (for some lift [(aσeσ)σ] of

[(aσeσ)σ]) then, by the proof of Theorem 3.4, we have

s ∈Ker
(

H1(GK , W (δ1/δ2))→H1

(
GK , W

( ∏
σ,aσ 6=0

σ(x)−w(δ1/δ2)σδ1/δ2

)))
.

Then the natural inclusion W (
∏
σ,aσ 6=0 σ(x)w(δ1/δ2)σδ2) ↪→W (δ2) factors through

W (
∏
σ,aσ 6=0 σ(x)w(δ1/δ2)σδ2) ↪→W (s). We take the saturation W (δ3) of this map and write the

cokernel by W (δ4). Then we claim that the natural inclusion W (
∏
σ,aσ 6=0 σ(x)w(δ1/δ2)σδ2) ↪→

W (δ3) is an isomorphism. If this is not an isomorphism, then by Proposition 2.14, W (δ3) must
be pure of negative slope because W (

∏
σ,aσ 6=0 σ(x)w(δ1/δ2)σδ2) is pure of slope zero by assumption.

Then W (s) is not pure of slope zero, which contradicts the assumption that s ∈ S′ét(δ1, δ2). So
W (
∏
σ,aσ 6=0 σ(x)w(δ1/δ2)σδ2) ↪→W (δ3) is an isomorphism. Then both W (δ3) and W (δ4) are pure

of slope zero. So W (s) is reducible as a E-representation. Thus, we have finished the proof of
this proposition. 2

3.3 The conditions for V (s) = V (s′)
Next let us discuss when two split trianguline E-representations V (s), V (s′) are isomorphic
for different parameters s, s′. Unfortunately we cannot solve this problem in the case where
δ1/δ2 =

∏
σ:K↪→E σ(x)kσ for some {kσ}σ such that kσ ∈ Z for any σ and s ∈ S′ét(δ1, δ2). We

can solve this problem in all other cases. The following theorem is a generalization of [Col08a,
Proposition 4.9].

Theorem 3.7. We have the following results.

(1) Let V (s), V (s′) be two-dimensional trianguline E-representations associated to s ∈
S(δ1, δ2) \ S′non-ét(δ1, δ2), s′ ∈ S(δ3, δ4) \ S′non-ét(δ3, δ4) for some (δ1, δ2), (δ3, δ4) ∈ S+.
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Moreover, we assume that s /∈ S′ ét(δ1, δ2). Then V (s) ∼→ V (s′) if and only if (δ1, δ2) = (δ3, δ4)
and s= s′ ∈ S(δ1, δ2).

(2) Let s= [(aσeσ)σ] ∈ S′ ét(δ1, δ2) where δ1/δ2 6=
∏
σ:K↪→E σ(x)kσ for any {kσ}σ such that

kσ ∈ Z for any σ. Then there exists unique ((δ3, δ4), s′) 6= ((δ1, δ2), s) (here (δ3, δ4) ∈ S+

and s′ ∈ S(δ3, δ4) \ S′non-ét(δ3, δ4)) such that V (s) ∼→ V (s′). Such a ((δ3, δ4), s′) satisfies the
following:

(i) δ3 = δ2
∏
σ,aσ 6=0 σ(x)w(δ1/δ2)σ , δ4 = δ1

∏
σ,aσ 6=0 σ(x)−w(δ1/δ2)σ ;

(ii) s′ = [(bσeσ)σ] ∈ S′ ét(δ3, δ4) satisfies that {σ :K ↪→ E | bσ 6= 0}= {σ :K ↪→ E | aσ 6= 0}.

Proof. First, we prove part (1). If V (s) ∼→ V (s′), then we have the following short exact sequence

0→W (δ3)→W (s)→W (δ4)→ 0.

We consider the natural map f :W (δ3)→W (δ2) as in the proof of Theorem 3.4. Then we have
one of the following: Ker(f) ∼→W (δ3) or Im(f) ∼→W (δ3).

If Ker(f) ∼→W (δ3), then we have the following commutative diagram.

0 // W (δ3) //

��

W (s) // W (δ4) //

��

0

0 // W (δ1) // W (s) // W (δ2) // 0

Then we claim that W (δ3)→W (δ1) and W (δ4)→W (δ2) are both isomorphisms. We can
see that We(δ3) ∼→We(δ1), We(δ4) ∼→We(δ2) are isomorphisms in the same way as the proof of
Proposition 2.14. For the W+

dR part, by the snake lemma of the above diagram, we have an
isomorphism Ker(W+

dR(δ4)→W+
dR(δ2)) ∼→ Cok(W+

dR(δ3)→W+
dR(δ1)) of B+

dR-modules. However,
because the former is a torsion-free B+

dR-module and the latter is a torsion B+
dR-module,

so this must be zero. So W (δ3)→W (δ1) and W (δ4)→W (δ2) are both isomorphisms. Thus,
(δ1, δ2) = (δ3, δ4) and s= s′ ∈ S(δ1, δ2).

If Im(f) ∼→W (δ3), then δ3 = δ2
∏
σ:K↪→E σ(x)kσ for some {kσ}σ such that kσ ∈ Z≥0 for any σ.

Then, by the proof of Theorem 3.4, we can see that s ∈ S′(δ1, δ2). This is a contradiction. So we
have finished the proof of part (1) of this theorem.

Next, we prove part (2). Let us assume that V (s) ∼→ V (s′) for some s′(6=s) ∈
S(δ3, δ4). Then, by the proof of part (1) above and the assumption s 6= s′, we can
see that W (δ3) ∼→ Im(f :W (δ3)→W (δ2)). So we have δ3 =

∏
σ:K↪→E σ(x)kσδ2 for some

{kσ}σ such that kσ ∈ Z≥0 for any σ. So we obtain s= [(aσeσ)σ] ∈ S′ét(δ1, δ2) and
w(δ1/δ2)σ ∈ {1, 2, . . . , kσ} for any σ such that aσ 6= 0. Then, by the proof of The-
orem 3.4, we can see that the natural inclusion W (

∏
σ,aσ 6=0 σ(x)w(δ1/δ2)σδ2) ↪→W (δ2)

factors through an inclusion g :W (
∏
σ,aσ 6=0 σ(x)w(δ1/δ2)σδ2) ↪→W (s). Because we have

Hom(W (
∏
σ:K↪→E σ(x)kσδ2), W (δ1)) = 0 by the assumption on (δ1, δ2) and by Propo-

sition 2.14, we can see that g ◦ ι :W (
∏
σ:K↪→E σ(x)kσδ2) ↪→W (s) is equal to the

given inclusion W (
∏
σ:K↪→E σ(x)kσδ2) =W (δ3) ↪→W (s) (here ι :W (

∏
σ:K↪→E σ(x)kσδ2) ↪→

W (
∏
σ,aσ 6=0 σ(x)w(δ1/δ2)σδ2) is the natural inclusion). Because W (δ3) is saturated in W (s) so

W (δ3) ↪→W (
∏
σ,aσ 6=0 σ(x)w(δ1/δ2)σδ2) must be isomorphic. So we have kσ = w(δ1/δ2)σ for σ

such that aσ 6= 0 and kσ = 0 for other σ. Then we have δ3 =
∏
σ,aσ 6=0 σ(x)w(δ1/δ2)σδ2 and

δ4 =
∏
σ,aσ 6=0 σ(x)−w(δ1/δ2)σδ1. We have w(δ3/δ4)σ = w(δ3)σ − w(δ4)σ = w(δ1/δ2)σ + w(δ2)σ −

(−w(δ1/δ2)σ + w(δ1)σ) = w(δ1/δ2)σ for any σ such that aσ 6= 0 and w(δ3/δ4)σ = w(δ2)σ −
w(δ1)σ =−w(δ1/δ2)σ for other σ. If we replace s by s′ and replace s′ by s in the above
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argument, we can see that s′ = [(bσeσ)σ] ∈ S′ét(
∏
σ,aσ 6=0 σ(x)w(δ1/δ2)σδ2,

∏
σ,aσ 6=0 σ(x)−w(δ1/δ2)σδ1)

satisfies the condition that {σ :K ↪→ E | bσ 6= 0}= {σ :K ↪→ E | aσ 6= 0}. If s′′ = [(b′σeσ)σ] ∈
S′ét(

∏
σ,aσ 6=0 σ(x)w(δ1/δ2)σδ2,

∏
σ,aσ 6=0

σ(x)−w(δ1/δ2)σδ1) is another element such that V (s) ∼→ V (s′′) and s 6= s′′, then we can see that
s′ = s′′ in the same way as in the proof of part (1) above. Thus, such an s′ is unique.

Next let us take any s= [aσeσ] ∈ S′ét(δ1, δ2). Then, by Lemma 2.18, we have

s ∈Ker
(

H1(GK , W (δ1/δ2))→H1

(
GK , W

( ∏
σ,aσ 6=0

σ(x)−w(δ1/δ2)σδ1/δ2

)))
.

So the natural inclusion W (
∏
σ,aσ 6=0 σ(x)w(δ1/δ2)σδ2) ↪→W (δ2) factors through

W (
∏
σ,aσ 6=0 σ(x)w(δ1/δ2)σδ2) ↪→W (s). Then we can see that W (

∏
σ,aσ 6=0 σ(x)w(δ1/δ2)σδ2) ↪→W (s)

is saturated (if not, then we have s= [a′σeσ] ∈ S′ét(δ1, δ2) such that {σ :K ↪→ E | a′σ 6= 0}& {σ :
K ↪→ E | aσ 6= 0}, which cannot happen under the assumption on (δ1, δ2) in this theorem). If we
write the cokernel of this as W (δ4), then we have δ4 =

∏
σ,aσ 6=0 σ(x)−w(δ1/δ2)σδ1 and we have the

following short exact sequence

0→W (δ3)→W (s)→W (δ4)→ 0.

