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ON RAMIFICATION THEORY
IN PROJECTIVE ORDERS

SHIZUO ENDO

The ramification theory in commutative rings, as a generalization of the
classical one in maximal orders over a Dedekind domain, was established in
[1], [13], [15] and etc.. For non-commutative algebras this was also studied
in [3], [4], [9], [18] and etc.. However, the different theorem, which is a
central part of ramification theory, has not been given in those, except for
some special cases (cf. [12], [18]). The main object of this paper is to give
the discriminant theorem and the different theorem for projective orders
in a (non-commutative) separable algebra, in the most general form.

Let R be a Dedekind domain and K be the quotient field of R.
Recently it was proved in [9] that, if R has the perfect residue class fields,
then the Noetherian different of a maximal R-order in a central simple
K-algebra is a square-free ideal of R. Another object of this paper is,
more generally without assuming that R has the perfect residue class fields,
to determine completely the structure of the Dedekind different and the
Noetherian different for a hereditary R-order in a central simple K-algebra.

In §2 we discuss some basic properties of the differents of algebras
and give criteria on the separability of projective orders. In §3 we first
give the Noetherian different theorem for algebras. Further, using these
results, we prove, under some restrictive assumptions, the discriminant
theorem and the Dedekind different theorem for projective orders, each of
which is a generalization of the classical one for maximal orders over a
Dedekind domain.

In §4 we restrict our attention to hereditary orders over a Dedekind
domain. Let R be a Dedekind domain with quotient field K and X a
central simple K-algebra. We show that, for any hereditary R-order 4 in
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3%, the image, Trds/k(4), of A under the reduced trace Trdz/x of 3} is an
ideal of R which does not depend on 4 and give a characterization of 3}
such that, for any hereditary R-order 4 in 33, Trdz/x(A) coincides with R.
With these preparations we prove the structure theorem of the differents
of hereditary orders over a Dedekind domain.

Finally, in §5, we introduce the notion of locally symmetric orders
and give the Dedekind different theorem for locally symmetric orders.
Further we discuss some basic properties of locally symmetric, hereditary
orders over a Dedekind domain. It is noted that the study of symmetric
maximal orders over a discrete (rank-one) valuation ring is closely related
to the study of the Brauer group of a field with discrete (rank-one) valua-
tion whose residue class field is not perfect.

§1. Notation and terminology

Throughout this paper we shall only consider rings with identity and
modules that are unitary, and we shall denote commutative rings by R, S, « - -
and rings, which are not always commutative, by 4,7, - - - . All R-algebras
considered will be assumed to be faithful as R-modules.

Let 4 be an R-algebra. We denote by 4° the opposite algebra of 4
and by 4* the dual, Homg(4,R), of 4. In general there is a A(;?A"-
epimorphism @, : A%)/P—nl defined by @A/R(,l@w) = 2p¢.  The kernel of
Dy which we denote by J YR is a left ideal of AC?/I", and then the
right annihilator of it, which we denote by A AR is a right ideal of AC;)AO'
It is easily seen (cf. [3]) that the image (DA/R(AA/R) of AA/R under ?,r is an
ideal of the center of 4. We call 9, A A/R) the Noetherian (or homological)
different of 4 and denote it by N YR (cf. [16], [3]).

Let R be a commutative ring with total quotient ring K and X} a
separable K-algebra which is a finitely generated projective K-module. An
R-algebra A which is a finitely generated torsion-free R-module such that
K @A =31 will be called an R-order in 3. Especially, an R-order 4 in
>3 will be called a projective R-order if it is R-projective. Denote by F
the center of X} and let #3/x be the composed map of the reduced trace
Trdssp: 23— F (cf. [7], where we denote it by TrdZ) and the trace Tpx:
F—~ K., For an R-order 4 in 3}, we define the complementary module,
Cyr and the Dedekind different, Dyp to be the sets: Cyr= {2l

ts/x(xd) € R} and DA/R ={x e EICA/R-:» c 4}. Obviously both C and

A/R
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DA/R are two-sided A-submodules of XI. Furthermore we put D R = [DA/R]
and call it the weak Dedekind different of 4. In particular, assume that
A is a projective R-order in >I. In case 4 has constant rank n over
R, we denote by d, .. the R-submodule of K which is generated by
det[ts/x(u;u;)] where {u;,u, ¢+« +,u,} runs over all sets of »n elements in A.
However, in case 4 has not constant rank,- there is a unique decomposition,
R=R PR, D-+ @R, such that every Ri®/1 has constant rank »; over

R, and n,<m,<<-:-<m;, and we put d R1®A/R,®dRz®A/Rg® RG]

droyr- We shall call 4, . the dlscrlmlnant of A. Clearly, R isa
loc:flly free R-submodule of K, and especially, if #3/x(4) = R, we have
dyr S Dyr <4< Cyp

For a ring 4 we shall denote by J(4) the Jacobson radical of it and
by P(4) the prime radical of it, i.e., the intersection of all prime (two-sided)
ideals of 4, and, more generally, for an ideal % of 4, we shall denote by
P4) the prime radical of it in 4, i.e., the intersection of all prime ideals
of A containing A.

