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Abstract. Considering a holonomicD-module and a hypersurface, we define a finite family ofD-
modules on the hypersurface which we call modules of vanishing cycles. The first one had been
previously defined and corresponds to formal solutions. The last one corresponds, via Riemann–
Hilbert, to the geometric vanishing cycles of Grothendieck–Deligne. For regular holonomicD-
modules there is only one sheaf and for nonregular modules the sheaves of vanishing cycles control
the growth and the index of solutions. Our results extend to nonholonomic modules under some
hypothesis.
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Introduction

The aim of this paper is to define vanishing cycles of nonregularD-modules and
use them to study the solutions of these modules.

The vanishing cycles of aD-module were originally introduced in the case
of regular holonomicD-modules [12, 23]. The definition was extended to non-
holonomicDX-modules, to the complex ofDX -modules and to microdifferential
equations in several papers [21, 22, 27, 28].

If X is a complex manifold andY a smooth hypersurface ofX, the vanishing
cycles of aDX -moduleM is aDY -moduleΦ(M). Under a suitable condition (M
‘specializable’), the moduleΦ(M) is coherent. This condition is always satisfied
for holonomicDX-modules and thenΦ(M) is holonomic.

In the regular holonomic case, the Riemann–Hilbert correspondence is com-
patible with vanishing cycles. This means thatΦ(Sol(M)) = Sol(Φ(M)). Here,
Sol(M) is the complex of holomorphic solutions ofM that isRHomDX (M,OX )
and Φ(Sol(M)) is the sheaf of geometric vanishing cycles in the theory of
Grothendieck–Deligne [7].

If M is holonomic but not regular, the solutions ofΦ(M) correspond to formal
solutions ofM and they have no connection with holomorphic solutions. This
is, of course, related to the fact that formal solutions of nonregular holonomic
modules are not convergent. So, it appears that we have to define another notion
of vanishing cycles which would be compatible via Riemann–Hilbert with the

INTERPRINT J.V.: PIPS Nr.: 156510 MATHKAP
comp413.tex; 8/04/1999; 9:53; v.7; p.1

https://doi.org/10.1023/A:1000791329695 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000791329695


242 YVES LAURENT

geometric vanishing cycles for any holonomic module. We will callΦ(M) the
sheaf of ‘moderate’ vanishing cycles to distinguish it from the new ones.

On the other hand, the solutions of nonregular differential equations in dimen-
sion 1 were studied in details by Ramis [25, 26]. He calculated the growth and the
index of solutions from the Newton polygon of the equation that is from a finite
sequence of rational slopes and of integral heights.

In this paper, we define a familyΦ(r)(M) of vanishing cycles indexed by a
rational numberr running fromr = 1 (corresponding to holomorphic solutions)
to r = +∞ (formal solutions). They will not be coherentDY -modules but perfect
D∞Y -modules.

In the holonomic case, the family will be constant inr except for a finite
number of values and each module will be a holonomicD∞Y -module (that is, equal
toD∞Y ⊗DY N for some holonomicDY -moduleN ). These values ofr generalize
the slopes of the Newton polygon of Ramis in higher dimension, while the integral
heights are replaced here by the characteristic cycles of theD∞Y -module. We have
Φ(∞)(M) = D∞Y ⊗DY Φ(M) andΦ(Sol(M)) = Sol(Φ(1)(M)). If M is regular,
holonomicΦ(r)(M) is the same for allr.

More generally, we define a family of vanishing cycles for anyDX -moduleM
and any object of the derived category ofDX -module. They are defined for each
pair(r, s) of rational numbers, such that 16 s 6 r 6 +∞ as objects of the derived
category ofD∞Y -modules and denoted byΦ(r,s)(M).

The properties of these sheaves are connected with the microcharacteristic
varieties ChΛ(r,s)(M) of [19]. We show that, under a geometric condition on
ChΛ(r0,s0)(M), Φ(r,s)(M) is independent of(r, s) if s0 6 s 6 r 6 r0. Moreover,
it is aD∞Y -module (not only an object of the derived category), and admits locally
a finite resolution by freeD∞Y -modules. We show that the functorΦ(r,s)(.) is
compatible with duality.

The formal power series used by Ramis are not adapted to the higher dimen-
sional case. We use the sheafCRY |X of microfunctions of Sato, Kawaı̈ and Kashi-
wara [29] which lives on the conormal bundleT ∗YX and some connected sheaves
CRY |X (r,s) of [20] to control the growth. To work with them we use the sheaf of

2-microdifferential operatorsD2(R,∞)
Λ (r,s). This sheaf is in fact the sheaf of dif-

ferential operators associated toCRY |X (r,s) exactly as the sheafD∞X of differential
operators of infinite order is associated to holomorphic functions.

We prove a kind of microlocal Cauchy theorem, that is an isomorphism between
the solutions ofM in the sheafCRY |X (r,s) and the solutions ofΦ(r,s)(M) in the
sheafOY of holomorphic functions onY .

This shows in particular that these solutions do not depend on(r, s) when
Φ(r,s)(M) do not. We deduce from this a control on the growth of solutions ofM
in more familiar sheaves as holomorphic functions with essential singularities on
Y or the formal completion of the sheaf of holomorphic functions alongY (see
Corollary 4.4.3).
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VANISHING CYCLES OF IRREGULARD-MODULES 243

With holonomic modules, the geometric condition is always satisfied when
r = s. More precisely, we proved in [19] that, for each holonomicDX-moduleM,
there exists a finite number of indexesr, the critical indexes or slopes ofM, such
that the condition is satisfied for(r, s) as soon as no slope is betweenr ands.

Let us denote byr0 = 1 < r1 < · · · < rN = +∞ the sequence of slopes of a
holonomicDX-moduleM. We may therefore associate to each interval[ri−1, ri]
a sheaf ofΦi(M) such thatΦ(r,s)(M) = Φi(M) whenri−1 6 s 6 r 6 ri and
s < ri. This family will be called the family of vanishing cycles of the irregular
holonomic moduleM.

In fact, we use more convenient notations. Ifr = ri is a slope, thenΦ{r}(M)
denotes the sheafΦi(M) andΦ(r)(M) denotes the sheafΦi+1(M) and if ri−1 6
r 6 ri, thenΦ{r}(M) = Φ(r)(M) = Φi(M).

If M is holonomic, the sheavesΦ(r)(M) areD∞Y -holonomic and we prove that
the characteristic cycle ofΦ(r)(M) is equal to the corresponding microcharacter-
istic cycle ofM.

Using the microlocal Cauchy theorem, we deduce that the growth of solutions
is given by the slopes ofM and we get an index theorem analogous to Kashiwara’s
theorem [11]. More precisely, we prove that the complex of microfunction solutions
of the holonomic moduleM are perverse sheaves whose Euler characteristic may
be calculated from the microcharacteristic cycles ofM and this is true for any value
of r in [1,+∞]. From this, we show analogous results for holomorphic functions
with singularities onY and Nilsson classes.

The familyΦ(r)(M) thus makes the connection between the geometric invari-
ants defined in [19] and the solutions.

In the one-dimensional case, a detailed study of growth of solutions in sectors
of C through Fourier transform has been performed by Malgrange in [24].

In the case of holonomic modules, N. Honda [9, 10], using the techniques of
Kashiwara and Kawaı̈ [14], proved the isomorphism between solutions inCRY |X (s,1)

andCRY |X whens is lower than somes0. This numbers0 is independent of the
manifoldY . If we compare to our results, it seems to be the maximum of the first
slopesr1 over all manifoldsY of X.

The paper is divided in five sections. In the first one, we recall several defin-
itions that will be used later, namely the Newton polygon of an operator, the
microcharacteristic varieties.

In Section 2, we recall the definition of several sheaves of microfunctions and of
their symbols. We show that in some special cases we may restrict microfunctions
to a hypersurface.

The key result of the paper is in the third section, namely Theorem 3.1.1. This
theorem is of the same kind as a theorem of [11] showing that an operator with the
principal symboltm is equivalent to the operatortm. The theorem of Kashiwara
uses microlocal operators ofERX . Our theorem replaces the principal symbol by a

microlocal symbol and the sheafERX by the sheafD2(R,∞)
Λ (r,s).
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244 YVES LAURENT

In Section 4, we apply this theorem to define the sheaves of vanishing cycles
Φ(r,s)(M). We study their properties, prove the microlocal Cauchy theorem and
deduce results about nonholonomicDX-modules.

In Section 5, are the results about holonomic modules, their solutions and the
index theorems.

We have added an appendix in which we give another proof of the results of
Section 5.2 which does not use the results of Kashiwara and Kawaı̈ on regular
holonomic modules.

1. Microcharacteristic Varieties of aD-Module

1.1. SOME NOTATIONS

LetX be a complex analytic manifold andY a submanifold ofX. We will denote
by Λ = T ∗YX the conormal bundle toY with canonical projectionπ: Λ→ Y and
by T ∗Λ the cotangent bundle toΛ.

Local coordinates ofX, when used, will be denoted by(x1, . . . , xn−d, t1, . . . , td)
and chosen such thatY = {t = 0}. In this case, we haveΛ = T ∗YX =
{(x, t, ξ, τ) ∈ T ∗X/t = 0, ξ = 0}. We will denote by(x, τ, x∗, τ∗) the cor-
responding coordinates onT ∗Λ.

The sheaf of holomorphic functions onX will be denoted byOX and the sheaf
of differential operators with holomorphic coefficients onX byDX . The sheaf of
microdifferential operators of [29] onT ∗X will be denoted byEX .

We recall that the restriction to the zero sectionX of T ∗X of the sheafEX is
DX and thatπ−1DX is a subsheaf ofEX .

1.2. NEWTON POLYGON OF A DIFFERENTIAL OPERATOR

The Newton polygon of a differential or microdifferential operator nearY is a
convex subset ofR2 defined in [18] and [19]. We recall here its definition in local
coordinates.

A differential operatorP defined in a neighborhood ofY or a microdifferential
operatorP defined in a neighborhood ofΛ has a symbolP =

∑
j6m Pj(x, t, ξ, τ),

where eachPj is a holomorphic function nearΛ homogeneous of degreej in (ξ, τ)
(in the differential case, they are polynomial in(ξ, τ) andj is positive). They have
a representation in Taylor’s series

Pj(x, t, ξ, τ) =
∑
α,β

Pαβj (x, τ)tαξβ

and we define the following functions onT ∗Λ

Pij(x, τ, x∗, τ∗) =
∑

|α|+|β|=i
Pαβj (x, τ)(−τ∗)α(x∗)β .
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The Newton polygonNΛ(P ) of P alongΛ is the convex hull of the union of
the setsSij = {(λ, µ) ∈ R2/λ+µ 6 j, µ 6 j − i}. for all (i, j) such thatPij 6= 0.

For each rational numberr such that 16 r 6 +∞,Dr is the supporting line of
NΛ(P ) with slope−1/r. This is the line with equation{i+ r(j − i) = a} which
meets the boundary ofNΛ(P ). The principal symbols of the operatorP are defined
in the following way:

For 1< r < +∞, σ(r)
Λ (P ) (resp.σ{r}Λ (P )) is the functionPij where(i, j − i)

is the point ofNΛ(P ) ∩Dr such thati is maximum (resp. minimum).
It is proved in [19] that these functions are well defined (i.e., independ-

ent of coordinates) onT ∗Λ and they are multiplicative, that isσ(r)
Λ (PQ) =

σ
(r)
Λ (P )σ(r)

Λ (Q).
For 16 s < r 6 +∞, the symbolσ(r,s)

Λ (P ) is defined asPi,i+k if the intersec-
tion ofDr andDs has integral coordinates(i, k) and it is 0 otherwise.

Another way to define these symbols is to consider the ‘critical indexes’ ofP .
A numberr such that 16 r 6 +∞ is a critical index if−1/r is a slope ofNΛ(P )
that is ifDr ∩NΛ(P ) is notequal to one point.

Then if r is not a critical index we haveσ(r)
Λ (P ) = σ

{r}
Λ (P ) = Pij where

(i, j − i) is the unique point whereDr meetsNΛ(P ). If r is a critical index, then

σ
(r)
Λ (P ) (resp.σ{r}Λ (P )) is equal toσ(r−ε)

Λ (P ) (resp.σ(r+ε)
Λ (P )) for 0 < ε � 1.

The functionσ(r,s)
Λ (P ) is equal toσ(r)

Λ (P ) if there is no critical index betweenr
ands and 0 otherwise.

These definitions are independent of local coordinates and they may be extended
to any conic Lagrangian submanifoldΛ of T ∗X.

1.3. MICROCHARACTERISTIC VARIETIES

The microcharacteristic varieties were defined in [19] to which we refer for details
about the definitions recalled here.

Let Λ be a Lagrangian conic submanifoldΛ of T ∗X andT ∗Λ its cotangent
bundle. When we considerDX -modules, we assume thatΛ is the conormal bundle
T ∗YX to a submanifoldY of X.

The manifoldΛ is provided with a canonical action ofC∗ which defines an
action ofC∗ onT ∗Λ denoted byH∞. On the other hand,T ∗Λ is a vector bundle
onΛ and is therefore provided with another action ofC∗ denoted byH0.

If r is a nonnegative rational number, written asr = p/q with relatively prime
integersp andq, we setHr = Hp

∞H
q
0.

In local coordinatesH0,H∞ andHr are given by:

H0(λ) : (x, τ, x∗, τ∗)→ (x, τ, λx∗, λτ∗),

H∞(λ) : (x, τ, x∗, τ∗)→ (x, λτ, x∗, λ−1τ∗),

Hr(λ) : (x, τ, x∗, τ∗)→ (x, λpτ, λqx∗, λq−pτ∗).
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We denote byO[T ∗Λ](i, j) the sheaf of holomorphic functions onT ∗Λ which
are homogeneous of degreej for H1 andi for H0 and are polynomial in the fibers
of π: T ∗Λ→ Λ and byO[T ∗Λ] the sum⊕O[T ∗Λ](i, j).

The restriction toY of the sheafDX is provided with two canonical filtrations.
The first one is the usual filtration by the order of operators which is denoted by
(DX,m)m>0 and the second one is defined by [12]

VkDX = {P ∈ DX |Y /∀j ∈ Z, PIjY ⊂ I
j−k
Y },

whereIY is the ideal of definition ofY andIjY = OX if j 6 0.
These definitions extend to the sheafEX and any Lagrangian conic manifold

Λ in the following way [15, 19]: the usual filtration denoted by(EX,m), we define
V0EX as the subalgebra ofEX |Λ generated by the operators of order 1 whose
principal symbol vanishes onΛ andVkEX = EX,kV0EX .

Now if r = p/q is a rational number such that 1< r < ∞, we define a
Fr-filtration onEX |Λ by F kr EX =

∑
(p−q)m+qn=k EX,n ∩ VmEX . The associated

graded ring grFrEX is isomorphic toπ∗O[T ∗Λ].
Now we may define the microcharacteristic varieties of a coherentEX-module

or of coherentDX-module like the classical definition of the characteristic variety
of a coherentDX-module. A filtration of a coherentEX -moduleM is a good
Fr-filtration if it is locally of finite type that is of the formMk = F kr EXu1 + · · ·+
F kr EXup for some local sectionsu1, . . . , up ofM.

If M is a coherentEX -module, it has (locally) a goodFr-filtration and the
associated graded ring grFrM is a coherentπ∗O[T ∗Λ]-module which defines an

analytic subvarietyΣ(r)
Λ (M) of T ∗Λ and a positive analytic cyclẽΣ(r)

Λ (M) which
support this subvariety.

They are independent of the good filtration and we call them the microcharac-
teristic variety and the microcharacteristic cycle of typer.

It is proved in [19] thatΣ(r)
Λ (M) is involutive and homogeneous forHr and

that there exists a finite sequence 1= r0 < r1 < · · · < rN = +∞ of rational
numbers such thatΣ(r)

Λ (M) is independent ofr ∈]ri, ri+1[ for i = 1 . . . N − 1.
The numbersri are called the critical indexes or slopes ofM.

If r is not one of the critical indexes, the varietyΣ(r)
Λ (M) is homogeneous for

severalr, hence we will say that it is bihomogeneous for anyr.
So, the familyΣ(r)

Λ (M) for 1< r < +∞ is the union of two finite families, the
first one indexed by the critical indexesr1 . . . rN and the second one by the open
intervals]ri, ri+1[. The members of the second family are bihomogeneous.

Because of their relations to the solutions of the module, which we will study
in this paper, it is convenient to rename these varieties in the following way:

ChΛ{r}(M) = Σ(r+ε)
Λ (M) and ChΛ(r)(M) = Σ(r−ε)

Λ (M),

where 0< ε� 1.
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VANISHING CYCLES OF IRREGULARD-MODULES 247

By definition, these microcharacteristic varieties are all bihomogeneous and if
r is not a critical index, we have ChΛ{r}(M) = ChΛ(r)(M) = Σ(r)

Λ (M). The
microcharacteristic cycles̃ChΛ{r}(M) and C̃hΛ(r)(M) are defined in the same

way fromΣ̃(r)
Λ (M).

If I is a coherent ideal ofEX , the microcharacteristic varieties ofM = EX/I
are

ChΛ{r}(M) = {θ ∈ T ∗Λ/ ∀P ∈ I, σ{r}Λ (P ) = 0}, (1.3.1)

ChΛ(r)(M) = {θ ∈ T ∗Λ/ ∀P ∈ I, σ(r)
Λ (P ) = 0}. (1.3.2)

The same is true for the varietiesΣ(r)
Λ with the functionsΣ(i,j)∈DrPij.

As we will see later, the microcharacteristic varietyΣ(r)
Λ characterizes the solutions

of a given growth(r). If we want to prove a relation between solutions of growth
(r) and(s), we need double indexed varieties ChΛ(r,s)(M). Their definition, given
in [19], uses the bifiltration associated to the two filtrationsFr andFs: F klrsEX =
F kr EX∩F lsEX .Then the definitions of a good filtration and of the associate bigraded
module are similar to the previous one, this bigraded module is a coherentπ∗O[T ∗Λ]-
module which defines a microcharacteristic variety ChΛ(r,s)(M).

A point θ ∈ T ∗Λ is not in ChΛ(r,s)(M) if and only if for each germ ofM at

π(θ) there is an operatorP such thatPu = 0 andσ(r,s)
Λ (P )(θ) 6= 0.

The functor ChΛ(r,s)(.) is additive, that is ChΛ(r,s)(M) = ChΛ(r,s)(M′′) ∪
ChΛ(r,s)(M′) for any exact sequence 0→M′ →M→M′′ → 0.

There is a relation of inclusion between these varieties:

LEMMA 1.3.1. LetM be a coherentEX-module andr, r′, s, s′ be four numbers
such thatr > r′ > s′ > s. ThenChΛ(r)(M) ⊂ ChΛ(r′,s′)(M) ⊂ ChΛ(r,s)(M)
and the first inclusion is an equality if0< r − s� 1. We have alsoΣ(r′)

Λ (M) ⊂
ChΛ(r,s)(M).

This result was proved in [19, Prop. 3.3.1]. The proof is easy in the case of one
operator and the extension to the case of a module follows from Lemma 1.3.1 and

the corresponding formulas forΣ(r′)
Λ (M) and ChΛ(r,s)(M).

1.4. CRITICAL INDEXES AND HOLONOMY

In the case of one operatorP , the critical indexes and the functionsσ(r,s)
Λ (P ) are

closely related. In the case ofDX- orEX -module, such relations are still true under
additional assumptions, for example holonomy.

There is a canonical hypersurface inT ∗Λ which is denoted bySΛ. It is the
characteristic variety of the Euler vector field associated to the action ofC∗ on Λ.
In local coordinates, we have

SΛ = {(x, τ, x∗, τ∗) ∈ τ∗/〈τ, τ∗〉 = 0}.
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248 YVES LAURENT

This hypersurface is important here because our main hypothesis on coherent
DX- or EX -modules will be ChΛ(r,s)(M) ⊂ SΛ.

This condition is equivalent to ‘for each sectionu ofM there is an operatorP
such thatPu = 0 andσ(r,s)

Λ (P ) is a local equation forSΛ’.
This condition is satisfied by large classes ofDX - andEX-modules as shown

by the following results.

PROPOSITION 1.4.1.If M is a holonomicEX-module, the microcharacteristic
varietiesChΛ(r)(M) andChΛ{r}(M) are subvarieties ofSΛ for anyr ∈ [1,+∞].

This proposition was proved in [19]. More precisely, we proved that the micro-
characteristic varieties of a holonomic module are Lagrangian bihomogeneous
subvarieties ofT ∗Λ [19, Thm. 4.1.1] and that all Lagrangian bihomogeneous
subvarieties ofT ∗Λ are contained inSΛ [19, Prop. 4.3.1].

PROPOSITION 1.4.2.If rk and rk+1 are two consecutive critical indexes of a
coherentEX-moduleM, then for any(r, s) such thatrk > r > s > rk+1 we have

ChΛ(r,s)(M) = ChΛ(r)(M) = ChΛ(rk)(M).

This proposition will be proved at the end of the section. It implies in particular
that, ifrk andrk+1 are two consecutive critical indexes and if ChΛ(r)(M) ⊂ SΛ for
somer ∈]rk, rk+1[, then ChΛ(r,s)(M) ⊂ SΛ for any(r, s) with rk > r > s > rk+1.
Conversely, we have:

PROPOSITION 1.4.3.IfM is a coherentEX -module such thatChΛ(r,s)(M) ⊂ SΛ,
M has no critical index in]s, r[.

Proof. We know from Lemma 1.3.1 thatΣ(r′)
Λ (M) ⊂ ChΛ(r,s)(M) if r > r′ >

s. Hence by the hypothesis, we haveΣ(r′)
Λ (M) ⊂ SΛ. We conclude with [21,

Lem. 4.5.1] which asserts that ifΣ(r′)
Λ (M) ⊂ SΛ, thenΣ(r′)

Λ (M) is bihomogen-
eous and thusr′ is not a critical index. 2
In the holonomic case, these results take a very simple form:

COROLLARY 1.4.4. If M is a holonomicEX-module, then the condition
ChΛ(r,s)(M) ⊂ SΛ is true if and only if there is no critical index betweenr
ands.

To prove Proposition 1.4.2, we will use the following lemma:

LEMMA 1.4.5. LetM be a coherentEX-module andr, r′, s, s′ be four numbers
such thatr > r′ > s′ > s. ThenChΛ(r,s)(M) = ChΛ(r,s′)(M) ∪ ChΛ(r′,s)(M).
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Proof. The proof of the lemma makes full use of the results of [18], in particular
ChΛ(r,s)(M) is the support of the sheafE2

Λ(r,s) ⊗q−1EX q−1M with q: T ∗Λ →
T ∗X.

The sheafE2
Λ(r,s) is a sheaf of rings onT ∗Λ whose definition will be recalled in

2.3, but here we use only two properties of this sheaf:

(1) E2
Λ(r,s) is flat onq−1EX ([18, Thm. 2.6.10]).

(2) If r > r′ > s, thenE2
Λ(r′,s)/E2

Λ(r,s) is independent ofs ([18, Thm. 2.3.1]), we
denote it here byE [r′, r].

So we get an exact sequence 0→ E2
Λ(r,s)→ E2

Λ(r′,s)→ E [r′,r]→ 0. As E2
Λ(r′,s)

is flat onq−1EX we get an exact sequence 0→ Tor1(E [r′,r],M)→ E2
Λ(r,s)⊗M→

E2
Λ(r′,s)⊗M and the same withs replaced bys′.

This shows that ChΛ(r,s)(M), which is the support ofE2
Λ(r,s)⊗M is contained

in the union of ChΛ(r′,s)(M) and of the support ofTor1(E [r′,r],M) which itself is
contained in ChΛ(r,s′)(M), hence ChΛ(r,s)(M) ⊂ ChΛ(r,s′)(M) ∪ ChΛ(r′,s)(M).
Lemma 1.3.1 shows that this inclusion is an equality. 2
Let us now come to the proof of Proposition 1.4.2. We have to prove thatr0 = rk,
wherer0 is the highestr in [rk+1, rk] such that ChΛ(r,rk+1)(M) = ChΛ(r)(M).