This extension corresponds to some s′ = [bσeσ] ∈ S′ét(δ3, δ4). So we have V (s) ∼→ V (s′). We have
finished the proof of this theorem. 2

Remark 3.8. When K = Qp, the exceptional cases where s ∈ S′ét(δ1, δ2) and δ1/δ2 =∏
σ:K↪→E σ(x)kσ do not appear because S′ét(δ1, δ2) is empty set in this case.

4. Classification of two-dimensional potentially semi-stable split trianguline
E-representations

In this final section, we classify all of the two-dimensional potentially semi-stable split trianguline
E-representations. We explicitly describe the E-filtered (ϕ, N, GK)-modules associated with
potentially semi-stable split trianguline E-representations.

4.1 de Rham split trianguline E-representations
Before classifying two-dimensional de Rham split trianguline E-representations, we determine
all of the rank-one de Rham E–B-pairs.

Lemma 4.1. Let W (δ) be a rank-one E–B-pair. Then the following conditions are equivalent:

(1) W (δ) is Hodge–Tate;

(2) W (δ) is de Rham;

(3) δ = δ̃
∏
σ:K↪→E σ(x)kσ such that δ̃ :K×→ E× is a locally constant character and kσ ∈ Z for

any σ.

Proof. It is easy to see the implication (3)⇒ (2)⇒ (1). We prove that (1) implies (3). So we
assume that W (δ) is Hodge–Tate with generalized Hodge–Tate weight {kσ}σ such that kσ ∈ Z
for any σ. We write W (δ) ∼→W (E(δ0))⊗W⊗i0 for some continuous character δ0 :GK →O×E
and i ∈ Z as in Theorem 1.45. Because W0 := (We,0, W

+
dR,0) satisfies W+

dR
∼→B+

dR ⊗Qp E, so we
have W (δ)+

dR
∼→B+

dR ⊗Qp E(δ0). Then E(δ0
∏
σ:K↪→E σ(χLT)−kσ) is Hodge–Tate with all Hodge–

Tate weight zero. Then, by Sen’s theorem [Ber02, Proposition 5.24], δ0
∏
σ:K↪→E σ(χLT)−kσ :

899

https://doi.org/10.1112/S0010437X09004059 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004059


K. Nakamura

GK →O×E is a potentially unramified character. Because σ(χLT) :GK →O×E corresponds to
the character K×→ E× : πK 7→ 1, u 7→ σ(u) for u ∈ O×K , we have δ = δ̃

∏
σ:K↪→E σ(x)kσ for some

locally constant character δ̃ :K×→ E×. So we have finished the proof of the lemma. 2

Next let V (s) be a potentially semi-stable split trianguline E-representation such that
s ∈ S(δ1, δ2) \ S′non-ét(δ1, δ2) for some (δ1, δ2) ∈ S+. Then we have the following short exact
sequence

0→W (δ1)→W (s)→W (δ2)→ 0.
Then, as in the case of usual E-representations, we can see that W (δ1) and W (δ2) are also
de Rham, in particular W (δ1/δ2) is de Rham. Next we compute H1

e(GK , W (δ)), H1
f (GK , W (δ))

and H1
g(GK , W (δ)) when W (δ) is de Rham.

Lemma 4.2. Let W (δ) be a rank-one de Rham E–B-pair where δ := δ̃
∏
σ:K↪→E σ(x)kσ such that

δ̃ :K×→ E× is a locally constant character. Then we have a canonical isomorphism

DK
dR(W (δ))/(DK

cris(W (δ))ϕ=1 + Fil0DK
dR(W (δ))) ∼→H1

e(GK , W (δ))

and dimEH1
e(GK , W (δ)) is equal to:

(1) ]{σ :K ↪→ E | kσ ∈ Z≥1} when δ̃ is not the trivial character;

(2) ]{σ :K ↪→ E | kσ ∈ Z≥1} − 1 when δ̃ is the trivial character.

Proof. For general δ, we have the following short exact sequence

0→ DK
dR(W (δ))/(DK

cris(W (δ))ϕ=1 + Fil0DK
dR(W (δ)))→H1(GK , W (δ))

→ Ker(H1(GK , We(δ))⊕H1(GK , W+
dR(δ))→H1(GK , WdR(δ)))→ 0.

When W (δ) is de Rham, we proved in Lemma 2.6 that H1(GK , W+
dR(δ))→H1(GK , WdR(δ)) is

injective. So we have

H1
e(GK , W (δ)) = Ker(H1(GK , W (δ))→H1(GK , We(δ)))

∼→ Ker(H1(GK , W (δ))→ (H1(GK , We(δ))⊕H1(GK , W+
dR(δ))))

= DK
dR(W (δ))/(DK

cris(W (δ))ϕ=1 + Fil0DK
dR(W (δ))).

We can compute the dimension of H1
e(GK , W (δ)) by using this isomorphism. 2

Lemma 4.3. Let W (δ) be a rank-one de Rham E–B-pair. Then we have:

(1) H1
g(GK , W (δ)) = H1

f (GK , W (δ)) and dimEH1
f (GK , W (δ)) = dimEH1

e(GK , W (δ)) + 1 when

δ =
∏
σ:K↪→E σ(x)kσ ;

(2) H1
f (GK , W (δ)) = H1

e(GK , W (δ)) and dimEH1
g(GK , W (δ)) = dimEH1

f (GK , W (δ)) + 1 when

δ = |NK/Qp(x)|
∏
σ:K↪→E σ(x)kσ ;

(3) H1
g(GK , W (δ)) = H1

f (GK , W (δ)) = H1
e(GK , W (δ)) otherwise.

Proof. This follows from a calculation using Lemmas 2.7 and 2.11. 2

For the explicit description of potentially semi-stable split trianguline E-representations,
we fix an extension whose class is contained in H1

f (GK , W (δ)) \H1
e(GK , W (δ)) when δ =∏

σ σ(x)kσ and fix an extension whose class is contained in H1
g(GK , W (δ)) \H1

f (GK , W (δ))
when δ = |NK/Qp(x)|

∏
σ σ(x)kσ as follows. First we treat the case where δ =

∏
σ σ(x)kσ .

In this case, we have W (δ) = (Be ⊗Qp E,⊕σtkσB+
dR ⊗K,σ E) by Lemma 2.12. We fix an
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element acris ∈ O×Qun
p

such that FrobQp(acris) = acris + 1. We define an extension W (s({kσ}σ)) :=

(We(s({kσ}σ)), W+
dR(s({kσ}σ)), ι) whose class s({kσ}σ) := [W (s({kσ}σ))] is contained in

H1
f (GK , W (

∏
σ σ(x)kσ)) \H1

e(GK , W (
∏
σ σ(x)kσ)) as follows:

(1) We(s({kσ}σ)) := (Be ⊗Qp E)e1 ⊕ (Be ⊗Qp E)ecris such that g(e1) = e1, g(ecris) = ecris

+ fdeg(g)e1 for any g ∈GK , here f = [K0 : Qp];
(2) W+

dR(s({kσ}σ)) := (⊕σtkσB+
dR ⊗K,σ E)e1 ⊕ (B+

dR ⊕Qp E)edR such that g(e1) = e1 and
g(edR) = edR for any g ∈GK ;

(3) ι :BdR ⊗Be We(s({kσ}σ)) ∼→BdR ⊗B+
dR
W+

dR(s({kσ}σ)) is the isomorphism defined by
ι(e1) = e1 and ι(ecris) = edR + acrise1.

We can easily see that s({kσ}σ) := [W (s({kσ}σ))] is contained in H1
f (GK , W (δ)) \H1

e(GK , W (δ)).

Next we treat the case where δ = |NK/Qp(x)|
∏
σ σ(x)kσ . We define a continuous one cocycle c :

GK →Qp(χ) by g(log([p̃])) = log([p̃]) + c(g)t for any g ∈GK . In this case, we define an extension
W (s({kσ}σ)) := (We(s({kσ}σ)), W+

dR(s({kσ}σ)), ι) whose class s({kσ}σ) := [W (s({kσ}σ))] is in
H1
g(GK , W (|NK/Qp(x)|

∏
σ σ(x)kσ)) \H1

f (GK , W (|NK/Qp(x)|
∏
σ σ(x)kσ)) as follows:

(1) We(s({kσ}σ)) := (Be ⊗Qp E(χ))e1 ⊕ (Be ⊗Qp E)ecris such that g(e1) = χ(g)e1, g(ecris) =
ecris + c(g)e1 for any g ∈GK ;

(2) W+
dR(s({kσ}σ)) := (⊕σtkσ−1B+

dR ⊗K,σ E(χ))e1 ⊕ (B+
dR ⊗Qp E)edR such that g(e1)

= χ(g)e1, g(edR) = edR for any g ∈GK ;
(3) ι :BdR ⊗Be We(s({kσ}σ)) ∼→BdR ⊗B+

dR
W+

dR(s({kσ}σ)) is the isomorphism defined by
ι(e1) = e1, ι(ecris) = edR + (log[(p̃)]/t)e1.

We can easily see that s({kσ}σ) := [W (s({kσ}σ))] is contained in H1
g(GK , W (δ)) \H1

f (GK , W (δ)).
By using these classes, we can determine all of the potentially crystalline split trianguline

E-representations and all of the potentially semi-stable split trianguline E-representations which
are not potentially crystalline. For this, let us:

– put
S′′(δ1, δ2) := {s ∈ S(δ1, δ2) | s ∈ PE(H1

f (GK , W (δ1/δ2)) \ S′(δ1, δ2)}
when δ1/δ2 =

∏
σ σ(x)kσ ;

– put
Sst(δ1, δ2) := {s ∈ S(δ1, δ2) | s ∈ PE(H1

g(GK , W (δ1/δ2)) \ S′(δ1, δ2))}
when δ1/δ2 = |NK/Qp(x)|

∏
σ σ(x)kσ .

Then, by Lemma 4.3 and the above constructions, we have:

• S′′(δ1, δ2) ∼→ s({kσ}σ) +DK
dR(W (δ1/δ2)/(DK

cris(W (δ1/δ2))ϕ=1 + Fil0DK
dR(W (δ1/δ2)));

• Sst(δ1, δ2) ∼→ s({kσ}σ) +DK
dR(W (δ1/δ2)/(DK

cris(W (δ1/δ2))ϕ=1 + Fil0DK
dR(W (δ1/δ2))).

