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ON RAMIFICATION THEORY

IN PROJECTIVE ORDERS

SHIZUO ENDO

The ramification theory in commutative rings, as a generalization of the

classical one in maximal orders over a Dedekind domain, was established in

[1], [13], [15] and etc.. For non-commutative algebras this was also studied

in [3], [4], [9], [18] and etc.. However, the different theorem, which is a

central part of ramification theory, has not been given in those, except for

some special cases (cf. [12], [18]). The main object of this paper is to give

the discriminant theorem and the different theorem for projective orders

in a (non-commutative) separable algebra, in the most general form.

Let R be a Dedekind domain and K be the quotient field of R.

Recently it was proved in [9] that, if R has the perfect residue class fields,

then the Noetherian different of a maximal i?-order in a central simple

ϋC-algebra is a square-free ideal of R. Another object of this paper is,

more generally without assuming that R has the perfect residue class fields,

to determine completely the structure of the Dedekind different and the

Noetherian different for a hereditary i?-order in a central simple i£-algebra.

In § 2 we discuss some basic properties of the differents of algebras

and give criteria on the separability of projective orders. In § 3 we first

give the Noetherian different theorem for algebras. Further, using these

results, we prove, under some restrictive assumptions, the discriminant

theorem and the Dedekind different theorem for projective orders, each of

which is a generalization of the classical one for maximal orders over a

Dedekind domain.

In § 4 we restrict our attention to hereditary orders over a Dedekind

domain. Let R be a Dedekind domain with quotient field K and 2 a

central simple ϋC-algebra. We show that, for any hereditary i?-order A in
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122 SHIZUO ENDO

Σ , the image, TrdΣ/κ(Λ)9 of A under the reduced trace Trdz/K of Σ is an

ideal of R which does not depend on A and give a characterization of 2

such that, for any hereditary R-ovάev A in Σ> TrdΣ/κ{A) coincides with R.

With these preparations we prove the structure theorem of the differents

of hereditary orders over a Dedekind domain.

Finally, in § 5, we introduce the notion of locally symmetric orders

and give the Dedekind different theorem for locally symmetric orders.

Further we discuss some basic properties of locally symmetric, hereditary

orders over a Dedekind domain. It is noted that the study of symmetric

maximal orders over a discrete (rank-one) valuation ring is closely related

to the study of the Brauer group of a field with discrete (rank-one) valua-

tion whose residue class field is not perfect.

§ 1. Notation and terminology

Throughout this paper we shall only consider rings with identity and

modules that are unitary, and we shall denote commutative rings by R, S,

and rings, which are not always commutative, by A, Γ, . All i?-algebras

considered will be assumed to be faithful as i?-modules.

Let A be an i?-algebra. We denote by A° the opposite algebra of A

and by A* the dual, Homβ(Λ, R), of A. In general there is a A (x) A°-

epimorphism ΦA/R A®A°-+A defined by ΦA/R{λ®μ°) — λμ. The kernel of

ΦA/R9 which we denote by JΛ/R, is a left ideal of A®A°, and then the

right annihilator of it, which we denote by AA/R, is a right ideal of A (x) A°.

It is easily seen (cf. [3]) that the image ΦA/R(AA/R) of AA/R under ΦΛ/R is an

ideal of the center of A. We call ΦA/R(AA/R) the Noetherian (or homological)

different of A and denote it by NΛ/R (cf. [16], [3]).

Let R be a commutative ring with total quotient ring K and Σ a

separable X-algebra which is a finitely generated projective ^-module. An

7?-algebra A which is a finitely generated torsion-free i?-module such that

X(xM = Σ will be called an i?-order in Σ Especially, an border A in

Σ will be called a projective i?-order if it is i?-projective. Denote by F

the center of Σ and let tz/K be the composed map of the reduced trace

TrdΣ/F:Σ->F (cf. [7], where we denote it by Trd%) and the trace TF/K:

F -> K. For an i?-order i in S» w e define the complementary m'odule,

CA/R, and the Dedekind different, DΛ/R9 to be the sets: CA/R= {cceΣI

tΣ/κ(%A) Q R] and DA/R = {x e J1\CA/R x Q A}. Obviously both CA/R and
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DAJR are two-sided Λ-submodules of ΣJ. Furthermore we put DA/R = \ΌAjRf

and call it the weak Dedekind different of A. In particular, assume that

A is a projective i?-order in Σ In case A has constant rank n over

i?, we denote by dΛ R, the 7?-submodule of K which is generated by

det[ίΣ/ϋ:(^i%)] where {ul9u29 ',un] runs over all sets of n elements in A.

However, in case A has not constant rank, there is a unique decomposition,

/? = i ? 1 © 7 ? 2 θ ' θ R H such that every 7^ (x) A has constant rank ni over

i?, and nx<nt<- - < n , , and we put dA/R = d Ri^A/Ri ® dR^Λ/Rz® ®

dRι^A/Rι. We shall call dJ/R the discriminant of A. Clearly, dΛR is a

locally free 7?-submodule of K, and especially, if tΣ/κ{A) £Ξ i?, we have
dΛ,R^DΛ/R^ΛzCΛ/R.

For a ring A we shall denote by J{A) the Jacobson radical of it and

by P{A) the prime radical of it, i.e., the intersection of all prime (two-sided)

ideals of A, and, more generally, for an ideal 2Ϊ of A, we shall denote by

PAW) the prime radical of it in A, i.e., the intersection of all prime ideals

of A containing 9Ϊ.

