Valence State Transformation of Rh on CeO₂NR/γ-Al₂O₃ Composite Support

Yifan Wang¹, Zhongqi Liu¹, and Ruigang Wang^{1*}

- ^{1.} Department of Metallurgical and Materials Engineering, The University of Alabama, Tuscaloosa, US.
- * Corresponding author: rwang@eng.ua.edu

Oxide supported catalysts are widely used in the heterogeneous catalysis industry nowadays. One of the most common industrial applications for oxide supported catalysts is in the automotive three-way catalytic converter (TWC). The reactions in TWC consist of CO oxidation, unburnt hydrocarbon oxidation and nitrogen oxides reduction. In the TWC application, CeO_2 is used as a support or promoter material to simultaneously promote two oxidation and one reduction reactions mentioned above, owing to the easy reversible valence state change between Ce^{3+} and Ce^{4+} . γ -Al₂O₃ possesses high surface area with porous structure which promotes the dispersion of metal catalysts and reactant gas adsorption. In this study, ceria nanorods (CeO_2 NR), gamma alumina (γ -Al₂O₃) and their composites are chosen as the support materials for rhodium (Rh) catalyst to explore the origin of support prompting effect for low temperature CO oxidation.

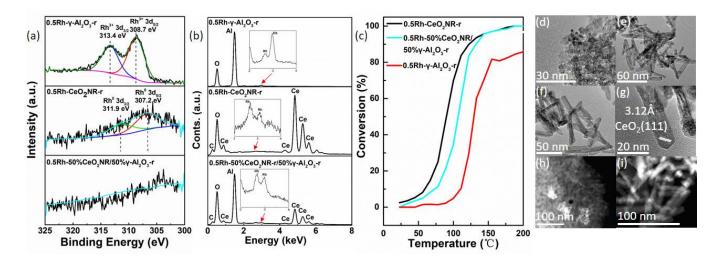

CeO₂ NR were synthesized by a hydrothermal method. Cerium nitrate hexahydrate (Ce(NO₃)₃·6H₂O, 0.1 M) and sodium hydroxide (NaOH, 6M) were mixed in a 200 mL Teflon-lined autoclave and kept in a box furnace at 90 °C for 48 h. After the hydrothermal reaction, the sample was filtered and washed with 500 mL DI water and 50 mL ethanol. CeO₂ NR were obtained by drying the sample at 60 °C for 12 h. γ-Al₂O₃ was synthesized by sol-gel method. Aluminum nitrate nonahydrate (Al(NO₃)₃) was first dissolved in DI water with urea and then the suspension was stirred for 1 h on a magnetic stirrer, filtered and dried. The dry powder was treated at 250 °C for 3 h and then heated at 500 °C for 3 h to obtain γ-Al₂O₃ powder. The composites were obtained by mixing two supports (CeO₂ NR and γ-Al₂O₃) powders in solution with magnetic stirring. The catalysts with 0.5 wt.% Rh loading were prepared by direct wet-chemical deposition. An appropriate amount of rhodium chloride was dropwise added into the suspension solution of support powders and stirred for 24 h. Then sodium borohydride was added into the solution and stirred for 1 h. After filtering and drying, the catalyst powders were oxidized at 300 °C for 5 h in air and then reduced at 300 °C for 5 h under 5% H₂/Ar flow. Finally, the catalysts were labelled as Rh-CeO₂NR-r, Rh-γ-Al₂O₃-r and Rh-50%CeO₂NR/50%γ-Al₂O₃-r (r refers to reduction treatment). The samples were characterized by XRD, BET surface area, Raman spectroscopy, XPS, and TEM. H₂ temperature programmed reduction (H₂-TPR)/O₂ temperature programmed desorption (O₂-TPD) were studied using a Micrometric AutoChem II 2920 chemisorption analyzer. The catalytic oxidation of CO was conducted using a fixed bed plug flow reactor system. The presence of CO and CO₂ were analyzed using an online gas chromatograph (SRI multiple gas analyzer GC, 8610C chassis).