Proposition 4.4. Let (δ1, δ2) ∈ S+ such that W (δ1) and W (δ2) are de Rham E–B-pairs. Let
V (s) be a split trianguline E-representation associated with s ∈ S(δ1, δ2) \ S′non-ét(δ1, δ2). Then
the following conditions are equivalent:

(1) V (s) is potentially crystalline;

(2) s ∈ S ét
cris(δ1, δ2) := S′ ét(δ1, δ2) t S′′(δ1, δ2) when δ1/δ2 =

∏
σ σ(x)kσ ;

s ∈ S ét
cris(δ1, δ2) := S′ ét(δ1, δ2) otherwise.

The following conditions are equivalent:
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(3) V (s) is potentially semi-stable and not potentially crystalline;

(4) δ1/δ2 = |NK/Qp(x)|
∏
σ σ(x)kσ and s ∈ Sst(δ1, δ2).

Proof. This easily follows from Lemma 4.3. We prove in the case δ1/δ2 = |NK/Qp(x)|
∏
σ σ(x)kσ .

(Other cases can be proved in the same way.) First we prove that part (1) is equivalent
to part (2). If s ∈ S′ét(δ1, δ2) then V (s) is potentially crystalline by Remark 2.5. If V (s) is
potentially crystalline, then V (s) is de Rham. So [W (V (s))] is contained in H1

g(GK , W (δ1/δ2)).
If [W (V (s))] /∈H1

f (GK , W (δ1/δ2)), then, by the above remark, we can assume that [W (V (s))] =
s({kσ}σ) + x for some x ∈DK

dR(W (δ1/δ2)/(DK
cris(W (δ1/δ2))ϕ=1 + Fil0DK

dR(W (δ1/δ2))). From
this and from the construction of s({kσ}σ), we can easily see that W (V (s))|GL /∈
H1
f (GL, W (δ1/δ2)|GL) for any finite extension L of K. (Here, W (δ1/δ2)|GL is the E–B-pair of

GL obtained by restriction.) This implies that V (s) is not potentially crystalline. This is a
contradiction. So W (V (s)) is contained in H1

f (GK , W (δ1/δ2)), i.e. s ∈ S′ét(δ1, δ2). We can prove
the equivalence between (3) and (4) in the same way. 2

Remark 4.5. When K = Qp, Scris
+ in [Col08a, § 4.3] is equal to t(δ1,δ2)∈S+S ét

cris(δ1, δ2) and Sst
+ is

equal to t(δ1,δ2)∈S+Sst(δ1, δ2). Here, for (δ1, δ2) ∈ S+ such that δ1/δ2 6= |NK/Qp(x)|
∏
σ σ(x)kσ ,

we put Sst(δ1, δ2) := ∅, the empty set.

4.2 Potentially crystalline split trianguline E-representations
In this section, we explicitly describe the filtered (ϕ, GK)-modules of potentially
crystalline split trianguline E-representations. First we define parameter spaces of
potentially crystalline split trianguline E-representations. We put:

Tcris :=
{

(δ1, δ2, {kσ}σ)
∣∣∣∣ δ1, δ2 :K×→ E× locally constant characters, kσ ∈ Z for any σ,

such that
(∑

σ

kσ

)
+ eKvalp(δ1(πK)) =−eKvalp(δ2(πK))≥ 0

}
.

For any locally constant character δ :K×→ E× we define n(δ) ∈ Z≥0 as the minimal n ∈ Z≥0

such that δ|1+πnKOK is trivial. We write for any σ:

– G(δ)σ :=
∑

γ∈Gal(Kn(δ)/K) γ(πn(δ))⊗ δ(γ−1) ∈Kn ⊗K,σ E when n(δ)≥ 1;

– G(δ)σ := 1 ∈K ⊗K,σ E when n(δ) = 0.

(Here πn is an element in K̄ such that [πK ](πn+1) = πn for any n ∈ N and [πK ](π1) = 0, i.e.
a system of πnK torsion points of Lubin–Tate group associated with πK , and Kn :=K(πn) for
n ∈ Z≥1 and we identify Gal(Kn/K) ∼→O×K/1 + πnKOK via the Lubin–Tate character χLT.) For
any (δ1, δ2, {kσ}σ) ∈ Tcris, we define the parameter space T ét

cris(δ1, δ2, {kσ}σ) of weakly admissible
filtrations as follows. First, when δ1 6= δ2, we define:

– Tcris(δ1, δ2, {kσ}σ) := PE(⊕σ,kσ≥1Eeσ);

– T ét
cris(δ1, δ2, {kσ}σ) := {[(aσeσ)σ] ∈ Tcris(δ1, δ2, {kσ}σ) | (

∑
σ,aσ 6=0 kσ) + eKvalp(δ2(πK))≥ 0}.

When δ1 = δ2, we define:

– T ′cris(δ1, δ2, {kσ}σ) := PE(⊕σ,kσ≥1Eeσ/∆(E));

– T ′ét
cris(δ1, δ2, {kσ}σ) := {[(aσeσ)σ] ∈ T ′cris(δ1, δ2, {kσ}σ) | (

∑
σ,aσ 6=0 kσ) + eKvalp(δ2(πK))≥ 0

for any lift (aσeσ)σ ∈ ⊕σ,kσ≥1Eeσ of [(aσeσ)σ]};
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– T ′′ét
cris(δ1, δ2, {kσ}σ) :=⊕σ,kσ≥1Eeσ/∆(E);

– T ét
cris(δ1, δ2, {kσ}σ) := T ′ét

cris(δ1, δ2, {kσ}σ) t T ′′ét
cris(δ1, δ2, {kσ}σ).

For any x ∈ T ét
cris(δ1, δ2, {kσ}σ) we want to define a rank-two E-filtered (ϕ,Gal(Kn(δ1,δ2)/K))-

module D(δ1,δ2,{kσ}σ),x. Here we put n(δ1, δ2) := max{n(δ1), n(δ2)}. However, we cannot
canonically construct these. We must fix one more parameter for any (δ1, δ2, {kσ}σ) ∈ Tcris. For
this, we consider the following short exact sequence

0→ E×
g1−→ (K0 ⊗Qp E)×

g2−→ (K0 ⊗Qp E)×
g3−→ E×→ 0, (2)

here g1 : E×→ (K0 ⊗Qp E)× is the canonical inclusion, g2 : (K0 ⊗Qp E)×→ (K0 ⊗Qp E)× :
x 7→ ϕ(x)/x and g3 : (K0 ⊗Qp E)×→ E× : x 7→

∏f−1
i=0 ϕ

i(x) where ϕ :K0 ⊗Qp E→K0 ⊗Qp E :∑
i xi ⊗ yi 7→

∑
i ϕ(xi)⊗ yi. We can easily prove that this sequence is exact by using the

assumption K0 ⊂ E. Then we fix (α, β) ∈ (K0 ⊗Qp E)× × (K0 ⊗Qp E)× such that g3(α) =
δ1(πK), g3(β) = δ2(πK) when δ1 6= δ2. We fix α ∈ (K0 ⊗Qp E)× such that g3(α) = δ1(πK) and
put β = α when δ1 = δ2. Then we define D(δ1,δ2,{kσ}σ),x as follows:

(0) D(δ1,δ2,{kσ}σ),x := (K0 ⊗Qp E)e1 ⊕ (K0 ⊗Qp E)e2;

(1) N(e1) = 0, N(e2) = 0;

(2) when δ1 6= δ2 or when δ1 = δ2 and x ∈ T ′ét
cris(δ1, δ2, {kσ}σ), we put ϕ(e1) = αe1, ϕ(e2) = βe2

(then ϕf (e1) = δ1(πK)e1, ϕ
f (e2) = δ2(πK)e2);

(2′) when δ1 = δ2 and x ∈ T ′′ét
cris(δ1, δ2, {kσ}σ), we put ϕ(e1) = αe1, ϕ(e2) = α(e2 + e1);

(3) g(e1) = δ1(χLT(g))e1, g(e2) = δ2(χLT(g))e2 for any g ∈GK ;

(4) we put

Kn(δ1,δ2) ⊗K0 D(δ1,δ2,{kσ}σ),x = (Kn(δ1,δ2) ⊗Qp E)e1 ⊕ (Kn(δ1δ2) ⊗Qp E)e2

∼→ ⊕σ:K↪→E(Kn(δ1,δ2) ⊗K,σ E)e1,σ ⊕ (Kn(δ1,δ2) ⊗K,σ E)e2,σ

=: ⊕σDσ,

then:

(i) for σ such that kσ5− 1, we put Fil0Dσ =Dσ, Fil1Dσ = · · ·= Fil−kσDσ =Kn(δ1,δ2) ⊗K,σ
Ee1,σ, Fil−kσ+1Dσ = 0;

(ii) for σ such that kσ = 0, we put Fil0Dσ =Dσ, Fil1Dσ = 0;
(iii) for σ such that kσ ≥ 1, we put Fil−kσDσ =Dσ, Fil−kσ+1Dσ = · · ·= Fil0Dσ =

Kn(δ1,δ2) ⊗K,σ E(aσG(δ2/δ1)σe1,σ + e2,σ), Fil1Dσ = 0.