Lemma 1.3.1 says that ChΛ(r)(M) ⊂ ChΛ(r,s)(M) and that the inclusion is an
equality if 0< r − s� 1, sor0 > rk+1.

On the other hand, ifs is not a critical index forM, thenΣ(s)
Λ (M) is biconic

and the same proof as that of [19, Prop. 3.3.1] shows that there exists someε > 0
such that ChΛ(s+ε,s−ε)(M) = ChΛ(s)(M). This property and Lemma 1.4.5 show
thatr0 = rk.

2. Microlocalization and Second Microlocalization

We will use several families of sheaves which have been defined in previous papers.
Let us try first to classify them and then we will recall as briefly as possible their
definitions. So Sections 2.1 to 2.4 will simply remind us of the known definitions
while the following sections will introduce new results for multivalued sections of
some of these sheaves.

There are three levels to consider: local, microlocal and 2-microlocal.
At the local level, i.e., on the complex varietyX, are the sheaves of holomorphic

functions, holomorphic hyperfunctions and differential operators. The principal
results of this paper, at least the most explicit ones, are given at this level in
Section 5 but they are corollaries of microlocal results.

At the microlocal level, that is on the cotangent bundleT ∗X toX, are the sheaves
of holomorphic microfunctions, real holomorphic microfunctions and microdiffer-
ential operators. There is also a class of 2-differential operators. This level is the
natural one for our results, for example to define the vanishing cycles.
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The 2-microlocal level is the cotangent bundleT ∗Λ to a Lagrangian submanifold
Λ of T ∗X as in Section 1. It will appear in Section 3.2 and will be fully used in the
Appendix.

At each level, the sheaves are indexed by a couple(r, s) of rational numbers
giving the growth of the symbols.

2.1. HOLOMORPHIC HYPERFUNCTIONS

We keep the notations of Section 1.1 and denote byd the codimension ofY in X.
The sheavesB∞Y |X andBY |X of holomorphic hyperfunctions onY have been

defined primitively in [29] (see also [31]). The sheafB∞Y |X is thedth local cohomo-
logy group ofOX with support onY while BY |X is the corresponding algebraic
cohomology groupB∞Y |X = HdY (OX),BY |X = Hd[Y ](OX).

If Y has codimension 1,B∞Y |X is thus the sheaf of holomorphic functions on
X \ Y modulo holomorphic functions onX whileBY |X is the subsheaf generated
by meromorphic functions onY .

If d > 1, there is a similar representation if we writeY as a complete intersection
Y = Y1 ∩ · · ·Yd of smooth hypersurfaces: letV be a domain of holomorphy inY
andU any holomorphic neighborhood ofV in X. Let Û be the complementary in
U of

⋃
i=1,...,d Yi and fori = 1, . . . , d, Ûi be the complementary inU of

⋃
k 6=i Yk.

ThenΓ(V,B∞Y |X) = OX(Û )/⊕i=1...d OX(Ûi).
In [18], we generalized these definitions to sheavesBY |X (r) andBY |X{r} for

all rational r > 1. The sheafBY |X (r) (resp.BY |X{r}) is the subsheaf ofB∞Y |X
corresponding to functions whose growth is less than exp(C/|t|1/r−1) for some
C > 0 (resp. anyC > 0) if t = (t1, . . . , td) is a local system of equations ofY .

To unify the notations, we setBY |X{1} = B∞Y |X andBY |X (∞) = BY |X .
Let us fix local coordinates(x1, . . . , xn−d, t1, . . . , td) such thatY = {t = 0}.

A function f of OX(Û) may be represented in Laurent series asf(x, t) =∑
α∈Zn fα(x)tα1

1 . . . tαdd . Let us denote as in [29]

Φn(t) =
1

2iπ
n!

(−t)n+1 .

As positive powers of anytk gives 0 inB∞Y |X , a section ofB∞Y |X on V , hence
of BY |X (r) or BY |X{r} for any r, has a unique representation asg(x, t) =∑
α∈Nn gα(x)Φα1(t1) . . .Φαd(td). By definition, the symbol of the hyperfunction

represented byg(x, t) is the functionu(x, τ) =
∑
α∈Nn gα(x)τα.

The growth conditions on the functions give the following characterization of
the sheaves of holomorphic hyperfunctions through their symbols [29, 18].

The sections ofBY |X (r) on an open setV of Y are the holomorphic functions
u(x, τ) onV × Cd such that

∀K ⊂⊂ V, ∃C0, ∃C > 0, ∀(x, τ) ∈ K × Cd,
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|u(x, τ)| < C0 exp(ε|τ |1/r),

while the sections ofBY |X{r} are the holomorphic functionsu(x, τ) on V × Cd
such that

∀K ⊂⊂ V, ∀ε > 0, ∃Cε > 0, ∀(x, τ) ∈ K × Cd,

|u(x, τ)| < Cε exp(ε|τ |1/r).

If r = +∞, the functionu is polynomial inτ .
The sheafD∞X of differential operators of infinite order onX may be defined

as the cohomology group

D∞X = B∞X|X×X ⊗p−1
2 OX

p−1
2 ΩX = HnX(OX×X)⊗p−1

2 OX
p−1

2 ΩX , (2.1.1)

whereX is identified to the diagonal ofX × X, p2 is the second projection
X ×X → X andΩX is the sheaf of holomorphic differential forms of maximum
degreen = dimX.

This definition means that a differential operator is represented by its kernel
which is a holomorphic form onX × X with singularities on the diagonalX.
The sheaf of differential operators of finite order onX isDX = BX|X×X ⊗p−1

2 OX
p−1

2 ΩX .
The representation by symbols given for holomorphic hyperfunctions gives the

ordinary symbols for differential operators. This means that the form

Φk(t− t′) dt′ =
(−1)k+1

2iπ
k!

(t− t′)k+1 dt′

is the kernel of the operator(∂/∂t)k whose symbol isτk. This is nothing other
than the Cauchy formula.

2.2. REAL HOLOMORPHIC MICROFUNCTIONS

The sheafCRY |X of real holomorphic microfunctions has been defined in [29] as
the microlocalization of the sheafOX of holomorphic functions, that is the Fourier
transform of the localization ofOX alongY (see [16] for a detailed study of
microlocalization). By definition, it is a sheaf onT ∗YX which is conic for the
canonical action ofR∗+.

A symbolic calculus for these microfunction was established by Boutet de
Monvel [5] and Aoki [1]. In [20], we defined a family of sheavesCRY |X (r,s) for +∞ >
r > s > 1 so thatCRY |X (1,1) = CRY |X . The definition did not use microlocalization
but was given by the symbols:

We consider an open subsetU0 of T ∗YX with coordinates(x, τ). An open subset
U of U0 is said to beR-conic if it is invariant under the action ofR∗+ in τ and

comp413.tex; 8/04/1999; 9:53; v.7; p.11

https://doi.org/10.1023/A:1000791329695 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000791329695


252 YVES LAURENT

convex if the fiber over eachx is convex. For such sets,U ′ ⊂⊂ U means that
U ′ ∩ {(x, τ)/|τ | = 1} is relatively compact inU . Then we set [20]:

(i) S+(c, r, U) is the set of holomorphic functions onU such that

∀U ′ ⊂⊂ U, ∃C > 0, ∀(x, τ) ∈ U ′, |f(x, τ)| < C ec|τ |
1/r
.

(ii) S−(s, U) is the set of holomorphic functions onU such that

∀U ′ ⊂⊂ U, ∃δ > 0, ∃C > 0, ∀(x, τ) ∈ U ′, |f(x, τ)| < C e−δ|τ |
1/s
.

If U is aR-conic convex open subset ofU0, if +∞ > r > s > 1 the set of
sections ofCRY |X (r,s) onU is equal to

Γ(U, CRY |X (r,s)) = lim
←−

U ′⊂⊂U
lim
−→
c>0

S+(c, r, U)/S−(s, U). (2.2.1)

If r = s we take the same formula, the injective limit onc > 0 being replaced by
the projective limit

Γ(U, CRY |X (r,r)) = lim
←−

U ′⊂⊂U
lim
←−
c>0

S+(c, r, U)/S−(r, U).

If r = +∞ and s is finite, S+(c, r, U) is the set of holomorphic functions
with polynomial growth. Ifr = s = +∞, the definition of [20] is a little more
complicated and will not be used in this paper.

The sheafCRY |X (r,s) is now given for aR-conic convex open subset ofU0 and

this generates a unique sheafCRY |X (r,s) onU0. To define a sheaf onT ∗YX, we need
the formulas connecting the symbols in two different coordinate systems and for
this we refer to [20, Prop. 2.2.5].

Real holomorphic microfunctions can also be represented by an alternate system
of symbols which, after Boutet de Monvel, we call formal symbols:

(i) Ŝ+(c, r, s, U) is the set of seriesΣk>0fk of holomorphic functions onU such
that

∀U ′ ⊂⊂ U, ∃C > 0, ∃A > 0, ∀(x, τ) ∈ U ′, ∀k > 0,

|fk(x, τ)| < CAk|τ |−k(k!)s ec|τ |
1/r
.

(ii) Ŝ−(c, r, s, U) is the subset of̂S+(c, r, s, U) of seriesΣfk such thatΣgk with
gk(x, τ) =

∑k−1
i=0 fi(x, τ) is still an element of̂S+(c, r, s, U).

If U is aR-conic open subset ofU0, if +∞ > r > s > 1, the set of sections of
CRY |X (r,s) onU is equal to

Γ(U, CRY |X (r,s)) = lim
←−

U ′⊂⊂U
lim
−→
c>0

Ŝ+(c, r, s, U)/Ŝ−(c, r, s, U).
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Note that hereU does not need to be convex as before. IfU is convex, the
isomorphism between the two kinds of symbols is induced by the natural map
S+(c, r, U) → Ŝ+(c, r, s, U) which associates with a functionf the series given
by f0 = f andfk = 0, i > 0 [20].

The sheavesCY |X (r,s) of holomorphic microfunctions onT ∗YX are simply the
global section of real holomorphic microfunctions, that is

CY |X (r,s)|Y = CRY |X (r,s)|Y , CY |X (r,s)|Ṫ ∗Y X = γ−1γ∗(CRY |X (r,s)|Ṫ ∗Y X), (2.2.2)

whereṪ ∗YX = T ∗YX \Y andγ is the canonical projection oḟT ∗YX to the associated
projective bundleP∗YX.

They were defined in [18], generalizing the definitions of [29] with the corres-
pondence

CY |X (1,1) = C∞Y |X , BY |X (1) = B∞Y |X ,

CY |X (∞,1) = CY |X , BY |X (∞) = BY |X .

If T ∗YX = {(x, t, ξ, τ) ∈ T ∗X/t = 0, ξ = 0}, a section ofCY |X (r,s) on an open
setU of T ∗YX is a formal seriesΣj∈Zfj(x, τ) of holomorphic functions onU such
that:

(i) fj is homogeneous of degreej in τ .

(ii) ∀K ⊂⊂ U, ∃C > 0, ∀j < 0, ∀(x, τ) ∈ K, |fj(x, τ)| < C−j(−j)!s.
(iii) ∀K ⊂⊂ U, ∃C > 0, ∀j > 0, ∀(x, τ) ∈ K, |fj(x, τ)| < Cj+1(1/(j!)r).

If r = s then (iii) is replaced by

(iii) ′ ∀K ⊂⊂ U, ∀ε > 0, ∃Cε > 0, ∀j > 0, ∀(x, τ) ∈ K, |fj(x, τ)| <
Cεε

j(1/(j!)r)
and ifr = +∞ then (iii) is replaced by

(iii) ′′ ∃m ∈ Z, ∀j > m, fj ≡ 0

(if s = +∞ condition (ii) is void).

From this definition we can see thatBY |X (r) is the restriction to the zero section
Y of T ∗YX of the sheafCY |X (r,s) whenr > s and thatBY |X{r} is the restriction of
CY |X (r,s) whenr = s.

The canonical morphism fromC∞Y |X (r,s) to CRY |X (r,s) is injective. To a symbol

Σj∈Zfj of C∞Y |X (r,s) we associate a formal symbolΣk>0gk of CRY |X (r,s) given by
g0 = Σj>0fj andgk = fk if k < 0.

Microlocal operators and microdifferential operators of finite or infinite order
are defined from holomorphic microfunctions as in (2.1.1)

ERX = CRX|X×X ⊗p−1
2 OX

p−1
2 ΩX ,
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E∞X = C∞X|X×X ⊗p−1
2 OX

p−1
2 ΩX ,

EX = CX|X×X ⊗p−1
2 OX

p−1
2 ΩX .

2.3. SECOND MICROLOCALIZATION

The sheafD∞X of differential operators of infinite order onX may be defined as a
cohomology group by (2.1.1). It is shown in [20] thatOX×X may be replaced in this
definition by real holomorphic microfunctions to define ‘2-microlocal operators’

D2(R,∞)
Λ (r,s) = HnT ∗YX(CRY×Y |X×X (r,s))⊗p−1

2 OX
p−1

2 ΩX

and by holomorphic microfunctions to define ‘2-microdifferential operators’

D2(∞,∞)
Λ (r,s) = HnT ∗YX(C∞Y×Y |X×X (r,s))⊗p−1

2 OX
p−1

2 ΩX .

This is possible because the cohomological properties ofC∞Y |X (r,s) andCRY |X (r,s)

are very similar to those of holomorphic functions ([20]). We remark that the
definitions together with formula (2.2.2) immediately giveD2(∞,∞)

Λ (r,s) =
γ−1γ∗D2(R,∞)

Λ (r,s).
We get in this way sheaves of rings onΛ = T ∗YX. There are canonical inclusion

of sheaves of ringsE∞X |Λ ⊂ D
2(∞,∞)
Λ (r,s) ⊂ D2(R,∞)

Λ (r,s) andERX |Λ ⊂ D
2(R,∞)
Λ (r,s)

whereEX andERX are the sheaves of microdifferential and microlocal operators of
[29].

It is proved in [20] thatCRY |X (r,s) is aD2(R,∞)
Λ (r,s)-module and thatCRY |X (r,s) =

D2(R,∞)
Λ (r,s)⊗EX CY |X .
When r > r′ > s′ > s, the canonical morphismCRY |X (r,s) → CRY |X (r′,s′)

induces a morphism of sheaves of ringsD2(R,∞)
Λ (r,s)→ D2(R,∞)

Λ (r′,s′) which makes

CRY |X (r′,s′) aD2(R,∞)
Λ (r,s)-module.

In [20] we defined symbols for sections ofD2(∞,∞)
Λ (r,s) andD2(R,∞)

Λ (r,s) gen-
eralizing those ofE∞X andERX . It is the same proof as the existence of symbols for
BY |X in Section 2.1. The coordinates are(x, τ) onΛ and(x, τ, x∗, τ∗) onT ∗Λ.

DEFINITION 2.3.1. Let(r, s) be two real numbers with 16 s < r < +∞ and let
V be an open subset ofΛ, R-conic inτ .

For eacha > 0 S2
+(r)(a, V ) is the set of holomorphic functionsu(x, τ, x∗, τ∗)

on (V ∩ {|τ | > a})× Cn such that

∃c, C > 0, ∀(x, τ, x∗, τ∗),

|u(x, τ, x∗, τ∗)| < C exp(c|τ |1/r + a(|x∗|+ |τ ||τ∗|)).
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S2
−(r)(a, V ) has the same definition but withc replaced by−c.

S2
(r,s)(V ) = lim

←−
a>0

lim
←−
V ′

S2
+(r)(a, V ′)/S2

−(s)(a, V ′),

where the limit is taken over all open subsetsV ′ of V which areR+-conic inτ and
such thatV ′ ∩ {|τ | = 1} is relatively compact inV .

We proved in [20] that ifV is contained in some half space{Re〈λ, τ〉 > 0},
there is an isomorphism betweenS2(r,s)(V ) andD2(R,∞)

Λ (r,s)(V ). The product of

two operators ofD2(R,∞)
Λ (r,s) is defined in [20] by a formula which is not easy

to explicit inS2(r,s)(V ). These symbols are issued from the symbols ofCRY |X (r,s)

of Section 2.2 while the good formula is defined in other symbols coming from
formal symbols ofCRY |X (r,s).

However, if the symbols are independent ofτ∗, the formula is meaningful in
ordinary symbols and the product ofP (x, x∗, τ) byQ(x, x∗, τ) isR(x, x∗, τ) with

R(x, x∗, τ) =
∑
α∈Nn

1
α!

(
∂

∂x∗

)α
P (x, x∗, τ)

(
∂

∂x

)α
Q(x, x∗, τ). (2.3.1)

This product appears as the product of differential operators inxwith holomorphic
parameterτ .

In the same way, symbols ofC∞Y |X (r,s) are used to define symbols ofD2(∞,∞)
Λ (r,s)

[18, 20], they have the following form: Ifr > s, the setΓ(U,D2(∞,∞)
Λ (r,s)) of

sections ofD2(∞,∞)
Λ (r,s) on an open setU of Λ is in bijection with the formal

seriesP =
∑

(i,k)∈N×Z Pik(x, τ, x
∗, τ∗), such thatPik(x, τ, x∗, τ∗) is polynomial

homogeneous of degreei in (x∗, τ∗) with coefficients holomorphic onU and
homogeneous of degreei+ k in (τ, x∗) and satisfy the following inequalities

∀K ⊂⊂ U, ∃C > 0, ∀ε > 0, ∃Cε > 0, ∀(x, τ) ∈ K, (2.3.2)

(i) |Pik(x, τ, x∗, τ∗) | < (Cε)−kεi
(−k)!s

i!
(|x∗|+ |τ∗|)i, if i > 0, k < 0,

(ii) |Pik(x, τ, x∗, τ∗) | < Cεε
iCk

1
k!r i!

(|x∗|+ |τ∗|)i, if i > 0, k > 0.

SubstitutingCRY |X (r,s) andC∞Y |X (r,s) toOX in the definition of the sheafD∞X of

differential operators gave us the sheavesD2(R,∞)
Λ (r,s) andD2(∞,∞)

Λ (r,s). We may
use the same substitution in the definition ofERX andE∞X to get the four sheaves

E2(R,R)
Λ (r,s), E2(R,∞)

Λ (r,s), E2(∞,R)
Λ (r,s) andE2(∞,∞)

Λ (r,s). Each of them is a sheaf of
rings onT ∗Λ.
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So, the definition is

E2(R,R)
Λ (r,s) = µT ∗YX(CRY×Y |X×X (r,s))[n]⊗p−1

2 OX
p−1

2 ΩX ,

whereµT ∗Y is the microlocalization alongT ∗YX diagonal ofT ∗YX × T ∗YX .

We getE2(∞,R)
Λ (r,s) by substitutingC∞ to CR, E2(R,∞)

Λ (r,s) andE2(∞,∞)
Λ (r,s) by

taking the global sections on the fibers of the projection ofT ∗Λ to the corresponding
projective fiber bundle. By restriction to the zero section we recover the sheaves of
Section 2.3

E2(R,R)
Λ (r,s)|Λ = E2(R,∞)

Λ (r,s)|Λ = D2(R,∞)
Λ (r,s),

E2(∞,R)
Λ (r,s)|Λ = E2(∞,∞)

Λ (r,s)|Λ = D2(∞,∞)
Λ (r,s).

In fact, we will not make full use here of these sheaves which were studied more
closely in [20]. The sheafE2(R,R)

Λ (r,s) will be used in a special case in the Appendix,

the sheafE2(R,∞)
Λ (r,s) only in Theorem 4.1.8 to calculate the characteristic variety

of vanishing cycles.
The sheafE2(∞,∞)

Λ (r,s) will be used in Section 3.2 only through its symbols
which we redefine now. We use local coordinates ofX as in Section 1.1 so that
T ∗Λ is provided with coordinates(x, τ, x∗, τ∗) and consider an open subsetU of
T ∗Λ where they are defined. We assume thatU isC-conic in(τ, x∗) and in(x∗, τ∗).
We assume also that the rational numbers(r, s) satisfy∞ > r > s > 1 (the cases
r =∞ or r = s are not very different but not used here).

If r > s, the setΓ(U, E2(∞,∞)
Λ (r,s)) of sections ofE2(∞,∞)

Λ (r,s) onU is in bijection
with the formal seriesP =

∑
(i,k)∈Z2 Pik(x, τ, x∗, τ∗), such thatPik(x, τ, x∗, τ∗)

is homogeneous of degreei in (x∗, τ∗) and of degreei + k in (τ, x∗) and satisfy
the following inequalities

∀K ⊂⊂ U, ∃C > 0, ∀ε > 0, ∃Cε > 0, ∀(x, τ, x∗, τ∗) ∈ K, (2.3.3)

(i) |Pik(x, τ, x∗, τ∗) | < C−i−k(−i)!(−k)!s, if i < 0, k < 0,

(ii) |Pik(x, τ, x∗, τ∗) | < C−i+k
(−i)!
k!r

, if i < 0, k > 0,

(iii) |Pik(x, τ, x∗, τ∗) | < (Cε)−kεi
(−k)!s

i!
, if i > 0, k < 0,

(iv) |Pik(x, τ, x∗, τ∗) | < Cεε
iCk

1
k!r i!

, if i > 0, k > 0.

The restriction ofE2(∞,∞)
Λ (r,s) to the zero section ofT ∗Λ is D2(∞,∞)

Λ (r,s) and
this is clearly compatible with our definitions of the symbols.
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We say thatP is of finite order if there exists(i0, k0) such thatPik = 0 if
i + rk > i0 + rk0 or i + sk > i0 + sk0. The sheaf of operators of finite order is
denoted byE2

Λ(r,s).

2.4. INVERSE IMAGE

Let i: Y ↪→ X be the canonical map. The inverse image of anOX -moduleN by i
is i∗N = OY ⊗i−1OX i

−1N .
The definition of inverse image of leftDX-modules is the same but to explicit

its structure of leftDY -module, was introduced a(DY ,DX)-bimodule (see [31]
for example)DY→X = OY ⊗i−1OX i−1DX and then ifM is a leftDX-module
i∗M = OY ⊗i−1OX i

−1M = DY→X ⊗i−1DX i
−1M.

In this paper, we will define the vanishing cycles as the inverse image byi

of a D2(R,∞)
Λ (r,s)-module. So, we define nowD2(R,∞)

Y←Λ (r,s) which is a(π−1D∞Y ,
D2(R,∞)

Λ (r,s))-bimodule onΛ (with π: Λ → Y ). It may be defined as the inverse

image of theDX-moduleD2(R,∞)
Λ (r,s) by i: Y → X that is D2(R,∞)

Y←Λ (r,s) =
π−1DY→X ⊗π−1DX D

2(R,∞)
Λ (r,s). In this way, it is the quotient ofD2(R,∞)

Λ (r,s)

by the right ideal generated by the equations ofY .
It may also be assimilated to the subsheaf ofD2(R,∞)

Λ (r,s) of operators in local
coordinates, with a symbol independent ofτ∗ (i.e., operators which commutes
with the operators of symbolsτ1, . . . , τd). To make precise calculations in the next
section, we will need a cohomological definition of this sheaf.

Let us consider the canonical injective morphismj: Y ×X → X×X. It defines
a morphismp: T ∗YX × T ∗YX → Y × T ∗YX which is the canonical projection.

The morphismj∗: j−1OX×X → OY×X defines a morphism [29, Lem. 2.2.5
Ch. I]

j∗: Rp! CRY×Y |X×X [d]→ CRY×Y |Y×X
and it was proved in [20] that this morphism may be extended to

j∗: Rp! CRY×Y |X×X (r,s)[d]→ CRY×Y |Y×X (r,s).

Taking the(n− d)th cohomology group, we get a morphism

HnT ∗YX(CRY×Y |X×X (r,s))⊗ p−1
2 ΩX →Hn−dT ∗

Y
X(CRY×Y |Y×X (r,s))⊗ p−1

2 ΩX .