§ 2. Basic properties

We begin with

PROPOSITION 2. 1. Let A be an R-algebra and Z the center of A. Then

^AIZ^ZIR — NΛ/R ^ J^A/Z If Λ is a finitely generated projective Z-module, then

NΛ/R c Nz/R and, furthermore, if Nz/R is an invertible ideal of Z, then NA/R =

NA/Z'NZ/R-

Proof By tensoring each term of the exact sequence: 0 — > J Z / R — >

Z®Z—>Z—>0 with A(g)A° over Z(x)Z, we obtain the exact sequence:
R R R ^

(A(g)A°) (x) Jz/R—>A®A° > {A® A0) ® Z >0.
R Z®Z ZIK R R Z<&Z

It is clear that (A(g)A°) (x) Z = A (x) (A°®Z)^A®A°. If we identify
R Z®Z R0Z Z Z

[A® A°) (x) Z with Λ®Λ°, then 1®ΦΎ/J? can also be identified with the
R Z (5<) Z Z '

homomorphism Φτ of A (x) A° onto A ® Λ° such that Φ'(λ (x) μ°) = λ ® μ° for
R Z R Z

any λ, μ e A. Now, denoting by {A (x) Λ°)JZ/R the ideal of A (x) Λ° generated
R ' R

by the image of Jz/R in Λ®A°, we have the following commutative

diagram:
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Ψ Ψ φ' Ψ

I I ΦΛ/R I ΦΛ/Z
ψ ψ IA \,

0 — > 0 >A > A >0

Ϊ i i
0 0 0

where all rows and columns are exact. It is easily seen that Φ'(AA/R) £ AA/Z9

hence, by applying ΦA/Z to both sides, we obtain NA/R £ NA/Z. Let a be

an element of AA/Z and denote by a a representative of a in Λ®A°.

Since Φ'(JA/R a) = JA/Z ΰ
 = °> w e have JA/R a Q (A®A°)JZR in view of the

above diagram, so that JA/R a Az/R= 0, i.e., α ^ L ^ c ^L^, and therefore
Accordingly A -Nz/R ε Φ ^ * ) . Applying

Φ. / 7 to both sides, we find that NΛt7 N7IΊ?^ NλίΊ?. Now assume that A is
Λ/Z, J ΛjZ/ Δ/ K. Λ/Jx

a finitely generated projective Z-module. Then A ® A° is a finitely generated

projective, faithful Z® Z-module, and therefore the annihilator of {A®A°)JZR

coincides with (A®A°)AZ/R. Since (A(x) A°)JZ/R e JA/R by the above

diagram, it follows that AA/R £ (A (x) ̂ O)^4z/i2, so that, by applying ΦΛ/Λ to

both sides, NΛ/R Q NZ/R*A. Consequently we obtain NA/R Q Nz/R, because

Z is the direct summand of A as Z-modules. Furthermore assume that

Nz/R is an invertible ideal of Z. Since Φf(AA/R) c (A (x) A°)NZ/R, ίNz/RYι

Φ\AA/R) CLA®A\ However Φ'{AA/R) ε ^ / z , so that JA/Z'\NZ/RY^Φ\AA/R)= 0.

Thus we must have lNz/R\'^Φf(AA/R) Q AΛ/Z, i.e., Φ'(A^) ε AA/Z NZ/R.

Applying ΦΛjZ to both sides, we find that NA/R £ NA/Z NZ/R, completing the

proof of the proposition.

For the Dedekind diίferents we prove the following proposition which

has the similar form to (2. 1).

PROPOSITION 2. 2. Let A be an R-order in a separable K-algebra Σ> and

Z the center of A. Then DA/Z DZ/R<^ DA/R. Especially, if Cz/R is an invertible

fractional ideal of Z or if A is a quasi-Frobenius Z-algebra, then DΛ/Z DZ/R = DΛ/R.

Proof We denote by F the center of Σ . Since TF/κ(Z*TrdΣ/F{CA/R)}

F(CΛ/R)^CZ!R> S O t h a t T^d^,F^Λ,R^ZI^^^ a n d
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therefore CΛ/R-DZ/R^CΛ/Z, i.e., CA/R- Dz/R DΛ/Z £ Λ. Thus we obtain

DZjR'DΛ/z £ DΛ/R, which proves our first assertion. Now we see

TrdΣ/F{Cz/R.CΛ/z) = Cz/R.TrdΣ/F{CΛ/z)^CZIR9 so that tΣ/K(Cz/R-CA/Z) ε R.

Therefore CZ/R-CA/Z^ CA/R and so CZ/R-CA/Z-DA/R^ A. Accordingly we

have CZ/R'DΛ/RQ DΛ/Z. Thus, in case Cz/R is invertible, we find that

DA/R c DA/Z DZ/R. Finally, if A is a quasi-Frobenius Z-algebra, CΛJZ is

invertible by a remark in [18], p. 228. Because A is projective over Z,

the fact that CZ/R-CA/Z-DA/R c A implies that CA/Z-DA/R c DZ/R A. Consequ-

ently we must have DA/R Q DAZ Dz/R. This completes the proof of the

proposition.

The following result is due to [9] and [18].

PROPOSITION 2. 3. If A is a projective R-order in a central separable K~

algebra Σ , then TrdΣ/κ(DA/R) = NA/R and DΛ/R c CA/R.

Proof. See [9], (2. 2. 3) and [18], Th. 7 and 8.

PROPOSITION 2. 4. Let S be a projective R-order in a commutative separable

K-algebra. Then Ds/R = Ns/R.

Proof This can be done along the same line as in [1], (3. 1) and

therefore we omit this.

From these propositions we derive

PROPOSITION 2. 5. Let 2 be a separable K-algebra with center F and A

a projective R-order in 2 with center Z. If A is Z-projective and Z is a quasi-

Frobenius R-algebra, then TrdΣ/F(DA/R) = NA/R.

Proof By virtue of (2. 1) and (2. 2) we have NA/R = NA/Z NZ/R and
DΛ/R= DΛ/ZDZ/R- B u t > according to (2.3) and (2.4), TrdΣ/F(DA/z) = NA/Z

and Dz/R = Nz/R. Thus we find that TrdΣ/F(DA/R) = J V ^

Now we give criteria on the separability of a projective order. First,,

for the case where S has K as its center, we show

PROPOSITION 2. 6. For any projective R-order A in a central separable K-

algebra Σ> the following statements are equivalent:

(1) Λ* = At.

