ON MAXIMAL SPACELIKE HYPERSURFACES
IN A LORENTZIAN MANIFOLD

SEIKI NISHIKAWA

ABSTRACT. We prove a Bernstein-type property for maximal spacelike hypersurfaces in a Lorentzian manifold.

§1. Introduction

The object of this note is to prove the following

THEOREM A. Let N be a Lorentzian manifold satisfying the strong energy condition. Let M be a complete maximal spacelike hypersurface in N. Suppose that N is locally symmetric and has nonnegative spacelike sectional curvature. Then M is totally geodesic.

For the terminology in the theorem, see Section 2.

It has been proved by Calabi [2] (for $n < 4$) and Cheng-Yau [4] (for all n) that a complete maximal spacelike hypersurface in the flat Minkowski $(n + 1)$-space L^{n+1} is totally geodesic. In particular, the only entire nonparametric maximal spacelike hypersurfaces in L^{n+1} are spacelike hyperplanes. This is remarkable since the Euclidean counterpart, the Bernstein theorem, holds only for $n \leq 7$: the entire nonparametric minimal hypersurfaces in the Euclidean space R^{n+1}, $n \leq 7$, are hyperplanes (cf. [8]).

Theorem A implies, for instance, that a complete maximal spacelike hypersurface in the Einstein static universe is totally geodesic. In the proof of Theorem A, a refinement of a Bernstein-type theorem of Choquet-Bruhat [5, 6] will be also given.

§2. Definitions

First we set up our terminology and notation. Let $N = (\overline{N}, \overline{g})$ be a

S. Nishikawa
Nagoya Math. J.
Vol. 95 (1984), 117-124

On Maximal Spacelike Hypersurfaces
In a Lorentzian Manifold

Seiki Nishikawa

Abstract. We prove a Bernstein-type property for maximal spacelike hypersurfaces in a Lorentzian manifold.

§1. Introduction

The object of this note is to prove the following

Theorem A. Let N be a Lorentzian manifold satisfying the strong energy condition. Let M be a complete maximal spacelike hypersurface in N. Suppose that N is locally symmetric and has nonnegative spacelike sectional curvature. Then M is totally geodesic.

For the terminology in the theorem, see Section 2.

It has been proved by Calabi [2] (for $n \leq 4$) and Cheng-Yau [4] (for all n) that a complete maximal spacelike hypersurface in the flat Minkowski $(n + 1)$-space L^{n+1} is totally geodesic. In particular, the only entire nonparametric maximal spacelike hypersurfaces in L^{n+1} are spacelike hyperplanes. This is remarkable since the Euclidean counterpart, the Bernstein theorem, holds only for $n \leq 7$: the entire nonparametric minimal hypersurfaces in the Euclidean space R^{n+1}, $n \leq 7$, are hyperplanes (cf. [8]).

Theorem A implies, for instance, that a complete maximal spacelike hypersurface in the Einstein static universe is totally geodesic. In the proof of Theorem A, a refinement of a Bernstein-type theorem of Choquet-Bruhat [5, 6] will be also given.

§2. Definitions

First we set up our terminology and notation. Let $N = (\overline{N}, \overline{g})$ be a
Lorentzian manifold with Lorentzian metric \(\bar{g} \) of signature \((- , +, \cdots, +)\). \(N \) has a uniquely defined torsion-free affine connection \(\nabla \) compatible with the metric \(\bar{g} \). \(N \) is said to satisfy the strong energy condition (the timelike convergence condition in Hawking-Ellis [7]) if the Ricci curvature \(\bar{Ric} \) of \(N \) is positive semidefinite for all timelike vectors, that is, if \(\bar{Ric}(u, v) \geq 0 \) for every timelike vector \(v \in TN \) (cf. [1, 6]). \(N \) is called locally symmetric if the curvature tensor \(\bar{R} \) of \(N \) is parallel, that is, \(\bar{R} = 0 \). We say that \(N \) has nonnegative spacelike sectional curvature if the sectional curvature \(\bar{K}(u \wedge v) \) of \(N \) is nonnegative for every nondegenerate tangent 2-plane spanned by spacelike vectors \(u, v \in TN \).

Let \(M \) be a hypersurface immersed in \(N \). \(M \) is said to be spacelike if the Lorentzian metric \(\bar{g} \) of \(N \) induces a Riemannian metric \(g \) on \(M \). For a spacelike \(M \) there is naturally defined the second fundamental form (the extrinsic curvature) \(S \) of \(M \). \(M \) is called maximal spacelike if the mean (extrinsic) curvature \(H = \text{Tr} S \), the trace of \(S \), of \(M \) vanishes identically. \(M \) is maximal spacelike if and only if it is extremal under the variations, with compact support through spacelike hypersurfaces, for the induced volume. \(M \) is said to be totally geodesic (a moment of time symmetry) if the second fundamental form \(S \) vanishes identically.