§ 2. Basic properties

We begin with

ProrosiTiON 2. 1. Let A be an R-algebra and Z the center of A.  Then
Nyz*NyrSNyrS Nyp  If A is a finitely generated projective Z-module, then
N, S Ny and, furthermore, if N, . is an invertible ideal of Z, then
Nyz'Nzr-+

Proof. By tensoring each term of the exact sequence: 0—> Ty
Z@Z——)Z—)O with AC}?/P over Z(;)Z, we obtain the exact sequence:

NA/R =

1® 0z
AR L) @ T, x> AR 42— (AR 4°) ® Z—>0.
R Z%Z R R Z%Z
It is clear that (A®4°) ® Z=4 ® (4° ®Z) A® A°. If we identify
R zgz RZ
(AR A°) ® Z with AR 4°, then 1®<1>Z/R can also be identified with the
R 2z Z .

homomorphism ¢’ of A@/P onto A@A" such that (D'(X@,LP) = 2(>Z<),u° for
any 4,z € 4. Now, denoting by (A@/P) Jz/x theideal of AC;)/P generated
by the image of [, . in /1®RA°, we have the following commutative

diagram:

https://doi.org/10.1017/5S0027763000013179 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000013179

124 SHIZUO ENDO

0 0

0
l ! !
® Wgyre— Jyzr —> Jyz —0
l L
0—> (4 ® )/’Z,R——»A@gm——m@m———)o
|
0

l 4/ } l AZ

0—> —> A4 > A —>0
! l |
0 0

where all rows and columns are exact. It is easilyAseen that ¢'(A A/R) cA 2
hence, by applying ¢, to both sides, we obtain N yr SN, wz Let a be
an element of A, , and denote by « a representative of & in A@Aﬂ
Since @’(]A/R-a) =Jyzra=0, we have Jyrra S (A®A°)]Z/R in view of the
above diagram, so that Jyr e Az =0, ie., as Az S Ayp
@ Ny p=(aly ) S¥(A, . Accordingly A, N, ,c®(4,,. Applying
2, to both sides, we find that Ny 7 Nyr S Nype Now assume that A4 is
a finitely generated projective Z-module. Then A®A° is a finitely generated
projective, faithful Z ® Z-module, and therefore the annihilator of (4 ®/I°) Jzr
coincides with (A®A )AZ Since (_4® A°) JzrS T AR by the above
diagram, it follows that Ayr S (_/1®/1 )Az » so that, by applying @yr to
both sides, N, < Ny g4 Consequently we obtain NyrS Nypo
Z is the direct summand of 4 as Z-modules. Furthermore assume that
NZ/R is an invertible ideal of Z. Since @'(4 A/R) Q(/IQZDAO)NZ/R, [NZ/R]-l.
@'(AA/R) c A@A". However q)'(AA/R) c AA/Z’ so that ]A/Z-[NZ/R]“I-Q'(AA/R)=

Thus we must have [NZ/R]"l o'( A/R) c AA/Z, ie., ¢’(AA/R) AA/Z NZ/R
Applying @ yz 1o both sides, we find that N, . < N, N, . completing the

proof of the proposition.

and therefore

because

For the Dedekind differents we prove the following proposition which
has the similar form to (2. 1).

ProrosiTiON 2. 2. Let A be an R-order in a separable K-algebra 33, and
Z the center of A.  Then Dy ,*Dyp S Dy Especially, if C, p is an invertible

JSractional ideal of Z or if A is a quasi-Frobenius Z-algebra, then D, ,+D, = D, p.

Progf. We denote by F the center of 3.  Since Tpy(Z-Trd, /F(C A/R))

=t2/K(CA/R)§R, Trdz/F( A/R) Z/R, so that TrdZ/F( R Z/R)CZ, and
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therefore C, D, ,<C ie, C,pD, D, <A Thus we obtain

YR PR =" 2 YR PYzZIR* Pz =

DZ/R- A/ngA/R’ which proves our first assertion. Now we see

Trdz/F(CZ/R'CA/Z) = CZ/RoTrdE/F(CA/Z) c CZ/R, so that tE/K(CZ/R-CA/Z) c R.
Therefore CZ/R-CA/Z c CA/R

have Copr'Dyr S Dyze Thus, in case Cur is invertible, we find that
DyrS Dy Dy Finally, if 4 is a quasi-Frobenius Z-algebra, C, , is
invertible by a remark in [18], p. 228. Because 4 is projective over Z,
the fact that C, -C, ,*D, < 4 implies that C, +D, < D,

4R =z/R
ently we must have D, . D, +D,. This completes the proof of the

and so C,pC, Dy p< 4. Accordingly we

4. Consequ-

proposition.
The following result is due to [9] and [18].

ProrositioN 2. 3.  If A is a projective R-order in a central separable K-
algebra 33, then Trdz/K(DA/R) = NA/R and Dyr< CA/R.

Proof. See [9], (2.2.3) and [18], Th. 7 and 8.

ProrosiTioN 2. 4. Let S be a projective R-order in a commutative separable

K-algebra. Then Dy = N
Proof. This can be done along the same line as in [1], (3.1) and
therefore we omit this.

From these propositions we derive

ProrositioN 2. 5.  Let 33 be a separable K-algebra with center F and A
a projective R-order in X3 with center Z. If A is Z-projective and Z 1is a quasi-
Frobenius R-algebra, then Trd, /F(DA/R) =Ny p

Proof. By virtue of (2.1) and (2.2) we have N yr=Nyz"Nzr and
Dyr=D, 7Dy pe But, according to (2.3) and (2. 4), Trd):/p(DA/Z) =Ny,
and Dy = Ny Thus we find that TrdE/F(DA/R) =Nyp

Now we give criteria on the separability of a projective order. First,

for the case where 3} has K as its center, we show

ProposiTiON 2. 6.  For any projective R-order A in a central separable K-
algebra 33, the following statements are equivalent:

(1) 4% = 4t.
(2) Cyp=A.
(3) Dyp=4.

https://doi.org/10.1017/50027763000013179 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000013179

126 SHIZUO ENDO

(4) d,p=R.
(5) NA/R= R, t.e., A is separable over R.