(2) CA/R = A.

(3) DA/R=A.
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(4) dΛίR=R.

(5) NA/R — R, i.e., A is separable over R.

Here t denotes the restriction of Trd^. to A.

Proof The implication (1) Φ=> (2) <=> (3) <=> (5) have been verified in

[18], Th. 8, and the implication (2) = > (4) is obvious. Hence we have

only to show (4) = > (5). By using the similar argument to the proof of

[7], (1. 2), it is sufficient to prove this in the case that R is Noetherian.

Now assume that dA/R = R. Clearly Σ1IP(R)Σ1 is a central separable K-

algebra and A/P(R)Λ is a projective R/P{R)~order in ΣJAP(Λ)ΣJ. Furthermore

we have i ^ ^ ^ = dA/R + P{R)/P{R) = R/P{R)9 and A is separable

over R whenever A/P(R)A is separable over R/P{R). Therefore we may

assume that R is a Noetherian ring without non-trivial nilpotent element.

Then the integral closure R of R in K is expressible as the direct sum of

a finite number of Krull domains. Here we have also άg^A/R^ R® dΛ/R
R R

= R, and/I is separable over R whenever R®A is separable over R. Hence,

under the assumption that R is a Krull domain, it is sufficient to prove

that A is separable over i?. Since TrdΣ/ (A) Q R in this case, we have

^ = : dΛ/R - DΛ/R - A so that DΛ/R = Λ. Because (3) and (5) are equivalent,

this implies that A is separable over R.

In the general case, some additional hypotheses must be imposed on

A or R.

PROPOSITION 2. 7. Let A be a projective R-order in a separable K-algebra

and suppose that A is projective as a module over its center Z. Then we have

and the following statements are equivalent for A:

(1)

(2)

(3)

(4)

A* =

Cj/R

DΛ,R

dΛ/R

At.

= A.

= A.

= R and

(5) NA/R — Z, i.e., A is separable over R. Here t denotes the restriction of

tΣ/κ to A.

Proof According to (2. 3), we have DΛ/Z c CA/Z. However, because

A is Z-projective, it is easily seen that CΛ/Z Q CΛ R. Thus we obtain
DΛ/R- &Λ/Z- CJ/Z-CA/R- ^ e x t w e shall prove the second part of the
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proposition. The implication (5) ==> (1) follows immediately from [7], (4. 2),

and the implications (1) <=> (2) <£=> (3) can be shown by the same way as

in the proof of [18], Th. 8. Also the implications (2) Φ=> (4) are obvious.

Hence we need only show (2), (3) ==> (5). Assume that DAjR = CΛ/R = A.

Since DA/R c DA/Z c CA/Z Q CA/R, we have DA/Z = CA/Z = Λ, so that, by (2. 6),

A is separable over Z. Therefore we have, by (2. 2), Dz/R = Z, and

hence, from (2. 4), it follows that Z is separable over R. Thus, by [3],

(2. 3), we know that A is separable over i?, which shows (2), (3) = > (5).

PROPOSITION 2. 8. ^4^wm^ one of the following conditions:

( i ) R is a Noetherian ring with Krull dimension 1.

(ii) R is a regular domain.

Let A be a projective R-order in a separable K-algebra 2 and Z the center of A.

Then the following statements are equivalent:

(1) A* = At.

(2) CA/R = A.

(3) DA/R = A.

(4) dA/R=R.

(5) NA/Z — Z, i.e., A is separable over R. Here t denotes the restriction of

**,- to A.

Proof Evidently we have only to prove (2) <=> (3) 4=Φ (4) = Φ (5). As-

sume that R is a Noetherian ring with Krull dimension 1. By using the

same method as in the proof of (2. 6), it is sufficient to prove (2) <=> (3)

Φ=> (4) = > (5) in case R is a Dedekind domain. If R is a Dedekind do-

main, then we have t(A) Q R, so that the implications (2) <=> (3) <=> (4) are

obvious. Now suppose that CA/R = A. Let Γ be a maximal i?-order in 2

which contains A. Then we have Γ Q C Γ / i ? Q C = A, and so A = Γ.

Therefore A itself is a maximal b o r d e r in Σ> so that A is Z-projective.

Thus, by (2. 7), we conclude that A is separable over R, which shows that

(2) implies (5). Next, assume that R is a regular domain. Since R is

integrally closed, we have t{A) £ R. Then we can easily show (2) <=Φ (3)

<Φ=Φ (4), hence we need only show (2) = > (5). If we assume that CA/R = A,

then it can be seen, analogously, that A is maximal in Σ Therefore the

center Z is an integrally closed Noetherian ring, and so it is expressible as
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the direct sum of a finite number of integrally closed integral domains*

Hence we may assume that Z is an integrally closed integral domain.

Since, for any prime ideal p of height 1 in R, Rp is a Dedekind domain

and CΛp/Rp = Λp, Λp is separable over Rp, and so Zp is also separable over

Rp. Because R is regular, Z is separable over R by [14], (41. 1). Then,

the fact that A is 7?-projective implies that A is Z-projective. Thus, by

(2. 7), A must be separable over R, completing the proof of the proposition.

§ 3. Different theorems

First we give

L E M M A 3. 1. Let A be an R-algebra which is a finitely generated R-module

and Z be the center of A. Let $ be a prime ideal of A, and put q = $ ί l Z and

p = $β Π R. Then the following conditions are equivalent:

(1) ApffiAp is separable over Rp/pRp, and S$Aq = pAq.

(2) Ap/PΛ(qA)Ap is separable over Rp/pRp, and PΛ(c\A)Aq = pAq.

(3) Ap/qAp is separable over Rp/pRp and qAq = pΛq.

(4) Aq/pAq is separable over Rp/pRp.