§3. Local formulas

Let \(M \) be a spacelike hypersurface in a Lorentzian \((n + 1)\)-manifold \(N = (N, \bar{g}) \). We choose a local field of Lorentz orthonormal frames \(e_0, e_1, \ldots, e_n \) in \(N \) such that, restricted to \(M \), the vectors \(e_0, \ldots, e_n \) are tangent to \(M \). Let \(\omega_0, \omega_1, \ldots, \omega_n \) be its dual frame field so that the Lorentzian metric \(\bar{g} \) can be written as \(\bar{g} = -\omega_0^2 + \sum_{i} \omega_i^2 \).\(^*\) Then the connection forms \(\omega_{\alpha \beta} \) of \(N \) are characterized by the equations

\[
\begin{align*}
\omega_{i0} &= - \sum_k \omega_{ik} \wedge \omega_k + \omega_{i0} \wedge \omega_0, \\
\omega_0 &= - \sum_k \omega_{0k} \wedge \omega_k, \quad \omega_{\alpha \beta} + \omega_{\beta \alpha} = 0.
\end{align*}
\]

The curvature forms \(\bar{\Omega}_{\alpha \beta} \) of \(N \) are given by

\[
\begin{align*}
\bar{\Omega}_{ij} &= \omega_{ij} + \sum_k \omega_{ik} \wedge \omega_{kj} - \omega_{i0} \wedge \omega_{0j}, \\
\bar{\Omega}_{0i} &= \omega_{0i} + \sum_k \omega_{0k} \wedge \omega_{ki}.
\end{align*}
\]

\(^*\) We shall use the summation convention with Roman indices in the range \(1 \leq i, j, \cdots \leq n \) and Greek in \(0 \leq \alpha, \beta, \cdots \leq n \).
and we have

\[
\bar{\Omega}_{a\beta} = \frac{1}{2} \sum_{i,\delta} \bar{R}_{a\beta\delta} \omega_i \wedge \omega_\delta,
\]

where \(\bar{R}_{a\beta\delta}\) are components of the curvature tensor \(\bar{R}\) of \(N\).

We restrict these forms to \(M\). Then

\[
\omega_0 = 0,
\]

and the induced Riemannian metric \(g\) of \(M\) is written as \(g = \sum_i \omega_i^2\). From formulas (1)-(4), we obtain the structure equations of \(M\)

\[
\begin{align*}
d\omega_i &= -\sum_k \omega_{ik} \wedge \omega_k, \quad \omega_{ij} + \omega_{ji} = 0, \\
d\omega_{ij} &= -\sum_k \omega_{ik} \wedge \omega_{kj} + \omega_{i0} \wedge \omega_{0j} + \bar{\Omega}_{ij}, \\
\Omega_{ij} &= d\omega_{ij} + \sum_k \omega_{ik} \wedge \omega_{kj} = \frac{1}{2} \sum_{k,l} \bar{R}_{ljk} \omega_k \wedge \omega_l,
\end{align*}
\]

where \(\Omega_{ij}\) and \(\bar{R}_{ljk}\) denote the curvature forms and the components of the curvature tensor \(\bar{R}\) of \(M\), respectively. We can also write

\[
\omega_{i0} = \sum_j h_{ij} \omega_j,
\]

where \(h_{ij}\) are components of the second fundamental form \(S = \sum_{i,j} h_{ij} \omega_i \otimes \omega_j\) of \(M\). Using (6) in (5) then gives the Gauss formula

\[
R_{ijkl} = \bar{R}_{ijkl} - (h_{ik} h_{lj} - h_{ij} h_{lk}).
\]

Let \(h_{ijk}\) denote the covariant derivative of \(h_{ij}\) so that

\[
\sum_k h_{ijk} \omega_k = dh_{ij} - \sum_k h_{ik} \omega_{kj} - \sum_k h_{ik} \omega_{kj}.
\]

Then, by exterior differentiating (6), we obtain the Coddazi equation

\[
h_{ijk} - h_{ikj} = \bar{R}_{0ijk}.
\]

Next, exterior differentiate (8) and define the second covariant derivative of \(h_{ij}\) by

\[
\sum_{\ell} h_{ij\ell} \omega_{\ell} = dh_{ij} - \sum_{\ell} h_{i\ell j} \omega_{\ell} - \sum_{\ell} h_{i\ell j} \omega_{\ell j} - \sum_{\ell} h_{ij\ell} \omega_{\ell j}.
\]

Then we obtain the Ricci formula

\[
h_{ij\ell} - h_{ij\ell} = \sum_m h_{mj} R_{m\ell j\ell} + \sum_m h_{im} R_{m\ell j\ell}.
\]