Here t denotes the restriction of Trd, to A

Proof. The implication (1) <= (2) < (3) & (5) have been verified in
{181, Th. 8, and the implication (2) =—>(4) is obvious. Hence we have
only to show (4)=>(5). By using the similar argument to the proof of
{71, (1. 2), it is sufficient to prove this in the case that R is Noetherian.
Now assume that d HR= R. Clearly Y)/P(R)Y is a central separable K-
algebra and A/P(R)A is a projective R/P(R)-order in 3I/P(R)X). Furthermore
we have dA/P(R)A/R/P(R) = dA/R—i—P(R)/P(R) = R/P(R), and 4 1is separable
over R whenever A/P(R)A is separable over R/P(R). Therefore we may
assume that R is a Noetherian ring without non-trivial nilpotent element.
Then the integral closure R of R in K is expressible as the direct sum of
a finite number of Krull domains. Here we have also dg(;? AR = P%d,,/za

=R, and / is separable over R whenever R%}A is separable over R. Hence,
under the assumption that R is a Krull domain, it is sufficient to prove
that A4 is separable over R, Since Trd s /K(A) S R in this case, we have
R=d,,cD <4 so that D yr = 4. Because (3) and (5) are equivalent,
this implies that 4 is separable over R.

In the general case, some additional hypotheses must be imposed on
4 or R.

ProrosiTiON 2. 7. Let A be a projective R-order in a separable K-algebra
and suppose that A is projective as a module over its center Z. Then we have
D,yrSCyp and the following statements are equivalent for A:

(1) 4A* = At,

(2) Cpp=d.

(3) Dyp=4.

(4) dA/R = R and tE/K(A) CR.

6 Nyr=2 i.e., A is separable over R. Here t denoles the restriction of
tox o 4.

Proof.  According to (2. 3), we have D, cC,,. However, because
A is Z-projective, it is easily seen that C yzS Cyr Thus we obtain
D,r<sD,y,<CyysCyp. Next we shall prove the second part of the
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proposition. The implication (5) = (1) follows immediately from [7], (4. 2),
and the implications (1) & (2) < (3) can be shown by the same way as
in the proof of [18], Th. 8. Also the implications (2) < (4) are obvious.
Hence we need only show (2), (3) => (5). Assume that Dyp= C yr= 4
Since DA/RQ DA/ZQ CA/ZQ CA/R, we have DA/Z= CA/Z= 4, so that, by (2. 6),
4 is separable over Z.  Therefore we have, by (2.2), D,,=2Z, and
hence, from (2. 4), it follows that Z is separable over R. Thus, by [3],
(2. 3), we know that A is separable over R, which shows (2), (3) = (5).

ProrosiTION 2. 8.  Assume one of the following conditions:

(i) R is a Noetherian ring with Krull dimension 1.

(ii) R s a regular domain.

Let A be a projective R-order in a separable K-algebra X} and Z the center of A.
Then the following statements are equivalent:

(1) A* = At.

2) Cyp=4.

3 D=4

() dyp=R.

6 Ny,=2 t.6., A ts separable over R. Here t denoles the restriction of
s 10 A.

Proof. Evidently we have only to prove (2) < (3) &> (4) => (5).  As-
sume that R is a Noetherian ring with Krull dimension 1. By using the
same method as in the proof of (2.6), it is sufficient to prove (2) & (3)
& (4) => (5) in case R is a Dedekind domain. If R is a Dedekind do-
main, then we have #(4) € R, so that the implications (2) < (3) < (4) are
obvious. Now suppose that C,,=4. Let I' be a maximal R-order in 3}
which contains 4. Then we have I' < Crir S CA/R=A, and so 4=1T.
Therefore 4 itself is a maximal R-order in 3}, so that A is Z-projective.
Thus, by (2. 7), we conclude that 4 is separable over R, which shows that
(2) implies (5). Next, assume that R is a regular domain. Since R is
integrally closed, we have ¢(4) < R. Then we can easily show (2) <= (3)
< (4), hence we need only show (2) = (5). If we assume that C yr="M
then it can be seen, analogously, that 4 is maximal in 3}. Therefore the
center Z is an integrally closed Noetherian ring, and so it is expressible as
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the direct sum of a finite number of integrally closed integral domains.
Hence we may assume that Z is an integrally closed integral domain.
Since, for any prime ideal p of height 1 in R, Ry is a Dedekind domain
and CAp/Rp = Ay, 4, is separable over Ry, and so Zp is also separable over
Ry. Because R is regular, Z is separable over R by [14], (41.1). Then,
the fact that 4 is R-projective implies that A is Z-projective. Thus, by
(2. 7), 4 must be separable over R, completing the proof of the proposition.

§3. Different theorems

First we give

Lemma 3.1, Let A be an R-algebra which is a finitely generated R-module
and Z be the center of A.  Let B be a prime ideal of A, and put q =P N Z and
p=P N R Then the following conditions are equivalent:

(1) Ap/BAy is separable over Ry/pRyp, and PAq = pAa.

(2)  Ap/P (aA)Ap is separable over RplpRp, and P (qA)Aq = pAa.
(3)  Ap/ady is separable over Rp/pRy and qAq = pAa.

(4)  Aofpdq s separable over Ry/pRp.