Figure 1(a) shows the XPS spectra of Rh 3d for all three catalysts. A significant difference was observed in regard to the valence states of Rh among three catalysts: 0.5Rh- γ - Al_2O_3 -r only contains Rh^3 + species whereas 0.5Rh- CeO_2NR -r contains Rh^0 , and no Rh was detected on the surface of 0.5Rh- $50\%CeO_2NR/50\%\gamma$ - Al_2O_3 -r. The different valence states were due to the respective support effect of CeO_2NR and γ - Al_2O_3 or Rh-support interaction. On γ - Al_2O_3 support, it was reported that the existence of Rh^{3+} is because Rh reacts with alumina irreversibly and forms an irreducible oxide phase [1]. On CeO_2NR support, a strong interaction called oxygen ions back-spillover occurs between CeO_2NR and RhO_x at the interface [2]. It is not clear why there was little signal of Rh species for 0.5Rh- $50\%CeO_2NR/50\%\gamma$ -

Al₂O₃-r. Two possible hypotheses are that, (a) due to the significant amount of surface defects on CeO₂ NR and strong CeO₂-γ-Al₂O₃ interaction, Rh species diffuses in the lattice of the composite support; (b) Rh was encapsulated by porous layer of γ-Al₂O₃ or reacted with γ-Al₂O₃ to form rhodium aluminate (Rh(AlO_x)_v). The existence of Rh in all three samples was confirmed by the EDX analysis shown in Figure 1(b). The distribution of Rh species on these supports was characterized by TEM and STEM. Figure 1(d~g) show the TEM images of 0.5Rh-γ-Al₂O₃-r (d), 0.5Rh-CeO₂NR-r (e and g) and 0.5Rh-CeO₂NR/γ-Al₂O₃-r (f), respectively. The STEM-HAADF images were shown in Figure 1(h) and (i) corresponding to the 0.5Rh-γ-Al₂O₃-r and 0.5Rh-50%CeO₂NR/50%γ-Al₂O₃-r catalysts, respectively. Small RhO_x nanoclusters can be observed only in 0.5Rh-γ-Al₂O₃-r (h). No apparent RhO_x clusters are found in 0.5Rh-50%CeO₂NR/50%γ-Al₂O₃-r (i) which is consistent with the XPS results (Figure 1(a)). Figure 1(b) shows the CO conversion of three catalysts. The brighter contrast clusters in Figure 1(h) represent the RhO_x on γ-Al₂O₃ surface due to Z-contrast. For the CO oxidation performance, shown in Figure 1(c), it is clear that 0.5Rh-CeO₂NR-r shows the best low-temperature performance (below 120 °C) while 0.5Rh-50%CeO₂NR/50%γ-Al₂O₃-r has a similar catalytic activity as 0.5Rh-CeO₂NR-r at higher temperature range (above 120 °C). Metallic Rh has been considered as the active site for CO oxidation in comparison with RhO_x [3]. As a result of the strong CeO₂ NR- γ-Al₂O₃ interaction, the diffusion and/or transformation of RhO_x to other Rh species was promoted leading to the improved catalytic activity [4]. We will present more detailed interfacial structure and composition analysis.

References:

- [1] Suhonen, S. et al., Appl. Catal. A Gen. **218** (2001), p. 151.
- [2] Vayenas, C.G. et al., Chem. Mater. 16 (2004), p. 2317.
- [3] Gustafson, J. et al., ACS. Catal. 8 (2018), p. 4438.
- [4] The authors acknowledge funding from National Science Foundation (CHE-1657943) and American Chemical Society Petroleum Research Fund (#52323).

Figure 1. (a) XPS spectra, (b) EDX results, (c) CO conversion, TEM images of (d) 0.5Rh- γ -Al₂O₃-r, (e, g) 0.5Rh-CeO₂NR-r, (f) 0.5Rh-50%CeO₂NR/50% γ -Al₂O₃-r, and Z-contrast images of (h) 0.5Rh- γ -Al₂O₃-r and (i) 0.5Rh-50%CeO₂NR/50% γ -Al₂O₃-r.