Here when δ1 6= δ2, then (aσeσ)σ ∈ ⊕σ,kσ≥1Eeσ is a lift of x= [(aσeσ)σ] ∈ T ét
cris(δ1, δ2, {kσ}σ) =

PE(⊕σ,kσ≥1Eeσ) and when δ1 = δ2, then (aσeσ)σ ∈ ⊕σ,kσ≥1Eeσ is a lift of [(aσeσ)σ] ∈
T ′ét

cris(δ1, δ2, {kσ}σ) = PE(⊕σ,kσ≥1Eeσ/∆(E)) or is a lift of (aσeσ)σ ∈ T ′′ét
cris(δ1, δ2, {kσ}σ) =

⊕σ,kσ≥1Eeσ/∆(E). Then we claim that the isomorphism class of D(δ1,δ2,{kσ}σ),x does not
depend on the choice of a lift (aσeσ)σ. We prove this claim in the case where δ1 = δ2 and
x= (aσeσ)σ ∈ T ′′ét

cris(δ1, δ2, {kσ}σ). Let us take two lifts (aσeσ)σ, (a′σeσ)σ ∈ ⊕σ,kσ∈Z≥1
Eeσ of

x= (aσeσ)σ ∈ T ′′ét
cris(δ1, δ2, {kσ}σ). Then there exist a ∈ E and b ∈ E× such that a′σ = baσ + a

for any σ such that kσ ∈ Z≥1. We denote D0 := (K0 ⊗Qp E)e1 ⊕ (K0 ⊗Qp E)e2 and D′0 :=
(K0 ⊗Qp E)e′1 ⊕ (K0 ⊗Qp E)e′2 as the filtered (ϕ, GK)-modules D(δ1,δ2,{kσ}σ),x defined by using
the lifts (aσeσ)σ and (a′σeσ)σ, respectively. Then it is easy to see that the map D0→D′0 : e1 7→
be′1, e2 7→ e′2 + ae′1 is an isomorphism of filtered (ϕ, GK)-modules. We can easily prove this claim
in other cases.
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Next we note the dependence of the choice of (α, β) as above. We only treat the case
δ1 6= δ2. Let us take another (α′, β′) ∈ (K0 ⊗Qp E)× × (K0 ⊗Qp E)× such that g3(α′) = δ1(πK),
g3(β′) = δ2(πK). Then, by the above exact sequence (2), there exist α0, β0 ∈ (K0 ⊗Qp E)× such
that α= α′g2(α0), β = β′g2(β0). For stressing the dependence of the choice of (α, β), we write
T ét

cris(δ1, δ2, {kσ}σ, (α, β)),D(δ1,δ2,{kσ}σ ,(α,β)),x, instead of T ét
cris(δ1, δ2, {kσ}σ),D(δ1,δ2,{kσ}σ),x. Then

we can easily see that the map D(δ1,δ2,{kσ}σ ,(α,β)),[(aσeσ)σ ]→D(δ1,δ2,{kσ}σ ,(α′,β′)),[(aσ(α0,σ/β0,σ)eσ)σ ] :
e1 7→ α0e

′
1, e2 7→ β0e

′
2 is an isomorphism of filtered (ϕ, GK)-modules for any [(aσeσ)σ] ∈

T ét
cris(δ1, δ2, {kσ}σ, (α, β)). (Here e′i is the basis of D(δ1,δ2,{kσ}σ ,(α′,β′)),[(aσ(α0,σ/β0,σ)eσ)σ ] defined in

the same way as in the case (α, β) and α0,σ, β0,σ ∈ E× is the σ-components of α0, β0 ∈ (K0 ⊗Qp
E)× ↪→ (K ⊗Qp E)× ∼→

∏
σ:K↪→E Ee

×
σ .) The other cases are the same. So we have an isomorphism

ι : T ét
cris(δ1, δ2, {kσ}σ, (α, β)) ∼→ T ét

cris(δ1, δ2, {kσ}σ, (α′, β′)) between parameter spaces such that
D(δ1,δ2,{kσ}σ ,(α,β)),x

∼→D(δ1,δ2,{kσ}σ ,(α′,β′)),ι(x) for any x ∈ T ét
cris(δ1, δ2, {kσ}σ, (α, β)).

Henceforth, we fix a (α, β) for any (δ1, δ2, {kσ}σ) ∈ Tcris. In the proof of the next theorem,
we prove that these are weakly admissible filtered (ϕ, GK)-modules. So, by the ‘weakly
admissible imply admissible’ theorem [Ber08a, Theorem B], for any x ∈ T ét

cris(δ1, δ2, {kσ}σ), there
exists a unique (up to isomorphism) two-dimensional potentially crystalline E-representation
V(δ1,δ2,{kσ}σ),x such that D

Kn(δ1,δ2)

cris (V(δ1,δ2,{kσ}σ),x) ∼→D(δ1,δ2,{kσ}σ),x. Then our main result of
classification concerning potentially crystalline split trianguline E-representations is as follows.

Theorem 4.6. Let V be a two-dimensional E-representation. Then the following conditions are
equivalent:

(1) V is split trianguline and potentially crystalline;

(2) there exist (δ1, δ2, {kσ}σ) ∈ Tcris and x ∈ T ét
cris(δ1, δ2, {kσ}σ) and {wσ}σ such that wσ ∈ Z for

any σ, such that V
∼→ V(δ1,δ2,{kσ}σ),x(

∏
σ σ(χwσLT)).

Proof. First we prove that condition (1) implies condition (2). Let us assume that V is
a split trianguline and potentially crystalline E-representation. Then, by Proposition 4.4,
there exists a (δ1, δ2) ∈ S+ and an s ∈ S ét

cris(δ1, δ2) such that V
∼→ V (s). Twisting V

by a suitable
∏
σ σ(χLT(x)lσ), we may assume that W (δ2) has generalized Hodge–

Tate weight {0}σ. If we write the generalized Hodge–Tate weight of W (δ1) as {kσ}σ,
then we have δ1 = δ̃1

∏
σ σ(x)kσ and δ2 = δ̃2 for some locally constant characters δ̃1, δ̃2 :

K×→ E×. Then the condition that (δ1, δ2) ∈ S+ is equivalent to the condition that

(δ̃1, δ̃2, {kσ}σ) ∈ Tcris. Now we explicitly calculate D
Kn(δ̃1,δ̃2)

cris (V ). First we compute this
in the case where δ̃1 6= δ̃2 or δ̃1 = δ̃2 and s ∈ S′ét

cris(δ1, δ2). Then, by the definition
of S′ét

cris(δ1, δ2) ∼→ PE(DK
dR(W (δ1/δ2))/(DK

cris(W (δ1/δ2))ϕ=1 + Fil0DK
dR(W (δ1/δ2))) and by the

definition of the boundary map DK
dR(W (δ1/δ2))/(DK

cris(W (δ1/δ2))ϕ=1 + Fil0DK
dR(W (δ1/δ2)) ↪→

H1(GK , W (δ1/δ2)), W (s) is given as follows:

(1) We(s) :=We(δ1)⊕We(δ2) such that g(x, y) := (gx, gy) for any g ∈GK , x ∈We(δ1), y ∈
We(δ2);

(2) W+
dR(s) :=W+

dR(δ1)⊕W+
dR(δ2) such that g(x, y) := (gx, gy) for any g ∈GK , x ∈W+

dR(δ1), y ∈
W+

dR(δ2);

(3) ι :BdR ⊗Be We(s)
∼→BdR ⊗B+

dR
W+

dR(s) is given by ι(x, y) := (x+ a⊗ y, y) for any

x ∈BdR ⊗Be We(δ1), y ∈BdR ⊗Be We(δ2); here, a ∈DK
dR(δ1/δ2) is a lifting of ā ∈

DK
dR(W (δ1/δ2))/(DK

cris(W (δ1/δ2))ϕ=1 + Fil0DK
dR(W (δ1/δ2)) corresponding to s.
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By the definition of W (δ) for any δ :K×→ E×, we have D
Kn(δ̃1,δ̃2)

cris (W (δ1)) ∼→ (K0 ⊗Qp E)e1,

D
Kn(δ̃1,δ̃2)

cris (W (δ2)) ∼→ (K0 ⊗Qp E)e2 such that:

– ϕf (e1) = δ̃1(πK)e1, ϕ
f (e2) = δ̃2(πK)e2;

– g(e1) = δ̃1(χLT(g))e1, g(e2) = δ̃2(χLT(g))e2 for any g ∈GK .

Then we can take a basis e1, e2 such that ϕ(e1) = αe1, ϕ(e2) = βe2, here (α, β) is the fixed pair
as in Theorem 4.6 for (δ̃1, δ̃2, {kσ}σ) ∈ Tcris. By part (1) in the above description of W (s), we

have D
Kn(δ̃1,δ̃2)

cris (V ) =D
Kn(δ̃1,δ̃2)

cris (W (δ1))⊕D
Kn(δ̃1,δ̃2)

cris (W (δ2)) as a (ϕ, GK)-module. We compute

the filtration on D
Kn(δ̃1,δ̃2)

dR (W (s)) ∼→Kn(δ̃1,δ̃2) ⊗K0 D
Kn(δ̃1,δ̃2)

cris (W (s)) ∼→ (Kn(δ̃1,δ̃2) ⊗Qp E)e1 ⊕
(Kn(δ̃1,δ̃2) ⊗Qp E)e2

∼→⊕σ:K↪→E(Kn(δ̃1,δ̃2) ⊗K,σ E)e1,σ ⊕ (Kn(δ̃1,δ̃2) ⊗K,σ E)e2,σ =:⊕σDσ (here we
put Dσ := (Kn(δ̃1,δ̃2) ⊗K,σ E)e1,σ ⊕ (Kn(δ̃1,δ̃2) ⊗K,σ E)e2,σ). Because DK

dR(W (δ1/δ2))

= (WdR(δ1/δ2))GK ∼→⊕σ(WdR(δ1/δ2)⊗BdR⊗QpE BdR ⊗K,σ E)GK and Fil0DK
dR(W (δ1/δ2))

=⊕σ(W+
dR(δ1/δ2)⊗B+

dR⊗QpE
B+

dR ⊗K,σ E)GK ∼→⊕σ,kσ50(WdR(δ1/δ2)⊗BdR⊗QpE BdR ⊗K,σ E)GK ,

so we can take a ∈DK
dR(W (δ1/δ2)) in (3) as a= (aσ) ∈ ⊕σ(WdR(δ1/δ2)⊗BdR⊗QpE BdR ⊗K,σ E)GK

such that aσ = 0 for any σ such that kσ50. Then, for any σ such that kσ50 or kσ ≥ 1 and aσ = 0,
we have

FiliDσ = FiliD
Kn(δ̃1,δ̃2)

dR (W (δ1))σ ⊕ FiliD
Kn(δ̃1,δ̃2)

dR (W (δ2))σ.