Proof As this is easy, we omit it.

Now let A be an ivNalgebra which is a finitely generated i?-module.

Then a prime ideal $ of A is said to be unramified over R if it satisfies

the equivalent conditions in (3. 1).

THEOREM 3. 2 (Noetherian different theorem). Let A be an R-algebra and Z

the center of A. Assume that both A and Z are finitely generated R-modules. For

any prime ideal ξβ of A, the following conditions are equivalent:

(1) Λr^ίίnz.

(2) $ is unramified.

Proof. Put q = 5β Π Z and p = $ n i ? as in (3. 1). If we suppose

NΛ/R c q, then, by (2. 1), we have Nz/R c q or NA/Z S q. In case Nz/R £ q,

it can be shown that Zq/pZq is not separable over Rp/pRp9 by using the

same method as in the proof of [1], (2. 7). On the other hand, in case

NΛ/Z e q, Aq is not separable over Zq. Therefore, in both cases, Aq/pAq is

not separable over Rp/pRp. Conversely suppose that NΛ/R $ q. Then we

have, by (2. 1), NA/Z $ q, so that Aq is separable over Zq. Again, by
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applying (2. 1) to Aq, we obtain NΛq/Rp = Nzq/Rp. Because NΛq/Rp Ώ. [NΛ/R\q,

we have Nzq/R £ qZq, and so we can show, again by using the same

method- as in the proof of [1], (2. 7), that ZqjpZq is separable over Rp/pRp.

Consequently Aq/pAq must be separable over Rp/pRp. This completes the

proof of the theorem.

In the rest of this section, we assume that R is a commutative ring

with total quotient ring K and that 2 is a separable i£-algebra which is

a finitely generated projective /f-module.

THEOREM 3. 3. (Discriminant theorem). Let Λ be a projective R-order in a

separable K-algebra Σ , and assume one of the following conditions:

( i ) R is the center of A and dΛR c R.

( i i ) A is projective as a module over its center and tΣ/ (A) £Ξ R.

(iii) R is a Noetherian ring with Krull dimension 1 and tΣ/ (A) Q R.

(iv) R is a regular domain.

Then, for any prime ideal p of R9 the following statements are equivalent:

(i) dA/R<εp.

(2) Any prime ideal $ of A such that p = $ Π R is unramified.

Proof. In each case of ( i ) , (ii), (iii) and (iv) we have dΛ/RQR,

hence the condition that dJ/R $ p is equivalent to that dA /R = Rp. By

virtue of (2. 6), (2. 7) or (2. 8), this is also equivalent to the condition that

NA IΏ coincides with the center of Ap, i.e., Ap is separable over Rp. Thus
V p

we can see the equivalence of (1) and (2).

PROPOSITION 3. 4. Let R be a Noetherian ring and A a projective R-order

in a central separable K-algebra S Suppose that dΛ/R c R, or that any principal

ideal of R, generated by a non-zero divisor in R, is unmixed. Then any minimal

prime divisor of NΛ/R has height 1 in R.

Proof. Now assume that dΛ/R c R. Because dΛ/R is an invertible ideal

of R, any minimal prime divisor of dΛ/R has height 1 in R. According

to (2. 6), for a prime ideal p of R, we have dΛ/R c p if and only if

NΛ/R Qp. So any minimal prime divisor of NΛ/R has height 1 in R.

Secondly suppose that any principal ideal of R, generated by a non-zero
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divisor in R, is unmixed and that there is a minimal prime divisor p of

NΛ/R with height ^ 2. Then we may further assume that R is a local ring

with a maximal ideal p. Since dA/R is invertible in /?, we can put

dΛ/R == —Z? for some non-zero divisors a, b in Z?. For any prime ideal p'

of height 1 in R, we have NΛ t/R , = Ry and so, by (2. 6), dΛ tfR , = Rpf>

i.e., <xfty = 6Z<y. However, both aR and 6i? are unmixed. Therefore we

obtain aR = bR, hence dΛjR = R. From (2. 6) it follows that NA/R = R,

which is obviously a contradiction.

COROLLARY 3. 5. Under the same assumptions in (3. 4), A is separable

over R, if and only if for any prime ideal p of height 1 in R, Λp is separable

over Rp.

This corollary is a generalization of [3], (4. 6).

We now prove, as a generalization of the different theorem for

maximal orders over a Dedekind domain, the following

THEOREM 3. 6. (Dedekind different theorem). Let R be a Noetherian ring

and A a projectiυe R-order in a separable K-algebra 2 - Let Z be the center of A

and assume that A is Z-projective. Then the weak Dedekind different DΛ/R is

contained in A, and, for any prime ideal ξβ of A, the following statements are

equivalent:

(1) DΛ/R$%

(2) nA/R£WnZ)Λ.

(3) DΛ/Z ί ( $ Π Z)Λ and Dz/R $ 5β n Z.

(4) % is unramified.

Especially, if ί (A) £ R, these are also equivalent to

Proof We have shown DΛ/R Q CΛ/R in (2. 7), so that DΛ/R = [DΛ/RJ £

CA/R'DA/R^ A. Therefore we need only prove the second part. However

the implications (1)' 4=> (1) — > (2) are obvious, and so it suffices to show

the rest of the implications. To simplify our notation we put q = $ Π Z

and p = <$ Π R.

The case Z = R. In this case (2) <=> (3) is also evident. If $ is

unramified, then we have, by (3. 2), NA/R % p, and so NAP/RP = Rp- Hence,
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by (2. 6), DAp/Rp = Λp9 i.e., DAp/Rp = Λp $ $ΛP. Since Ayi?p = [DA/R\, this

implies Z ) ^ £ $, which proves (4) —> (1). Hence we have only to prove

(2) —> (4). Now suppose that $ is ramified. Then it suffices to show

that DA/R £ pA. However, by (3. 2), $ is ramified if and only if NA/R Q p.