The first term isD2(R,∞)
Λ (r,s) by definition and it is not difficult to verify that the

second is equal toD2(R,∞)
Y←Λ (r,s) [18, Sect. 2.10].

In the same way we may define a(D2(R,∞)
Λ (r,s), π−1D∞Y )-bimodule

D2(R,∞)
Λ→Y (r,s) = D2(R,∞)

Λ (r,s)⊗π−1DX π
−1DX←Y

= Hn−dT ∗
Y
X(CRY×Y |Y×X (r,s))⊗ p−1

1 ΩY .
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It is the quotient ofD2(R,∞)
Λ (r,s) by the left ideal generated by the equations

of Y .
The sheavesDY→X andDX←Y are duals asDX-modules, that is

RHomDX (DX←Y ,DX)[codimY ] = DY→X

and,DY→X being flat overDX , we immediately deduce the corresponding result

RHomD2(R,∞)
Λ (r,s)

(D2(R,∞)
Λ→Y (r,s),D2(R,∞)

Λ (r,s))[codimY ] = D2(R,∞)
Y←Λ (r,s).

The same definitions may be stated for the sheavesE2, in particular we may
define the sheaf

E2(R,R)
Y←Λ (r,s) = µT ∗YX(CRY×Y |Y×X (r,s))[n − d]⊗ p−1

2 ΩX

and this sheaf is, in local coordinates, isomorphic to the subsheaf ofE2(R,R)
Λ (r,s)

of operators commuting with the operators of symbolτ1, . . . , τd. ReplacingCR by
C∞ we getE2(R,∞)

Y←Λ (r,s).

2.5. SYMBOLS OF HOLOMORPHIC MICROFUNCTIONS

The symbolic calculus for germs of the sheafCRY |X was defined by Boutet de
Monvel [5] and Aoki [1]. We will here be more explicit in the case of multivalued
sections. This point will be the key to the proof of Theorem 3.1.1.

It follows from the definition ofCRY |X and [29, Prop. 1.2.4 Ch. I] or [17,
Thm. 4.3.2] that ifU is an open subset ofT ∗YX with convex conic fibers, we have

Γ(U, CRY |X) = lim
−→
V,Z

Hd
Z(V,OX ),

whereV ranges through the family of open subsets ofX such thatV ∩ Y = π(U)
andZ through the family of closed subsets ofX such thatCY (Z) ⊂ Uo.

Hereπ is the canonical projection ofT ∗YX on Y , Uo is the antipodal of the
polar set ofU in TYX andCY (Z) is the tangent cone toZ alongY .

We assume now thatY is a domain of holomorphy ofCn−d andX = Y ×
Cd. The coordinates will be denoted by(x1, . . . , xn−d, t1, . . . , td) onX and the
corresponding coordinates(x, τ) onT ∗YX.

LetG = {(x, τ) ∈ T ∗YX |Reτi > |Im τi|, i = 1, . . . , d}, we have

Γ(G, CRY |X) = lim
−→
V,ε>1

Hd
Zε(V,OX ),

whereV ranges through the family of open neighborhoods ofY in X and

Zε = {(x, t) ∈ X |Reti 6 |ε Im ti|, i = 1, . . . , d}.
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From a theorem of Siu,Y has a fundamental system of neighborhoods inX
which are domains of holomorphy, so we may assume thatV is a holomorphy set
and define

W (i)
ε = {(x, t) ∈ V |Reti < ε |Im ti|},

W [i]
ε =

⋂
j 6=i

W (j)
ε , Wε =

⋂
16i6d

W (i)
ε .

ThenČech cohomology gives an exact sequence⊕
16i6d

Γ(W [i]
ε ,OX )→ Γ(Wε,OX)→ Hd

Zε(V,OX )→ 0.

A sectionu of CRY |X onG is thus represented by a holomorphic functionf on
someWε. Following [29] and [1], we will say thatf is a defining function foru.

For any(α, λ) ∈ (R∗+)d × Cd, we may replaceG,W (i)
ε andWε by

Gλ = {(x, τ) ∈ T ∗YX |αi Reλ−1
i τi > |Im λ−1

i τi|, i = 1, . . . , d},

W
(i)
λi,ε

= {(x, t) ∈ V |x ∈ Y,Reλiti < (αi + ε) |Im λiti|},

i = 1, . . . , d, ε > 0,

Wλ,ε =
⋂

16i6d
W

(i)
λi,ε

.

Let C̃ be the universal covering ofC∗ = C − {0} and p be the canonical
projectionY × C̃d → Y × Cd. As usual, a sectionu of p−1CRY |X onY × C̃d will
be called a multivalued section inτ on{(x, τ) ∈ T ∗YX | τi 6= 0, i = 1, . . . , d}. We
recall that the sheafCRY |X has the property of unique continuation [29, Thm. 2.2.8
Ch. III].

For anyαi > 0, λi ∈ C, u has a defining function onWλ,ε for some open set
V . Two such functions differ from the sum ofd functions, each of them being
holomorphic in one variableti near 0. More precisely, givenλ and λ′, u has
defining functionsϕ onWλ,ε, ϕ′ onWλ′,ε andϕ−ϕ′ = Σϕi with ϕi holomorphic

on W [i]
λ,ε ∩W

[i]
λ′,ε. But the unionW [i]

λ,ε ∪ W
[i]
λ′,ε is still Stein and thus we have a

decompositionϕi = ψi−ψ′i with ψi holomorphic onW [i]
λ,ε andψ′i holomorphic on

W
[i]
λ′,ε. So a defining function foru is ϕ− Σψi = ϕ′ − Σψ′i which is holomorphic

onWλ,ε ∪Wλ′,ε.
We may iterate this procedure onY × C̃d, thereforeu has a defining functionf

which is multivalued in each variableti onV ∩ {ti 6= 0, i = 1, . . . , d}. Two such
functions differ from the sum of functions which are holomorphic in one of the
variablesti near 0.
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In fact this is not absolutely true because the open setV has to be shrunk at
each turn aroundti = 0. This will not affect our results because we will use only a
finite number of turns.

The symbol of the sectionu as defined in [1] is calculated from a defining
function. Here we will use the same formula, but we will take a special path:

Forb ∈ C∗, we consider a pathγb in C∗ beginning atb, ending atb, and such that
the index of the point{0} is 1 relatively toγb. If ϕ(t) is a holomorphic multivalued
function defined onD∗ = {t ∈ C |0 < |t| < δ}, then the integral ofϕ onγb is well
defined ifγb ⊂ D∗, it depends only onb and on the choice of the determination of
ϕ at b.

If a is a point of(C∗)d, we defineYa(V ), or Ya for short as the subset ofY of
pointsx such that(x, εa) ∈ V for anyε ∈ [0,1].

A symbol of the microfunctionu with defining functionf is the function

Fa(x, τ) =
∫
γa1×···×γad

f(x, t) e−〈t,τ〉 dt1 . . . dtd. (2.5.1)

It is defined onYa(V )× C2 and satisfy

∀K ⊂⊂ Ya, ∀ε > 0, ∃Cε > 0, ∀x ∈ K, ∀τ ∈ Cd,

Reaiτi > 0, i = 1, . . . , d, |Fa(x, τ) | < Cε eε|τ1|+···+ε|τd|.

HenceF is a symbol foru on{(x, τ) ∈ Ya × Cd |Reaiτi > 0}. The difference
of two defining functions being the sum of holomorphic functions in one ofti,
the symbol is independent of the choice of the defining function and, for the same
reason, it is independent of the choice of the determination off .

Usually, that is in the results of Aoki and in (2.2.1), the symbols ofu differ
from an exponentially decreasing holomorphic function. Here we have chosen one
of them which depends only ona. Another crucial difference is that the symbol is
dominated by a product eε|τ1|+···+ε|τd| on an open set which is itself a product. This
will allow us to take a punctual value as follows.

Let us fix some valueσ such that Readσ > 0 and consider the resulting
functionFa(x, τ ′, σ). It is well defined and subexponential as a function ofτ ′ =
(τ1, . . . , τd−1) on {(x, τ ′) ∈ Ya × Cd−1 |Reaτi > 0}, hence it is the symbol of a
sectionuad(σ) of CR

Y |Y×Cd−1 on this set.
This section depends onσ and onad but not on(a1, . . . , ad−1) because moving

ai modifiesF by a function which is exponentially decreasing inτi. So we may
defineuad(σ) as a section ofCR

Y |Y×Cd−1 multivalued inτ onY ′ad ×C
d−1 whereY ′ad

is the setYa for a1 = · · · = ad−1 = 0.
Finally we proved:

LEMMA 2.5.1. Let Y be a domain of holomorphy inCn−d, X = Y × Cd and
X ′ = Y × Cd−1. We identifyT ∗YX to Y × Cd with coordinates(x, τ).
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(i) Any sectionu of CRY |X on Y × (C∗)d multivalued inτi for i = 1, . . . , d, has
a defining function onV ∩ {ti 6= 0, } multivalued inti for i = 1, . . . , d and
some neighborhoodV of Y in X.

(ii) Given a pointa ∈ (C∗)d, such a section has a uniquely determined symbol
Fa(x, τ) on Ya(V ) × Cd whereYa(V ) is subset ofY of pointsx such that
(x, εa) ∈ V for anyε ∈ [0,1].

(iii) For anyσ ∈ C∗ such thatReadσ > 0, the function(x, τ ′) 7→ Fa(x, τ ′, σ)
defines a section ofCRY |X′ on Y(0,ad)(V ) × (C∗)d−1 multivalued inτi and
independent of(a1, . . . , ad−1). This section will be denoted byuad(σ) and
called the value ofu at τd = σ.

Remark2.5.2. The lemma is still true ifd = 1. In this caseY = X ′ and thus
CRY |X′ = OY .

As we will see later, it is sometimes necessary to defineuad(σ) as a section on
the whole ofY × (C∗)d−1. This is possible only on a subsheaf ofCRY |X .

LEMMA 2.5.3. Let Y be a domain of holomorphy inCn−d, X = Y × Cd and
X ′ = Y × Cd−1. We identifyT ∗YX to Y × Cd with coordinates(x, τ).

If C is a positive number, let̃Γ[C](Y × (C∗)d, CRY |X) be the set of multivalued

sections ofCRY |X onY ×(C∗)d which have a defining function onY ×{t ∈ Cd |0 <
|ti| < 1/C}.
(i) For any (σ, ad) such thatReadσ > 0 and |ad| < 1/C, the valueuad(σ) is

well defined as a multivalued section ofCRY |X′ onY × (C∗)d−1.

(ii) The resultuad(σ) is an element of̃Γ[C](Y × (C∗)d−1, CRY |X′).
(iii) Letu be a multivalued section ofC∞Y |X on Y × (C∗)d represented by a sym-

bol u(x, τ) =
∑
k∈Z uk(x, τ), where eachuk is a holomorphic multivalued

function onY × (C∗)d homogeneous of degreen in τ . We assume that

∃C > 0, ∀K ⊂⊂ Y, ∃CK , ∀n < 0, ∀x ∈ K,
|un(x, τ)| < CKC

−n(−n)!.

Thenu is an element of̃Γ[C/n](Y × (C∗)d, CRY |X).

Proof. Let us first remark that any multivalued section ofC∞Y |X on Y × (C∗)d

has a symbol similar to the symbol of the lemma except that the constantC usually
depends onK.

With the additional condition of the lemma, the defining function ofu as it is
calculated in [29, Prop. 1.4.3] is defined onV = Y × {t ∈ Cd |0 < |t| < 1/C}
and we get the result if we apply Lemma 2.5.1 to this setV . 2
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These lemmas extend to all sheavesCRY |X (r,s) defined in [20]:

First, we remark thatCRY |X (r,1) is the subsheaf ofCRY |X of the sections whose

symbols have growth exp(c|τ |1/r). This means that the defining functionf(x, t)
has growth exp(c|1/t|1/(r−1)). The value ofu atσ is thus well defined as a section
of CRYa|X′(r,1).

If s > 1, we use the map(τ) 7→ (τ s1 , . . . , τ
s
d ). It defines an isomorphism between

the sections ofCRY |X (r,s) outside{ τi = 0} and the sections ofCRY |X (r/s,1). This

proves that Lemmas 2.5.1 and 2.5.3 extend to the sheavesCRY |X (r,s) andC∞Y |X (r,s)

for all (r, s) such that+∞ > r > s > 1.

2.6. NONLOCAL OPERATORS

These nonlocal operators will be used in the next section to apply the morphism of
Lemma 2.5.1. In this sectionX is of dimensionn andY of codimensiond.

A differential operator, that is a section ofD∞X on some open setU of X is
represented in local coordinates(x1, . . . , xn) as

P (x,Dx) =
∑
α∈Nn

pα(x)Dα
x ,

wherepα(x) is a holomorphic function onU satisfying

∀K ⊂⊂ U, ∀ε > 0, ∃Cε > 0, ∀x ∈ K, |pα(x)| < Cεε
|α|α! (2.6.1)

and such an operator defines an endomorphism of the sheafOX of holomorphic
functions.

If we replace 2.6.1 by

∃δ > 0, ∀K ⊂⊂ U, ∃C > 0, ∀x ∈ K, |pα(x)| < Cδ|α|α! (2.6.2)

we get an operator which is not local onOX, the seriesΣpα(x)f (α)(x) is convergent
only if the Taylor series off at x converges on a polydisk of radiusδ, i.e., P
defines a map fromΓ(U,OX ) to Γ(Uδ,OX) with Uδ = {x ∈ U | ∀y /∈ U, ∀j =
1, . . . , n− d, |xj − yj| > δ}.

The sheaf of operators satisfying (2.6.2) may be defined by (2.1.1) where the
diagonal ofX ×X is replaced by{(x, x′) ∈ X ×X | |xi − x′i| 6 δ}. Of course,
this is coordinate-dependent. Our aim here is to develop the same definition for
2-microdifferential operators, i.e., replaceOX by CRY |X(r,s).

We set

∆δ = {(x, τ, x′, τ ′) ∈ T ∗YX × T ∗YX | ∀i = 1, . . . , n− d, |xi − x′i| 6 δ, τ = τ ′}

and define

D2(R,∞)
Λ (r,s;δ) = Hn∆δ

(CRY×Y |X×X (r,s))⊗p−1
2 OX

p−1
2 ΩX .
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LEMMA 2.6.1. For all k 6= n we haveHk∆δ
(CRY×Y |X×X (r,s)) = 0.

Proof. Let Ω be a Stein open subset ofT ∗YX × T ∗YX which isR∗+-conic and
contained in some half-space inτ . We define

Ωi = {(x, τ, x′, τ ′) ∈ T ∗YX × T ∗YX | |xi − x′i| > δ}, if i = 1, . . . , n − d,

Ωi+n−d = {(x, τ, x′, τ ′) ∈ T ∗YX × T ∗YX | |τi − τ ′i | > 0}, if i = 1, . . . , d.

These sets areR∗+-conic Stein open sets, henceHk(Ωi, CRY×Y |X×X) = 0 for i > 0
[20, Prop. 2.5.1]. AsΩ −∆δ is covered byn acyclic open sets, the lemma is true
by elementary̌Cech cohomology. 2
PROPOSITION 2.6.2.LetV be an open set ofT ∗YX and

Vδ = {(x, τ) ∈ V | ∀y /∈ V, ∀j = 1, . . . , n− d, |xj − yj| > δ}.

A section ofD2(R,∞)
Λ (r,s;δ) onV × V defines a morphism

Γ(V, CRY |X (r,s))→ Γ(Vδ, CRY |X (r,s)).

This action extends the natural action ofD2(R,∞)
Λ (r,s) on the sheafCRY |X(r,s).

Proof. Consider the the two projectionsp andq from T ∗YX × T ∗YX to T ∗YX .
There is a canonical morphism

(CRY×Y |X×X (r,s)⊗q−1OX q
−1ΩX)⊗C q−1CRY |X (r,s)[−n]→ p−1CRY |X (r,s). (2.6.3)

This morphism may be defined by inverse image underX ×X ↪→ X ×X ×X or
as in [18, Prop. 2.1.4.] using the isomorphism

(CRY |X (r,s)⊗OX ΩX)⊗ER
X

(r,s) C
R
Y |X (r,s)[−n]

= RHomERX(r,s)(C
R
Y |X (r,s), CRY |X (r,s))

= RHomEX (CY |X , CY |X)⊗ ERX (r,s) ' CT ∗Y X .

The fibers ofp being of dimensionn, there is a morphism of direct image [8]
Rp!p

−1CRY |X (r,s)[2n]→ CRY |X (r,s), hence a morphism

Rp!RΓ∆δ
p−1CRY |X (r,s)[2n]→ Rp!p

−1CRY |X (r,s)[2n]→ CRY |X (r,s)

which composed with (2.6.3) gives

Rp!(RΓ∆δ
(CRY×Y |X×X (r,s)⊗q−1OX q

−1ΩX)⊗C CRY |X (r,s))[n]→ CRY |X (r,s)
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and using Lemma 2.6.1 this gives

p!(D2(R,∞)
Λ (r,s;δ)] ⊗C q−1CRY |X (r,s))→ CRY |X (r,s). (2.6.4)

If ∆δ is replaced by the diagonal ofT ∗YX × T ∗YX , p is an isomorphism on the

diagonal and we get the action ofD2(R,∞)
Λ (r,s) on CRY |X (r,s). Here we remark that

the projectionp: q−1(V ) ∩ ∆δ ∩ p−1(U) → U is proper ifU is contained inVδ
and this gives the morphism of the proposition

Γ(V × V,D2(R,∞)
Λ (r,s;δ))⊗C Γ(V, CRY |X (r,s))→ Γ(Vδ , CRY |X (r,s)). 2

We may also consider a sheafD2(R,∞)
Y←Λ (r,s;δ) as in Section 2.4

D2(R,∞)
Y←Λ (r,s;δ) = Hn−d∆′

δ
(CRY×Y |Y×X (r,s))⊗ p−1

2 ΩX ,

with ∆′δ = {(x, x′, τ) ∈ Y ×T ∗YX | ∀i = 1, . . . , n−d, |xi−x′i| 6 δ}. It is identified

with the subsheaf ofD2(R,∞)
Λ (r,s;δ)] of sections commuting withτ1, . . . , τd.

2.7. SYMBOLS OF2-MICROLOCAL OPERATORS

LetX ′ = {(x, t) ∈ X | td = 0}) andΛ′ = T ∗Y×Y (Y ×X ′). We want now apply

the results of Section 2.5 to define the ‘value atτd = σ’ of a section ofD2(R,∞)
Y←Λ (r,s)

as a section ofD2(R,∞)
Y←Λ′ (r,s). In fact, there is no such morphism and we will have to

shrink the first sheaf or to extend the second.
In this section, we fix a domain of holomorphyΩ ofY and consider the open sets

U = {(x, τ) ∈ T ∗YX |x ∈ Ω, τi 6= 0} andU ′ = {(x, τ) ∈ Λ′ |x ∈ Ω, τi 6= 0}.
The set of sections ofD2(R,∞)

Y←Λ (r,s) and ofD2(∞,∞)
Y←Λ (r,s) onU and the set of sections

of D2(R,∞)
Y←Λ′ (r,s) on U ′ which extend analytically along any path will be denoted

respectively by

Γ̃(U,D2(R,∞)
Y←Λ (r,s)), Γ̃(U,D2(∞,∞)

Y←Λ (r,s)) and Γ̃(U ′,D2(R,∞)
Y←Λ′ (r,s)).

An elementP of Γ̃(U,D2(∞,∞)
Y←Λ (r,s)) has a symbolP = ΣikPik(x, τ, x∗) given

by formula (2.3.2) where each functionPik is multivalued onU . Let us denote
by Γ̃[C](U,D

2(∞,∞)
Y←Λ (r,s)) the subset of these sections whose symbol satisfy the

stronger condition

∀K ⊂⊂ U, ∀ε > 0, ∃Cε > 0, ∀(x, τ) ∈ K, (2.7.1)

(i) |Pik(x, τ, x∗)| < Cεε
iC−k

(−k)!s

i!
|x∗|i if i > 0, k < 0,
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(ii) |Pik(x, τ, x∗)| < Cεε
iCk

1
(k!)r i!

|x∗|i, if i > 0, k > 0.

PROPOSITION 2.7.1.LetC > 0 and(σ, a) ∈ C∗ × C∗ such thatReaσ > 0 and
|a| < 1/C. The morphism of Lemma2.5.1 defines the morphisms

Γ̃[C](U,D
2(∞,∞)
Y←Λ (r,s))→ Γ̃(U ′,D2(R,∞)

Y←Λ′ (r,s))

and

Γ̃(U,D2(R,∞)
Y←Λ (r,s))→

⋃
δ>0

Γ̃(U ′,D2(R,∞)
Y←Λ′ (r,s;δ)).

Given a sectionP of Γ̃(U,D2(R,∞)
Y←Λ (r,s)) and an arbitraryδ > 0, the image

Pa(σ) ofP is in Γ̃(U ′,D2(R,∞)
Y→Λ′ (r,s;δ)) if |a| is small enough.

Proof. Let Z be aR∗+-conic subspace of(C∗)d contained in some half-space
Re〈λ, τ〉 > 0,Ω̃ a Stein neighborhood ofΩ in Y ×Y andV = Ω̃×Z ⊂ Y ×T ∗YX .
LetU1 = V ∩ T ∗YX and fork = 1, . . . , n− d

Vk = {(x, x′, τ) ∈ V |xk 6= x′k}, Wk =
⋂
j 6=k

Vk, W =
⋂

16j6n−d
Vk.

The setsVk are acyclic forCRY×Y |Y×X (r,s) [20, Prop. 2.5.1], thus we have an

exact sequence of̌Cech cohomology⊕
k

Γ(Wk, CRY×Y |Y×X (r,s)) → Γ(W, CRY ×Y |Y×X (r,s))

→ Γ(U1,D2(R,∞)
Y←Λ (r,s))→ 0. (2.7.2)

A section ofD2(R,∞)
Y←Λ (r,s) onU1 is thus represented by a microfunction onW which

has a symbolu(x, x′, τ) onW .
In the same way we may define, forδ > 0,Z ′ aR∗+-conic subspace of(C∗)d−1

contained in some half-space andV ′ = Ω̃× Z ′

V
(δ)
k = {(x, x′, τ) ∈ V ′ | |xk − x′k| > δ},

W
(δ)
k =

⋂
j 6=k

V
(δ)
k , W (δ) =

⋂
j=1...n−d

V
(δ)
k

and we get an exact sequence⊕
k

Γ(W (δ)
k , CRY×Y |Y×X′ (r,s)) → Γ(W (δ), CRY×Y |Y×X (r,s))

→ Γ(V ′,D2(R,∞)
Y→Λ′ (r,s;δ))→ 0.
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If we replaceCRY×Y |Y×X by C∞Y×Y |Y×X , the corresponding result is true ifZ is
contractile. This was proved in [18, Thm. 1.1.3]. So we get an exact sequence

⊕Γ(Wk, C∞Y×Y |Y×X (r,s)) → Γ(W, C∞Y ×Y |Y×X (r,s))

→ Γ(U1,D2(∞,∞)
Y←Λ (r,s))→ 0.

A section ofΓ(U1,D2(∞,∞)
Y←Λ (r,s)) is given by its symbolP = Σ(i,k)∈N×ZPik(x,

τ, x∗). Each functionPik is a homogeneous polynomial of degreei in x∗, hence
equal toPik(x, τ, x∗) =

∑
|α|=i Pαk(x, τ)(x∗)α and by definition of this sym-

bol (in [18] Sections 1.5, 1.6), the corresponding section ofΓ(W, C∞Y×Y |Y×X (r,s))
is the microfunction of symbolu = Σuk(x, x′, τ) with uk(x, x′, τ) =

∑
α∈Np

Pαk(x, τ)Φα(x− x′) with

Φα(x) = Φα1(x1) . . .Φαp(xp) and Φk(x1) =
(−1)k+1

2iπ
k!

xk+1
1

.