Let us now denote the covariant derivative of \(\bar{R}_{a\beta\delta}\), as a curvature tensor of \(N\), by \(\bar{R}_{a\beta\delta;\ell}\). Then restricting on \(M\), \(\bar{R}_{0ijk\ell}\) is given by
where \(R_{\alpha jk} \) denote the covariant derivative of \(R_{\alpha jk} \) as a tensor on \(M \) so that
\[
\sum_\ell \frac{\partial}{\partial x^\ell} R_{\alpha jk \ell} \omega_\ell = dR_{\alpha jk} - \sum_\ell \frac{\partial}{\partial x^\ell} R_{\alpha jk \ell} \omega_\ell - \sum_\ell \frac{\partial}{\partial x^\ell} R_{\alpha jk \ell} \omega_\ell - \sum_\ell \frac{\partial}{\partial x^\ell} R_{\alpha jk \ell} \omega_\ell.
\]

The Laplacian \(\Delta h_{ij} \) of the second fundamental form \(h_{ij} \) is defined by
\[
\Delta h_{ij} = \sum_k h_{ijkk}.
\]

From (9) we then obtain
\[
\Delta h_{ij} = \sum_k h_{kij} + \sum_k R_{0ijk},
\]
and from (10)
\[
h_{kij} = h_{kij} + \sum_m h_{mi} R_{mkj} + \sum_m h_{km} R_{mijk}.
\]
Replace \(h_{kij} \) in (13) by \(h_{kij} + R_{0kij} \) (by (9)) and substitute the right hand side of (13) into \(h_{kij} \) in (12). Then we obtain
\[
\Delta h_{ij} = \sum_k (h_{kij} + R_{0kij} + R_{0ijk})
\]
\[
+ \sum_k (\sum_m h_{mi} R_{mkj} + \sum_m h_{km} R_{mijk}).
\]

From (7), (11) and (14) we then obtain
\[
\Delta h_{ij} = \sum_k h_{kij} + \sum_k R_{0kij} + \sum_k R_{0ij};
\]
\[
+ \sum_k (h_{kij} R_{0ij} + h_{ij} R_{0ijke})
\]
\[
+ \sum_{m,k} (h_{mij} R_{mkj} + 2h_{mkj} R_{mijk} + h_{mij} R_{mij})
\]
\[
- \sum_{m,k} (h_{mij} h_{mkj} + h_{kmj} h_{ijk} - h_{kjm} h_{ijk} - h_{km} h_{mkj})
\]

Now we assume that \(N \) is locally symmetric, that is, \(R_{\alpha jk} = 0 \) and that \(M \) is maximal in \(N \), so that \(\sum_k h_{kij} = 0 \). Then, from (15) we obtain
\[
\sum_i h_{ij} \Delta h_{ij} = \sum_i h_{ij}^2 R_{0ij} + \sum_i 2(h_{ij} h_{ij} R_{mijk} + h_{ij} h_{kij} R_{mijk})
\]
\[
+ (\sum_i h_{ij})^2.
\]

This is the Lorentzian version of the well-known formula established, for example, in [8].
§ 4. Proof of Theorem A

Theorem A is an immediate consequence of the following

THEOREM B. Let \(N = (N, g) \) be a locally symmetric Lorentzian \((n + 1)\)-manifold and \(M \) be a complete maximal spacelike hypersurface in \(N \). Assume that there exist constants \(c_1, c_2 \) such that

(i) \(\text{Ric} \,(u, v) \geq c_1 \) for all timelike vectors \(v \in TN \),

(ii) \(\text{K}(u \wedge v) \geq c_2 \) for all nondegenerate tangent 2-planes spanned by spacelike vectors \(u, v \in TN \), and

(iii) \(c_1 + 2nc_2 \geq 0 \).

Then \(M \) is totally geodesic.

To prove Theorem B, we first note

LEMMA 1. Under the assumptions of Theorem B,

\[
\frac{1}{2} \Delta (\sum_{i,j} h^2_{ij}) \geq (\sum_{i,j} h^2_{ij})^2.
\]

Proof. For any point \(p \in M \), we may choose our frame \(\{ e_1, \cdots, e_n \} \) at \(p \) so that \(h_{ij} = \lambda_i \delta_{ij} \). Then, by assumption (ii) of Theorem B, we have at \(p \)

\[
\sum_{i,j,k,m} 2(h_{ij} h_{km} R_{ik\ell k} + h_{ij} h_{mk} R_{i\ell k}) = \sum_{i,k} 2(\lambda_i \lambda_k R_{i\ell k}) + \lambda_i \lambda_k R_{ik\ell k} \geq c_2 \sum_{i,k} (\lambda_i - \lambda_k)^2 = 2c_2 (n \sum_i \lambda_i^2 - (\sum_i \lambda_i)^2) = 2nc_2 \sum_{i,j} h^2_{ij}.
\]