Proof. As this is easy, we omit it.

Now let 4 be an R-algebra which is a finitely generated R-module.
Then a prime ideal  of A is said to be unramified over R if it satisfies
the equivalent conditions in (3. 1).

THEOREM 3. 2 (Noctherian different theorem). Let A be an R-algebra and Z
the center of A.  Assume that both A and Z are finitely generated R-modules. For
any prime ideal B of A, the following conditions are equivalent:

(1) N, E$NZ
(2) B is unramified.

Proof. Put ¢q=PNZ and p=PN R as in (3. 1). If we suppose
Nyr S then, by (2. 1), we have NyrSqor N,,<a. In case NZ/R;q,
it can be shown that Z,/pZ, is not separable over Ry/pRp, by using the
same method as in the proof of [1], (2. 7). On the other hand, in case
N 1z S 9 Aq is not separable over Z,. Therefore, in both cases, Ai/p4q is
not separable over Rp/pRy.  Conversely suppose that N Ly E A Then we

have, by (2. 1), N A/z$ q, so that A4, is separable over Z,, Again, by
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applying (2. 1) to A4, we obtain Nayr,= Nzyr,. Because Nuayr,2[Ngl,
we have Nz g &4Z;, and so we can show, again by using the same
method- as in the proof of [1], (2.7), that Z,pZ, is separable over Ry/pRy.
Consequently Aq/p4; must be separable over Ry/pRp. This completes the
proof of the theorem.

In the rest of this section, we assume that R is a commutative ring
with total quotient ring K and that 3} is a separable K-algebra which is
a finitely generated projective K-module.

TueorEM 3. 3.  (Discriminant theorem). Let A be a projective R-order in a
separable K-algebra 33, and assume one of the following conditions:

i) R s the center of A and dyrSR.

ii) A is projective as a module over its center and t /e S R.

iii) R is a Noetherian ring with Krull dimension 1 and t_, (4) < R.

E/K(

(
(
(
(iv) R s a regular domain.

Then, for any prime ideal p of R, the following statementis are equivalent:

(1) P
(2) Any prime ideal B of A such that p =P N R is unramified.

C R,

4R =
yrEP is equivalent to that d 4R =Ry. By

virtue of (2. 6), (2.7) or (2.8), this is also equivalent to the condition that
N"p/Rp
we can see the equivalence of (1) and (2).

Proof. In each case of (i), (ii), (iii) and (iv) we have d
hence the condition that d

coincides with the center of Ay, i.e., 4p is separable over Rp,. Thus

PropoSITION 3. 4. Let R be a Noetherian ring and A a projective R-order
in a central separable K-algebra 3.  Suppose that d, ,
tdeal of R, generated by a non-zero divisor in R, is unmixed. Then any minimal

prime divisor of N R has height 1 in R.

R, or that any principal

Proof. Now assume that d, , S R. Because d yr 18 an invertible ideal

of R, any minimal prime divisor of d AR has height 1 in R. According

to (2.6), for a prime ideal p of R, we have d if and only if

HREP

N,rSp. So any minimal prime divisor of N, . has height 1 in R.

Secondly suppose that any principal ideal of R, generated by a non-zero
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divisor in R, is unmixed and that there is a minimal prime divisor  p of

N, with height=2. Then we may further assume that R is a local ring
with a maximal ideal p. Since d,, is invertible in R, we can put

dA/R=~3—R for some non-zero divisors ¢, b in R. For any prime ideal p’
of height 1 in R, we have NAp,/Rp,= Ry and so, by (2. 6), dAp'/Rp'= Ry,
i.e., aRy = bRy. However, both aR and bR are unmixed. Therefore we

obtain aR = bR, hence d YR = R. From (2. 6) it follows that N R = R,
which is obviously a contradiction.

CorOLLARY 3.5. Under the same assumptions in (3. 4), A is separable
over R, if and only if, for any prime ideal p of height 1 in R, Ay is separable
over Ry.

This corollary is a generalization of [3], (4. 6).

We now prove, as a generalization of the different theorem for
maximal orders over a Dedekind domain, the following

TueorEM 3. 6. (Dedekind different theorem). Let R be a Noetherian ring
and A a projective R-order in a separable K-algebra Y. Let Z be the center of A
and assume that A is Z-projective. Then the weak Dedekind different D R is

contained in A, and, for any prime ideal B of A, the following statements are
equivalent :

(1) D& B

2 DyrE®n2)4

®) Dy, EBN2)4and Dyp BN Z.
(4) B is unramified.

Especially, if t;, (4) S R, these are also equivalent Yo

(1) D&%

Proof. We have shown D, ,cC, . in (2.7), so that IN)A/R=[DA/R]2 c

Cyx'Dyr< 4. Therefore we need only prove the second part. However
the implications (1)’ < (1) => (2) are obvious, and so it suffices to show
the rest of the implications. To simplify our notation we put ¢=PnZ
and p=P N R.