If P is a section of̃Γ(U,D2(∞,∞)
Y←Λ (r,s)), the microfunctionu = Σuk extends as

a multivalued section ofC∞Y×Y |Y×X (r,s) onY × U because the symbolΣPik of P
is unique and extends itself as a sum of multivalued functions. Now we may apply
the results of the previous section in two ways:

First, if P is a section of̃Γ[C](U,D
2(∞,∞)
Y←Λ (r,s)), the conditions (2.7.1) implies

that u satisfies the conditions of Lemma 2.5.3, hence for a suitable(a, σ), the
microfunctionua(σ) is defined onW ′ = Ω̃ × C∗ as a multivalued section. This

define a section of̃Γ(U ′,D2(R,∞)
Y←Λ′ (r,s)).

Second, ifP is any section of̃Γ(U,D2(R,∞)
Y←Λ (r,s)), u satisfies the conditions of

Lemma 2.5.1, hence for a given(a, σ), the microfunctionua(σ) is defined on the
points ofW ′ = Ω̃ × C∗ at a distanceδ of the boundary for someδ > 0, hence on
W (δ). So this define a section ofΓ(V ′,D2(R,∞)

Y→Λ′ (r,s;δ)) which extends to a section

of Γ̃(V ′,D2(R,∞)
Y→Λ′ (r,s;δ)). 2

When a local system of coordinate is given,D2(∞,∞)
Y←Λ (r,s) is identified to the subset

of D2(∞,∞)
Λ (r,s) of operators whose symbol is independent ofτ∗ and in this way is

a sheaf of rings. The same is true forD2(R,∞)
Y←Λ′ (r,s) subsheaf ofD2(R,∞)

Λ′ (r,s).

PROPOSITION 2.7.2.A local system of coordinates being given, the morphism
Γ̃[C](U,D

2(∞,∞)
Y←Λ (r,s)) → Γ̃(U ′,D2(R,∞)

Y←Λ′ (r,s)) of Proposition2.7.1 is compatible
with the ring structures.

Proof. The product of two sections ofD2(R,∞)
Y←Λ (r,s) is given by formula (2.3.1).

In τ it is just the ordinary product and, therefore, the operation of taking the value
at a pointσ is compatible with the product(PQ)a(σ) = Pa(σ)Qa(σ). 2
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To end this section, let us give some extensions of Proposition 2.7.1 which will be
used only in the Appendix.

First we may definẽΓ[C](U,D
2(R,∞)
Y←Λ (r,s)) as the subset of̃Γ(U,D2(R,∞)

Y←Λ (r,s))
which is the image of̃Γ[C](W, CRY×Y |Y×X (r,s)) in the exact sequence (2.7.2).

From Lemma 2.5.3, we deduce that̃Γ[C](U,D
2(∞,∞)
Y←Λ (r,s)) is a subset of

Γ̃[C](U,D
2(R,∞)
Y←Λ (r,s)) and that the morphism of Proposition 2.7.1 is defined from

Γ̃[C](U,D
2(R,∞)
Y←Λ (r,s)) to Γ̃[C](U ′,D

2(R,∞)
Y←Λ′ (r,s)).

We may also extend the results to the sheafE2(R,R)
Y←Λ (r,s). To make easier calcula-

tions, we will assume that the dimension ofY is 1 which is the case needed in the
appendix. Letα be a point(x0 = 0, x∗0 = 1, τ0) of T ∗T ∗

Y
X(Y × T ∗YX). Then from

the definition of the microlocalization, we have

E2(R,R)
Y←Λ (r,s)α = µT ∗YX(CRY×Y |Y×X (r,s))[1]α = lim

−→
ε

H1
Zε(Uε, C

R
Y×Y |Y×X (r,s))

= lim
−→
ε

Γ(Uε − Zε, CRY×Y |Y×X (r,s))/Γ(Uε, CRY×Y |Y×X (r,s)),

with

Uε = {(x, x′, τ) ∈ Y × Y × Cd | |x− x′| < ε, τ ∈ Γε},
Zε = {(x, x′, τ) ∈ Y × Y × Cd |Re(x− x′) 6 ε Im(x− x′)|},

whereΓε is a fundamental system of open conic neighborhoods ofτ0.
If we defineẼ2(R,R)

Y←Λ (r,s)[C]α as the subset ofE2(R,R)
Y←Λ (r,s)α of elements generated

by sections of̃Γ[C](Uε − Zε, CRY×Y |Y×X (r,s)), we extend Proposition 2.7.1 in the
following way:

PROPOSITION 2.7.3. (i)LetC > 0 and (σ, a) ∈ C∗ × C∗ such thatReaσ > 0
and |a| < 1/C. The morphism of Lemma2.5.1 defines amultiplicativemorphism

Ẽ2(R,R)
Y←Λ (r,s)[C]α → Ẽ2(R,R)

Y←Λ′ (r,s)[C]α′ .
(ii) If P is an element ofE2(R,∞)

Y←Λ (r,s)α whose symbolP = ΣPik(x, τ, x∗)
satisfies the conditions(2.3.3) but with (iii ) replaced by(2.7.1) (ii), if the func-
tions Pik(x, τ, x∗) extend as ramified functions inτ , thenP is an element of

Ẽ2(R,R)
Y←Λ (r,s)[C]α.

This result is proved exactly as Proposition 2.7.1.

3. Equivalence Theorem for 2-Microlocal Equations

3.1. THE RESULT

In this section,Y is a submanifold ofcodimension 1of the complex analytic
manifoldX andΛ is the conormal bundleT ∗YX, while Λ̇ = Λ− Y .
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We assume that we are given local coordinates(x1, . . . , xn−1, t) of X where
(t = 0) is an equation forY . ThenΛ = {(x, t, τ, ξ) ∈ T ∗X | t = 0, ξ = 0} and
the local coordinates ofT ∗Λ are(x, τ, x∗, τ∗).

The functiont may be considered as a differential operator onX and then as a
symbolσ(r,s)

Λ (t) = τ∗ for any(r, s).
The aim of Section 3 is to prove the following theorem:

THEOREM 3.1.1.Let (r, s) ∈ Q2 such thatr > s > 1 and letP be a microdif-

ferential operator(that is a section ofEX), such thatσ(r,s)
Λ (P ) = (τ∗)m in a

neighborhood of a pointα ∈ Λ̇. Then there is, on a neighborhood ofα, an iso-
morphismD2(R,∞)

Λ (r,s)/D2(R,∞)
Λ (r,s)P ' (D2(R,∞)

Λ (r,s)/D2(R,∞)
Λ (r,s) t)m.

In fact the isomorphism is given by a ‘multivalued’ matrix:

DEFINITION 3.1.2. The sheaf̃D2(R,∞)
Λ (r,s) is the subsheaf ofD2(R,∞)

Λ (r,s) of sec-
tions which have a continuation along any path in the fibers ofΛ̇→ Y .

PROPOSITION 3.1.3.Under the hypothesis of Theorem3.1.1, there is an iso-
morphismD̃2(R,∞)

Λ (r,s)/D̃2(R,∞)
Λ (r,s)P ' (D̃2(R,∞)

Λ (r,s)/D̃2(R,∞)
Λ (r,s) t)m.

The proof will be made in three steps. First we will prove an equivalence theorem
whenσ(r,s)

Λ (P ) = (x∗1)m. In that case, the theorem is true inD2(∞,∞)
Λ (r,s).

(The situation is similar to the case of microdifferential operators. An equival-
ence theorem is true inE∞X for operators with principal symbolξm1 [29] while the
theorem is true only inERX when the principal symbol istm [11].)

Next we will ‘add a variable’, perform a quantized canonical transformation and
take the value of an operator at some point using (2.7.1). This will give Theorem
3.1.1 but fors′ > s. We will prove the limit cases = s′ in Section 3.4.

The theorem is stated for a 1-codimensional manifoldY, but extension to any
submanifold is easy (using a quantized canonical transformation).

3.2. EQUIVALENCE THEOREM FOR2-MICRODIFFERENTIAL EQUATIONS

In this section, the codimension ofY isd > 1. We keep the same notations for local
coordinates. The fiber bundleT ∗Λ is thus provided with coordinates(x, τ, x∗, τ∗).
We fix numbers(r, s) such that 16 s < r.

Let U be an open subset ofT ∗Λ which is (complex) conic in(τ, x∗) and in
(x∗, τ∗). Let q be a positive integer,µ be a rational number such that 06 µ 6 1
andGµq = {(i, k) ∈ Z2 | i+ rk 6 q, i+ sk 6 q, 2i+ (r + s)k 6 2µq }.

We defineÊµq (U) as the set of formal series of holomorphic functions onU

P =
∑

(i,k)∈Gµq

Pik(x, τ, x∗, τ∗),
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such thatPik(x, τ, x∗, τ∗) is a homogeneous function of degreei in (x∗, τ∗) and
of degreei+ k in (τ, x∗).

For such a series we define a Boutet de Monvel formal norm as

Nµ
q (P ;S, T )

=
∑

i,k,α,β,γ,δ

cαβikγδ

∣∣∣∣∣
(
∂

∂x∗

)α ( ∂

∂τ∗

)γ ( ∂

∂x

)β ( ∂

∂τ

)δ
Pi,k(x, τ, x∗, τ∗)

∣∣∣∣∣×
× S−2i+|α|+|β|+|γ|+|δ|T−2k,

where the sum is taken over all integers(i, k) ∈ Gµq , all (α, β) ∈ Nn−d × Nn−d
and all(γ, δ) ∈ Nd × Nd.

The coefficientcαβikγδ is, by definition

cαβikγδ = 2(2n)i+k
N !

(N + |α|+ |γ|)!(N + |β|+ |δ|)! ,

with

N = inf
(
−i− rk + q,−i− sk + q,−i− (r + s)

2
k + µq

)
andN ! = Γ(N + 1).

Whenµ = 1, this formal norm is the norm of [18, Def. 2.4.3] and the same
proof as [18, Th. 2.4.9] gives

LEMMA 3.2.1.

Nµ
q (P +Q;S, T )� Nµ

q (P ;S, T ) +Nµ
q (Q;S, T ),

Nµ
q+q′(PQ;S, T )� Nµ

q (P ;S, T )Nµ
q′(Q;S, T ).

In this lemma,� means that at each point(x, τ, x∗, τ∗) the coefficient of each
monomialSkT l of the right side is greater than the corresponding term of the left
side and the productPQ is given by formula 3.2.4 of [20] (or Theorem 2.3.3 of
[18] but with other notations).

We will denote byEµq (U) the subset of̂Eµq (U) of elementsP such that, for
each compact subsetK in U , there exists someC > 0 such thatNµ

q (P, S, T ) is
convergent when(x, τ, x∗, τ∗) ∈ K and|S|r 6 (1/C)|T |, |T | 6 (1/C)|S|s.

It is clear that the union ofEµq (U) over allq ∈ N is independent ofµ, it will be
denoted byE(U).

Lemma 3.2.1 shows thatE(U) is a ring. In fact, forµ = 1 the definition is
exactly the same as the definition of 2-microdifferential operators of finite order in
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Section 3.2.3 and thus we haveE(U) = E2
Λ(r,s)(U).

LEMMA 3.2.2. Letµ be a real number such that0 6 µ < 1 and for eachq ∈ N
letP (q) ∈ Êµq (U). We assume that

∀K ⊂⊂ U, ∃C, C0, C1 > 0, ∀(x, τ, x∗, τ∗) ∈ K,

∀(S, T ), |S|r 6 1
C
|T |, |T | 6 1

C
|S|s, Nµ

q (P (q), S, T ) < C0
Cq1
q!
.

Then the seriesΣqP
(q) converges inE2(∞,∞)

Λ (r,s)(U). More precisely, if the symbol

ofP (q) is ΣP (q)
ik , the seriesPik =

∑
q>0P

(q)
ik are convergent series of bihomogen-

eous holomorphic functions onU for each(i, k) and the resulting functionsPik
satisfy the following inequalities for someν > 0

∀K ⊂⊂ U, ∃C2 > 0, ∀(x, τ, x∗, τ∗) ∈ K,

(i) |Pik(x, τ, x∗, τ∗)| < C−i−k2 (−i)!(−k)!s if i < 0, k < 0,

(ii) |Pik(x, τ, x∗, τ∗)| < C−i+k2 ((−i)!/k!r) if i < 0, k > 0

(iii) |Pik(x, τ, x∗, τ∗)| < Ci−k2
(−k)!s

i!
1

[(1− µ)(i+ (s + ν)k)]+!
,

if i > 0, k < 0,

(iv) |Pik(x, τ, x∗, τ∗)| < Ci+k+1
2

1
k!r i!

1
[(1− µ)(i+ (r − ν)k)]+!

,

if i > 0, k > 0,

([a]+ is the lowest positive integer greater than the rational numbera).

Proof. First, we remark that inequalities (i)–(iv) immediately imply (2.3.3),
hence series satisfying (i)–(iv) define a symbol ofE2(∞,∞)

Λ (r,s).
Applying Cauchy inequalities in(S, T ) to Nµ

q (P (q), S, T ), we get for(x, τ,
x∗, τ∗) in K andN = inf(−i− rk + q,−i− sk + q,−i− ((r + s)/2)k + µq)

|P (q)
ik (x, τ, x∗, τ∗)| < C0C

q
1
N !
q!
C2(−i−rk−i−sk

r−s ).

(We denote byr! the numberΓ(r + 1) for anyr ∈ Q.)
If ν is the strictly positive number(r − s)/(2(1− µ)), we have

N = −i− (r + s)
2

k + µq, if q > ν|k|,

N = −i− sk + q, if 0 6 q 6 −νk,
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N = −i− rk + q, if 0 6 q 6 +νk.

Assume first thati < 0, k < 0, then lemma 2.4.8 of [18] gives a constantCs
depending only ons such that

N !
q!

=
(−i− sk + q)!

q!
6 C−i−sk+q

s (−i)!(−k)!s, if 0 6 q 6 −νk,

N !
q!

=
(−i− sk + q − (1− µ)(q + νk))!

q!

6 C−i−sk+q
s (−i)!(−k)!s

1
[(1− µ)(q + kν)]!

, if q > −νk.

This shows that the seriesPik = Σq>0P
(q)
ik is convergent and satisfy

|Pik(x, τ, x∗, τ∗)|

< C0C
−i−k
2 (−i)!(−k)!s

 ∑
06q<−νk

Cq3 +
∑

q>−νk
Cq3

1
(q + νk)!(1−µ)


< C−i−k4 (−i)!(−k)!s.

Let us consider now the casek > 0, i < 0, then

N !
q!

=
(−i− rk + q)!

q!
6 2−i+q

(−i)!
k!r

, if 0 6 q 6 νk,

N !
q!

=
(−i− rk + q − (1− µ)(q − νk))!

q!

6 2−i+q
(−i)!
k!r

1
[(1− µ)(q − kν)]!

, if q > νk,

and we get

|Pik(x, τ, x∗, τ∗)| < C−i+k5
(−i)!
k!r

.

Now we considerk < 0, i > 0, we have

N !
q!

=
(−i− sk + q)!

q!
6 C−i−sk+q

s

(−k)!s

i!
, if 0 6 q 6 −νk,

N !
q!

=
(−i− sk + q − (1− µ)(q + νk))!

q!

6 C−i−sk+q
s

(−k)!s

i!
1

[(1− µ)(q + νk)]!
, if q > −νk,
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butq > i+ sk soq 6 −kν will occur only if i 6 −k(ν + s). We get

|Pik(x, τ, x∗, τ∗)| < Ci−k6
(−k)!s

i!
, if i 6 −k(ν + s),

|Pik(x, τ, x∗, τ∗)| < Ci−k6
(−k)!s

i!
1

[(1− µ)(i+ (s + ν)k)]!
,

if i > −k(ν + s).
The last case isi > 0, k > 0. The same calculation shows that

|Pik(x, τ, x∗, τ∗)| < Ci+k7
1

k!r i!
, if i 6 k(ν − r),

|Pik(x, τ, x∗, τ∗)| < Ci+k7
1

k!r i!
1

[(1− µ)(i− (ν − r)k)]!
, if i > k(ν − r).

This concluded the proof of the lemma. 2
An operatorP ∈ E2

Λ(r,s)(U) is said to be of order(q, µ) if its symbol is in
Êµq (U).

Let a: N → N be any function. A(m ×m)-matrixA of E2
Λ(r,s)(U) is said to

be of order(q, µ) if, for each(i, j), the coefficientAij of A is a microdifferential
operator of order at most(q + a(i) − a(j), µ). Then the order of the product of a
matrix of order(q, µ) by a matrix of order(q′, µ) is not greater than(q + q′, µ).
The usual order of matrices is given bya = 0 but in the proof of Theorem 3.2.4,
we will usea(i) = i.

We define the formal norm of such a matrix as

Nµ
q (A;S, T ) = sup

16i6m

∑
16j6m

Nµ
q+a(i)−a(j)(Aij ;S, T )

and it is clear that Lemmas 3.2.1 and 3.2.2 are still true for matrices.
The matrixA is said to be independent ofDx1 if the symbols of the microdif-

ferential operatorsAij are independent ofx∗1. This is equivalent to the fact thatA
commutes withx1. ThenA may be considered as a matrix of 2-microdifferential
operators in the variables(x2, . . . , xn−d, t) with holomorphic parameterx1 and we
will write it asA(x1).

Such a matrixA(x1, x
′, τ, x′∗, τ∗) will be said of medium order(δ, µ) if there

exists someq ∈ N such that any product ofq terms

A(x(1)
1 , x′, τ, x′

∗
, τ∗)A(x(2)

1 , x′, τ, x′
∗
, τ∗) . . . A(x(q)

1 , x′, τ, x′
∗
, τ∗)

is of order at most(qδ, µ).
For example, ifA0 is a matrix of order(1, µ) andA1 is a matrix of order

(1,1) nilpotent of orderm (i.e., Am1 = 0), thenA0 + A1 is of medium order
(1,1− ((1− µ)/m)).
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We denote byI the identity(m×m)-matrix.

PROPOSITION 3.2.3.LetU be an open subset ofT ∗Λ which is (complex) conic
in (τ, x∗) and in (x∗, τ∗). We assume that for each point(x1, x

′
0, τ0, x

∗
0, τ
∗
0 ) in U

the set{λ ∈ C | (λ, x′0, τ0, x
∗
0, τ
∗
0 ) ∈ U } is a simply connected open subset ofC

which contains the origin.
LetA be am × m-matrix of E2

Λ(r,s)(U) which is independent ofDx1 and of
medium order(1, µ) with µ < 1. Then there exists onU an invertible matrixR

with coefficients inE2(∞,∞)
Λ (r,s)(U) such that(Dx1I −A)R = RDx1.

Moreover, we may chooseR such thatR = I on {x1 = 0} and thenR is
unique and independent ofDx1. The symbols of the coefficients ofR satisfy the
conditions(i)–(iv) of Lemma3.2.2.

Proof. The proof is similar to the proof of Theorem 5.2.1. Ch. II in [29]:
The equation(Dx1I − A)R = RDx1 is equivalent to(∂/∂x1)R = AR where

(∂/∂x1) is the operator of derivation acting on the symbols of the coefficients of
R.

We define a sequenceRk of matrices with coefficients inE2
Λ(r,s) byR0 = I and

the relation
(
∂/∂x1

)
Rk = ARk−1, Rk|x1=0 = 0 and we have to prove that the

seriesΣRk is convergent.
The coefficients ofARk−1 are formal series of holomorphic function, thusRk

is given by the formulaRk(x1) =
∫ x1

0 ARk−1(λ) dλ,where the integration is made
along any path from 0 tox1. It is independent of the path asU is simply connected
in x1.

In a productA(λ)A(λ′) there is no derivation in the variables(λ, λ′) so we have

Rk(x1) =
∫ x1

0

∫ λk

0
. . .

∫ λ2

0
A(λk)A(λk−1) . . . A(λ1) dλk dλk−1 . . . dλ1.

From the hypothesis, there exists someq ∈ N such that the matrix

B(x(1)
1 , . . . , x

(q)
1 ) = A(x(1)

1 )A(x(2)
1 ) . . . A(x(q)

1 )

is of order at most(q, µ), hence for each compactG×K of U , there exists some
C,C0 > 0 such thatNµ

q (B;S, T ) is bounded byC0 whenx(i) ∈ G for i = 1 . . . q,
(x′, τ, x∗, τ∗) ∈ K and|S|r 6 (1/C)|T |, |T | 6 (1/C)|S|s.

Applying Lemma 3.2.1, we get

sup
x1∈G

Nµ
qk(Rqk;S, T ) 6

(
sup
x1∈G

Nµ
q (B;S, T )

)k ∫ x1

0

∫ λqk

0
. . .

∫ λ2

0
dλqk . . . dλ1

6 Ck0C
qk
1

1
(qk)!

.
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The same proof applies toRqk+l for l = 0 . . . q − 1 and this proves that the
seriesΣRk satisfies the hypothesis of Lemma 3.2.2 and, hence, is convergent as a
m×m-matrix with coefficients inE2(∞,∞)

Λ (r,s)(U).
The matrixR = ΣRk is a solution of the equations(∂/∂x1)R = AR and

R(0) = I. We use the method of [29] to prove thatR is invertible, i.e., we define
a matrixS such that(∂/∂x1)S = −SA andS(0) = I. The preceding proof gives
a solution to this equation and we haveSR(0) = I with (∂/∂x1)SR = 0, hence
SR = I andR is invertible.

This also proves the uniqueness ofR because ifR′ is another solution, then for
the same reason we haveSR′ = I, henceR′ = R andR is independent ofDx1

because[x1, R] satisfy the same equation asR and is 0 onx1 = 0. 2
THEOREM 3.2.4.Let P a 2-microdifferential operator ofE2

Λ(r,s) such that

σ
(r,s)
Λ (P ) = (x∗1)m. Then there is, locally oṅΛ, an isomorphism

E2(∞,∞)
Λ (r,s)/E2(∞,∞)

Λ (r,s)P ' (E2(∞,∞)
Λ (r,s)/E2(∞,∞)

Λ (r,s)Dx1)
m.

Proof. Using the division theorem 2.5.2 of [18], we can write

P (x, τ, x∗, τ∗)

= E(x, τ, x∗, τ∗)

(x∗1)m −
m−1∑
j=0

Pj(x, τ, x∗2, . . . , x
∗
n−d, τ

∗)(x∗1)j
 ,

wherePj is a 2-microdifferential operator whose symbol do not depend onx∗1 and
E is invertible.

Asσ(r,s)
Λ ((x∗1)m−Σm−1

j=0 Pj(x, τ, x
∗
2, . . . , x

∗
n−d, τ

∗)(x∗1)j) = (x∗1)m, the symbol

Pj = ΣP ji,k satisfies

P ji,k 6= 0⇒ (i+ rk 6 m, i+ sk 6 m and i < m if k = 0)

andPj belongs toÊµm−j(U) with µ = max(0,1− ((r − s)/2)).

The moduleE2(∞,∞)
Λ (r,s)/E2(∞,∞)

Λ (r,s)P is isomorphic to

(E2(∞,∞)
Λ (r,s))m/(E2(∞,∞)

Λ (r,s))m(Dx1I −A),

whereA is them×m-matrixA0 +A1 with

A0 =



0 0 0 . . . 0
...

... .. . . . .
...

...
. . .

. . . 0

0 . . . . . . 0 0

P0 P1 . . . . . . Pm−1


, A1 =



0 1 0 . . . 0
...

... .. . . ..
...

...
. . .

. .. 0

0 . . . . . . 0 1

0 0 . . . . . . 0


.
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The matrixA0 is of order(1, µ) for the functiona: N → N equal toa(i) = i
while the matrixA1 is of order(1,1) for the same function. AsA1 is nilpotent of
orderm, the matrixA is of medium order(1, µ′) with µ′ = 1− (r − s)/2m. So
we apply Proposition 3.2.3 toA and get the result. 2
The symplectic structure of the manifoldT ∗Λ is given first by the structure of
cotangent bundle toΛ which gives a canonical 1-formω (hence a structure of
homogeneous symplectic manifold) and second by the action ofC∗ on the fibers of
Λ which gives a Euler vector field onΛ whose principal symbolF is well defined
onT ∗Λ up to a multiplicative constant [18].