Therefore it suffices to show this under the assumptions that R is a local

ring with a maximal ideal p and iV /̂i? is p-primary. Since K® NA/R = K,

p is not a prime divisor of 0, hence we have height Rp ̂  1. If height Rp

= 1, denoting by a a non-zero divisor of i? contained in p, we find a non

negative integer / such that [NA/RY £ #Z? but [iV4/Λ]ι+1 £ <£#. Because
Trd^DΛfR^NΛ/R

 b y (2 3 ) ' we see TrdΣ/κ([NA/RYDA/R) = INA/RY+1 £ off,

and so orι{NΛ/]^
ι DA/R^CΛ/R. Hence we have INA/R\1DA/RQ aA. Since i?

is a local ring, this shows DΛ/R £ pΛL On the other hand, if height B:p > 1,

we have, by (3. 4), dA/R $ R. However, since dAjR is an invertible fractional

ideal of R, we have dA/R = —R for some non-zero divisors a, b of R. If

we put c = {c <Ξ R\cdA/R c /?}, then c is the ̂ -primary ideal of /? according

to (2. 6), because NA/R is p-primary. Therefore there is a non-negative

integer / such that [NA/R\ι $ c but [A^/i?]'+1 £ c. Then dΛ/R [NA/I$
T^Σ/κ(DA/R) = dA/R[NA/R\^^R9 and so rf^ C Λ ^ J 1 . ^ C A. Thus we

obtain b {NA/R\ι DA/R£: aA. Since ^-[A^/i?]
z $ βi?, this shows β ^ c μ ,

which completes the proof of (2) —> (4).

The general case. By the preceding proof in case Z = R, $ is

unramified over Z if and only if DA/Z $ (\A, and, by (3. 2), q is unramified

if and only if Nz/R $ q. Then we see easily (3) <=> (4), because Dz/R = Nz/R

by (2. 4). If DA/R £ ξβ, then we have, by (2. 2), Z5^/z c $ or Dz/R c q.

Again by the proof in case Z = R, then, we have DA/Z Q <\A or Z)̂ . R c q.

Therefore (3) implies (1). Now it is sufficient to show (2) —> (3). Assume

that DA/Z £ qj or Z)z/Λ c q. If ^ / z c qA, then / J ^ c J5^ / Z c qj. Hence

we have only to consider the case that DA/Z £ qΛί but Dz/R Q q. To show

DA/R £ q̂ ί, we may assume that R is a local ring with a maximal ideal p.

If we suppose that R is complete, Z can be expressed as the direct sum

of a finite number of complete local rings Z19 Z2, , Zt. Since Zq coincides

with one of ZU and DA/R = DZ^A/R® DZ^Λ/R@- -® DZt^A/R, we may

further assume Z = Zq. Because DA/Z £ qA, A is separable over Z. Hence,

by (2. 2), we have DA/R= Dz/R-A, so that DA/R = [DZ/R\2AQqΛ. Generally,

let R* be the completion of R, and put Z* = J?* (g) Z and Λ* = jff* (x) ί̂.
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Then we have £>z*/jR* = j?* ® DZ/R>
 a n c ^ therefore DZyR* Q qZ*. Since Aq is

separable over Zq, Λ*z* is also separable over Z%z* According to the preced-

ing argument, we must have ΐ>A*jR* £ ίΛf* From the fact that DA/R =

Άi /iz n Λ> it follows immediately that DΛ/R Q (\A. This completes the

proof of the theorem.

It is clear that the different theorem for hereditary orders in [12] is a

special case of (3. 6).

§ 4. Differents of hereditary orders
In this section we shall determine completely the structure of the

differents of a hereditary order over a Dedekind domain.

LEMMA 4. 1. Let R be a Dedekind domain with quotient field K and 2

a central simple K-algebra. Let A be a hereditary R-order in 2 ond put Ϊ(Ώ) =

TrdΣ/κ(Λ). Then 7(2) is an ideal of R which depends only on 2> but which

does not depend on A.

Proof In order to prove this, we may assume that R is a complete

discrete valuation ring. Then this follows immediately from [11], (6. 2).

The following lemma is a slight generalization of [3], (8. 4).

LEMMA 4. 2. Let R be a discrete valuation ring with a maximal ideal p, K

the quotient field of R and A a maximal R-order in a central simple K-algebra.

Then A is separable over R if and only if Rjp is the center of AjJ{A).

Proof The only if part of the lemma is well known (cf. [3]). Hence

it is sufficient to prove the if part. If we suppose that the center of A\]{Λ)

coincides with Rjp, then there exists a splitting field L of A/J(A) which is

a finite separable extension of Rip such that L®AIJ(A) is isomorphic to a

full matrix algebra over L. Now we can find a discrete valuation ring S

which is finitely generated, and separable over R such that SIpS = L. If

we denote by L the quotient field of S, S®A is a hereditary S-order in
R

Z,(g)Σ and we have S® AjJ{S® A) = L ® AIJ(A). Then, by [10], (3.5),
K R R R/p

S(g)A is a maximal S-order in L (x) Σ Hence we may assume that
R K

AjJ{A) is a full matrix algebra over Rjp9 because, in order to prove that

A is separable, it suffices to show that S®Λ is separable over S. Further-
R

more, without loss of generality, we may assume that R is complete. Then,

as is well known, both 2 a nd AIJ{A) can be considered as division rings.
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Therefore we have only to prove A = R under the assumptions that ΛIJ(Λ)

= Rjp and that Σ is a division K-algebra. In this case, putting n2 ^dim^Σ

and denoting by e the integer such that pΛ = [/(Λί)]e, we have n2 = e. But,

on the other hand, we have n\e (cf. [17], Chap. 2, Cor. 1 to Th. 11), so

that n — 1, i.e., Σ = K. Thus we must have A = R9 which completes the

proof of the lemma.