The case Z=R. In this case (2)<&= (3) is also evident. If P is

unramified, then we have, by (3. 2), N yrE P and so Nayr, = Rp. Hence,
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by (2. 6), DAP/RP = Ap, i.e., DA;,/RP = Ay & Py. Since DAP/RP = [DA/R];)’ this
implies D sz & B, which proves (4) = (1). Hence we have only to prove
(2)=> (4). Now suppose that P is ramified. Then it suffices to show
that D xS 4. However, by (3. 2), P is ramified if and only if N Ny pSb-
Therefore it suffices to show this under the assumptions that R is a local
ring with a maximal ideal p and N, ,
p is not a prime divisor of 0, hence we have height zp=1. If heightzp

is p-primary. Since K (I?N e =K

=1, denoting by @ a non-zero divisor of R contained in p, we find a non
negative integer [/ such that [N A/R]’ & aR but [N 211 S aR. Because

Trdy, (Dyg) =Nyr by (2.38), we see Trd,, (IN A/R] A/R) [N, ' < aR,
Cad. Since R

and so @ '[N R] DA/R_CA/R Hence we have [N R] R S
is a local ring, this shows D g S P4 On the other hand, if height zp > 1,
we have, by (3. 4), d

yrE R However, since d, /R is an invertible fractional

ideal of R, we have d r= iR for some non-zero divisors a, b of R, If
we put ¢ = {c € Rlcd, 5 < R}, then ¢ is the p-primary ideal of R according
to (2. 6), because N, is p-primary. Therefore there is a non-negative
integer [ such that [NA/R]‘ € ¢ but [N Ao, Then dA/R- [NA/R]’-
Trdz/K(DA/R) = dA/R[NA/R]Z+1 c R, and so dA/R [NA/R] A/R c A Thus we
obtain b-[NA/R]’-DA/RQaA Since beIN, gl € aR, this shows BA/R';pA,
which completes the proof of (2) = (4).

The general case. By the preceding proof in case Z=R, P is
unramified over Z if and only if D yz E 04 and, by (3. 2), q is unramified
if and only if N, Nyp & a. Then we see easily (3) <= (4), because Dyp=Nyp
by (2. 4). If DA/R_S,B, then we have, by (2. 2), A/Z_SB or D,,<q.
Again by the proof in case Z =R, then, we have D yz S 94 or Dy, CSa.
Therefore (3) implies (1). Now it is sufficient to show (2) => (3). Assume
that DA/Z_qA or Dy, Sa. If DA/Z_qA then DA/R_DA/Z_qA Hence
we have only to consider the case that D, ,z % a4 but D Dyr<Sa.
€ q4, we may assume that R is a local ring with a maximal ideal p.

To show
DA/R
If we suppose that R is complete, Z can be expressed as the direct sum
of a finite number of complete local rings Zl, Zgy » » +yZ,. Since Zg coincides

with one of Z/s and D

R DZ®A/R@ 2®A/R@ @DZ®A/R, we may

further assume Z = Z,. Because D 4z &€ q4, A4 is separable over Z. Hence,
by (2. 2), we have Dyp= DZ/R -4, so that DA/R [Dz d<ad. Generally,

let R* be the completion of R, and put Z*—R*(;?Z and 4* = R*%)A
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/R,QqZ*. Since 4 is
separable over Z,, Afzis also separable over Z}z. According to the preced-
ing argument, we must have DA./R*qu*. From the fact that DA/R=
» S a4.  This completes the

Then we have DZ‘/R‘ = R*@DZ/R, and therefore D,,

Dy N 4, it follows immediately that D y
proof of the theorem.

It is clear that the different theorem for hereditary orders in [12] is a
special case of (3. 6).

§4. Differents of hereditary orders
In this section we shall determine completely the structure of the
differents of a hereditary order over a Dedekind domain.

Lemma 4.1. Let R be a Dedekind domain with quotient field K and 3}
a central simple K-algebra. Let A be a hereditary R-order in 3} and put I(Y) =
Trd,, (A). Then I(X3) is an ideal of R which depends only on 3, but which
does not depend on A.

Proof. In order to prove this, we may assume that R is a complete
discrete valuation ring. Then this follows immediately from [11], (6. 2).
The following lemma is a slight generalization of [3], (8. 4).

LEmMA 4. 2.  Let R be a discrete valuation ring with a maximal ideal p, K
the quotient field of R and A a maximal R-order in a central simple K-algebra.
Then A is separable over R if and only if Rfp tis the center of Al J(A).

Proof. The only if part of the lemma is well known (cf. [3]). Hence
it is sufficient to prove the if part. If we suppose that the center of 4/](4)
coincides with R/p, then there exists a splitting field L of 4/J(4) which is
a finite separable extension of Rfp such that L % A4/J(4) is isomorphic to a
full matrix algebra over L. Now we can find a discrete valuation ring S
which is finitely generated, and separable over R such that S/pS=L. If
we denote by L the quotient field of S, S@A is a hereditary S-order in
L®Y and we have SQA/J(SQAH=LK4JA. Then, by [10], (.5)
S@A is a maximal S-order in L(;?Z}. Hence we may assume that
Al J(4) is a full matrix algebra over Rfp, because, in order to prove that
4 is separable, it suffices to show that S(?A is separable over S. Further-
more, without loss of generality, we may assume that R is complete. Then,
as is well known, both 3} and 4/J(4) can be considered as division rings.
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Therefore we have only to prove 4= R under the assumptions that /()
= R/p and that X is a division K-algebra. In this case, putting »? =dim,>}
and denoting by e the integer such that p4 =[](4)]°, we have »n?*=e. But,
on the other hand, we have u|e (cf. [17], Chap. 2, Cor. 1 to Th. 11), so
that » =1, ie., X1=K  Thus we must have 4= R, which completes the
proof of the lemma.

Let R be a discrete valuation ring with a maximal ideal p, K the
quotient field of ® and X} be a central simple K-algebra. Then, by virtue
of [10], (4. 6), there exists a division R/p-algebra 4 such that, for any
hereditary R-order 4 in X}, 4/J(4) can be expressed as the direct sum of a
finite number of full matrix algebras over 4. Now we denote such a
division Rfp-algebra 4 by 4(%).