These data are equivalent to the canonical 2-form of the symplectic manifold
T ∗Λ and the two actionsH0 andH∞ of Section 1.3.

The 1-formω and the functionF define onT ∗Λ a structure of bihomogeneous
symplectic manifold and to each bihomogeneous symplectic isomorphism is asso-
ciated an isomorphism ofE2(∞,∞)

Λ (r,s) and ofE2
Λ(r,s) which is called a ‘quantized

bicanonical transformation’ ([18] theorem 2.9.11).
From this we can transform Theorem 3.2.4 into the following corollary:

COROLLARY 3.2.5.Letf be a bihomogeneous holomorphic function onT ∗Λ and
Q a 2-microdifferential operator whose symbol isf . Letη be a point ofT ∗Λ where
ω, dF anddf are linearly independent.

LetP be a2-microdifferential operator such thatσ(r,s)
Λ (P ) = fm. Then there

is an isomorphism nearη

E2(∞,∞)
Λ (r,s)/E2(∞,∞)

Λ (r,s)P ' (E2(∞,∞)
Λ (r,s)/E2(∞,∞)

Λ (r,s)Q)m.

In local coordinates we haveω = Σx∗i dxi + Στ∗j dτj andF = Στjτ∗j . The
corollary may be applied, for example, tof = τ∗1 andQ = t1 if η is a point where
(τ2, . . . , τd) 6= 0.

Let us consider a manifoldZ and denoteX ′ = X × Z, Y ′ = Y × Z and
Λ′ = T ∗Y ′X

′ = T ∗YX×Z. It is proved in [29, Thm. 5.3.1. Ch. II] that, if a coherent
EX′-moduleM has a support inT ∗X×Z, thenE∞X′⊗M is completely determined
by its inverse image onX by j: X ↪→ X ′. The corresponding result is true here
(the inverse image of aE2

Λ′ (r,s)-module was defined in [18]):

THEOREM 3.2.6.If M is a coherentE2
Λ′(r,s)-module with support inT ∗Λ × Z

there is a canonical isomorphism

E2(∞,∞)
Λ′ (r,s)⊗E2

Λ′ (r,s)
M = E2(∞,∞)

Λ′→Λ (r,s)⊗%−1E2
Λ(r,s) %

−1j∗M,

with %: T ∗Λ× Z → T ∗Λ, π: T ∗Λ× Z → X ′ and

E2(∞,∞)
Λ′→Λ (r,s) = E2(∞,∞)

Λ′ (r,s)⊗π−1EX′ π
−1EX′←X .
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This theorem is a direct consequence of Theorem 3.2.4 with the same proof
as the corresponding result of [29]. By restriction to the zero section ofΛ′,
we get the following proposition:

PROPOSITION 3.2.7. If M is a coherent D2
Λ′ (r,s)-module such that

ChΛ′ (r,s)(M) ⊂ T ∗Λ × Z there is a canonical isomorphismD2(∞,∞)
Λ′ (r,s)

⊗D2
Λ′(r,s)

M = D2(∞,∞)
Λ′→Λ (r,s)⊗D2

Λ(r,s) j
∗M.

3.3. EQUIVALENCE THEOREM FOR2-MICROLOCAL EQUATIONS

We assume now that the codimension ofY is 1. We fix local coordinates(x, t) of
X such thatY = { t = 0} and thus coordinates(x, τ) of Λ and(x, τ, x∗, τ∗) of
T ∗Λ.

ThenΛ is locally isomorphic toY × C andT ∗Λ to T ∗Y × C2.
In the following proposition we consider a matrixA of operators ofD2

Λ(r,s)

independent ofτ∗. This means thatA commutes with the operatorDt or that the
symbols of the elements ofA are independent ofτ∗.

The sheafD2
Λ(r,s) is the restriction toΛ of E2

Λ(r,s) and the order(σ, µ) has the
same meaning as in Section 3.2.

Such a matrixA(x, τ, x∗) will be said of medium order(δ, µ) if there exists some
q ∈ N such that any product ofq termsA(x, τ (1), x∗)A(x, τ (2), x∗) . . . A(x, τ (q), x∗)
is of order at most(qδ, µ).

PROPOSITION 3.3.1.LetV be an open subset ofY andU = { (x, τ, x∗, τ∗) ∈
T ∗Λ |x ∈ V, τ 6= 0}.

Let(r, s) be two rational numbers such that1 6 s < r < +∞ andA be a(m×
m)-matrix of 2-microdifferential operators inD2

Λ(r,s)(U) which is independent of
τ∗ and of medium order(1, µ) with µ < 1.

For eachs′ > s, there exists onU an invertible matrixR in D2(R,∞)
Λ (r,s′) with

coefficients independent ofτ∗and multivalued inτ such that(tDtI−A)R = RtDt.
Proof. We first add a variable and apply Proposition 3.2.3: We considerX ′ =

X × C andY ′ = Y × {0} ⊂ X ′ with coordinates(x, t, z), Λ′ = T ∗Y ′X
′ ' Λ× C

and the open setU ′ = {(x, τ, ζ, x∗, τ∗, ζ∗) ∈ T ∗Λ′ |x ∈ V, τ 6= 0, ζ 6= 0}.
The partial Legendre transform in(t, z, τ, ζ) onT ∗X ′ is given by

x = x, ξ = ξ, y1 = τζ−1, y2 = z + tτζ−1, η1 = −tζ, η2 = ζ.

It defines a homogeneous isomorphism betweenΛ′ and the conormalΛ′′ to the
submanifoldY ′′ = {(x, y) ∈ X | y2 = 0} and a bihomogeneous canonical
transformationΦ from T ∗Λ′ to T ∗Λ′′ given by

x = x, x∗ = x∗, y1 = τζ−1, η2 = ζ,

y∗1 = −τ∗ζ, η∗2 = ζ∗ + τ∗τζ−1.

comp413.tex; 8/04/1999; 9:53; v.7; p.36

https://doi.org/10.1023/A:1000791329695 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000791329695


VANISHING CYCLES OF IRREGULARD-MODULES 277

It is proved in [18, Thm. 2.9.11] that to any bihomogeneouscanonical transform-
ationΦ is associated a ‘quantized’ canonical transformation, i.e., an isomorphism
of sheaves of ringsE2

Λ′ (r,s) → Φ−1E2
Λ′′ (r,s) which preserves orders and principal

symbols. It is shown in [20] that this transformation extends uniquely to sheaves
E2(∞,∞)

Λ (r,s).
So, we can choose a quantized canonical transformation associated toΦ which

exchangestDt andy1Dy1 and now we are in the situation of Proposition 3.2.3

which gives an invertible matrixR in E2(∞,∞)
Λ (r,s) such that(Dy1I−A)R = RDy1

andR(y1 = 1) = I. The matrixR is defined as a multivalued function iny1

because Proposition 3.2.3 is global on simply connected open sets.
AsA commutes withz andt, it commutes withDy1 andy2, so the same is true

for R by uniqueness.
Coming back to variables(z, t) by the inverse quantized canonical transform-

ation, we find a matrixR(x, x∗, τ, ζ) with coefficients inE2(∞,∞)
Λ′ (r,s)(U ′) (multi-

valued inτ/ζ) which is invertible and such that

(tDt −A)R = RtDt and R|τ=ζ = I.

In fact A is defined near the zero section ofT ∗Λ′ and is thus a matrix of
D2(∞,∞)

Λ′ (r,s).
This equation may rewritten as(

∂

∂τ

)
R(τ, ζ) = A(τ)R(τ, ζ) and R(τ, τ) = I.

We now want to find a solution to the initial problem as the value ofR(τ, ζ) at
a pointζ = ζ0.

Let s′ > s andδ such that 1< δ < (s′ + ν)/(s+ ν), we have for alli > 0 and
k < 0

|Pik(x, x′, τ)| 6 (−k)!s

i!
1

[(1− µ)(i+ (s+ ν)k)]+!
< Ci−k

(−k)!s
′

(i!)δ
.

This proves thatP satisfy the conditions (2.7.1) as a section ofD2(R,∞)
Y←Λ (r,s′)

and we may apply Proposition 2.7.1. So, we fix somea ∈ C andζ0 and define the
value of the matrixR at the pointζ = ζ0. We get a matrixR0 with coefficients in
D2(R,∞)

Λ (r,s′) and it is clear from the definition that(
∂

∂τ

)
τR0(τ) =

(
∂

∂τ

)
τR(τ, σ0) =

[(
∂

∂τ

)
τR

]
(τ, σ0).

On the other hand, we know from Proposition 2.7.2 thatA(τ)R0(τ) = (AR)(τ, σ0)
and also thatR0(τ)R−1(τ, σ0) = [RR−1](τ, σ0) = Id which proves thatR0 is an
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invertible solution to the initial problem. 2
Remark3.3.2. The proof of the proposition shows that the matrixR has coeffi-

cients in the subsheaf̃D2(R,∞)
Λ (r,s′) (Definition 3.1.2).

Remark3.3.3. If we replace Proposition 2.7.1 by Proposition 2.7.3, we get
Proposition 3.3.1 for a matrixA of E2

Λ(r,s) and the solutionR is in E2(R,R)
Λ (r,s′),

more precisely iñE2(R,R)
Y←Λ (r,s′)[C].

3.4. THE LIMIT CASE

We want to prove that the result of Proposition 3.3.1 is still true whens′ = s.

LEMMA 3.4.1. LetA be a matrix satisfying the conditions of Proposition3.3.1
andM be the cokernel

(D2
Λ(r,s))m

(tDt−A)
−−−−−→ (D2

Λ(r,s))m →M→ 0.

Lets′ such thatr > s′ > s.
Then the canonical(surjective) morphismCRY |X (r,s) → CRY |X(r,s′) induces an

isomorphism

RHomD2
Λ(r,s)(M, CRY |X (r,s)) ∼→ RHomD2

Λ(r,s)(M, CRY |X (r,s′)).

The result is clear ifA = 0, hence Proposition 3.3.1 gives an isomorphism
between solutions inCRY |X (r,s′′) and inCRY |X (r,s′) for anys′ > s′′ > s. The problem
is to gets′′ = s.

Proof. Following the beginning of the proof of Proposition 3.3.1, we add
a variablez. Keeping the same notations we find an invertible matrix of 2-
microdifferential operatorsR(x, x∗, τ, ζ) such that(tDtI −A)R = RtDt.

Letu be a section of(CRY |X (r,s′))m in a neighborhood of a pointα = (x0, τ0) of

T ∗YX solution of(tDt − A)u = 0. We havetDtR
−1u = R−1(tDtI − A)u = 0.

Henceu = Rv for some sectionv of (CRY ′|X′(r,s′))m satisfyingtDtv = 0.
There exists someε > 0 such thatv is defined for|x − x0| < ε, τ 6= 0 and

ζ 6= 0.
We want now to define the values ofv andR at a pointζ0. We apply the second

part of Proposition 2.7.1 and choose somea so thatR0 = R(ζ0) is a section of

D2(R,∞)
Λ→Y (r,s;ε/4).
Proposition 2.6.2 shows thatu = R0v0 on |x− x0| < ε/4.
The microfunctionv0 is a section ofCRY |X (r,s′) satisfyingtDtv0 = 0, hence of

the formf(x)δ(−1)(t) wheref is a holomorphic function onY andδ(−1)(t) the
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microfunction of symbol 1/τ . Sov0 is in fact a section ofCRY |X (r,s) and the same
is true foru atα.

We proved that ifu is a germ of(CRY |X (r,s′)m at a pointα of T ∗YX and satisfies
(tDt − A)u = 0, then there is a uniquẽu solution of the same equation in
(CRY |X (r,s))m atα whose image in(CRY |X (r,s′))m is u.

In the same way, we can prove that(tDt − A) is a surjective morphism on the
germs of(CRY |X (r,s))m.

COROLLARY 3.4.2.The conclusion of Proposition3.3.1 is true fors′ = s.
Proof. The canonical projectionq: X×Y → X defines a projectioñq: T ∗YX×

Y → T ∗YX and an injective morphism of sheaves of ringsq̃−1D2
Λ(r,s)→ D2

Λ×Y (r,s).
This means that we consider an operator onX as an operator onX × Y constant
in the second variables.

In this way the operator(tDt − A) of Proposition 2.5 may be considered as
a matrix of operators ofD2

Λ×Y (r,s) which satisfy the same hypothesis. Applying
Lemma 3.4.1 we get

RHomq̃−1D2
Λ(r,s)(M, CRY ×Y |X×Y (r,s))

∼← RHomq̃−1D2
Λ(r,s)(M, CRY×Y |X×Y (r,s′)),

(M is the module defined bytDt −A as in the lemma).
Applying the functorRΓT ∗YX to this isomorphism, we get

RHomq̃−1D2
Λ

(r,s)(M,D2(R,∞)
Y←Λ (r,s)) ∼← RHomq̃−1D2

Λ
(r,s)(M,D2(R,∞)

Y←Λ (r,s′)).

The action ofD2
Λ(r,s) onD2(R,∞)

Y←Λ (r,s) defined here is, by definition, the action

of D2
Λ(r,s) considered as a subring ofD2(R,∞)

Y←Λ (r,s). A solution of (tDt − A)R =
RtDt is a section ofHomq̃−1D2

Λ
(r,s)(M,D2(R,∞)

Y←Λ (r,s′)), hence it is a section of

Homq̃−1D2
Λ(r,s)(M,D2(R,∞)

Y←Λ (r,s)). (The same argument has been used in [11,
Sect. 3.2].)

We have proved that for anyR satisfying(tDt −A)R = RtDt, there existsR′

in D2(R,∞)
Y←Λ (r,s) satisfying the same equation and whose image inD2(R,∞)

Y←Λ (r,s′) isR
and now we have to prove thatR′ is invertible.

Let S be a section ofD2(R,∞)
Y←Λ (r,s) whose image inD2(R,∞)

Y←Λ (r,s′) is R−1. Then

RS = I + Q whereI is the identity andQ is a section ofD2(R,∞)
Y←Λ (r,s) which

vanishes inD2(R,∞)
Y←Λ (r,s′). So,Q is very decreasing and it is easy to show that the

series
∑
Qn is convergent and defines an inverse toI +Q in D2(R,∞)

Y←Λ (r,s).
This proves thatR′ is invertible. 2

The proof of Theorem 3.1.1 is now the same as the proof of Theorem 3.2.4 using
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the same division theorem [18, 2.5.2] and replacing Proposition 3.2.3 by Corol-
lary 3.4.2.

THEOREM 3.4.3.LetM be a coherentEX or D2
Λ(r,s)-module defined on an open

subsetU of Λ̇. We assume thatChΛ(r, s) ⊂ SΛ and thatM is provided with a
goodFrs-bifiltration whose bigraded module is free of finite rankN overOΛ[x∗].

ThenD2(R,∞)
Λ (r,s)⊗M is locally isomorphic to(D2(R,∞)

Λ (r,s)/D2(R,∞)
Λ (r,s) t)N .

Proof. If M is aEX-module we replace it byD2
Λ(r,s)⊗ EX , so we may assume

now thatM is a coherentD2
Λ(r,s)-module.

The bigraded ring ofD2
Λ(r,s) for the bifiltrationFrs is isomorphic toOΛ[x∗, τ∗].

We denote by̆D2
Λ(r,s) the subsheaf ofD2

Λ(r,s) of operators with symbol independent
of τ∗, its bigraded ring isOΛ[x∗].

Let u1, . . . , uN be a set of local sections ofM whose classes̄u1, . . . , ūN is a
base of the associated bigraded module grM as aOΛ[x∗]-module.

Theorem 2.5.3 of [18] shows that the morphismλ: (D̆2
Λ(r,s))N →M defined by

u1, . . . , uN is an isomorphism of̆D2
Λ(r,s)-modules which respects the bifiltrations

(with fixed shifts due to the fact that theui are not of order(0,0)). We may modify
the bifiltration so that all theui have order(0,0).

The operatortDt (whose symbol isττ∗) is an endomorphism ofM, hence
there exists a matrixA of the same order ast such thattDtu = Au with u =
(u1, . . . , uN ). With the notations of Section 3.2, this order is(1,1).

The morphism(D2
Λ(r,s))m/(D2

Λ(r,s))m (tDt − A) → M is clearly an isomor-
phism.

On Λ̇, the hypersurfaceSΛ of T ∗Λ is equal to{ τ∗ = 0} and by definition
ChΛ(r, s)(M) is the support ofOT ∗Λ⊗π−1 grM. Hence, it is contained inτ∗ = 0
and there exists somem such that(τ∗)mū = 0. This means that the principal symbol

σ
(r,s)
Λ (Am) vanishes hence that the principal symbol ofA is nilpotent.

So, as in the proof of Theorem 3.2.4, the matrixA is the sum of a matrixA0

of order(1,1) whose principal symbol vanishes and, hence, is of order(1, µ) with
µ = max(0,1− ((r − s)/2)) and of a matrixA1 of order(1,1) which is nilpotent
of orderm, henceA is of medium order(1, µ′) with µ′ = 1− (r − s)/2m.

We may apply Corollary 3.4.2 and find an invertible matrixR of D2(R,∞)
Λ (r,s)

such thatR−1(tDt −A)R = tDt. This shows that

D2(R,∞)
Λ (r,s)⊗M ' (D2(R,∞)

Λ (r,s))m/(D2(R,∞)
Λ (r,s))m (tDt−A)

' (D2(R,∞)
Λ (r,s)/D2(R,∞)

Λ (r,s) tDt)N ,

which proves the theorem (Dt is invertible onΛ̇). 2
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4. Vanishing Cycles

4.1. DEFINITION

LetX be a complex analytic manifold andY be a submanifold ofcodimension 1
of X. We denote byΛ = T ∗YX the conormal bundle toY and setΛ̇ = Ṫ ∗YX =
T ∗YX − Y , π: Λ→ Y andπ′: Λ̇→ Y .

If A is any sheaf of rings, we will denote byD(A) the derived category of the
category of leftA-modules and byDp(A) the subcategory of perfect complexes,
i.e., of right bounded complexes which are locally quasi-isomorphic to abounded
complex offreeA-modules, the bounds being uniform on the underlying space.

WhenA is a coherent sheaf of rings which is regular, i.e., satisfy the Hilbert
syzygy theorem,Dp(A) is equivalent to the subcategory ofD(A) of bounded
complexes with coherent cohomology and is also denoted byDb

c(A). This is true
in particular for the sheavesDX andEX considered here. We will denote byD′(A)
andD′p(A) the corresponding categories for right modules.

If M is a sheaf ofA-modules, it is identified with the complex 0→ M → 0
withM in degree 0 inD(A). Conversely, ifM is an object ofD(A) and if all its
cohomology groups vanish except in degree 0, we say thatM is ‘concentrated in
degree 0’ and identifyM with the sheafH0(M).

A left A-module which lies inDp(A), i.e. which admits locally a free bounded
resolutions will be said to be a perfectA-module. IfA is coherent, then the perfect
A-modules are coherentA-modules. The contrary is not true in general (because
coherent modules do not have bounded free resolutions) but this is true for all
coherent sheaves considered here.

The sheafD2(R,∞)
Y←Λ (r,s) has been defined in Section 2.3 for each(r, s) such that

r > s > 1 as

D2(R,∞)
Y←Λ (r,s) = (EY→X |Λ)⊗EX |Λ D

2(R,∞)
Λ (r,s)

= π−1OY ⊗π−1OX D
2(R,∞)
Λ (r,s).

It is a(π−1D∞Y , E∞X |Λ)-bimodule onΛ and ift is a local equation ofY , we have

D2(R,∞)
Y←Λ (r,s) ' D2(R,∞)

Λ (r,s)/tD2(R,∞)
Λ (r,s).

DEFINITION 4.1.1. IfM is an object ofD(EX) we set

Φ̃(r,s)(M) = D2(R,∞)
Y←Λ (r,s)⊗L(EX |Λ) (M|Λ)[−1].

Φ̃(r,s)(.) is a functor fromD(EX |Λ) toD(π−1D∞Y ). It is a kind of inverse image
by i: Y → X.

If M is an object ofD(DX), we will defineΦ̃(r,s)(M) = Φ̃(r,s)(EX ⊗π−1DX
π−1M).
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We have defined the vanishing cycle in the derived category. In that way, this
definition is always valid. In the following theorem, we show that, under suitable
conditions, the complex of vanishing cycles of aDX-module is a singleD∞Y -
module.

In the following theorem, the varietySΛ is the subvariety ofT ∗Λ defined in
Section 1.2.

THEOREM 4.1.2.Let (r0, s0) be a rational numbers withr0 > s0 > 1 andM be
a coherent left EX-module (or a coherentD2

Λ(r,s)-module) such that
ChΛ(r0, s0)(M) ⊂ SΛ. Let (r, s) ∈ Q2 be such thatr0 > r > s > s0 and
r0 > s.

(i) The restriction toΛ̇ of Φ̃(r,s)(M) is an object ofDp(π′
−1D∞Y ) which is

concentrated in degree0 and independent of(r, s) such thatr0 > r > s > s0

andr0 > s.
(ii) If N R is aD2(R,∞)

Λ (r,s)-module there is a canonical isomorphism

RHomEX (M,N R)|Λ̇
∼→ RHomπ′−1D∞Y

(Φ̃(r,s)(M), Φ̃(N R)),

with Φ̃(N R) = D2(R,∞)
Y←Λ (r,s)⊗L

D2(R,∞)
Λ (r,s)

N R.

The point (i) means that the torsion groupsT or
D2(R,∞)

Λ
(r,s)

k (D2(R,∞)
Y←Λ (r,s),M)

vanishes outside the zero section ofΛ if k 6= 1 and that̃Φ(r,s)(M) = T or1(. . .) is
a perfectπ′−1D∞Y -module. This module has a local presentation by freeπ′−1D∞Y -
modules, hence is locally of the formπ′−1N for some perfectD∞Y -moduleN .
(Hereπ′−1 is the inverse image in the category of sheaves, not ofD-modules!)

If t is a local equation forY , then Φ̃(r,s)(M) is the kernel of the surjective

morphismD2(R,∞)
Λ (r,s)⊗M t→ D2(R,∞)

Λ (r,s)⊗M.
To prove the theorem we need a lemma

LEMMA 4.1.3. LetM be a coherent leftD2
Λ(r,s)-module such thatChΛ(r,s)(r,s)

(M) ⊂ SΛ. ThenM has locally a finite resolution0→ Lm → Lm−1 → · · · →
L0→M→ 0, by modulesLi satisfying the hypothesis of Theorem3.4.3.

Proof. If a moduleM is such that ChΛ(r,s)(M) ⊂ SΛ, then, for any sectionu of
M, the same is true for the moduleEXu. We assumeτ 6= 0, henceSΛ = { τ∗ = 0}.
Thusu is annihilated by some microdifferential operatorP withσ(r,s)

Λ (P ) = (τ∗)m.
We take a finite set(u1, . . . , uq) of local generators ofM and corresponding

operatorsP1, . . . , Pq and setL = ⊕EX
/
EXPi . The morphismL →M is surject-

ive and its kernelM′ satisfy the same property asM. Iterating the procedure, we
get long resolutionsLN → LN−1 → · · · → L0 →M→ 0 ofM by modulesLi
of the same type asL which satisfy the hypothesis of Theorem 3.4.3.
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We now have to prove that this resolution may be truncated. We assume that
N > 2n, and replace the complex by 0→ K2n → L2n−1→ · · · → L0→M→ 0,
whereK2n is the kernel ofL2n → L2n−1. We get an exact sequence ofD2

Λ(r,s)-
module and the associated bigraded sequence is an exact sequence ofOΛ[x∗]-
modules, hence, by the Hilbert syzygy theorem, grK2n is a projective of finite
type and thus a stably freeOΛ[x∗]-module. So there exists an integerq such that
grK2n ⊕

(
OΛ[x∗]

)q is free.
LetN =

(
D2

Λ(r,s)
/
D2

Λ(r,s) t
)q

and consider the sequence

0→ K2n ⊕N → L2n−1⊕N → · · · → L0→M→ 0.