Let R be a discrete valuation ring with a maximal ideal p, K the

quotient field of R and Σ be a central simple ϋΓ-algebra. Then, by virtue

of [10], (4. 6), there exists a division R/p-algebra. Δ such that, for any

hereditary i?-order A in Σ> ΛjJ{A) can be expressed as the direct sum of a

finite number of full matrix algebras over Δ. Now we denote such a

division i?/p-algebra Δ by J(Σ)

Let R be a discrete valuation ring and K the quotient field of R.

Then a finite separable extension L of K is said to be unramified, if the

integral closure of R in L is separable over R. The set of all classes of

central simple ϋί-algebras which have splitting fields, unramified over K, is

obviously the subgroup of the Brauer group, Br{K), of K. We now

denote this subgroup by V(R). More generally, if R is a Dedekind domain

with quotient field K, then we put V(R) — ΠV{Rp) where p runs over all
P

maximal ideals of R. According to [3], (6. 3), we have Br{R) £ V(R).
The following theorem is known partially in case R is complete.

THEOREM 4. 3. Let R be α discrete valuation ring with a maximal ideal p

and K the quotient field. Then, for any central simple K-algebra Σ> the following

statements are equivalent:

(1) The class, 2> of Σ is contained in V(R).

(2) J (Σ) is separable over R/p.

(3)

Proof In order to prove (2) <=> (3) we may suppose that R is complete.

However, in this case, the implications (2) <=> (3) are shown in [17], p. 148.

Hence we have only to prove (1) <==> (2).

(1) =zi> (2). If we assume Σ G V(R), there exists an unramified exten-

sion L of K which is a splitting field of Σ Let S be the integral closure

of R in L. Then, for any hereditary iv!-order i in 2 , S (x) A is also a

hereditary S-order in L ® Σ - Since L(x)Σ is a full matrix algebra over
K. K
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L, any maximal S-order Γ in L(x)Σ is also a full matrix algebra over
K.

S, and therefore ΠJ(Γ) is separable over SIpS. Then, by [10], (4. 6),

S(g)ΛIJ{S®Λ) is also separable over SIpS. Because S®AIJ(S®A) =

ΛjJ{Λ), we can conclude that ΛIJ(Λ) is separable over R/p, i.e., thatR/p

is separable over Z?/p.

(2) = > (1). Suppose that z/(Σ) is separable over R/p. Then, for any

maximal R-oτder A in Σ> ΛjJ{Λ) is separable over R/p. If we denote by

Ώ a maximal commutative separable subfield of J(Σ)> Z' is a splitting field

of ΛIJ(A). Let S' be a discrete valuation ring which is separable over

R such that S'lpS' s Z/ and Z/ the quotient field of S\ Then S'<g)Λ is a

hereditary S'-order in Z/(g)Σ and we have S'® ΛIJ(Sf ® Λ) = L'® ΛjJU).
K R R R/p

Therefore S' ® Λ/J(S' ® Λ) is expressible as the direct sum of a finite number
R R

of full matrix algebras over L'. Hence, by the preceding remark, for a

maximal S'-order Γ' in Z/®Σ> Γ'IJ(Γr) is a full matrix algebra over L.

So, by virtue of (4. 2), Γ' must be separable over S'. By [3], (6. 3), V (g) Σ

has a splitting field L which is an unramified extension of Γ . Since L

is an unramified extension of K, 2 must be contained in V(R).

LEMMA 4. 4. i^ί R be a Dedekind domain with quotient field K, and A a

hereditary R-order in a central simple K-algebra. Then, for any maximal ideal p

of R9 PΛ(PA) is an invertible ideal of A, and any invertible ideal of A can be

expressed uniquely as the product of a finite number of PΛ{PA)'S. Furthermore the

Dedekind different DΛ,R of A is invertible in A,

Proof The first part of the lemma was proved in [10], (7. 6), and the

second part follows immediately from [6], (4. 3) and a remark in [18], p.

228.

If A is a hereditary i?-order in a central simple ϋC-algebra, then, by

(4. 4), for any maximal ideal p of R, there is a positive integer e such

that pA = tPΛ{pA)Y. We denote this integer by e{p) and call it the ramifica-

tion index of Pλ(pA).

Now, we give, as our main theorem in this section,

THEOREM 4. 5. Let R be a Dedekind domain with quotient field K and

Σ a central simple K-algebra. Let A be a hereditary R-order in Σ If we denote

by Pi,£>2> fpt all of the prime ideals pi of R such that Σ e V(Rpt) and
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and by pί,p2, >pί all of the prime ideals pj of R such thai Σ

£ have

DΛ/R =

/(Pi) w en integer which depends on PJp'jA) such that 1 ^/(p$) ^e(p})

5(p5) mtffl/w 0 or 1. Especially NA/R is square-free if and only if

By localizing Λί with respect to every maximal ideal of R, it is

sufficient to prove the theorem under the assumption that R is a discrete

valuation ring with a maximal ideal p. Then we have, clearly, J(A) =

PJpΛ). Since TrdΣ/κ(A) = /(Σ), we have /(Σ)" 1^ <= CΛ/R, hence ^ / i ? £ /(Σ)^[.