Let R be a discrete valuation ring and K the quotient field of R.
Then a finite separable extension L of K is said to be unramified, if the
integral closure of R in L is separable over R. The set of all classes of
central simple K-algebras which have splitting fields, unramified over K, is
obviously the subgroup of the Brauer group, Br(K), of K. We now
denote this subgroup by V(R). More generally, if R is a Dedekind domain
with quotient field K, then we put V(R) = QV(Rp) where p runs over all
maximal ideals of R, According to [3], (6. 3), we have Br(R) c V(R).

The following theorem is known partially in case R is complete.

TuEOREM 4, 3. Let R be a discrete valuation ring with a maximal ideal p
and K the quotient field. Then, for any central simple K-algebra 3, the following
statements are equivalent:

(1) The class, 3%, of X is contained in V(R).

(2)  A(X) is separable over R|p.

@ IX) =R

Proof. In order to prove (2) <= (3) we may suppose that R is complete.
However, in this case, the implications (2) <= (3) are shown in [17], p. 148.
Hence we have only to prove (1) < (2).

()= (). If we assume 3! V(R), there exists an unramified exten-
sion L of K which is a splitting field of 3. Let S be the integral closure
of R in L. Then, for any hereditary R-order A in Y, S(?A is also a
hereditary S-order in L(?{E. Since L®K >0 is a full matrix algebra over
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L, any maximal S-order I’ in L%)E is also a full matrix algebra over

S, and therefore I'/J(I') is separable over S/pS. Then, by [10], (4. 86),
S%)A/](S%)A) is also separable over S/pS.  Because S(;?/I/ J(S C?A)E

S/pS Ig;)p A1J(4), we can conclude that 4/](4) is separable over Rfp, i.e., that

4(%2) is separable over R/p.

(2)=> (1). Suppose that 4(3)) is separable over Rfp. Then, for any
maximal R-order A in X, A/J(4) is separable over Rfp. If we denote by
L’ a maximal commutative separable subfield of 4(}}), L’ is a splitting field
of 4/J(4). Let S’ be a discrete valuation ring which is separable over
R such that S’/pS’ = L’ and L’ the quotient field of S’.  Then §'@4 is a

hereditary S’-order in L' (? 31 and we have S’ (?A/](S’ %}A) = I—,’%)A/](A).
p
Therefore S’(?/I/ ](S’%)/I) is expressible as the direct sum of a finite number

of full matrix algebras over L. Hence, by the preceding remark, for a
maximal S’-order I in L'%)Z}, r'jjrt is a full matrix algebra over L'.

So, by virtue of (4. 2), I must be separable over S’. By [3], (6. 3), L'@Z

has a splitting field L which is an unramified extension of L. Since L
is an unramified extension of K, SI must be contained in V(R).

LemMmA 4. 4. Let R be a Dedekind domain with quotient field K, and A a
hereditary R-order in a central simple K-algebra. Then, for any maximal ideal p
of R, PalpA) is an invertible ideal of A, and any invertible ideal of A can be
expressed uniquely as the product of a finite number of Pa(pA)'s.  Furthermore the

Dedekind different D, of A is invertible in A.

Proof. The first part of the lemma was proved in [10], (7. 6), and the
second part follows immediately from [6], (4.3) and a remark in [18], p.
228.

If 4 is a hereditary R-order in a central simple K-algebra, then, by
(4. 4), for any maximal ideal p of R, there is a positive integer e such
that pA = [Pa(p4)’’. We denote this integer by e(p) and call it the ramifica-
tion index of Pa(pA).

Now, we give, as our main theorem in this section,

THEOREM 4.5. Let R be a Dedekind domain with quotient fielld K and
31 a central simple K-algebra. Let A be a hereditary R-order in Y. If we denote
by D130y + + +» 0. all of the prime ideals p, of R such that 3% V(Rp) and Palp.A)
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#p, A and by pi s, o« +,0% all of the prime ideals v of R such thar 35 & V(Ry),

then we have

t s
Dyr=| WP o] []_gl P34~/ |« ()],

where each f(p}) is an integer which depends on P (p}d) such that 1< f(p}) < e(p),

and
Nyr=[ fon] - [ fp2e] e,

where each 3(p;) means O or 1. Especially N, . is squaresfree if and only if
S e v(R).

Proof. By localizing 4 with respect to every maximal ideal of R, it is
sufficient to prove the theorem under the assumption that R is a discrete
valuation ring with a maximal ideal p. Then we have, clearly, J(4) =
P (p4). Since Trd s /K(A) = I(¥), we have IX)'4<C, /R hence D R S 104,

But D& pI>N4. In fact, if D, r S pI(X)4, then p-I(X)-'4 < CA/R and
s0 R=Trdy, (C, ) 2p™, which is obviously a contradiction. Therefore, by
(4. 4), we have D, _=[J(AIF"~7.[I(X)4] for an integer f such that

A/R
1< f=elp). If we suppose Sie V(R), then we have, by 4. 3), IZ) =R,

and therefore DA/R = [](/1)]‘30’)—1’_ Because TrdE/K(](A)) cy, Trdz/x([](_/l)]l”e(p))

=pTrd,, (J()) SR, so that D, .S [J(A1*»~Y  Consequently, in case

A/R =
S e V(R), we observe f=1. This completes the proof of the assertion
for D R in the theorem. According to (2. 3) we have Trd, Pyr) =N B>
so that N, ,=I(X)Trd, /K([](/I)]e(*’)—f Y [IOHE.  However, if we assume

N, € PP, then we have [D,,F € P4, and hence, by (4. 4),
Dyp c pI(C))4, which is a contradiction. Thus we must have N yr =T
or pl/(3))P. Here we have N, /e = PP if and only if [D el S PP,
ie., if and only if e(p)=2f. Furthermore, by virtue of (4.3), we have
Ste V(R) if and only if IX)) = R, i.e., if and only if NA/R= R or p. Thus
the proof of the theorem is completed.