(Here

D
Kn(δ̃1,δ̃2)

dR (W (δi))
∼→ ⊕σD

Kn(δ̃1,δ̃2)

dR (W (δi))⊗Kn(δ̃1,δ̃2)⊗QpE Kn(δ̃1,δ̃2) ⊗K,σ E

=: ⊕σD
Kn(δ̃1,δ̃2)

dR (W (δ1))σ

for i ∈ {1, 2}.) Because we have

– Fil−kσD
Kn(δ̃1,δ̃2)

dR (W (δ1))σ =D
Kn(δ̃1,δ̃2)

dR (W (δ1))σ, Fil−kσ+1D
Kn(δ̃1,δ̃2)

dR (W (δ1))σ = 0;

– Fil0D
Kn(δ̃1,δ̃2)

dR (W (δ2))σ =D
Kn(δ̃1,δ̃2)

dR (W (δ2))σ, Fil1D
Kn(δ̃1,δ̃2)

dR (W (δ2))σ = 0;

we obtain the filtration on Dσ as in parts (i), (ii), (iii) of Theorem 4.6(4) for such σ.
Finally, we calculate the filtration on Dσ for σ such that kσ ≥ 1 and aσ 6= 0. Then we
have Fil−kσDσ =Dσ and Fil1Dσ = 0. For any xe1,σ + ye2,σ ∈Dσ (x, y ∈Kn(δ̃1,δ̃2) ⊗K,σ E),

we have xe1,σ + ye2,σ ∈ Fil0Dσ if and only if xe1,σ + yaσ ⊗ e2,σ ∈ Fil0D
Kn(δ̃1,δ̃2)

dR (W (δ1))σ = 0 and

ye2,σ ∈ Fil0DdR(W (δ2))σ =D
Kn(δ̃1,δ̃2)

dR (W (δ2))σ. Because aσ ∈DK
dR(W (δ1/δ2))σ

∼→ E is non-zero,

it is a base of DK
dR(W (δ1/δ2))σ as an E-vector space. So it is a base of D

Kn(δ̃1,δ̃2)

dR (W (δ1/δ2))σ

as a Kn(δ̃1,δ̃2) ⊗K,σ E-module. So aσ ⊗ e2,σ is a base of D
Kn(δ̃1,δ̃2)

dR (W (δ1)). So there exists
unique z ∈ (Kn(δ̃1,δ̃2) ⊗K,σ E)× such that aσ ⊗ e2,σ = ze1,σ. Then xe1,σ + yaσ ⊗ e2,σ = (x+

zy)e1,σ, so Fil−kσ+1Dσ = Fil0Dσ =Kn(δ̃1,δ̃2) ⊗K,σ E(−ze1,σ + e2,σ). By comparing GK-actions on

aσ ⊗ e2,σ = ze1,σ, we can see that g(z) = (δ̃2(χLT(g))/δ̃1(χLT(g)))z for any g ∈GK . So there
exists unique bσ ∈ E× such that z =−bσG(δ̃2/δ̃1)σ. By combining all of these calculations,

we obtain D
Kn(δ̃1,δ̃2)

cris (V (s)) ∼→D(δ̃1,δ̃2,{kσ}σ),x (here x= [(bσeσ)σ] ∈ T ét
cris(δ̃1, δ̃2, {kσ}σ) or x=

[(bσeσ)σ] ∈ T ′ét
cris(δ̃1, δ̃2, {kσ}σ)). So V (s) ∼→ V(δ̃1,δ̃2,{kσ}σ),x. (Here we put bσ = 0 if aσ = 0.) From
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this, we know that D(δ̃1,δ̃2,{kσ}σ),x is weakly admissible for such x. So we can prove that part (1)

implies part (2) in the case δ̃1 6= δ̃2 or δ̃1 = δ̃2 and s ∈ S′ét(δ1, δ2).
Next we compute in the case where δ̃1 = δ̃2 and s ∈ S′′(δ1, δ2). Then, by the construction of

s({kσ}σ) and by the definition of S′′(δ1, δ2) before Proposition 4.4, W (s) := (We(s), W+
dR(s), ι)

is given as follows:

(1) We(s) :=We(δ1)⊕We(δ2) such that g(x, y) := (gx+ fdeg(g)gy, gy) for any g ∈GK , x ∈
We(δ1), y ∈We(δ2) (here we use the fact that δ1/δ2 =

∏
σ σ(x)kσ implies that We(δ1) =

We(δ2); see Proposition 2.14);
(2) W+

dR(s) :=W+
dR(δ1)⊕W+

dR(δ2) such that g(x, y) := (gx, gy) for any g ∈GK , x ∈W+
dR(δ1),

y ∈W+
dR(δ2);

(3) ι :BdR ⊗Be We(s)
∼→BdR ⊗B+

dR
W+

dR(s) is given by ι(x, y) := (x+ (acris + a)y, y) for any

x ∈BdR ⊗Be We(δ1), y ∈BdR ⊗Be We(δ2); here, a ∈DK
dR(W (δ1/δ2)) ∼→ (BdR ⊗Qp E)GK =

K ⊗Qp E is a lifting of ā ∈DK
dR(W (δ1/δ2))/(DK

cris(W (δ1/δ2)) + Fil0DK
dR(W (δ1/δ2)))

corresponding to s= s({kσ}σ) + ā.

Then we have

D
Kn(δ̃1)

cris (W (δ1)) = (Bcris ⊗Be We(δ1))
GK

n(δ̃1)
∼→ (Bcris ⊗Be We(δ2))

GK
n(δ̃1) =D

Kn(δ̃1)

cris (W (δ2))

becauseWe(δ1) ∼→We(δ2). So we have following isomorphisms of (ϕ, GK)-modulesD
Kn(δ̃1)

cris (W (δ1))
∼→ (K0 ⊗Qp E)e1, D

Kn(δ̃2)

cris (W (δ2)) ∼→ (K0 ⊗Qp E)e′2 such that:

(1) ϕ(e1) = αe1, ϕ(e′2) = αe′2;
(2) g(e1) = δ̃1(χLT(g))e1, g(e′2) = δ̃1(χLT(g))e′2 for any g ∈GK .

(Here α ∈ (K0 ⊗ E)× is fixed such that g3(α) = δ̃1(πK) as defined before Theorem 4.6.) Then, by

part (1) in the definition of W (s), we have D
Kn(δ̃1)

cris (W (s)) = (K0 ⊗Qp E)e1 ⊕ (K0 ⊗Qp E)(−e′2 +

acrise1). So if we put e2 :=−e′2 + acrise1, we have D
Kn(δ̃1)

cris (W (s)) = (K0 ⊗Qp E)e1 ⊕ (K0 ⊗Qp E)e2

such that:

(1) ϕ(e1) = αe1, ϕ(e2) = α(e2 + e1);
(2) g(e1) = δ̃1(χLT(g))e1, g(e2) = δ̃1(χLT(g))e2 for any g ∈GK .

We compute the filtration on Kn(δ̃1) ⊗K0 D
Kn(δ̃1)

cris (W (s)) = (Kn(δ̃1) ⊗Qp E)e1 ⊕ (Kn(δ̃1) ⊗Qp E)e2

as follows. We can take a := (aσ) ∈DK
dR(δ1/δ2) =⊕σ(DK

dR ⊗K⊗QpE BdR ⊗K,σ E) such that aσ =
0 for any σ such that kσ ∈ Z50. Then we can compute the filtration as in the previous

case. Then we have D
Kn(δ̃1)

cris (W (s)) ∼→D(δ̃1,δ̃2,{kσ}σ),x for some x= (bσeσ)σ ∈ T ′′ét
cris(δ̃2, {kσ}σ) ∼→

⊕σ,kσ≥1Eeσ/∆(E) such that a lift (bσeσ)σ of (bσeσ)σ satisfies {σ | bσ 6= 0}= {σ | aσ 6= 0}. So, for
this x, D(δ̃1,δ̃2,{kσ}σ),x is weakly admissible and we have V (s) ∼→ V(δ̃1,δ̃2,{kσ}σ),x. So we have proved
that condition (1) implies condition (2) in all cases.

Next we prove that condition (2) implies condition (1). Let us take (δ1, δ2, {kσ}σ) ∈ Tcris.
We prove this in the case δ1 6= δ2. (We can prove the other cases in the same way.) Let us
take [(bσeσ)σ] ∈ T ét

cris(δ1, δ2, {kσ}σ)⊂ PE(⊕σ,kσ≥1Eeσ). If we put δ̃1 = δ1
∏
σ σ(x)kσ , δ̃2 = δ2, we

can see that (δ̃1, δ̃2) ∈ S+. From the argument of the proof of the claim that condition (1)
implies condition (2), we can see that there exists an element s= [(aσeσ)σ] ∈ S′(δ̃1, δ̃2) such that
D
Kn(δ1,δ2)

cris (W (s)) ∼→D(δ1,δ2,{kσ}σ),[(bσeσ)σ ]. Moreover, from the previous argument, we can also
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see that {σ | aσ 6= 0}= {σ | bσ 6= 0}. This implies that s is contained in S′ét(δ̃1, δ̃2), i.e. W (s) =
W (V (s)) for some split trianguline E-representation. So we have that D(δ1,δ2,{kσ}σ),[(bσeσ)σ ] is
weakly admissible and V (s) ∼→ V(δ1,δ2,{kσ}σ),[(bσeσ)σ ]. We have finished the proof of the theorem. 2

The following is the corollary of Theorem 3.7.

Corollary 4.7. We have the following results.