But DΛ/R $ p/(ΣW In fact, if £ > ^ ε p/(Σ)A then r 1 J(S)"M S ^ and

so i? = TrdΣ.(CA/R) Ώ p"1, which is obviously a contradiction. Therefore, by

(4.4), we have DΛ/R = UU)Y^~f - [/(Σ)4I for an integer / such that

1 ^ / ^ φ ) . If we suppose 2 G F ( / ? ) , then we have, by (4.3), 7(Σ) = R,

and therefore DΛ/R = UU)]κp)~f. Because TrdΣ/κ(J(A)) s p, T r ^ t t / U ) ] 1 - ^ )

= p-Ύrd^JJU)) c i?, so that D ^ c [/U)]^^-1. Consequently, in case

Σ e V{R)9 we observe / = 1. This completes the proof of the assertion

for DΛ/R in the theorem. According to (2. 3) we have TrdΣ/κ(DΛ/R) = A^/i?,

so that NΛ/R = /(Σ)ΓrrfΣ/JC([/U)]β(W-/) <= [/(Σ)]2. However, if we assume

NA/R c p2[/(Σ)]2, then we have [D^J 2 £ P2[/(Σ)PΛ and hence, by (4. 4),

DΛ/R c p/(Σ)^> which is a contradiction. Thus we must have NΛ/R = [/(Σ)P

or p[/(Σ)]2 Here we have NA/R = p[/(Σ)P if and only if [DA/J c p[/(Σ)]2Λ

i.e., if and only if e(p) ̂  2/. Furthermore, by virtue of (4. 3), we have

Σ e F(Λ) if and only if 7(Σ) = R, i.e., if and only if NA/R = i? or p. Thus

the proof of the theorem is completed.

Evidently, (4. 5) is a generalization of [9], (3. 3. 2).

§ 5. Locally symmetric orders
Let R be a commutative ring with total quotient ring K and Σ a

separable if-algebra. A projective 7?-order A in Σ is said to be symmetric
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if A is a symmetric i?-algebra, and, more generally, A is said to be locally

symmetric if, for any maximal ideal m of R, Am is a symmetric Rm-

algebra. In [7] it was proved that any separable, projective i?-order in

2 is symmetric.

LEMMA 5. 1. A projective R-order A in 2 is locally symmetric if and only

if CA/R = aA for some invertible fractional ideal α of the center of A. Furthermore

a quasi-Frobenius R-order A in 2 is locally symmetric if and only if DΛ/R = aA

for some invertible fractional ideal α of the center of A.

Proof This follows from the fact that A = A* = CA/R as two-sided A-

modules (cf. [18], p. 228.)

The Dedekind different theorem for locally symmetric orders can be

described as follows.

THEOREM 5. 2. Let R be a regular domain with quotient field K, and 2

a separable K-algebra. Let A be a locally symmetric, projective R-order in 2 anά

denote by Z the center of A. Then, for any prime ideal $ of A, the following

conditions are equivalent:

(2) DA/R£W

(3) . $ is unramified.

Proof. Because R is regular, we have ^ / (A) Q R. By (5. 1), then,

there is an invertible ideal α of Z such that DA/J>=aA. From this the
A/ K

equivalence of (1) and (2) follows directly. Let $ be a prime ideal of A,

and put q = $ Π Z and p = 5β Π R. Now, to prove the equivalence of (2)

and (3) we may assume that R is a complete regular local ring with a

maximal ideal p and further that Z is a local ring with a maximal ideal

q. Then $ is unramified if and only if A is separable, i.e., if and only

if DA/R = A according to (2. 8). Therefore 5β is unramified if and only if

α = Z $ q, which shows the equivalence of (2) and (3). This concludes

the proof of the theorem.

It should be remarked that (5. 2) is not included in (3. 6). (5. 2) can

be applied to the group algebra RU of a finite group Π over a Dedekind

domain R of characteristic 0.

In the rest of this section we shall be concerned with locally symmetric

orders over a Dedekind domain R in a central simple if-algebra.
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First we give, as an additional remark to (4. 5),

PROPOSITION 5. 3. Let R be a Dedekind domain and Σ a central simple

K-algebra. Then a hereditary R-order A in Σ is locally symmetric if and only if

DA/R = /(Σ)-Ί Especially, if Σ e V{R)9 a hereditary R-order in Σ is locally

symmetric if and only if it is separable.

Proof This follows immediately from (4. 4), (4. 5) and (5. 1).

PROPOSITION 5. 4. Let R be a Dedekind domain and Σ a central simple

K-algebra. Let A be a locally symmetric R-order in Σ If Ω is an R-order in

Σ such that A^Ω and Trd^ {Λ) = Trd^ (Ω), then Ω coincides with A. In
2; /K L /K

particular, a locally symmetric, hereditary R-order in Σ is always maximal.

Proof. Without loss of generality we may assume that R is a discrete

valuation ring with a maximal ideal uR. Now we can put TrdΣ/κ{A) =

TrdΣ.{Ω) = uιR for some non-negative integer /. From this it follows

that CA/R= u~ιA, since A is symmetric over R. It is clear that A Q Ω Q

CΩ/R^CJ/R, and so we obtain CΩ/RQu~ιA. However, TrdΣ/κ{u~ιΩ) = R,

so that u~ιΩ ̂  CΩ/R. Thus u~ιΩ^u~ιA, i.e., Ω £ A. This proves the first

part of the proposition. From the first part and (4. 3) we can easily show

the second part.

LEMMA 5. 5. Let R be a discrete valuation ring with a maximal ideal p

and Σ a central simple K-algebra. For any maximal R-order A in Σ> the follo-

wing conditions are equivalent:

(1) For any unramified extension L of K9 denoting by S the integral closure

of R in L, S®A is a maximal S-order in L(x)Σ
R K

(2) The center of AIJ{A) is a purely inseparable extension of Rfo.

Proof. We denote the center of AIJ(A) by Z. For any separable

extension S of R/p, we can find a discrete valuation ring S, separable

over R, such that S/pS = S. Now assume (1). Then, denoting by L the

quotient field of S, S ® A is maximal in L ® Σ But we have S ® AjJ{S ® A}
R K. R R

= S®AIJ(A), so that the center of S ® AIJ{S® Λ) is isomorphic to S®Z.
R/p R * R/p

Hence S ® Z is a field by [2], (2. 1). Thus Z must be purely inseparable
R/p

over Rip. Conversely assume (2). Let L be an unramified extension oΓ
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K and S the integral closure of R in L. Then S®Λ is a hereditary S-
RR

order in L (x) Σ> because S is separable over i?. Since S (x) Λί//(S (x) A) =

SIpS® AMU), we obtain Sq ® Λ//(Sς ® Λ) s Sq/pSq ® Λ//U) for any maximal
i?/p R R R/p

ideal q of S. From the assumption, then, we can observe that, for each q,
Sq (x) ΛIJ(Sq (x) Λf) has a field as its center. Therefore, again by [10], (3. 5),

XV R

S®A must be maximal in L(x)Σ.
xv K

PROPOSITION 5. 6. Let R be a Dedekind domain and Σ a central simple

K-algebra. If a maximal R-order A in Σ is locally symmetric, then, for any

maximal ideal p of R, the center of A/PΛ(PA) is a purely inseparable extension of

Rip.