Evidently, (4. 5) is a generalization of [9], (3. 3. 2).

§ 5. Locally symmetric orders
Let R be a commutative ring with total quotient ring K and 3! a
separable K-algebra. A projective R-order £ in Y} is said to be symmetric
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if 4 is a symmetric R-algebra, and, more generally, 4 is said to be locally
symmetric if, for any maximal ideal m of R, 4, is a symmetric Ry-
algebra. In [7] it was proved that any separable, projective R-order in
31 is symmetric.

Lemma 5.1, A projective R-order A in 3 s locally symmetric if and only
if Cyp=ad for some invertible fractional ideal o of the center of A.  Furthermore
a quasi-Frobenius R-order A in 3 s locally symmetric if and only if Dy p=oad
Jor some invertible fractional ideal a of the center of A.

Progf. This follows from the fact that 4= A4*=C, R 3 two-sided 4-
modules (cf. [18], p. 228.)

The Dedekind different theorem for locally symmetric orders can be
described as follows.

TrEOREM 5. 2. Let R be a regular domain with quotient field K, and 33
a separable K-algebra. Let A be a locally symmetric, projective R-order in Y\ and

denote by Z the center of A.  Then, for any prime ideal B of A, the following
conditions are equivalent:

(1) DA/R g S’B'
(2 Dyr% (B n2)4.
(3) . P ts unramified.

Proof. Because R is regular, we have ¢ /K(A) € R. By (5.1), then,
there is an invertible ideal a of Z such that D,r=0ad4. From this the
equivalence of (1) and (2) follows directly. Let P be a prime ideal of 4,
and put ¢=PnNZ and p=PnN R Now, to prove the equivalence of (2)
and (3) we may assume that R is a complete regular local ring with a
maximal ideal p and further that Z is a local ring with a maximal ideal
q. Then B is unramified if and only if 4 is separable, i.e., if and only
if D yr=4 according to (2. 8). Therefore P is unramified if and only if
a=Z¢q, which shows the equivalence of (2) and (3). This concludes
the proof of the theorem.

It should be remarked that (5. 2) is not included in (3. 6). (5. 2) can
be applied to the group algebra RII of a finite group II over a Dedekind
domain R of characteristic 0.

In the rest of this section we shall be concerned with locally symmetric
orders over a Dedekind domain R in a central simple K-algebra.
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First we give, as an additional remark to (4. 5),

ProposiTioN 5.3. Let R be a Dedekind domain and 3} a central simple
K-algebra. Then a hereditary R-order A in Y is locally symmetric if and only if
Dyr= I)A.  Especially, if S3€V(R), a hereditary R-order in 3 is locally
symmetric if and only if it is separable.

Proof. 'This follows immediately from (4. 4), (4. 5) and (5. 1).

PropositioN 5. 4. Let R be a Dedekind domain and 3. a central simple
K-algebra. Let A be a locally symmetric R-order in 33. If Q is an R-order in
> such that A< Q and Trd,, (A)=Trd,, (2), then Q coincides with 4. In
particular, a locally symmetric, hereditary R-order in Y is always maximal.

Proof. Without loss of generality we may assume that R is a discrete

(4=
/K
Trd,, (2)=u'R for some non-negative integer /. From this it follows

valuation ring with a maximal ideal #R. Now we can put Trd

that C yR= u™'4, since A is symmetric over R, It is clear that 4 Cc Q¢
Cg/ze c CA/R, and so we obtain Cor S u~'4.  However, TrdE/K(u“’Q) = R,
so that ¥7'Q< Cy p. Thus uQcu™4, ie., 2< 4. This proves the first
part of the proposition. From the first part and (4. 3) we can easily show

the second part.

LemMa 5.5. Let R be a discrete valuation ring with a maximal ideal p
and Y a central simple K-algebra. For any maximal R-order A in 33, the jfollo-
wing conditions are equivalent:

(1) For any unramified extension L of K, denoting by S the integral closure
of R in L, SC;?/I is a maximal S-order in L%Z‘,.

(2)  The center of AlJ(A) is a purely inseparable extension of R[p.

Proof. We denote the center of 4/J(4) by Z. For any separable
extension S of R/p, we can find a discrete valuation ring S, separable
over R, such that S/pS=S. Now assume (1). Then, denoting by L the
quotient field of S, SC;?A is maximal in LC;?Z}. But we have S(?A/ ](S%A)

=5 R® A]J(4), so that the center of SR®_/1/ ](S(;?/I) is isomorphic to S g% Z.
72
Hence § 1%92 is a field by [2], (2.1). Thus Z must be purely inseparable
p

over Rjp. Conversely assume (2). Let L be an unramified extension of
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K and S the integral closure of R in L. Then S(;?A is a hereditary S-
order in L(I?Z, because S is separable over R.  Since S@A/ ](SC;?A) =
S/nS 1W®p A/J(4), we obtain SqI@A/ ](ng?/l)zsq/psq g%/ll J(4) for any maximal
ideal q of S. From the assumption, then, we can observe that, for each q,
Sq(?/l/ ](Sq@/l) has a field as its center. Therefore, again by [10], (3.5),
S%)/I must be maximal in LIQé)Z.