This sequence is exact, all modules satisfy ChΛ(r,s)(.) ⊂ SΛ and, by construction,
the bigraded modules are free (except grM). 2

Remark. 4.1.4. This proof is very similar to the proof of the existence of finite
free resolution forDX orEX-modules (see [31], for example) and with a little more
work, we could prove that the maximal length of the resolution of the lemma is
n− 1 instead of 2n.

Proof of Theorem4.1.2. The proof of the theorem is a consequence of
Theorem 3.1.1 and is very similar to the proof of [21, Thm. 2.1.1].

First of all we have to define the morphism (ii).
As D2(R,∞)

Y←Λ (r,s) is a (π−1D∞Y ,D
2(R,∞)
Λ (r,s))-bimodule, we have a canonical

homomorphism of rightD2(R,∞)
Λ (r,s)-modules

D2(R,∞)
Λ (r,s)→Homπ−1D∞Y (D2(R,∞)

Y←Λ (r,s),D2(R,∞)
Y←Λ (r,s)),

which sends the unit ofD2(R,∞)
Λ (r,s) to the identity morphism.

LetM(r,s) = D2(R,∞)
Λ (r,s) ⊗EX M, then using [21, Lem. 2.3.1], we define the

following morphisms

RHomEX (M,N R)

= RHomD2(R,∞)
Λ (r,s)

(M(r,s),N R)

→ RHomD2(R,∞)
Λ

(r,s)

(
M(r, s),

RHomπ−1D∞Y (D2(R,∞)
Y←Λ (r,s),D2(R,∞)

Y←Λ (r,s))⊗L
D2(R,∞)

Λ (r,s)
N R)

= RHomπ−1D∞
Y

(D2(R,∞)
Y←Λ (r,s)⊗L

D2(R,∞)
Λ (r,s)

M(r, s),

D2(R,∞)
Y←Λ (r,s)⊗L

D2(R,∞)
Λ

(r,s)
N R)

= RHomπ−1D∞
Y

(Φ̃(r,s)(M), Φ̃(N R)).
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We have thus defined a canonical morphism

RHomEX (M,N R)→ RHomπ−1D∞
Y

(Φ̃(r,s)(M), Φ̃(N R)).

Now the proof of the theorem is local onY and we choose local coordinates(x, t)
onX as in the previous section.

Let us first prove the theorem whenM = EX←Y . We know from Section 2.3
thatM(r,s) = D2(R,∞)

Λ→Y (r,s).
Let j: Y × Y → X × Y be the canonical immersion, this defines an exact

sequence 0→ OX×Y t→ OX×Y → j−1OY×Y → 0 and by microlocalization

0→ π−1
1 OY×Y → CRY×Y |X×Y

t→ CRY×Y |X×Y → 0,

with π1: T ∗Y×YX × Y → Y × Y . As EX×X (r,s) is flat onEX×X , we apply the
tensor product byEX×X (r,s) and get, for all(r, s), the exact sequence

0→ π−1
1 OY×Y → CRY×Y |X×Y (r,s)

t→ CRY×Y |X×Y (r,s)→ 0 (4.1.1)

and now we apply the functorH1
T ∗YX

(.)⊗O(0,n−1)
Y×Y and get the exact sequence

0→ π−1D∞Y → D
2(R,∞)
Λ→Y (r,s)

t→ D2(R,∞)
Λ→Y (r,s)→ 0.

In fact, we just need this exact sequence locally and we could get it by an
elementary calculation on the symbols of Section 2.3.

This proves that̃Φ(r,s)(EX←Y ) = π−1D∞Y for any (r, s) and that (i) is true in
this case.

If N R is aD2(R,∞)
Λ (r,s)-module, we have

RHomEX (EX←Y ,N R) = RHomEX (EX←Y , EX)⊗LEX N
R

= EY→X ⊗LEX N
R = Φ̃(N R)

= RHomπ−1D∞
Y

(π−1D∞Y , Φ̃(N R)),

becauseRHomEX (EX←Y , EX) = EY→X ([29]).
The theorem is now proved forM = EX←Y and we assume now thatM is any

D2
Λ(r,s)-module such that ChΛ(r0, s0) ⊂ SΛ. Lemma 4.1.3 gives a resolution

0→ LN → LN−1→ · · · → L0→M→ 0,

by modulesLi which, by Theorem 3.4.3, are such thatLi(r,s) is locally isomorphic
to some power ofD2(R,∞)

Λ→Y (r,s).
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AsD2(R,∞)
Λ (r,s) is flat onD2

Λ(r,s) this gives an exact sequence

0 → (D2(R,∞)
Λ→Y (r,s))pN → (D2(R,∞)

Λ→Y (r,s))pN−1

→ · · · → (D2(R,∞)
Λ→Y (r,s))p0 →M(r,s)→ 0.

We proved thatRHomD2(R,∞)
Λ (r,s)

(D2(R,∞)
Λ→Y (r,s),D2(R,∞)

Λ→Y (r,s)) = π−1D∞Y , hence

the morphisms in this exact sequence are given by matrices ofπ−1D∞Y .
We have a commutative diagram

0 0 0

0 - (π′
−1D∞Y )pN
?

AN- · · · A1- (π′
−1D∞Y )p0

?
- Φ̃(r,s)(M)

?
- 0

0 - (D2(R,∞)
Λ→Y (r,s))pN

?
AN- · · · A1- (D2(R,∞)

Λ→Y (r,s))p0

?
- M(r,s)

?
- 0

0 - (D2(R,∞)
Λ→Y (r,s))pN

?

t

AN- · · · A1- (D2(R,∞)
Λ→Y (r,s))p0

?

t

- M(r,s)

?

t

- 0

0
?

0
?

0
?

which gives the theorem:

(1) The middle and low lines are exact sequences, hencet: M(r,s) → M(r,s) is
surjective.

(2) The vertical lines are exact sequences, hence the higher horizontal line is exact
and thus̃Φ(r,s)(M) is a perfectπ′−1D∞Y -module.

(3) The isomorphismLi(r,s) ' (D2(R,∞)
Λ→Y (r,s))pi is given by a matrixR from

Proposition 3.3.1 which, by Corollary 3.4.2, does not depend on(r, s) such
that r0 > r > s > s0 and thusΦ̃(r,s)(M) is independent of(r, s) as a
π′−1D∞Y -module.

(4) The diagram proves that locallyM(r,s) ' D2(R,∞)
Λ→Y (r,s)⊗π′−1D∞Y

Φ̃(r,s)(M).

Moreover, this diagram proves that for anyi > 0, T ori(D2(R,∞)
Λ→Y (r,s), Φ̃(r,s)(M))

vanish, hence the equality is true in the derived category:

M(r,s) ' D2(R,∞)
Λ→Y (r,s)⊗L

π′−1D∞
Y

Φ̃(r,s)(M).
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If N R is aD2(R,∞)
Λ (r,s)-module, we thus have

RHomEX (M,N R)

= RHomD2(R,∞)
Λ (r,s)

(M(r,s),N R)

= RHomD2(R,∞)
Λ

(r,s)
(D2(R,∞)

Λ→Y (r,s)⊗L
π′−1D∞

Y
Φ̃(r,s)(M),N R)

= RHomπ′−1D∞Y
(Φ̃(r,s)(M),

RHomD2(R,∞)
Λ

(r,s)
(D2(R,∞)

Λ→Y (r,s),N R))

= RHomπ′−1D∞
Y

(Φ̃(r,s)(M), Φ̃(r,s)(N R)). 2
If we replace Theorem 3.1.1 by Proposition 3.1.3 and defineD̃2(R,∞)

Y←Λ (r,s) from

D2(R,∞)
Y←Λ (r,s) as in Definition 3.1.2, we get

PROPOSITION 4.1.5.If ChΛ(r,s)(M) ⊂ SΛ then

Φ̃(r,s)(M) = D̃2(R,∞)
Y←Λ (r,s)⊗L(EX |Λ) (M|Λ)[−1].

IfM is a bounded complex ofEX-module, we denote by ChΛ(r,s)(M) the union
over all i of ChΛ(r,s)(Hi(M)) and byD(r,s)(EX) the subcategory ofDb

c(EX) of
the complexesM such that ChΛ(r,s)(M) ⊂ SΛ.

COROLLARY 4.1.6. Φ̃(r,s)(.) is an exact functor fromD(r,s)(EX |Λ̇) to

Dp(π′
−1D∞Y ).

This is a direct consequence of the theorem.

We define now a functor̃Φ(r,s)(.) fromDb
c(D

2(R,∞)
Λ (r,s)|Λ̇) toDp(π′

−1D∞Y ) and

a functorΘ(r,s)(.) fromDp(π′
−1D∞Y ) toDp(D2(R,∞)

Λ (r,s)) by

Φ̃(r,s)(M) = D2(R,∞)
Y←Λ (r,s)⊗L

D2(R,∞)
Λ (r,s)

(M)[−1],

Θ(r,s)(N ) = D2(R,∞)
Λ→Y (r,s)⊗L

π′−1D∞Y
(N ).

PROPOSITION 4.1.7.If M is an object ofDp(D2(R,∞)
Λ (r,s)|Λ̇) which is locally

equal to a tensor productD2(R,∞)
Λ (r,s)⊗LL for some objectL ofD(r,s)(EX |Λ̇), then

M = Θ(r,s)Φ̃(r,s)(M). If N is an object ofDp(π′
−1D∞Y ) thenΦ̃(r,s)Θ(r,s)(N ) =

N .
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Proof. We know from the proof of Theorem 4.1.2 that

D2(R,∞)
Y←Λ (r,s)⊗L

D2(R,∞)
Λ

(r,s)
D2(R,∞)

Λ→Y (r,s)

= RHomD2(R,∞)
Λ (r,s)

(D2(R,∞)
Λ→Y (r,s),D2(R,∞)

Λ→Y (r,s))

= π′
−1D∞Y [−1].

This proves the second part of the proposition. To prove the first part, we have to
define a canonical morphism fromM to Θ(r,s)Φ̃(r,s)(M).

In fact, Theorem 4.1.2 shows that

RHomD2(R,∞)
Λ (r,s)

(M,Θ(r,s)Φ̃(r,s)(M))

= RHomπ′−1D∞Y
(Φ̃(r,s)(M), Φ̃(r,s)Θ(r,s)Φ̃(r,s)(M))

= RHomπ′−1D∞Y
(Φ̃(r,s)(M), Φ̃(r,s)(M)).

The identity ofΦ̃(r,s)(M) defines a canonical morphismM→ Θ(r,s)Φ̃(r,s)(M)
which is an isomorphism. 2
The microlocalization of̃Φ(r,s)(M), hence its characteristic variety may be calcu-
lated directly fromM, in fact we will prove a ‘2-microlocal’ Theorem 4.1.2.

The immersioni: Y → X defines morphismsT ∗Y
%0←− (T ∗X) ×X Y

$0−→
T ∗X, while the projectionπ: T ∗YX → Y givesT ∗Y $←− (T ∗Y )×Y Λ

%−→ T ∗Λ.
We denote byπ2: T ∗Λ→ Λ andπ1: (T ∗Y )×Y Λ→ Λ the canonical projections.

As Y is of codimension 1, the varietySΛ is the union ofπ−1
2 (Y ) and of

(T ∗Y )×Y Λ (Y is identified to the zero section ofΛ).

Let E2(R,∞)
Y←Λ (r,s) = π−1

1

(
EY→X |Λ

)
⊗π−1

1 (EX |Λ) %
−1E2(R,∞)

Λ (r,s). It is a

($−1E∞Y , %−1E2(R,∞)
Λ (r,s))-bimodule.

THEOREM 4.1.8.LetM, r0 ands0 satisfying the hypothesis of Theorem4.1.2.
The cohomology groups ofE2(R,∞)

Y←Λ (r,s)⊗L
π−1

1 EX
π−1

1 M vanish on(T ∗Y )×Λ (Λ̇)

except in degree−1. We denote the nonvanishing group byµ-Φ̃(r,s)(M).
µ-Φ̃(r,s)(M) is a left perfect$−1E∞Y -module on(T ∗Y )×Y (Λ̇), hence locally

isomorphic to$−1N for some perfectE∞Y -moduleN and does not depend on
(r, s) such thatr0 > r > s > s0 ands < r0.

The restriction ofµ-Φ̃(r,s)(M) to the zero sectionΛ of T ∗Λ is Φ̃(r,s)(M) and

µ-Φ̃(r,s)(M) = $−1E∞Y ⊗π′−1D∞
Y
π′
−1Φ̃(r,s)(M).
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Proof. Using the proof of Theorem 4.1.2 we have just to prove the theorem
whenM = EX←Y , and thus the exactness of

0→ $−1E∞Y → E
2(R,∞)
Λ→Y (r,s)

t→ E2(R,∞)
Λ→Y (r,s)→ 0. (4.1.2)

The functorµT ∗YX applied to the sequence (4.1.1) gives an exact sequence

0→ $−1ERY → E
2(R,R)
Λ→Y (r,s)

t→ E2(R,R)
Λ→Y (r,s)→ 0 (4.1.3)

and the global sections of this sequence on the orbits ofC∗ give (4.1.2). 2
Let q be the projectionq: T ∗Y → Y . The characteristic variety of aDY -module
N is equal to the support ofEY ⊗q−1DY q

−1N and, asE∞Y is faithfully flat onEY ,
it is equal to the support ofE∞Y ⊗q−1DY q

−1N .
So we can define the characteristic variety of aD∞Y -moduleN as the support

of E∞Y ⊗q−1D∞Y q−1N . If F is a perfectπ′−1D∞Y -module, it is locally constant on

Λ̇ and locally of the formπ′−1N with N a perfectD∞Y -module. The characteristic
variety ofF is independent of the choice ofN . In fact$−1Char(N ) is equal to
the support of$−1E∞Y ⊗π1

−1π′−1D∞Y
π1
−1F .We define this set as the characteristic

variety ofF and denote it by Char(F).

COROLLARY 4.1.9. If ChΛ(r0, s0)(M) ⊂ SΛ, the characteristic variety of
Φ̃(r,s)(M) is equal to the support ofµ-Φ̃(r,s)(M) that is to the microcharacteristic
varietyChΛ(r,s)(M) ofM.

To prove the corollary we have just to prove that the support ofµ-Φ̃(r,s)(M) is
equal to the microcharacteristic variety.

As ChΛ(r,s)(M) is the support ofE2
Λ(r,s)⊗π−1

2 EX
π−1

2 M according to the defin-

ition of [18], and asE2(R,∞)
Λ (r,s) is faithfully flat onE2

Λ(r,s) [20], it is the support of

E2(R,∞)
Λ (r,s)⊗π−1

2 EX
π−1

2 M.

To prove that this sheaf andµ-Φ̃(r,s)(M) have the same support, we may use
the same proof as Theorem 4.1.2 or prove that Proposition 4.1.7 is still valid with
D2(R,∞)

Λ (r,s) replaced byE2(R,∞)
Λ (r,s) which is easy.

In fact, with the same proof as Theorem 4.1.2 we have: IfM satisfy the
hypothesis of Theorem 4.1.2 andN R is aE2(R,∞)

Λ (r,s)-module there is a canonical
isomorphism

%−1RHomπ−1EX (π−1M,N R)

∼→ RHom$−1E∞
Y

(µ-Φ̃(r,s)(M), µ-Φ̃(N R),

with

µ-Φ̃(N R) = π−1
1 (EY→X |Λ)⊗L

π−1
1 (EX |Λ)

%−1(N R)).
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4.2. MONODROMY

We proved in the previous section that, ifM is a coherentEX-module with
ChΛ(r,s)(M) ⊂ SΛ, thenΦ̃(r,s)(M) is locally constant on the fibers ofπ′: Λ̇→ Y .
In other words,Φ̃(r,s)(M) is isomorphic toπ′−1N for someD∞Y -moduleN on
any simply connected open subset ofΛ̇. As Λ is a complex fiber bundle of rank
1 overY , it is provided with a canonical orientation. This defines a canonical
endomorphism of monodromy oñΦ(r,s)(M) which will be denoted byT .

In order to define this endomorphism in the derived category, we use Proposi-
tion 4.1.5 to definẽΦ(r,s)(M).

The endomorphism of monodromy of̃D2(R,∞)
Y←Λ (r,s) is well defined as this sheaf

has the property of unique continuation, hence it induces an endomorphismT on
the object̃Φ(r,s)(M) of Dp(π′

−1D∞Y ) for anyM in D(r,s)(EX |Λ̇).
Vanishing cycles are usually defined as a sheaf onY instead of a sheaf oṅΛ as

we did here. If an equation ofY is given the two points of view are equivalent:
Letσ be a continuous section ofΛ̇ = Ṫ ∗YX, that is a continuous mapσ: Y → Λ̇

such thatπ′oσ = idY . Such a section onY is equivalent to aC1-equation ofY .
As Φ̃(r,s)(M) is locally equal toπ′−1N , the sheafσ−1Φ̃(r,s)(M) is a sheaf on

Y of D∞Y -modules with locally free resolutions.

DEFINITION 4.2.1. Letσ be a continuous section ofṪ ∗YX and letM be an object
of D(r,s)(EX). Then the complex ofvanishing cycles of type(r,s) ofM alongY is

the object ofDp(D∞Y ) given byΦ(r,s)(M) = σ−1Φ̃(r,s)(M). It is provided with
the endomorphism of monodromyT .

In this definition,σ−1 is the inverse image in the category of sheaves. If we
consider two sectionsσ1 andσ2, thenσ−1

1 Φ̃(r,s)(M) andσ−1
2 Φ̃(r,s)(M) are locally

isomorphic.
Conversely, we may recover̃Φ(r,s)(M) from Φ(r,s)(M) and its endomorphism

T ifM is inD(r,s)(EX). This is clear ifΦ̃(r,s)(M) is a single module. In the general
case where it is an object of the derived category, it is a little more complicated:
we have to derive the category of complexes provided with an endomorphism of
monodromy instead of the category of complexes (see [4]).

Let us still remark thatΦ(r,s)(.) is an exact functor fromD(r,s)(EX) to
Db
c(DY ).

EXAMPLES 4.2.2.

(i) M = CY |X .

We haveD2(R,∞)
Λ (r,s)⊗M = CRY |X (r,s) (cf. 2.3) and thus, for any(r, s)

Φ̃(r,s)(M) = EY→X ⊗LEX C
R
Y |X (r,s)[−1] = π′

−1OY ,
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henceΦ(r,s)(M) = OY with T = Identity.

(ii) M = EX←Y .
From the Proof 4.1.2 we have

Φ̃(r,s)(M) = π′
−1D∞Y

and thusΦ(r,s)(M) = D∞Y with T = Identity for any(r, s).

(iii) Assume thatX = Y × C with a coordinatet on C. If M is the EX-
moduleEX

/
EX(tDt − α) with α ∈ C then Φ̃(r,s)(M) = π′−1D∞Y τα+1, hence

Φ(r,s)(M) = D∞Y with T = e2iπα for any(r, s).

(iv) If M is EX
/
EX(t2Dt − 1) thenΦ(r,s)(M) = D∞Y with T = Identity for

2> r > s > 1 andr = 2> s while Φ(r,s)(M) = 0 for r > s > 2.

Moderate vanishing cycles of a specializableEX or DX -module have been
defined in [21] for modules which are specializable. It is a coherentp−1DY -module
denoted bỹΦ(M).

PROPOSITION 4.2.3.LetM be a coherentEX-module which isr0-specializable
for somer0 > 1. Then for eachr > s > r0 there is a canonical isomorphism of
π−1D∞Y -modulesπ−1D∞Y ⊗π−1DY Φ̃(M) ∼→ Φ̃(r,s)(M).

Proof. The sheaf̃Φ(M) is defined in [21] as we did here for̃Φ(r,s)(M) but the

sheafE2(R,∞)
Λ (r,s) was replaced by the subsheafẼ2

Λ(∞,1).
Hence, there is a canonical morphism ofp−1DY -modules̃Φ(M)→ Φ̃(r,s)(M),

which gives the morphism of the theorem.
WhenM = EX←Y , this morphism is an isomorphism becauseΦ̃(M) =

π−1DY andΦ̃(r,s)(M) = π−1D∞Y .
It is proved in [21] (Theorem 2.2.1) that ifM is r0-specializable, theñE2

Λ(∞,1)⊗
π−1M has (locally) a resolution by modules which are isomorphic to a power of
Ẽ2

Λ(∞,1)⊗ π−1EX←Y which proves the proposition. 2

4.3. DUALITY AND MICROLOCAL SOLUTIONS

If M is an object ofD′(EX), the derived category of the category of the right
EX-modules, the definition of the vanishing cycles is̃Φ(r,s)(M) =
M⊗LEX |Λ D

2(R,∞)
Λ→Y (r,s)[−1].

If M is an object ofDc(EX), its dual is the objectM∗ of D′c(EX) defined as
M∗ = RHomEX (M, EX)[dimX].

In the same way, ifN ∈ Dp(D∞Y ), thenN ∗ = RHomD∞
Y

(M,D∞Y )[dimY ] and

if N ∈ Dp(π′
−1D∞Y ), thenN ∗ = RHomπ′−1D∞Y

(M, π′−1D∞Y )[dimY ].
Applying Theorem 4.1.2 to Example 4.2.2 (ii) we get thatΦ commutes to

duality:
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COROLLARY 4.3.1.IfM∈ D(r,s)(EX), we havẽΦ(r,s)(M∗) ' Φ̃(r,s)(M)∗ and

for any continuous sectionσ of Λ̇ Φ(r,s)(M∗) ' Φ(r,s)(M)∗.

If we apply now the same theorem to example (i), we get the following corollary:

COROLLARY 4.3.2.LetM be an object ofDb
c(EX) such thatChΛ(r,s)(M) ⊂ SΛ

and(r′, s′) with r > r′ > s′ > s andr > s′, then

RHomEX (M, CRY |X (r′,s′))|Λ̇
∼→ RHomπ′−1D∞

Y
(Φ̃(r,s)(M), π′−1OY )

and ifσ is a continuous section oḟΛ then

σ−1RHomEX (M, CRY |X (r′,s′)) ∼→ RHomD∞Y (Φ(r,s)(M),OY ).

Let us denote as in [21] bỹCY |X (r,s) the subsheaf ofCRY |X (r,s) of the sections

which have a continuation along any path in the fibers ofΛ̇ → Y . Then in the
situation of Corollary 4.3.2, the sheafΦ̃(r,s)(M) has this property of continuation
(Proposition 4.1.5), hence the two members of the isomorphism of the corollary
have it. This proves that

RHomEX (M, C̃Y |X (r,s)) ∼→ RHomEX (M, CRY |X (r,s)).

Let us denote by id the identity morphism ofΦ(r,s)(M) and byΦ0(r,s)(M)

the mapping cone of the morphismΦ(r,s)(M)
T− id
−−−−→ Φ(r,s)(M) in the cate-

goryDb
c(DY ). More precisely, we consider the complexT = D̃2(R,∞)

Y←Λ (r,s)
T− id
−−−−→

D̃2(R,∞)
Y←Λ (r,s) in D(EX) and defineΦ0(r,s)(M) = T ⊗REXM.

The sheafCY |X (r,s) is equal toγ−1γ∗CRY |X(r,s) with γ: Ṫ ∗YX → P∗YX, hence
we have

COROLLARY 4.3.3.Under the hypothesis of the Corollary4.3.2 we have

RHomEX (M, CY |X (r,s))|Λ̇
∼→ π′

−1RHomD∞
Y

(Φ0(r,s)(M),OY ).

The proof is the same proof as Corollary 3.1.8. in [21].