(1) Let (δ1, δ2, {kσ}σ) ∈ Tcris such that δ1 6= δ2. Let [(aσeσ)σ] ∈ T ét
cris(δ1, δ2,

{kσ}σ). Then there exists unique ((δ′1, δ
′
2, {k′σ}σ), x, {wσ}σ) where (δ′1, δ

′
2, {k′σ}σ) ∈ Tcris, x ∈

T ét
cris(δ

′
1, δ
′
2, {k′σ}σ), wσ ∈ Z, satisfying V(δ1,δ2,{kσ}σ),[(aσeσ)σ ]

∼→ V(δ′1,δ
′
2,{k′σ}σ),x(

∏
σ σ(χLT)wσ)

and ((δ′1, δ
′
2, {k′σ}σ), x, {wσ}σ) 6= ((δ1, δ2, {kσ}σ), [(aσeσ)σ], {0}σ). Such unique ((δ′1, δ

′
2,

{k′σ}σ), x, {wσ}σ) satisfies:

(i) δ′1|O×K = δ2|O×K , δ
′
2|O×K = δ1|O×K ;

(ii) δ′1(πK) = δ2(πK)
∏
σ,aσ=0 or kσ≤0 σ(πK)kσ , δ′2(πK) = δ1(πK)

∏
σ,aσ=0 or kσ≤0 σ(πK)kσ ;

(iii) k′σ = kσ if aσ 6= 0, k′σ =−kσ for other σ;
(iv) wσ = 0 if aσ 6= 0, wσ = kσ for other σ;
(v) unique suitable x= [(a′σeσ)σ] ∈ T ét

cris(δ
′
1, δ
′
2, {k′σ}σ) such that {σ | a′σ 6= 0}= {σ | aσ 6= 0}.

(2) Let (δ1, δ2, {kσ}σ), (δ′1, δ
′
2, {k′σ}σ) ∈ Tcris such that δ1 = δ2. Let x ∈ T ′′ ét

cris(δ1, δ2, {kσ}σ),
y ∈ T ét

cris(δ
′
1, δ
′
2, {k′σ}σ), {wσ}σ such that wσ ∈ Z for any σ. Then we have an isomor-

phism V(δ1,δ2,{kσ}σ),x
∼→ V(δ′1,δ

′
2,{k′σ}σ),y(

∏
σ σ(χLT)wσ) if and only if ((δ′1, δ

′
2, {k′σ}σ), y) =

((δ1, δ2, {kσ}σ), x) and wσ = 0 for any σ.

Proof. Part (1) is the corollary of Theorem 3.7(2). Because δ1 6= δ2, then by the proof of the above
theorem, we have V(δ1,δ2,{kσ}σ),[(aσeσ)σ ]

∼→ V (s) where s= [(bσeσ)σ] ∈ S′ét
cris(δ1

∏
σ σ(x)kσ , δ2) for

some [(bσeσ)σ] such that {σ | bσ 6= 0}= {σ | aσ 6= 0}. Then, by Theorem 3.7, we have V (s) ∼→ V (s′)
for unique s′ 6= s such that

s′ = [(b′σeσ)σ] ∈ S′ét
cris

( ∏
σ,bσ 6=0

σ(x)kσδ2,
∏

σ,bσ 6=0

σ(x)−kσ
∏
σ

σ(x)kσδ1

)

= S′
ét
cris

( ∏
σ,bσ 6=0

σ(x)kσδ2,
∏

σ,kσ≤0 or bσ=0

σ(x)kσδ1

)
such that {σ | b′σ 6= 0}= {σ | bσ 6= 0}. By the proof of the above theorem, we can see that s′

corresponds to V(δ′1,δ
′
2,{k′σ}σ),[(a′σeσ)σ ](

∏
σ,aσ=0 or kσ≤0 σ(χLT)kσ) such that

δ′1|O×K = δ2|O×K , δ
′
2|O×K = δ1|O×K , δ

′
1(πK) =

∏
σ,aσ=0 or kσ≤0

σ(πK)kσδ2(πK), δ′2(πK)

=
∏

σ,aσ=0 or kσ≤0

σ(πK)kσδ1(πK), k′σ = kσ

if aσ 6= 0, k′σ =−kσ for other σ and {σ | a′σ 6= 0}= {σ | b′σ 6= 0}. So we have finished the proof of
part (1).

Part (2) follows from the above theorem and Theorem 3.7(1). 2

4.3 Potentially semi-stable and non-crystalline split trianguline E-representations
In this section, we explicitly describe the E-filtered (ϕ, N, GK)-modules of potentially semi-
stable split trianguline E-representations which are not potentially crystalline. First we define
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the parameter spaces of potentially semi-stable split trianguline E-representations. We put

Tst := {(δ, {kσ}σ) | δ :K×→ E× a locally constant character, kσ ∈ Z for any σ such that
(
∑

σ kσ) + 2eKvalp(δ(πK)) + [K : Qp] = 0}.
For any (δ, {kσ}σ) ∈ Tst, we define the parameter space Tst(δ, {kσ}σ) of weakly admissible
filtrations as follows. We define

Tst(δ, {kσ}σ) :=⊕σ,kσ≥1Eeσ.

For any (aσeσ)σ ∈ Tst(δ, {kσ}σ) we define a rank-two E-filtered (ϕ, N,Gal(Kn(δ)/K))-module
D(δ,{kσ}σ),(aσeσ)σ . However, as in the potentially crystalline case, the construction depend on the
choice of one more parameter. For any (δ, {kσ}σ) ∈ Tst, we fix α ∈ (K0 ⊗Qp E)× such that g3(α) =
δ(πK), where g3 is as before. Then we define D(δ,{kσ}σ),(aσeσ)σ := (K0 ⊗Qp E)e1 ⊕ (K0 ⊗Qp E)e2

as follows:

(1) N(e2) = e1, N(e1) = 0;
(2) ϕ(e1) = (α/p)e1, ϕ(e2) = αe2 for the fixed α ∈ (K0 ⊗Qp E)×, so we have ϕf (e1) =

(δ(πK)/q)e1, ϕ
f (e2) = δ(πK)e2;

(3) g(e1) = δ(χLT(g))e1, g(e2) = δ(χLT(g))e2 for any g ∈GK ;
(4) we put Kn(δ) ⊗K0 D(δ,{kσ}σ),(aσeσ)σ = (Kn(δ) ⊗Qp E)e1 ⊕ (Kn(δ) ⊗Qp E)e2

∼→⊕σ(Kn(δ) ⊗K,σ
E)e1,σ ⊕ (Kn(δ) ⊗K,σ E)e2,σ =:⊕σDσ, then:

(i) for σ such that kσ ≤−1, we put Fil0Dσ =Dσ, Fil1Dσ = · · ·= Fil−kσDσ =
(Kn(δ) ⊗K,σ E)e2,σ, Fil−kσ+1Dσ = 0;

(ii) for σ such that kσ = 0, we put Fil0Dσ =Dσ, Fil1Dσ = 0;
(iii) for σ such that kσ ≥ 1, we put Fil−kσDσ =Dσ, Fil−kσ+1Dσ = · · ·=

Fil0Dσ = (Kn(δ) ⊗K,σ E)(aσe1,σ + e2,σ), Fil1Dσ = 0.

We prove in the proof of the next theorem that these are weakly admissible. So, by
‘weakly admissible implies admissible’ theorem [Ber08a, Theorem B], there exists a unique
(up to isomorphism) two-dimensional potentially semi-stable, not potentially crystalline
E-representation V(δ,{kσ}),(aσeσ)σ such that D

Kn(δ)

st (V(δ,{kσ}σ),(aσeσ)σ) ∼→D(δ,{kσ}σ),(aσeσ)σ . Then
our main result on the classification of potentially semi-stable split trianguline E-representations
is as follows.

Theorem 4.8. Let V be a two-dimensional E-representation. Then the following conditions are
equivalent:

(1) V is split trianguline, potentially semi-stable and not potentially crystalline;

(2) there exist (δ, {kσ}σ) ∈ Tst, (aσeσ)σ ∈ Tst(δ, {kσ}σ) and {wσ}σ with wσ ∈ Z for any σ, such
that V

∼→ V(δ,{kσ}σ),(aσeσ)σ(
∏
σ σ(χwσLT)).

Moreover, we have an isomorphism V(δ,{kσ}σ),(aσeσ)σ
∼→ V(δ′,{k′σ}σ),(a′σeσ)σ(

∏
σ σ(χw

′
σ

LT)) if and only
if ((δ′, {k′σ}σ), (a′σeσ)σ) = ((δ, {kσ}σ), (aσeσ)σ) and w′σ = 0 for any σ.

Proof. First we prove that condition (1) implies condition (2). Let V be as in
condition (1). Then, by Proposition 4.4, we have V

∼→ V (s) for some s ∈ Sst(δ1, δ2) such
that δ1/δ2 = |NK/Qp(x)|

∏
σ σ(x)kσ for some kσ ∈ Z for any σ. Twisting V by some suitable∏

σ σ(χLT)lσ , we may assume that (δ1, δ2) = (
∏
σ σ(x)kσ |NK/Qp(x)|δ, δ) for some locally constant

character δ :K×→ E× and for some kσ ∈ Z for any σ. By the definition of Sst(δ1, δ2) ∼→
s({kσ}σ) +DK

dR(W (δ1/δ2))/Fil0DK
dR(W (δ1/δ2)), s corresponds to s({kσ}σ) + b for some b ∈

DK
dR(W (δ1/δ2))/Fil0DK

dR(W (δ1/δ2)). So W (s) is given as follows:
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(1) We(s) :=We(δ1)⊕We(δ2) such that g(x, y) = (gx+ c(g)gy, gy) for any g ∈GK , x ∈
W+

cris(δ1), y ∈W+
cris(δ2) (here c(g) is defined in the definition of s({kσ}σ) and we use the

fact that We(δ1) ∼→We(δ2)(χ) which we can see from Lemma 2.13);

(2) W+
dR(s) :=W+

dR(δ1)⊕W+
dR(δ2) such that g(x, y) = (gx, gy) for any g ∈GK , x ∈W+

dR(δ1), y ∈
W+

dR(δ2);

(3) ι :BdR ⊗BeWe(s)
∼→BdR ⊗B+

dR
W+

dR(s) is an isomorphism given by ι(x, y) = (x+ (log([p̃])/t)y

+ b⊗ y, y), here b= (bσ) ∈DK
dR(W (δ1/δ2)) is the lift of b such that bσ = 0 for any σ such

that kσ ≤ 0.