ProrosiTION 5.6, Let R be a Dedekind domain and 3} a central simple
K-algebra. If a maximal R-order A in ) is locally symmetric, then, for any
maximal ideal p of R, the center of A|P4(pA) ts a purely inseparable extension of
Rfp.

Progf. In order to prove this we may assume that R is a discrete
valuation ring with a maximal ideal p. Let L be an unramified extension
of K and S the integral closure of R in L. Then S(?A is a hereditary

S-order in L(;?Z‘,. Furthermore Sg;)/l is also a symmetric S-algebra.
Hence S%)/I is maximal in L%QE by (5. 4). Thus, by virtue of (5. 5),
the center of A/J(4) is purely inseparable over R/p.

By (5. 3), only in case ST V(R), it may happen that there exists a

locally symmetric, non-separable, maximal R-order in . In fact, we
shall prove

TuEOREM 5.7. Let R be a discrete valuation ring with a maximal ideal y
and K the quotient field of R. Suppose that R is of characteristic p>0. Then
the following conditions are equivalent:

(1)  The residue class field Ry is not perfect.

(2)  There exists a central simple K-algebra >3 which contains a symmetric,
non-separable, maximal R-order.

Proof. The implication (2)=—>(1) was proved in (5.3). Hence we
have only to show (1) =>(2). Suppose that R/p is not perfect. Here we
shall construct a central simple K-algebra >} which contains a symmetric,
non-separable, maximal R-order. Let # be a prime element of R, i.e., an
element of R such that p = «R, and let X, Y be two indeterminates. - Now
put f(X) =X? —u?'X —u. Then f(X) is an Eisenstein polynomial of the
Artin-Schreier type.  Therefore, if we put L= K[X]f(X)K[X], L is a
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Galois extension of K whose group, G, is a cyclic group of order p, and,
furthermore, putting S = R[X)/f(X)R[X] and denoting by z the residue of
X in S, S is a discrete valuation ring with a maximal ideal q = xS whose
quotien.t field coincides with L, so that any element of G operates on S as
an automorphism over R. Since R[p is not perfect, there exists an element
a of R such that, denoting by & the residue of ¢ in R/p, the polynomial
Y? — a is irreducible in R/p[Y]. We denote by ¢ the generator of G. Let
S[Y] be the non-commutative polynomial ring over S such that s’Y =7Ys
for any s S, and put 4= S[Y]/(Y? —a)S[Y] and 3} = L(>S§A. Obviously X7
is a crossed product. So 3! is a central simple K-algebra and 4 is an R-
order in 3. It can be seen easily that J(4) =q42p4 and A/J(4) =
(RIp)IYY(Y? — a)(R/p)IY]. Hence 4 is a non-separable, maximal R-order in
3. However, by a direct computation, we obtain I(3}) = p*~* and C YR =
p'?4, and so A is symmetric over R by (5. 3). Thus 3} is a central simple
K-algebra as required.

We did not succeed in omitting from (5. 7) the assumption that R is
of characteristic p >0 (cf. [8]. However, quite analogously, we obtain

ProrosiTION 5.8. Let R be a discrete valuation ring with a maximal ideal
p and K the quotient field of R.  Suppose that R is of characteristic 0, that the
residue class field Ry is of characteristic p>0 and that R contains the primitive
p-th root & of 1.  Then the following conditions are equivalent :

(1) Rfp is not perfect.

(2) There exists a central simple K-algebra 33 which contains a non-symmetric,

maximal R-order A such that AlpA is symmetric over Rp and the center of AlJ(A)
is purely inseparable over R[p.

Proof. (2)=—> (1) follows immediately from (4. 2) and (4. 3). So it is
sufficient to show (1)==(2). By using f(X)= X? —« instead of f(X)=
X? —u?'X —u in the proof of (5.7), we can construct a crossed product
>1 and a maximal R-order 4 in 3} such that J(4) = xz4. Then we have
AlpA = (SPSIY(Y? — a)(S/pS)Y] and A4/](4) = (R/p)IYI/(Y? — a)(R/p)[Y]. Since
the residue of ¢ in R/p coincides with a unit element of Rfp, o operates
trivially on S/pS, and therefore 4/p4 is a commutative local ring. But
Afp4 is uniserial R/p-algebra, because A is maximal in 3). Hence A/p4 is
a commutative Frobenius R/p-algebra, so that it is symmetric over R/p.
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However, as is easily seen, I3!) = pR and D yr =P LJADP. By virtue of
(6. 3) this shows that 4 is not symmetric over R. Thus 3! is as required.
From (5. 7) and (5. 8) the following corollary follows directly.

COROLLARY 5.9. Let R be a discrete valuation ring with a maximal ideal
p which satisfies the assumptions in (5. 7) or (5. 8) and K the quotient field of R.
Then the residue class field Ry is perfect if and only if V(R) = Br(K).

Finally we give a remark on symmetric algebra. Let R be a local
ring with a maximal ideal m and 4 an R-algebra which is a finitely
generated free R-module. As is well known (cf. [7]), 4 is separable over
R if A/mA is separable over R/m. It has been proved in [6], (3. 3) and
(3. 4) that 4 is (quasi-) Frobenius over R if A/mA is (quasi-) Frobenius over
R/m. However (5. 8) shows that the similar assertion for symmetricity is

false.
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