4.4. GROWTH OF SOLUTIONS

HereY is a complex submanifold ofX of any codimension andM is a coherent
EX-module defined nearΛ = T ∗YX .
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THEOREM 4.4.1.LetU be an open subset ofT ∗X and letr0 > s0 > 1 be such
thatChΛ(r0,s0) ∩ π−1U ⊂ SΛ. Then we have onU

RHomEX (M, CRY |X (r,s)) = RHomEX (M, C̃Y |X (r,s)

= RHomEX (M, CRY |X (r0,s0)))

for any(r, s) such thatr0 > r > s > s0 andr0 > s.
Proof. The proof being local onX, we first choose a pointx∗ of Ṫ ∗YX . Then

after a quantized canonical transformation, we may assume thatṪ ∗YX has been
transformed into the conormal to a hypersurface ofX. That is, we may assume that
Y has codimension 1 and apply the results of Section 4.3.

If now x∗ is a point of Y , we considerΛ̇ = T ∗Y×{0}X × C andM′ =
M⊗ DC/DCt near the point(x∗; (0,1)) which is not on the zero section. We
apply the preceding result and we conclude as usually in this situation (see [31]
Section 2.8 for example). 2
The restriction ofCRY |X (r,s) to the zero sectionY is equal toBY |X (r) if r > s

and toBY |X{r} if r = s hence:

COROLLARY 4.4.2.LetM be a coherentDX -module and letr0 > s0 > 1 be
such thatChΛ(r0,s0)(M) ⊂ SΛ. Then we have

RHomDX (M,BY |X (r0)) = RHomDX (M,BY |X (r))

= RHomDX (M,BY |X{r})

= RHomDX (M,BY |X{s0})

for anyr such thatr0 > r > s0.

Now we come back to codimension 1. Following [21] we consider several
sheaves of holomorphic functions and formal power series with exponential growth.

First, we denote byOX|Y the restriction toY of the sheafOX and byO
X̂|Y its

formal completion alongY . We interpolate between them with the familyOX|Y (r):
By definition,OX|Y (r) is the subsheafofO

X̂|Y of the elements which are written

in a local chart(x1, . . . , xn, t) such thatY = {t = 0} as

u =
∑
n>0

an(x)tn with
∑
n>0

an(x)tn/(n!)r−1 < +∞.

When r = +∞, we setOX|Y (∞) = O
X̂|Y and by definition we have

OX|Y (1) = OX|Y .
On the other side, we interpolate between the sheafOX [∗Y ] of meromorphic

functions with poles onY and the sheafOX (∗Y ) = j−1j∗OX (j: Y ↪→ X) of
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holomorphic functions onX with essential singularities onY with the family
OX (∗Y )((r)) of sections ofOX (∗Y ) with growth less than exp((1/|t|)1/(r−1)).

Such functions may be written in coordinates as

u =
∑
n∈Z

an(x)tn with
∑
n60

an(x)tn((−n)!)r−1 < +∞.

We will also considerOX (∗Y )(r,s) = OX (∗Y )((r)) ⊗OX OX|Y (s) and extend
the sheafNX|Y of Nilsson class functions onY to NX|Y (r,s) = OX (∗Y )(r,s)

⊗OX [∗Y ] NX|Y .

COROLLARY 4.4.3.LetM be a coherentDX-module such thatChΛ(r0,s0)(M) ⊂
SΛ and let F (r,s) be one of the sheavesOX|Y (r), NX|Y (r), OX (∗Y )((r)),
OX (∗Y )(r,s) or NX|Y (r,s). Then the complex of solutionsRHomDX (M,F (r,s))
is independent of(r, s) such thatr0 > r > s > s0.

To prove this theorem, we first remark that Theorem 4.4.1 is still true for the
sheafCY |X (r,s) which is equal toγ−1γ∗CRY |X (r,s). Then we use the exact sequences
of [21] Proposition 3.2.10 to conclude (see the proof of Corollary 5.3.7).

If we interpret Theorem 4.4.1 in terms of holomorphic functions, we get the
growth of holomorphic solutions in large sectors (i.e., larger thanπ). It would
be very nice to have the corresponding results for small sectors. To do this, it is
necessary to translate Theorem 4.4.1 through Fourier transform and get results on
the specialization. This must not be very difficult with the results of Malgrange’s
book [24].

4.5. NONSMOOTH HYPERSURFACES

The sheaves of irregular vanishing cycles may be defined whenY is not smooth.
The results are exactly the same as in [21, Sect. 3.3].

We denote bỹΛ = OX(−Y ) the vector bundle overX whose holomorphic
sections are the holomorphic functions onX which vanish onY at order 1. We
denote byπ the projectionΛ̃ → X and byΛ the restriction ofΛ̃ to Y . On the
regular part ofY , there is a canonical isomorphismΛ ≈ T ∗YX .

LetU be an open subset ofX andϕ be a local equation ofY onU . We consider
the graph mapg: U ↪→ U × C = X̃ given byg(x) = (x, ϕ(x)) and the subvariety
Ỹ = U × {0} of X̃ .

The functionϕ defines a trivializatioñΛ|U ' U × C and therefore an isomor-
phismg̃: Λ̃|U → T ∗

Ỹ
X̃ ' U × C.

If M is an object ofD(EX), its direct image isg∗M = Rg∗(EX̃←U ⊗LEU M).
It is an object ofD(EX̃) with support in the graphg(U) of ϕ. If M is a coherent
EX-module theng∗M is a coherentEX̃-module.
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We denote byD(r,s)(EX) the subcategory ofDb
c(EX) whose objects satisfy

ChT ∗
Ỹ
X̃ (r,s)(g∗M) ⊂ ST ∗

Ỹ
X̃ and we definẽΦ(r,s)M = g̃−1Φ̃(r,s)g∗M, whereg−1

is the inverse image in the category of sheaves.
The same proof as [21, Sect. 3.3] gives:

(1) The definition ofD(r,s)(EX) andΦ̃(r,s)(M) are independent of the choice
of the equationϕ.

(2) Φ̃(r,s)(.) is an exact functor fromD(r,s)(EX) to the subcategory of
Dp(π−1D∞X ) of object with cohomology supported byΛ.

(3) If a continuous nonvanishing sectionσ of Λ̃ is given (i.e., aC1-equation
for Y ) thenΦ(r,s)(.) = σ−1Φ̃(r,s)(.) is an exact functor fromD(r,s)(EX) to the
subcategory ofDp(D∞X ) of object with cohomology supported byY .

4.6. SUBMANIFOLDS OF HIGHER CODIMENSION

The theory may also be extended to smooth subvarietiesY of codimension greater
than 1 and also to smooth conic Lagrangian submanifolds ofT ∗X. The method is
the same as [21, Sect. 3.4] and we refer to it for details.

LetX be a complex analytic manifold andΛ be an homogeneous Lagrangian
submanifold of Ṫ ∗X = T ∗X − X. We denote byPΛ = Λ/C∗ the associated
projective bundle and byγ: Λ→ PΛ the projection.

There exist onΛ a sheafD̃∞Λ which is locally isomorphic toγ−1D∞PΛ the inverse
image byγ of the sheaf of differential operators of infinite order onPΛ.

If Λ = T ∗YX, thenD̃∞Λ is canonically isomorphic toγ−1D∞P∗
Y
X .

An operator adapted toΛ is a microdifferential operatorΘ of order 1 whose
symbolθ = θ1(x, ξ) + θ0(x, ξ) + · · · in some coordinate system(x, ξ) satisfy:

(a) θ1|Λ = 0 andθ0|Λ = 0.
(b) dθ1 = ωX moduloIΛΩ1 whereωX is the canonical 1-form ofT ∗Λ andIΛ

the definition ideal ofΛ in T ∗X .

This definition does not depend on the local coordinate system and such an
operator always exists locally.

We defineΦ̃Λ(r,s)(M) =
(
EX
/
ΘEX

)
⊗LEX (D2(R,∞)

Λ (r,s) ⊗LEX M)[−1]. This

sheaf is independent of the choice ofΘ as aD̃∞Λ -module.
This definition is clearly invariant under quantized canonical transformations.

In this way, we may transformΛ into the conormal of a smooth hypersurface and
prove that the results of the previous sections remain valid. We get:

THEOREM 4.6.1.Let Λ be an homogeneous Lagrangian submanifold ofṪ ∗X
andM an object ofDb

c(EX).
Let(r0, s0) be two rational numbers such thatr0 > s0 > 1andChΛ(r0,s0) ⊂ SΛ.
Let (r, s) such thatr0 > r > s > s0 andr0 > s.
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(i) Φ̃Λ(r,s)(M) is an object ofDp(D̃∞Λ ) independent of the choice ofΘ and of
(r, s). It is locally of the formγ−1N withN an object ofDp(D∞PΛ).

(ii) IfM is an object ofD(r,s)(EX) andN an object ofD2(R,∞)
Λ (r,s), then

RHomEX (M,N ) ∼→ RHomD̃∞
Λ

(Φ̃Λ(r,s)(M), Φ̃Λ(r,s)(N )).

(iii) If Y is a submanifold ofX andΛ = Ṫ ∗YX, thenΦ̃Λ(r,s)(M) is canonically
an object ofDp(γ−1DPΛ).

(iv) If Y is a submanifold ofX, then

RHomEX (M, CRY |X (r,s)) = RHomγ−1DPΛ(Φ̃Λ(r,s)(M), γ−1OPΛ).

(v) The characteristic variety of̃ΦΛ(r,s)(M) is equal to the microcharacteristic
varietyChΛ(r,s)(M).

5. Vanishing Cycles of Holonomic Modules

5.1. CRITICAL INDEXES

If M is a holonomicEX or DX-module, we know (Proposition 1.4.1) that
ChΛ(r)(M) ⊂ SΛ for any r > 1 and (1.4.2) that ChΛ(r,s)(M) ⊂ SΛ if and
only if there is no critical indexr0 such thatr > r0 > s. The sheaf of vanishing
cyclesΦ̃(r,s)(M) is thus well defined as soon as there is no critical index in[s, r].

In the case of holonomic modules, we set the following definitions:

Φ̃{r}(M) = Φ̃(r,r)(M), Φ̃(r)(M) = Φ̃(r,r−ε)(M),

(with 0< ε� 1 such thatM has no critical index in[r − ε, r[).
With these notations, the previous results may be stated in the following way:

THEOREM 5.1.1.LetM be a holonomicEX or DX-module and let1 = r0 <
r1 < · · · < rN < rN+1 = +∞ be its critical indexes.

(i) The sheaves of vanishing cyclesΦ̃{r}(M) andΦ̃(r)(M) are well defined as a
perfectπ−1D∞Y -module for anyr > 1.

(ii) If ri andri+1 are two consecutive critical indexes andri < r < ri+1, then

Φ̃{ri}(M) = Φ̃(r)(M) = Φ̃{r}(M) = Φ̃(ri+1)(M),

so that there is only a finite number of distinct sheaves of vanishing cycles and
Φ̃{r}(M) = Φ̃(r)(M) if r is not a critical index.

(iii) The sheaf of vanishing cyclesΦ̃(r,s)(M) is well defined for any(r, s) with no
critical index in the interval]r, s[ and equal tõΦ(r)(M).

(iv) The characteristic variety of̃Φ{r}(M) (resp.Φ̃(r)(M)) is equal toChΛ{r}(M)
(resp.ChΛ(r)(M)).
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If σ is a continuous section oḟΛ, we have the same results withΦ instead of̃Φ,
that is with sheaves ofD∞Y -modules.

As the microcharacteristic varieties of holonomicEX-modules are Lagrangian,
the characteristic varieties of these modules are also Lagrangian.

Corollary 4.3.2 shows that the complex of solutionsRHomEX (M, CRY |X (r,s)) is
independent of(r, s) if rk > r > s > rk+1 for somek and is equal to the complex
of solutions ofΦ̃(r)(M) in π−1OY .

5.2. ADMISSIBILITY

A D∞Y -moduleN is said to be holonomic admissible (or simply holonomic) if
there exists some holonomicDY -moduleN0 such thatN = D∞Y ⊗DY N0.

The characteristic cycle ofN0 is independent of the choice ofN0[11, Thm. 3.2.1]
and will be the characteristic cycle ofN .

If N is holonomic admissible, the complex of solutionsRHomDY (N ,OY )
is perverse and the moduleN0 may be obtained from this complex via the
Riemann–Hilbert correspondence. This shows that holonomic admissibility is a
local property.

THEOREM 5.2.1.IfM is a holonomicEX-module then, for anyr > 1, Φ{r}(M)
andΦ(r)(M) are admissible holonomicD∞Y -modules. Their characteristic cycles
are equal to the corresponding microcharacteristic cycles ofM:

$−1C̃h(Φ{r}(M)) = C̃hΛ{r}(M), $−1C̃h(Φ(r)(M)) = C̃hΛ(r)(M).

Proof. Let us first assume thatM is r-specializable. This is always true for great
r [21, Thm. 1.1.4] and we may apply Proposition 4.2.3 and [21, Corollary 3.1.9]
to get the result.

Let us now assumer = 1 butM is not 1-specializable. Theorem 5.2.1 of [15]
shows that there exists a regular holonomicEX -moduleMreg such thatE∞X ⊗EX
M = E∞X ⊗EX Mreg. The sheafD2(R,∞)

Y←Λ (r,s) is a rightE∞X -module ifr = s = 1,
hence Definition 4.1.1 shows thatΦ{1}(M) = Φ{1}(Mreg).

A regular holonomicEX -module is 1-specializable [21, Thm. 1.1.4] (this result
was proved by Kashiwara and Kawa in [14]) and we apply the first case toMreg.

(If M is regular the result is also known from [27] and [6].)
Let us consider the general case. We fix local coordinates and look at the

map sr: (x, τ) 7→ (x, τ r) on the universal covering ofT ∗YX − Y . The inverse
image bysr is well defined on the symbols ofCRY |X (r,r) and defines a morphism

s∗r: s
−1
r CRY |X (r,r)→ CRY |X .

The sheafD2(R,∞)
Y←Λ (r,r) has been defined cohomologically fromCRY |X (r,r), hence

we get a morphism of ringss∗r: s
−1
r D

2(R,∞)
Y←Λ (r,r) → D2(R,∞)

Y←Λ (1,1). When restricted
to EX this morphism gives a morphisms∗r: s

−1
r EX → EX [1/q] whereq is the
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denominator ofr and EX [1/q] is the sheaf of microdifferential operators with
fractional order. It is clear from the definition that for anyP in EX we have
σ(1)(s∗rP ) = σ(r)(P ).

If M is a holonomicEX-module, thens∗rM is a coherentEX [1/q]-module and
we haveC̃hΛ(1)(s∗rM) = C̃hΛ(r)(M). In particular ChΛ(1)(s∗rM) is Lagrangian
and as this variety is the tangent cone alongΛ to the characteristic variety ofs∗rM,
this shows thats∗rM is holonomic.

The theory of holonomicEX [1/q] is the same as that of holonomicEX-module
(see [30] for the details) and in particular there exists a regular holonomicEX-
moduleMreg such thatERX⊗EXMreg = ERX ⊗EX [1/q] s

∗
rM.We may now conclude

as before becauseΦ{r}(M) = Φ(1)(s∗rM) = Φ(1)(Mreg).
As Φ(r)(M) = Φ{r−ε}(M) andC̃hΛ(r)(M) = C̃hΛ{r−ε} if ε � 1, the same

result is true withΦ(r)(M). 2
The proof of Theorem 5.2.1 is rather simple but uses the deep results of Kashiwara
and Kawäı [14, 15]. We give another proof in Appendix.

5.3. INDEX THEOREMS

Let X be a complex analytic manifold,T ∗X its cotangent bundle andΣ be a
Lagrangian homogeneous analytic subset ofT ∗X. ThenΣ is a union of setsT ∗XjX
whereXj is a subvariety ofX andT ∗XjX is the closure of the conormal bundle to
the regular part ofXj .

Any positive cyclẽΣ with supportΣ may thus be written as̃Σ =
∑
jmj [T ∗XjX]

with mj ∈ N.
The Local Euler Obstructionof Σ̃ at a pointx ∈ X is defined asE

Σ̃
(x) =∑

jmj(−1)codimXjEXj (x), whereEXj (x) is the local Euler obstruction ofXj at
x. (See [3] for more details.)E

Σ̃
(x) is a constructible function onX.

If M andF are two leftDX-modules, we will say that(M,F) has finite index
atx if all ExtjDX (M,F)x are finite-dimensionalC-vector space and then we will

setχ(M,F)x =
∑
j(−1)j dimCExtjDX (M,F)x.

It was proved by Kashiwara in [11] that ifM is a complex ofDX -modules with
holonomic cohomology, thenRHomDX (M,OX ) is a complex ofC-vector spaces
with constructible cohomology and ifM is a holonomicDX-module, it is a perverse
sheaf.(M,F) has finite index at eachx ∈ X andχ(M,OX )x = E

C̃h(M)
(x),

whereC̃h(M) is the characteristic cycle ofM.

THEOREM 5.3.1.LetM be a holonomicEX-module andY be a submanifold of
X (of any codimension).

(i) For any r ∈ [1,+∞], RHomEX (M, CRY |X (r,r)) is a complex ofC-vector
spaces with constructible cohomology onΛ = T ∗YX and a perverse sheaf
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on Λ̇ = T ∗YX − Y . At each pointx ∈ Λ we haveχ(M, CRY |X (r,r))x =
E

C̃hΛ{r}(M)
(x).

(ii) If rk and rk+1 are two consecutive slopes ofM, then for any(r, s) such
that rk > r > s > rk−1, RHomEX (M, CRY |X (r,s)) is a complex ofC-vector

spaces with constructible cohomology onΛ and a perverse sheaf oṅΛ. It is
independent of(r, s) and at each pointx ∈ Λ we haveχ(M, CRY |X (r,s))x =
EC̃hΛ(r)(M)

(x).

Remark5.3.2. If r = s = 1 this theorem has been proved by Kashiwara and
Schapira in [17], their method is purely geometric.

Proof. Assume first thatx ∈ Λ̇. After a quantized canonical transformation, we
may assume thatY has codimension 1.

Corollary 4.3.2 shows thatRHomEX (M, CRY |X (r,s)) is independent of(r, s) and
equal toRHomD∞Y (Φ(r,s)(M),OY ). Then we may use Theorem 5.2.1 and apply
the result of Kashiwara toΦ(r,s)(M).

We may also use directly Theorem 6.2.1 which shows that the characteris-
tic cycle of the sheafRHomEX (M, CRY |X (r,s)) as defined in [13] is equal to the

microcharacteristic cyclẽChΛ(r,s)(M). Then we apply the result of [13] which
calculates the index of a perverse sheaf from its characteristic cycle.

Regarding the zero section, we get the result by adding a variable. The proof is
the same as the proof of [21, Thm. 4.4.1] and we refer to it for details. 2
On the zero sectionY of T ∗YX we haveCRY |X (r,s)|Y = BY |X (r) if r > s and

CRY |X (r,r)|Y = BY |X{r}, hence

COROLLARY 5.3.3.LetM be a holonomicDX -module andY be a submanifold
ofX.

For anyr ∈ [1,+∞], RHomDX (M,BY |X (r)) is a complex ofC-vector spaces
with constructible cohomology onY .

If rk and rk−1 are two consecutive slopes ofM, then for anyr such that
rk > r > rk−1 we have

RHomDX (M,BY |X (rk)) = RHomDX (M,BY |X (r))

= RHomDX (M,BY |X{r})

= RHomDX (M,BY |X{rk−1}).

At any pointx ∈ Y , we have

χ(M,BY |X (r))x = E
C̃hΛ(r)(M)

(x),
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χ(M,BY |X{r})x = EC̃hΛ{r}(M)
(x).

In this formula, we calculate the index ofRHomDX (M,BY |X (r)) which is a

complex onY throughC̃hΛ(r)(M) which is a positive analytic cycle onT ∗YX. This
is related to the fact that this complex has constructible cohomology but is not a
perverse sheaf.

We assume now thatY is a submanifold of codimension 1 inX and we will
calculate the index as the Euler function of the difference of two positive analytic
cycles onY .

The projectionΛ = T ∗YX → Y and the embeddingY → Λ define maps

T ∗Y
p1←− (T ∗Y )×Y Λ j1−→ T ∗Λ,

T ∗Y
p2←− (T ∗Λ)×Λ Y

j2−→ T ∗Λ.

The mapsp1 andp2 are submersions whilej1 andj2 are immersions. With local
coordinates(x, t) of X such thatY = {t = 0} andΛ = {(x, t, ξ, τ) ∈ T ∗X/ t =
0, ξ = 0} and the corresponding coordinates(x, x∗) of Y and(x, τ, x∗, τ∗) of Λ,
we get

p1(x, x∗, τ) = (x, x∗), j1(x, x∗, τ) = (x, τ, x∗,0),

p2(x, x∗, τ∗) = (x, x∗), j2(x, x∗, τ∗) = (x,0, x∗, τ∗).

This proves that the union ofj1((T ∗Y ) ×Y Λ) and ofj2((T ∗Λ) ×Λ Y ) is the
hypersurfaceSΛ of T ∗Λ.

PROPOSITION 5.3.4.LetM be a holonomicDX -module.
The microcharacteristic cyclẽChΛ(r)(M) has a unique decomposition

C̃hΛ(r)(M) = j1p
−1
1 S̃1(r)(M) + j2p

−1
2 S̃2(r)(M),

whereS̃1 and S̃2 are positive Lagrangian cycles ofT ∗Y . Moreover,S̃1(r)(M) is
the characteristic cycle ofΦ(r)(M).

The proof of this result is the same as [21, Thm. 4.5.2].
As a direct consequence of the definition, we can see that the Euler obstruction

of C̃hΛ(r)(M) is the difference of the Euler Obstructions of̃S1(r) andS̃2(r). We
get

COROLLARY 5.3.5.LetM be a holonomicDX -module andY be a submanifold
of X. Then at any pointx ∈ Y , we haveχ(M,BY |X (r))x = E

S̃1(r)(M)
(x) −

E
S̃2(r)(M)

(x).
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The indexχ(M,BY |X (r))x is therefore the Euler function of the (nonpositive)

analytic cyclẽS1(r)− S̃2(r). The same result is true with{r} replacing(r).

LEMMA 5.3.6.LetM be a holonomicEX -module and(r, s) such that+∞ > r >
s > 1.

We assume that no slope ofM is in ]s, r[, then RHomEX (M, CY |X (r,s))
is a complex ofC-vector spaces with constructible cohomology onY and
χ(M, CY |X (r,s)) = 0.

Proof. Corollary 4.3.3 shows thatRHomEX (M, CY |X (r,s)) is equal to the
complex of holomorphic solutions of a complex ofDX-module with holonom-
ic cohomology and a characteristic cycle equal to 0. 2
Let x be a point ofY andx∗ be a point ofΛ̇ whose projection isx. We denote
by χ(r) the indexχ(M,BY |X (r))x given by Corollary 5.3.5, i.e.,E

S̃1(r)(M)
(x) −

E
S̃2(r)(M)

(x) and

χ{r} = χ(M,BY |X{r})x = E
S̃1{r}(M)

(x)− E
S̃2{r}(M)

(x).

COROLLARY 5.3.7.LetM be a holonomicDX -module andY a submanifold of
X of codimension1.We have the following index theorems:

χ(M,OX|Y (r))x = −χ{r},

χ(M,OX [∗Y ](r))x = χ(∞)− χ{r},

χ(M,OX (∗Y )((r)))x = χ(r)− χ(1),

χ(M,OX (∗Y )(r,s))x = χ(r)− χ{s},

χ(M, CY |X (r,s))x∗ = χ(r)− χ{s}.