We calculate D
Kn(δ)

st (V (s)) as follows. First, if we take a base e′ ∈DKn(δ)

cris (W (δ2))⊆Bcris ⊗Be
We(δ2), then we have e′′ := (1/t)e′ ∈DKn(δ)

cris (W (δ1)) because We(δ1) ∼→We(δ2)(χ). Then ϕf (e′) =
δ(πK)e′, ϕf (e′′) = (δ(πK)/q)e′′ and g(e′) = δ(χLT(g))e′, g(e′′) = δ(χLT(g))e′′ for any g ∈GK .
Moreover, we can take a base e′ such that ϕ(e′) = αe′ for the fixed α. Then D

Kn(δ)

st (W (s)) ∼→
(K0 ⊗Qp E)e′′ ⊕ (K0 ⊗Qp E)(e′ − log([p̃])e′′). If we put e1 := e′′ , e2 := e′ − log([p̃])e′′, then

N(e2) = e1. Next we calculate the filtration on Kn(δ) ⊗K0 D
Kn(δ)

st (W (s)) = (Kn(δ) ⊗Qp E)e1 ⊕
(Kn(δ) ⊗Qp E)e2. By the definition of ι in part (3) of the definition of W (s), we have xe1 +
ye2 ∈ Fili for x, y ∈Kn(δ) ⊗Qp E if and only if xe′′ + y(ι(e′)− log([p̃])e′′) = xe′′ + y(e′ + b⊗ e′′ +
log([p̃])e′′ − log([p̃])e′′) = (xe′′ + yb⊗ e′′) + ye′ ∈ FiliD

Kn(δ)

dR (W (δ1))⊕ FiliD
Kn(δ)

dR (W (δ2)). So we
can calculate the filtration similarly as in the proof of Theorem 4.6. Then we can show
that D

Kn(δ)

st (V (s)) ∼→D(δ,{kσ}σ),(aσeσ)σ for some (aσeσ)σ ∈ Tst(δ, {kσ}σ) ∼→⊕σ,kσ≥1Eeσ such that
{σ | aσ 6= 0}= {σ | bσ 6= 0}. So D(δ,{kσ}σ),(aσeσ)σ is weakly admissible for such a (aσeσ)σ and we
have V (s) ∼→ V(δ,{kσ}σ),(aσeσ)σ . Thus, we have proved that condition (1) implies condition (2).

Next we prove that condition (2) implies condition (1). Let us take (δ, {kσ}σ) ∈ Tst

and (aσeσ)σ ∈ Tst(δ, {kσ}σ). Then we can see that (δ1, δ2) := (
∏
σ σ(x)kσ |NK/Qp(x)|δ, δ) ∈ S+.

Moreover, it is easy to see from the above argument that there exist some s := (bσeσ)σ ∈
Sst(δ1, δ2) such that D(δ,{kσ}σ),(aσeσ)σ

∼→D
Kn(δ)

st (V (s)). So D(δ,{kσ}σ),(aσeσ)σ is weakly admissible
and V (s) ∼→ V(δ,{kσ}σ),(aσeσ)σ .

Finally, we prove the uniqueness of ((δ, {kσ}σ), (aσeσ)σ, {wσ}σ). This easily follows from the
above argument and from Theorem 3.7. We have finished the proof of the theorem. 2
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suggestion about the Bézout property of Be ⊗Qp E, which makes many arguments in the first
version of this article easier.

909

https://doi.org/10.1112/S0010437X09004059 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004059


K. Nakamura

Appendix A. A relation between two-dimensional potentially semi-stable
trianguline E-representations and classical local Langlands

correspondence for GL2(K).

In this appendix, we show that a simple relation between two-dimensional potentially semi-stable
trianguline E-representations and classical local Langlands correspondence for GL2(K).

A.1 Classical local Langlands correspondence for GL2(K)
First we briefly recall classical local Langlands correspondence for GL2(K). Let WK ⊂GK be
the Weil group of K, i.e. the inverse image of 〈Frobk〉Z ⊆Gal(k̄/k) by the natural surjection
GK →Gal(k̄/k). (Here 〈Frobk〉Z is the subgroup of Gal(k̄/k) generated by the q = pf th power
Frobenius Frobk of k.) Here WK is a topological group such that the inertia IK := Ker(GK →
Gal(k̄/k)) equipped with usual profinite topology is an open subgroup of WK .

Definition A1. Let L be a field of characteristic zero. We say that a finite-dimensional L-
vector space D with discrete topology is an L-Weil–Deligne representation of K if D is equipped
with:

(1) a continuous L-linear action of WK , i.e. there is a continuous morphism ρ :WK →AutL(D);

(2) a nilpotent L-linear operator N :D→D such that Nρ(g) = q−deg(g)ρ(g)N for any g ∈WK ;
here we define deg(g) ∈ Z such that g = Frobk

deg(g) ∈Gal(k̄/k) for any g ∈WK .

We say that an L-Weil–Deligne representation D := (D, ρ, N) is semi-simple if (D, ρ) is a semi-
simple representation of WK .

Next we recall Fontaine’s recipe to construct a K̄-Weil–Deligne representation from a
potentially semi-stable E-representation of GK . Let V be a potentially semi-stable d-dimensional
E-representation of GK . Then Dpst(V ) :=

⋃
K⊂L,finite(Blog ⊗Qp V )GL is a free Kun

0 ⊗Qp E-module
of rank d equipped with the natural (ϕ, N, GK)-action on which ϕ and GK act semi-linearly
and N acts linearly. We define a continuous action of WK on Dpst(V ) by ρ(g)x := ϕ−fdeg(g)gx
for any g ∈WK and x ∈Dpst(V ). We can see that this action is Kun

0 ⊗Qp E-linear and satisfies
Nρ(g) = q−deg(g)ρ(g)N for any g ∈WK . By using the fixed embeddings E ↪→ K̄ and Kun

0 ↪→ K̄,
we define a map Kun ⊗Qp E→ K̄. Extending the scalar by this map, we obtain a K̄-Weil–
Deligne representation D̄pst(V ) :=Dpst(V )⊗Kun⊗QpE K̄ of K of dimension d. So we obtain a
functor V 7→ D̄pst(V ) from the category of potentially semi-stable E-representations of GK to
the category of K̄-Weil–Deligne representations of K.

Next, for a K̄-Weil–Deligne representation D̄ of K, we recall the definition of an L-factor
of D̄. Let us fix an isomorphism K̄

∼→ C. By this isomorphism, we can see D̄ as a C-Weil–
Deligne representation of K. Put J̄ := D̄N=0,IK=1, the subspace of D̄ on which N = 0 and
IK acts trivially. Let σ ∈WK be an element such that deg(σ) =−1. Then σ acts on J̄ and
this action does not depend on the choice of a lifting σ. Then we define the L-factor of D̄ by
L(D̄, s) := det(1− σq−s|J̄)−1.

For a two-dimensional semi-simple K̄-Weil–Deligne representation D̄, we can define an
irreducible smooth admissible representation π(D̄) of GL2(K) as in [BH06, § 33.1] (if we
fix a non-trivial additive smooth character ψ :K→ C×). The irreducible smooth admissible
representations of GL2(K) are classified into non-supercuspidal representations (i.e. one-
dimensional representations or principal series representations or special series representations)
and supercuspidal representations. We do not recall these definitions here. We only need the
following proposition concerning this correspondence.
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Proposition A2. Let D̄ be a K̄-Weil–Deligne representation of K. Let D̄ss be the semi-
simplification of D̄. Then the following conditions are equivalent:

(1) π(D̄ss) is non-supercuspidal;

(2) the representation (D̄, ρ) of WK is reducible;

(3) there is a continuous character δ :WK → K̄× such that L(D̄ ⊗K̄ K̄(δ), s) 6= 0, here K̄ is
equipped with discrete topology.

Proof. This follows from [BH06, Proposition 33.2]. 2

A.2 Two-dimensional trianguline representations and non-supercuspidal represen-
tations

Let V be a two-dimensional potentially semi-stable E-representation of GK . Then π(D̄pst(V )ss)
is an irreducible smooth admissible representation of GL2(K). In this section, we prove a
relation between two-dimensional potentially semi-stable trianguline E-representations and non-
supercuspidal representations of GL2(K).

Before stating the main result of this appendix, we give another useful characterization of
two-dimensional split trianguline E-representations in terms of DK

cris. This characterization is
also a generalization of [Col08a, Proposition 5.3].

Proposition A3. Let V be a two-dimensional E-representation of GK . Then the following
conditions are equivalent:

(1) V is a split trianguline E-representation;

(2) there exists a continuous character δ :GK → E× and an element α ∈ (K0 ⊗Qp E)× such that

DK
cris(V (δ))ϕ=α 6= 1.

Proof. First we prove that condition (1) implies condition (2). Assume that V is a split trianguline
E-representation. By definition, W (V ) sits in a following short exact sequence of E–B-pairs

0→W1→W (V )→W2→ 0.

Here Wi are rank-one E–B-pairs for i= 1, 2. By Theorem 1.45 and by the construction of W (δ)
for any δ :K×→ E×, if we fix a uniformizer πE of E then there exist (δi, ki) where δi :GK → E×

are continuous characters and ki ∈ Z for i= 1, 2 such that Wi
∼→W (E(δi))⊗W⊗ki0 , here W0 is

defined before Theorem 1.45. If we twist the above exact sequence by the character δ−1
1 and apply

the left exact functor DK
cris, we obtain an inclusion D⊗k10 ⊆DK

cris(V (δ−1
1 )) of E–ϕ-modules of K. If

we put K0 ⊗Qp E
∼→
⊕

0≤i≤f−1 K0 ⊗E0,ϕi Eei, D
⊗k1
0

∼→⊕0≤i≤f−1K0 ⊗E0,ϕi Eei,k1 , then we have
ϕ(e0,k1 + · · ·+ ef−1,k1) = (πk1E e0 + e1 + · · ·+ ef−1)(e0,k1 + · · ·+ ef−1,k1). In particular, (e0,k1 +

· · ·+ ef−1,k1) ∈DK
cris(V (δ−1

1 ))ϕ=(π
k1
E e0+e1+···+ef−1) and (πk1E e0 + e1 + · · ·+ ef−1) ∈ (K0 ⊗Qp E)×.