Also we have by assumption (i)

\[
\sum_k R_{kk} \geq c_1.
\]

It then follows from (16) and assumption (iii) that

\[
\frac{1}{2} \Delta (\sum_{i,j} h^2_{ij}) = \sum_{i,j,k} h_{ij}^2 R_{ik\ell k} + \sum_{i,j} h_{ij} \partial h_{ij} \geq (c_1 + 2nc_2)(\sum_{i,j} h^2_{ij}) + (\sum_{i,j} h^2_{ij})^2 \geq (\sum_{i,j} h^2_{ij})^2.
\]

Let \(u = \sum_{i,j} h^2_{ij} \) be the squared of the length of the second fundamental form of \(M \). The proof of Theorem B is complete if we show that \(u \) vanishes identically. Recall that from (17), \(u \) satisfies
\(\Delta u \geq 2u^2. \)

Then, by the maximum principle, the result is immediate provided \(M \) is compact.

We now assume that \(M \) is noncompact and complete. We will modify the maximum principle argument as in [4]. Take a point \(p \in M \), and let \(r \) denote the geodesic distance on \(M \) from \(p \) with respect to the induced Riemannian metric. For \(a > 0 \), let \(B_a(p) = \{ x \in M \mid r(x) < a \} \) be the geodesic ball of radius \(a \) and center \(p \).

Lemma 2. For any \(a > 0 \), there exists a constant \(c \) depending only on \(n \) such that

\[
\begin{equation}
 u(x) \leq \frac{ca^2(1 + |c_1|^n a)}{(a^2 - r(x))^2}
\end{equation}
\]

for all \(x \in B_a(p) \).

Proof. Assuming that \(u \) is not identically zero on \(B_a(p) \), we consider the function

\[
f(x) = (a^2 - r(x))^2 u(x), \quad x \in B_a(p).
\]

Then \(f \) attains a nonzero maximum at some point \(q \in B_a(p) \), for the closure of \(B_a(p) \) is compact since \(M \) is complete. As in \([2, 3]\), we may assume that \(f \) is \(C^2 \) around \(q \). Then we have

\[
\nabla f(q) = 0, \quad \Delta f(q) \leq 0.
\]

Hence at \(q^* \)

\[
\begin{align*}
\frac{\nabla u}{u} &= \frac{4r \nabla r}{a^2 - r^2}, \\
\frac{\Delta u}{u} &\leq \frac{|\nabla u|^2}{u^2} + \frac{8r^2}{(a^2 - r^2)^2} + \frac{4(1 + r \Delta r)}{a^2 - r^2},
\end{align*}
\]

from which we obtain

\[
\begin{equation}
\frac{\Delta u}{u}(q) \leq \frac{24r^2}{(a^2 - r^2)^2}(q) + \frac{4(1 + r \Delta r)}{a^2 - r^2}(q).
\end{equation}
\]

On the other hand, according to [Lemma 1, 9], \(\Delta r(q) \) is bounded from above by

\footnote{We may concentrate on the case of \(q = p \) for the proof become simpler when \(q = p \).}
where a is the tangent vector of the minimizing geodesic $\sigma: [0, r(q)] \to M$ from p to q and Ric denotes the Ricci curvature of M. Also, from (7) and assumption (ii) of Theorem B, $\text{Ric}(\sigma(t), \sigma(t))$ is bounded from below by $R(q)$.

It follows from (20) and (23) that

$$f(q) = (a^2 - r(q))u(q) \leq c_1a + c_2$$

for all $x \in B(p)$.

Since M is maximal spacelike, we may fix x in Inequality (19) and let a tend to infinity. Then we obtain $u(x) = 0$ for all $x \in M$. This completes the proof of Theorem B.

Remark. Let $N = \mathbb{L}^{k+1} \times S^n$, be the product Lorentzian manifold of the flat Minkowski $(k+1)$-space \mathbb{L}^{k+1}, $1 \leq k \leq n$, and S^n, a Riemannian $(n-k)$-manifold of positive constant curvature. Then N satisfies the assumptions of Theorem A. The Einstein static space $\mathbb{R} \times S^n$, a Riemannian $(n+1)$-manifold of constant curvature $c > 0$, called the de Sitter space, satisfies the assumptions of Theorem B (with $c = -c_1$, $c_2 = 0$). Theorem B then gives a refinement of a theorem of Choquet-Bruhat [Theorem 4.6, 6].

The Lorentzian $(n+1)$-manifold S^{n+1} of constant curvature $c > 0$, called the de Sitter space, satisfies the assumptions of Theorem B (with $c = -c_1$, $c_2 = 0$). Theorem B then gives a refinement of a theorem of Choquet-Bruhat [Theorem 4.6, 6].
REFERENCES

Department of Mathematics
Faculty of Science
Kyushu University
Fukuoka 812
Japan