Proof. They are direct consequences of [21, Prop. 3.2.10] and the previous
results. More precisely, the exact sequence

0→ BY |X{r}→ π′∗CY |X (r,r)→ OX|Y (r)→ 0

and Lemma 5.3.6 give the first equality while

0→ BY |X (r)→ CY |X (r,s)→ OX|Y (s)→ 0

and

0→ OX|Y (s)→ OX (∗Y )(r,s)→ BY |X (r)→ 0
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give the others. 2
We may extend the result onCY |X (r,s) to a submanifoldY of codimension greater
than 1 and toEX-modules

PROPOSITION 5.3.8.LetM be a holonomicEX-module and(r, s) such that
+∞ > r > s > 1. ThenRHomEX (M, CY |X (r,s)) is a complex ofC-vector spaces
with constructible cohomology onT ∗YX and

χ(M, CY |X (r,s))x = E
C̃hΛ{s}(M)

(x)− E
C̃hΛ(r)(M)

(x).

Proof. On the zero section ofT ∗X, the result is in Corollary 5.3.3, hence we
have to prove the result out of the zero section.

Corollary 1.6.4 of [15] shows that there exists some quantized canonical trans-
formationϕ such thatϕ(T ∗YX) is the conormal bundle to a smooth hypersurface
of X andϕ(Char(M)) is in generic position.

So using a quantization ofϕ, we may assume thatY has codimension 1 and
Char(M) is in generic position. A result of Björk [2, Thm. 8.6.3] shows that there
exists a holonomicDX -moduleN such thatM = EX ⊗π−1DX π

−1N .
So, we may assume thatM is aDX -module and apply the corollary. 2

Let us remark that the exact sequence (iii) of [21, Prop. 3.2.10]

0→ CY |X (r,s)→ C̃Y |X (r,s)→ C̃Y |X (r,s)→ 0

shows thatRHom(M, C̃Y |X (r,s)) is not constructible ifM has a slope in]s, r[.
Indeed, if it were constructible, then the index inCY |X (r,s) would be 0 and this
contradicts Proposition 5.3.8. The same is true forNX|Y (r,s).

If there is no slope of theDX -moduleM betweenr ands, they have both
constructible cohomology. The index ofC̃Y |X (r,s) is given by Theorem 5.3.1 that
isE

S̃1(r)(M)
(x) while the index inNX|Y (r,s) is given by the exact sequence (iv) of

Proposition 3.2.10 in [21] and is equal toE
S̃2(r)(M)

(x).

5.4. RECONSTRUCTION

THEOREM 5.4.1.LetM be a holonomicEX-module or a complex ofDc(EX)
with holonomic cohomology. Letrk−1 andrk be two consecutive critical indexes
ofM. Then, for each(r, s) with rk > r > s > rk−1 andrk > s

D2(R,∞)
Λ (r,s)⊗EX |Λ M|Λ ≈ RHomC

(
RHomEX (M, CRY |X (r,s)), CRY |X (r,s)

)
.

This theorem is a generalization of [21, Thm. 4.3.1] and is deduced from the
previous results in the same way.
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6. Appendix

We give here a proof of the results of Section 5.2 which does not use the difficult
results of Kashiwara and Kawaı̈ [14] and is more general as it is true for 2-
microdifferential equations.

6.1. A NEW EQUIVALENCE THEOREM

Theorems of the same kind as Propositions 3.2.3 and 3.3.1 may be proved when
Dx1 or t is replaced byDt andx1. At points where the condition of Corollary 3.2.5

is not satisfied, these theorems are not true in the sheafE2(R,∞)
Λ (r,s) but only in

E2(R,R)
Λ (r,s) (see Section 2.3 for its definition).

As in the previous sections, we consider a complex manifoldX of dimensionn,
a submanifoldY of codimensiond and denote byΛ = T ∗YX the conormal bundle
to Y .

We consider a matrixAwith coefficients in the sheafE2
Λ(r,s) of 2-microdifferential

operators of finite order. We assume thatA commutes withDx1, which is equivalent
to the fact that it has a symbol independent ofx1. We keep the order of Section 3.2
and say thatA(x′, τ, x∗1, x

′∗, τ∗) is of medium order(δ, µ) if there exists some
q ∈ N such that any product ofq terms

A(x′, τ, λ1, x
′∗, τ∗)A(x′, τ, λ2, x

′∗, τ∗) . . . A(x′, τ, λq, x′
∗
, τ∗)

is of order at most(qδ, µ).

PROPOSITION 6.1.1.LetA be am ×m-matrix of the sheafE2
Λ(r,s) of 2-micro-

differential operators which is independent ofx1 and of medium order(0, µ) with
µ < 1.

There exists an invertible matrixR with coefficients inE2(R,R)
Λ (r,s) commuting

withDx1 and such that(x1I −A)R = Rx1.
Proof. We use the same proof as for Proposition 3.3.1: We add a variabley,

that is we considerX ′ = X × C, Y ′ = Y × C and Λ′ = T ∗Y ′X
′. Then we

make a ‘quantized bicanonical transformation’ and apply Proposition 3.2.3. In this
way, denotingx′ = (x2, . . . , xn−d), we find a matrixR1(x′, x∗, y∗, τ, τ∗) with

coefficients inE2(∞,∞)
Λ′ (r,s) solution of(

∂

∂x∗1

)
R1 = A(x′, x∗, τ, τ∗)R1.

A solution to the initial problem is the valueR of R1 aty∗ = y∗0. To show that
such a value does exist, we use the same proof as for Lemma 2.5.1. Indeed, we
have definedE2(∞,R)

Λ (r,s) = µn−dT ∗
Y
X(C∞Y×Y |X×X (r,s)) and we may copy the proof of

the lemma, replacingX by T ∗YX × T ∗YX , Y by T ∗YX andOX by C∞Y×Y |X×X (r,s).
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In this way, we find a solution inE2(∞,R)
Λ (r,s) which is a subsheaf ofE2(R,R)

Λ (r,s).2
Assume now thatn−d = 1. The matrixR1(x∗, y∗, τ, τ∗) is given by Proposition

3.2.3, hence satisfy the conditions of Lemma 3.2.2, and so for anys′ > s,R1 is in
Ẽ2(R,R)
Y←Λ′ (r,s

′)[C] (see the proof of Proposition 3.3.1) and thus its value aty∗ = y∗0,

i.e.,R is in Ẽ2(R,R)
Y←Λ (r,s′)[C].

In the next proposition, we assume thatX = C2, Y = {(x, t) ∈ X | t = 0}.

PROPOSITION 6.1.2.LetP andQbe two operators ofE2
Λ(r,s) such thatσ(r,s)

Λ (P ) =
(τ∗)N andσ(r,s)

Λ (Q) = xM . LetL = E2
Λ(r,s)

/
E2

Λ(r,s)P + E2
Λ(r,s)Q and assume that

L 6= 0. Then there exists some integerL > 0 such that

E2(R,R)
Λ (r,s)⊗E2

Λ(r,s) L ' (E2(R,R)
Λ (r,s)/E2(R,R)

Λ (r,s)t+ E2(R,R)
Λ (r,s)x)L.

Proof. We will denote in this proof byE the sheafE2
Λ(r,s) and byER the sheaf

E2(R,R)
Λ (r,s). We will also denote byE [i, j] the subsheaf ofE of operators of order
i for the Fr-filtration andj for the Fs-filtration. In particular, the operatort of
symbolτ∗ is in E [q − p, q′ − p′] if r = p/q ands = p′/q′ while the operatorx of
symbolx is in E [0,0]. The hypothesis implies thatP is in E [N(q− p),N(q′− p′)]
whileQ is in E [0,0].

Using the preparation theorem [18, Thm. 2.7.2], we may write

P = E

(τ∗)N −
∑

06k<N
Pk(x, τ, x∗)(τ∗)k

 ,
whereE is invertible in E , eachPk commutes withDt and σ(r,s)

Λ ((τ∗)N −
ΣPk(τ∗)k) = (τ∗)N which means that the order ofPk(x, τ, x∗)(τ∗)k is at most
(N(q − p),N(q′ − p′)).

We may also divideQ by P using [18, Thm. 2.7.1]:Q = AP +
∑

06k<N
Qk(x, τ, x∗)(τ∗)k the orders ofA and theQk ’s being such thatσ(r,s)

Λ (Q) =
σ

(r,s)
Λ (AP ) + σ

(r,s)
Λ (ΣQk(τ∗)k). As σ(r,s)

Λ (Q) = xM , we haveσ(r,s)
Λ (Q0) = xM

while the symbol of order(0,0) of Qk(τ∗)k is 0 if k > 0. Finally we may assume
thatQ is equal toQ = xM +

∑
06k<N Qk(x, τ, x

∗)(τ∗)k, whereQk(τ∗)k is in
E [0,0] and its symbol of order(0,0) is 0 fork = 0, . . . ,N − 1.

The moduleE/EP is isomorphic toEN/EN (tIN −A) whereIN is the identity
matrix andA is the matrix
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A =



0 1 0 . . . 0
...

... .. . .. .
...

...
. . .

.. . 0

0 . . . . . . 0 1

P0 P1 . . . . . . PN−1


. (6.1.1)

This isomorphism is induced byϕ: EN → E defined byϕ(α0, . . . , αN−1) =
Σαiti while its inverse is induced byψ: E → EN defined byψ(β) = (β,0, . . . ,0).

Let E ′ be the subsheaf ofE of operators commuting withDt, i.e., of operators
having a symbol independent ofτ∗. Thanks to the division theorem, the modules
E/EP andEN/EN (tIN − A) are both isomorphic toE ′N , hence the image of an
operatorR of E in EN/EN (tIN −A) has a unique representation inE ′N .

This applies in particular toQ = xM+Σ06k<NQktk (recall thatτ∗ is the symbol
of t, hence they represent the same operator) whose image byψ is (Q,0, . . . ,0)
which is equal to(xM +Q0, Q1, . . . , QN−1) modulo(tIN −A).

We may also calculate the image oftQ: we havetQ = Qt − [Q, t] and the
symbol of[Q, t] is (∂/∂τ)Q whileQt = QN−1t

N +xM t+Σ06k<N−1Qkt
k+1 has

an image byψ equal to(QN−1P0, x
M+Q0+QN−1P1, . . . , QN−2+QN−1PN−1).

So, the image oftQ byψ may be written (modulo(tIN −A)) in the form

(0, xM ,0, . . . ,0) + (Q1
0, Q

1
1, . . . , Q

1
N−1),

where the order ofQ1
i is ((1− i)(q − p), (1− i)(q′ − p′)) (i.e.,Q1

i t
i−1 is of order

(0,0)) with the principal symbolσ(r,s)
Λ equal to 0.

The same calculation shows that the image oftkQ for 0 6 k 6 N − 1 underψ
is of the form(0, . . . , xM ,0, . . . ,0) + (Qk0, Q

k
1, . . . , Q

k
N−1) whereQki is of order

((k − i)(q − p), (k − i)(q′ − p′)) with the principal symbol 0.
The moduleL = E/EP + EQ is thus isomorphic toEN/EN (tIN − A) +

EN (xMIN − B) where each elementBij of B is in E ′ and of order((i − j)(q −
p), (i− j)(q′ − p′)) with principal symbol 0.

The preparation theorem [18, Thm. 2.7.2] shows that the matrixxMIN − B
may be written

xMIN −B(x, τ, x∗) = E

xMIN − ∑
06k<M−1

Bk(τ, x∗)xk
 ,

whereE is invertible and the elements of eachBk satisfy the same conditions about
the order thatB. (In fact the preparation theorem was proved for single operators
and not for matrices but its proof extends immediately to the case of matrices.)

LetK = NM . If we consider the morphism(α0,0, . . . , αN−1,M−1) 7→ Σαijtixj

from EK to E , we then obtain an isomorphism betweenL = E/EP + EQ and
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EK/EK(tI −A′) + EK(xI −B′), whereI is the(K,K)-identity matrix,A′ is the
(K,K) square matrix given byM diagonal blocks equal to the(N,N) matrixA
andB′ is the matrix given by the same formula asA in (6.1.1) but with eachPj
replaced by a matrixBj.

The matrixA satisfy the conditions of Proposition 3.2.2, hence there is an invert-
ible matrixR0(x, τ, x∗) with coefficients inER independent ofτ∗, i.e., commuting
withDt, such thatR0(tIN−A)R−1

0 = tIN . If R is the(K,K) square matrix given
byM diagonal blocks equal toR0, we getR(tI −A′)R−1 = tI.

The matrixB′ satisfies the conditions of Remark 3.3.3, hence there is an invert-
ible matrixS(x∗, τ) with coefficients inE such thatS(xI − B′)S−1 = xI. AsR
commutes witht, we get an isomorphismLR ' ERK/(ERKtI+ERKxU(x, τ, x∗)),
whereU = SR−1 is invertible and commutes withDt, i.e., is independent ofτ∗

andLR = ER ⊗ L.
If U commutes witht,LR is isomorphic byU−1 toERK/(ERKtI+ERKxI) and

the proposition is proved but this is not the case in general, so we will now prove
thatLR has another representation wherexU is replaced by a matrix commuting
with t.

The kernel ofE/EP → L is EQ/(EP ∩ EQ) and, as a subsheaf ofE/EP , it is

supported byτ∗ = 0, hence there exits someP1 with σ(r,s)
Λ (P1) = (τ∗)N1 and some

C such thatP1Q = CP . We have an exact sequenceE/EP1
Q→ E/EP → L → 0.

The matrixR0 defines an isomorphism betweenER/ERP andERN/ERN tI and
for the same reason, there is an isomorphismER/ERP1

∼→ ERN1/ERN1tI, hence

there is an exact sequenceERN1/ERN1tI
λ→ ERN/ERN tI → LR → 0.

Let F be any(N1,N)-matrix with coefficients inER such that the morphism
λ is equal to the right multiplication byF . Dividing F by t, we may assume
thatF is independent ofτ∗, but tF is in the moduleERN tI and thus we have
[t, F ] = (∂/∂τ)F = Zt. AsF is independent oft, this means(∂/∂τ)F = 0 and
soF is independent ofτ, τ∗, i.e., commutes witht andDt.

Remark. The sequence (4.1.3) shows that the subsheafof operators ofE2(R,R)
Λ (r,s)

commuting witht andDt is isomorphic to the sheafERY of microlocal operators on
Y . What we did is produce an elementary proof of the fact thatHomER(ER/ERt,
ER/ERt) = ERY . So we have found an exact sequence

ERK1/ERK1tI
F (x,x∗)
−−−−−→ ERK/ERKtI

→ ERK/(ERKtI + ERKxU(x, τ, x∗))→ 0. (6.1.2)

The second morphism being induced by the identity ofERK proves that there exists
some matrixH such thatxU(x, τ, x∗) = H(x, τ, x∗)F (x, x∗).

Let s′ such thatr > s′ > s, C > 0 and let us denote byER[C] the sheaf

Ẽ2(R,R)
Y←Λ (r,s′)[C].
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The remark after Proposition 6.1.1 shows that (for anys′) there exists some
C > 0 such thatS is a matrix with coefficients inER[C] and Remark 3.3.3 shows
that the matrixR has coefficients inER[C] for suitableC, henceU has the same
property. For the same reason, the morphismER/ERP1

∼→ ERN1/ERN1tI is given
by a matrixR1 with coefficients inER[C] for someC. So, the exact sequence
(6.1.2) is still defined and exact when the sheafER is replaced by the sheafER[C]
and the equalityxU(x, τ, x∗) = H(x, τ, x∗)F (x, x∗) is an equality of operators of
ER[C].

Proposition 2.7.3 shows thatU andH have a value atτ = 1 which is well
defined inERY , the morphismU(x, τ, x∗) → U(x, τ0, x

∗) being multiplicative. As
U is invertible we have

xU(x,1, x∗) = H(x,1, x∗)F (x, x∗) and U(x,1, x∗)U−1(x,1, x∗) = I.

HenceU0(x, x∗) = U(x,1, x∗) is invertible and soxU(x,1, x∗) = H(x,1,
x∗)F (x, x∗) belongs toERY F (x, x∗). ThereforexU0(x, x∗) belongs to the mod-
uleERKtI + ERK1F (x, x∗).

Let us remark that operators ofERY are identified with operators ofER commuting

with t andDt and that such operators are inE2(R,R)
Λ (r,s) for any (r, s), hence the

equalityxU(x,1, x∗) = H(x,1, x∗)F (x, x∗) which was proved for somes′ > s
is true fors′ = s.

AsU0 commutes witht, this shows that

LR ∼→ ERK/(ERKtI + ERK xU0(x, x∗ ) + ERK1F (x, x∗))

U−1
0 (x,x∗)

∼
-ERK/(ERKtI + ERKxI + ERK1F1(x∗)).

(We may divideF1 by x and assume that it depends only onx∗.)
Our problem is now to show thatF1 is a constant matrix. As we do not know

how to prove Conjecture 6.1.3, we remark that the previous proof is still valid if we
reverse the variablesx andt. This shows thatLR is isomorphic toERJ/(ERJ tI +
ERJxI + ERJ1G(τ)). So, we have an isomorphism

ERK/(ERKtI + ERKxI + ERK1F1(x∗))

Z→ ERJ/(ERJ tI + ERJxI + ERJ1G(τ)).

This isomorphism is given by the multiplication by a matrixZ. We may divide
Z by tI andxI so that its symbol is independent oft andx and then, exactly as it
was forF , the symbol ofZ is also independent ofτ andx∗, i.e.,Z is a constant
matrix and thereforeF andG are constant. This shows thatLR is 0 or a power of
ER/(ERt+ ERx). 2
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CONJECTURE 6.1.3. The moduleERC/ERCx has no proper submodule.

(The corresponding result forEC is easy to show.)

6.2. MICRO-CONSTRUCTIBILITY

The sheafE2
Λ(r,s) is provided with two filtrations which extend the filtrationsFr

andFs of EX [18]. IfM is a coherentE2
Λ(r,s)-module, the multiplicity ofM along

an irreducible component of its support is defined with these filtration exactly as
in Section 1.3. IfM is a coherentEX-module, the multiplicity ofE2

Λ(r,s) ⊗M is
the same as the multiplicity of the microcharacteristic cycleC̃hΛ(r,s)(M).

THEOREM 6.2.1.LetΣ be a smooth Lagrangian bihomogeneous submanifold of
T ∗Λ andM0 be a coherentE2

Λ(r,s)-module with supportΣ and multiplicity1. Let
M be a coherentE2

Λ(r,s)-module with supportΣ and multiplicitym. Let

MR
0 = E2(R,R)

Λ (r,s)⊗E2
Λ

(r,s)M0 and MR = E2(R,R)
Λ (r,s)⊗E2

Λ
(r,s)M.

Then HomE2
Λ(r,s)(M0,MR) is locally isomorphic to (CΣ)m and

ExtjE2
Λ

(r,s)(M0,MR) is equal to0 if j 6= 0. The canonical morphism

MR
0 ⊗C HomE2

Λ(r,s)(M0,MR)→MR

is an isomorphism.
Proof. A similar result was proved by Kashiwara in [11] for aERX-module and

we follow Kashiwara’s proof.
We first remark that the theorem is invariant under ‘quantized bihomogeneous

canonical transformation’ of [18, Thm. 2.9.11], hence we may assume thatΣ is
given byΣ = {(x, τ, x∗, τ∗) ∈ T ∗Λ |x1 = x∗2 = · · · = x∗n = τ∗ = 0}.

LetX ′ be the submanifold ofX given byx2 = · · · = xn = 0 andj: X ′ ↪→ X.
Let

Y ′ = X ′ ∩ Y,Λ′ = T ∗Y ′X
′ and Σ = {(x1, τ, x

∗
1, τ
∗) ∈ T ∗Λ′ |x1 = τ∗ = 0}.

The modulej∗M is a coherentE2
Λ′(r,s)-module with support inΣ′ [18, Thm.

2.10.4] and its multiplicity ism. In the same wayj∗M0 has multiplicity 1.
If the theorem is true forj∗M andj∗M0, we use Proposition 3.2.6 to prove the

result forM andM0.
So, in this proof, we may now assume thatX = C2 andΣ = {(x, τ, x∗, τ∗) ∈

T ∗Λ |x = τ∗ = 0}. We denote byE the sheafE2
Λ(r,s) and by ER the sheaf

E2(R,R)
Λ (r,s).

Proposition 6.1.2 shows thatMR
0 is isomorphic toER

/
ERt+ ERx and we may

assume thatM0 is equal toE/Et + Ex.
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A sectionu ofM is supported inτ∗ = x = 0, hence there existsP andQ in E
such thatPu = Qu = 0,σ(r,s)

Λ (P ) = (τ∗)N andσ(r,s)
Λ (Q) = xM .

Let (u1, . . . , ul) be a local set of generators ofM, there exists, forj = 1, . . . , l,

an operatorPj such thatσ(r,s)
Λ (Pj) = (τ∗)Nj and an operatorQj such that

σ
(r,s)
Λ (Qj) = xMj . Let us denote byM1 the direct sumM1 = ⊕E/EPj + EQj .

The kernel of the morphismM1→M satisfy the same properties asM, hence
M is the cokernel of a morphismM2 → M1 whereM2 is of the same type as
M1.

By Proposition 6.1.2,MR
k (k = 1,2), is isomorphic to(MR

0)mk wheremk is
the multiplicity ofMk and we have an exact sequence(MR

0)m2 → (MR
0)m1 →

MR → 0.
As RHomER(MR

0 ,MR
0) = C, the morphism(MR

0)m2 → (MR
0)m1 is given by

a constant matrix, hence we haveMR ' (MR
0)m

′
.

We have to prove now thatm′ is the multiplicitym ofM.
By definition of the multiplicity, the graded module ofM is, generically onΣ,

a freeO[Σ]-module of rankm. Then, using the division theorem of [18, 2.7.1] we

conclude that genericallyM is a freeẼ-module of rankm (whereẼ is the subsheaf
of E of operators commuting withDt andDx). Then if we extend the coefficients
to ER we get(MR

0)m which shows thatm = m′. 2
Let us say that aD∞X -moduleM is a holonomicD∞X -module if it satisfies:

(1) The supportΣ of E∞X ⊗π−1D∞
X
π−1M is a complex Lagrangian subvariety of

T ∗X.
(2) For any pointξ of the smooth part ofΣ and any holonomicEX -moduleM0

with supportΣ nearξ and multiplicity 1, nearξ there is an isomorphism
betweenERX ⊗π−1D∞X π−1M and(ERX ⊗M0)m.

The numberm is the multiplicity ofM onΣ atξ. It is constant on the irreducible
components of the varietyΣ. In this way we define an analytic cycle with support
Σ which we will call the characteristic cycle ofM.

Kashiwara proved in [11] that any holonomicDX-module satisfies these prop-
erties, that is for any holonomicDX -moduleM, theD∞X -moduleD∞X ⊗M is
holonomic according to this definition.

Applying the morphism of vanishing cycles to Theorem 6.2.1, we get

COROLLARY 6.2.2.LetMbe a holonomicEX-module. TheD∞Y -moduleΦ{r}(M)
is holonomic for anyr > 1 and its characteristic cycle is(with$: (T ∗Y )×Y Λ→
T ∗Y ) $−1C̃h(Φ{r}(M)) = C̃hΛ{r}(M).

Moreover, the proof of the index theorem in [11] is still valid with no modific-
ation for holonomicD∞X -modules (one step of that proof being precisely to show
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that what we call here holonomicD∞X -modules satisfy the index theorem). So we
recover all the results of Section 5.3.

In fact, this proves that the complex of holomorphic solutions of these modules
is a perverse sheaf, so the Riemann–Hilbert correspondence shows that they are
admissible. This definition of holonomicD∞X -modules is therefore equivalent to
the definition of Section 5.2 but what we wanted to point out here is that the index
theorems may be proved independently of Riemann–Hilbert.
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Boston, 1991.
25. Ramis, J.-P.: D́evissage Gevrey,Ast́erisque59–60(1978), 173–204.

comp413.tex; 8/04/1999; 9:53; v.7; p.69

https://doi.org/10.1023/A:1000791329695 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000791329695


310 YVES LAURENT

26. Ramis, J.-P.: Th́eor̀emes d’indices Gevrey pour leséquations diff́erentielles ordinaires,Mem.
Amer. Math. Soc. 48 (1984), 296.
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