So we have proved that condition (1) implies condition (2).
Next we prove that condition (2) implies condition (1). Assume that DK

cris(V (δ))ϕ=α 6= 0 for a
character δ :GK → E× and α ∈ (K0 ⊗Qp E)×. Because V is split trianguline if and only if V (δ)
is split trianguline, we may assume that V = V (δ). Let us take a non-zero x ∈DK

cris(V )ϕ=α. We
consider the sub-E-filtered ϕ-module D1 ⊆DK

cris(V ) of rank one which is generated by x. Then,
by Theorem 1.18(3), we have a natural inclusion of E–B-pairs W (D1) ↪→W (DK

cris(V )) ↪→W (V ).
W (D1) is an E–B-pair of rank one by Theorem 1.18(3). Taking the saturation W (D1)sat of
W (D1) in W (V ) (Lemma 1.14), we obtain a short exact sequence of E–B-pairs

0→W (D1)sat→W (V )→W2→ 0.
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Here W2 is the cokernel of W (D1)sat ↪→W (D), which is an E–B-pair of rank one. So V is a split
trianguline E-representation. We have finished the proof of this proposition. 2

The main theorem of this appendix is as follows.

Theorem A4. Let V be a two-dimensional potentially semi-stable E-representation of GK .
Then the following conditions are equivalent:

(1) V is trianguline, i.e. V ⊗E E′ is a split trianguline E′-representation for some finite extension
of E′ of E;

(2) the representation (D̄pst(V ), ρ) of WK is reducible;

(3) π(D̄pst(V )ss) is a non-supercuspidal representation of GL2(K).

Proof. By Proposition A2, it suffices to show equivalence between conditions (1) and (3). The
proof of this is a modified version of the proof of [Kis03, Lemma 1.3]. First we prove that
condition (1) implies condition (3). Assume that V ⊗E E′ is a split trianguline E′-representation
for a finite extension E′ of E. By construction, we have π(D̄pst(V ⊗E E′)ss) = π(D̄pst(V )ss).
So we may assume that E′ = E and V is a split trianguline E-representation. Then, by
Proposition A3, there exist α ∈ (K0 ⊗Qp E)× and δ :GK → E× such that DK

cris(V (δ))ϕ=α 6= 0.
In this case, we claim that we can take δ which is a potentially crystalline character. We show
this claim as follows. In the proof of Proposition A3, W (V ) sits in a following short exact sequence
of E–B-pairs

0→W1→W (V )→W2→ 0,
where W1 :=W⊗k10 ⊗W (E(δ′)) and W2 are rank-one E–B-pairs. In this case, because W (V )
is a potentially semi-stable E–B-pair, W1 is also a potentially semi-stable E–B-pair. Because
W0 is a crystalline E–B-pair, by definition, so W (E(δ′)) ∼→W1 ⊗W⊗−k10 is also potentially semi-
stable. So δ′ is a potentially crystalline character because rank-one semi-stable E-representations
are crystalline. Then, as in the proof of Proposition A3, if we put δ := δ′−1, then we have
DK

cris(V (δ))ϕ=α 6= 0 for some α ∈ (K0 ⊗Qp E)×. So we have proved the claim. For this δ, we have
D̄pst(V (δ)) ∼→ D̄pst(V )⊗K̄ D̄pst(E(δ)) because both V and E(δ) are potentially semi-stable. So,
by Proposition A2, it suffices to show that L(D̄pst(V (δ)), s) 6= 1. Put J̄ := D̄pst(V (δ))N=0,IK=1.
If we put J :=Dpst(V (δ))N=0,IK=1, then we have J ∼→∪K⊂L⊂KunDL

cris(V (δ)), here Kun is the
maximal unramified extension of K. By using the fact that N is nilpotent on Dpst(V (δ))
and that IK acts discretely on it, we can easily see that J̄

∼→ J ⊗Kun
0 ⊗QpE K̄. Moreover,

because Gal(Kun/K) ∼→Gal(Kun
0 /K0) acts on J discretely and semi-linearly, so we have J ∼→

JGal(Kun/K) ⊗K0⊗QpE (Kun
0 ⊗Qp E) by Hilbert’s theorem 90. Because we have JGal(Kun/K) =

DK
cris(V (δ)), we have J̄

∼→Dcris(V (δ))⊗K0⊗QpE K̄. Finally, if we take a non-zero element x ∈
Dcris(V (δ))ϕ=α and consider the action of σ on x as a Weil–Deligne representation (here σ
is an element in WK such that deg(σ) =−1), then we have ρ(σ)(x) = ϕfσ(x) = ϕf (x) =
ϕf−1(α) · · · ϕ(α)αx= βx, here we put β := ϕf−1(α) · · · ϕ(α)α ∈ ((K0 ⊗Qp E)×)ϕ=1 = E×. So J̄
has a non-zero eigenvector of σ, hence we obtain L(D̄pst(V (δ)), s) 6= 1. Thus, we have proved
that condition (1) implies condition (3) by Proposition A2.

Next we prove that condition (3) implies condition (1). Let V be a two-dimensional
potentially semi-stable E-representation such that π(D̄pst(V )ss) is non-supercuspidal. Then, by
Proposition A2, L(D̄pst(V )⊗K̄ K̄(δ), s) 6= 1 for a character δ :WK → K̄×. By this we can take
a non-zero eigenvector x ∈ (D̄pst(V )⊗K̄ K̄(δ))N=0,IK=1 of σ ∈WK with a non-zero eigenvalue
β ∈ K̄×. If we take E large enough, we may assume that β ∈ E× and that there exists a
potentially crystalline character δ′ :GK → E× such that D̄pst(E(δ′)) ∼→ K̄(δ). Then we can
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prove that there is an isomorphism (D̄pst(V )⊗K̄ K̄(δ))N=0,IK=1 ∼→ (D̄pst(V (δ′)))N=0,IK=1 ∼→
DK

cris(V (δ′))⊗K0⊗QpE K̄ in the same way as the argument in the proof of condition (1) implies
condition (3). If we decompose DK

cris(V (δ′)) ∼→⊕τ :K0↪→EDτeτ , then we have DK
cris(V (δ′))⊗K0⊗QpE

K̄ =Did ⊗E K̄. So, if we take E large enough, we may assume that x is contained in Dideid.
If we put e := x+ ϕ(x) + · · ·+ ϕf−1(x) ∈ ⊕τ :K0↪→EDτeτ =DK

cris(V (δ′)), then we have ϕi(x) ∈
Dϕ−ieϕ−i and ϕ(e) = (βe′id + e′ϕ−1 + · · ·+ e′

ϕ−(f−1))e, where (βe′id + · · ·+ e′
ϕ−(f−1)) ∈ (K0 ⊗Qp

E)× = (
⊕

0≤i≤f−1 Ee
′
ϕ−i)

×. So, by Proposition A3, V (δ′) is a split trianguline E-representation.
Thus, V is also a split trianguline E-representation. We have finished the proof of the theorem. 2

Appendix B. List of notation

Here is a list of the main notation of the article, in the order of the section in which it appears.

0.1: p, K, GK , ϕ, K∞, ΓK .
0.2: E, k, K0, K ′0, χ, Cp, χLT, recK .

1.1: Ẽ+, Ã+, Ã, B̃+, B̃, B+
dR, Amax, [p̃], B+

max, t, Bmax, BdR, Be, B̃+
rig, FiliBdR, log[p̃], Blog, N ,

V , W , We, W+
dR, WdR, W (V ), B̃†rig, rank(W ), W1 ⊗W2, W∨, W sat

1 , DL
cris(W ), DL

st(W ),
DL

dR(W ), W (D).

1.2: B†rig,K , RL, φL, Rbd
L , Rint

L , vL, ω, deg(M), µ(M), [a]∗M , Ã[r,s], B̃[r,s], B̃†,r, B̃†, B̃
†,r
rig , B̃†rig,

in, AK0 , EK0 , A, B, AK , BK , B†K , B†,rK , EK , B†,rrig,K , B†rig,K ,

1.3: We(D), W+
dR(D), W (D), D(W ).

1.4: D0, W0, δ, W (δ), UHKfini , ∇U , DSen(W ), ΘSen,W , {wσ}σ.
2: BE .

2.1: C•(W ), C0(W ), C1(W ), H∗(GK , W ), Ext1(W2, W1), H1
e(GK , W ), H1

f (GK , W ), H1
g(GK , W ).

2.3: σ(x), NK/Qp(x), | − |, |NK/Qp(x)|, ∂.

3.1: S+, S(δ1, δ2), PE(M), S′(δ1, δ2), S′ét(δ1, δ2), S′non-ét(δ1, δ2), W (s), V (s).
3.2: S+

0 , S+
∗ , S′ord(δ1, δ2).

4.1: S′′(δ1, δ2), Sst(δ1, δ2), S ét
cris(δ1, δ2).

4.2: Tcris, G(δ)σ, Tcris(δ1, δ2, {kσ}σ), T ét
cris(δ1, δ2, {kσ}σ), D(δ1,δ2,{kσ}σ),x, V(δ1,δ2,{kσ}σ),x.

4.3: Tst, Tst(δ, {kσ}σ), D(δ,{kσ}σ),(aσeσ)σ , V(δ,{kσ}σ),(aσeσ)σ .

A.1: WK , IK , Dpst(V ), D̄pst(V ), L(D̄, s), π(D̄).
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