Proof In order to prove this we may assume that R is a discrete

valuation ring with a maximal ideal p. Let L be an unramified extension

of K and S1 the integral closure of R in L. Then S®A is a hereditary
R

S-order in L ® Σ Furthermore S®A is also a symmetric S-algebra.
K R

Hence S (x) A is maximal in L (x) Σ by (5. 4). Thus, by virtue of (5. 5),
XV K

the center of AMU) is purely inseparable over Rip.

By (5. 3), only in case Σ $ V(R), it may happen that there exists a

locally symmetric, non-separable, maximal i?-order in Σ In fact, we

shall prove

THEOREM 5. 7. Let R be a discrete valuation ring with a maximal ideal p

and K the quotient field of R. Suppose that R is of characteristic p > 0. Then

the following conditions are equivalent:

(1) The residue class field Rjp is not perfect.

(2) There exists a central simple K-algebra Σ which contains a symmetric,

non-separable, maximal R-order.

Proof. The implication (2) = φ (1) was proved in (5. 3). Hence we

have only to show (1) = > (2). Suppose that Rjp is not perfect. Here we

shall construct a central simple K-algebra Σ which contains a symmetric,

non-separable, maximal i?-order. Let u be a prime element of R, i.e., an

element of R such that p = uR, and let X, Y be two indeterminates. * Now

put f(X) -Xv — uv~λX — u. Then f(X) is an Eisenstein polynomial of the

Artin-Schreier type. Therefore, if we put L = K[X]lf(X)K[Xl L is a
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Galois extension of K whose group, G, is a cyclic group of order p, and,

furthermore, putting S = R[X]lf{X)R[X'] and denoting by x the residue of

I in S, S is a discrete valuation ring with a maximal ideal q = xS whose

quotient field coincides with L, so that any element of G operates on 5 as

an automorphism over R. Since Rjp is not perfect, there exists an element

a of R such that, denoting by a the residue of a in R/p, the polynomial

Yp — a is irreducible in R\ρ\Y\. We denote by σ the generator of G. Let

S[Y] be the non-commutative polynomial ring over 5 such that saY = Ys

for any 5GS, and put A = S[Y]/{YP — a)S[Y] and Σ = L ® A Obviously Σ

is a crossed product. So 2 is a central simple X-algebra and A is an i?-

order in Σ It c a n be seen easily that J(A) = qA^ pA and A/J(A) =

(Λ/p)[y]/(Fp — ά)(RI$)[Y]. Hence A is a non-separable, maximal /border in

Σ However, by a direct computation, we obtain /(Σ) = ^ p l a n d £4/22 =

p1"2^, and so A is symmetric over R by (5. 3). Thus Σ is a central simple

TΓ-algebra as required.

We did not succeed in omitting from (5. 7) the assumption that R is

of characteristic p > 0 (cf. [8]). However, quite analogously, we obtain

PROPOSITION 5. 8. Let R be a discrete valuation ring with a maximal ideal

p and K the quotient field of R. Suppose that R is of characteristic 0, that the

residue class field Rjp is of characteristic p > 0 and that R contains the primitive

p-th root ζ of 1. Then the following conditions are equivalent:

(1) R/p is not perfect.

(2) There exists a central simple K-algebra Σ which contains a non-symmetric,

maximal R-order A such that AjpA is symmetric over Rjp and the center of A/J{A)

is purely inseparable over R/p.

Proof (2) = Φ (1) follows immediately from (4. 2) and (4. 3). So it is

sufficient to show (1) = > (2). By using f(X) = Xp - u instead of f(X) =

Xp — uv~ιX— u in the proof of (5.7), we can construct a crossed product

Σ and a maximal i?-order A in Σ s u c h that J{A) = xA. Then we have

AlpA = (SlpS)[Y]l(Yp - ά){SlpS)[Y] and AIJ(A) = (Rlp)[Y]l(Yp - β)(ΛΛ>)[Y]. Since

the residue of ζ in Rjp coincides with a unit element of R/p, σ operates

trivially on S/pS, and therefore AlpA is a commutative local ring. But

AlpA is uniserial i?/p-algebra, because A is maximal in Σ Hence A/pA is

a commutative Frobenius 7?/p-algebra, so that it is symmetric over R/p.
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However, as is easily seen, /(Σ) = φR and DA/R = p •[/(ΛQ]1>~1. By virtue of

(5. 3) this shows that A is not symmetric over R. Thus 2 is a s required.

From (5. 7) and (5. 8) the following corollary follows directly.

COROLLARY 5. 9. Let R be a discrete valuation ring with a maximal ideal

p which satisfies the assumptions in (5. 7) or (5. 8) and K the quotient field of R.

Then the residue class field Rjp is perfect if and only if V{R) = Br(K).

Finally we give a remark on symmetric algebra. Let R be a local

ring with a maximal ideal πt and A an /^-algebra which is a finitely

generated free i?-module. As is well known (cf. [7]), A is separable over

R if AjvxA is separable over R/m. It has been proved in [6], (3. 3) and

(3. 4) that A is (quasi-) Frobenius over R if A\mΛ is (quasi-) Frobenius over

Rim. However (5. 8) shows that the similar assertion for symmetricity is

false.
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