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Abstract. Considering a holonomi®-module and a hypersurface, we define a finite familyDef
modules on the hypersurface which we call modules of vanishing cycles. The first one had been
previously defined and corresponds to formal solutions. The last one corresponds, via Riemann—
Hilbert, to the geometric vanishing cycles of Grothendieck—Deligne. For regular holorBmic
modules there is only one sheaf and for nonregular modules the sheaves of vanishing cycles control
the growth and the index of solutions. Our results extend to nonholonomic modules under some
hypothesis.
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Introduction

The aim of this paper is to define vanishing cycles of nonregtanodules and
use them to study the solutions of these modules.

The vanishing cycles of &-module were originally introduced in the case
of regular holonomic»-modules [12, 23]. The definition was extended to non-
holonomicD x-modules, to the complex @ x-modules and to microdifferential
equations in several papers [21, 22, 27, 28].

If X is a complex manifold antf” a smooth hypersurface of, the vanishing
cycles of @D x-moduleM is aDy-module®(M). Under a suitable condition\(
‘specializable’), the modulé (M) is coherent. This condition is always satisfied
for holonomicDx-modules and thef® (M) is holonomic.

In the regular holonomic case, the Riemann—Hilbert correspondence is com-
patible with vanishing cycles. This means tdgSol(M)) = Sol(®(M)). Here,
Sol(M) is the complex of holomorphic solutions 84 that isRHomp, (M, Ox)
and ®(Sol(,M)) is the sheaf of geometric vanishing cycles in the theory of
Grothendieck—-Deligne [7].

If M is holonomic but not regular, the solutions®fM) correspond to formal
solutions of M and they have no connection with holomorphic solutions. This
is, of course, related to the fact that formal solutions of nonregular holonomic
modules are not convergent. So, it appears that we have to define another notion
of vanishing cycles which would be compatible via Riemann—Hilbert with the
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geometric vanishing cycles for any holonomic module. We will dglM) the
sheaf of ‘moderate’ vanishing cycles to distinguish it from the new ones.

On the other hand, the solutions of nonregular differential equations in dimen-
sion 1 were studied in details by Ramis [25, 26]. He calculated the growth and the
index of solutions from the Newton polygon of the equation that is from a finite
sequence of rational slopes and of integral heights.

In this paper, we define a familg-)(M) of vanishing cycles indexed by a
rational number running fromr = 1 (corresponding to holomorphic solutions)
tor = +oo (formal solutions). They will not be cohereBt--modules but perfect
Dy°-modules.

In the holonomic case, the family will be constantsinexcept for a finite
number of values and each module will be a holonoP§e-module (that is, equal
to Dy ®p, N for some holonomi®y -module)). These values af generalize
the slopes of the Newton polygon of Ramis in higher dimension, while the integral
heights are replaced here by the characteristic cycles dP§henodule. We have
P () (M) = D @p, (M) and@(Sol(M)) = Sol(®1)(M)). If M is regular,
holonomic® () (M) is the same for alt.

More generally, we define a family of vanishing cycles for @&ny-module M
and any object of the derived category®f -module. They are defined for each
pair (r, s) of rational numbers, such thatd s < r» < o0 as objects of the derived
category ofDy°-modules and denoted t&(r,s)(M).

The properties of these sheaves are connected with the microcharacteristic
varieties CR (r,s)(M) of [19]. We show that, under a geometric condition on
Chy (r0,50) (M), ®(r,s)(M) is independent ofr, s) if sop < s < r < ro. Moreover,
itis aD§°-module (not only an object of the derived category), and admits locally
a finite resolution by freéD$°-modules. We show that the functdr(-s)(.) is
compatible with duality.

The formal power series used by Ramis are not adapted to the higher dimen-
sional case. We use the shél%flx of microfunctions of Sato, Kaviand Kashi-
wara [29] which lives on the conormal bundf& X and some connected sheaves
CgRﬂX(r,s) of [20] to control the growth. To work with them we use the sheaf of

2-microdifferential operator@iR’oo)(r,s). This sheaf is in fact the sheaf of dif-
ferential operators associatedd y (r.s) exactly as the sheas of differential
operators of infinite order is associated to holomorphic functions.

We prove a kind of microlocal Cauchy theorem, that is an isomorphism between
the solutions ofM in the sheal’y (rs) and the solutions of(s)(M) in the
sheafOy of holomorphic functions oiy".

This shows in particular that these solutions do not dependrof) when
®(r,s)(M) do not. We deduce from this a control on the growth of solution&of
in more familiar sheaves as holomorphic functions with essential singularities on
Y or the formal completion of the sheaf of holomorphic functions albnfsee
Corollary 4.4.3).

comp4l13.tex; 8/04/1999; 9:53; v.7; p.2

https://doi.org/10.1023/A:1000791329695 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000791329695

VANISHING CYCLES OF IRREGULARD-MODULES 243

With holonomic modules, the geometric condition is always satisfied when
r = s. More precisely, we proved in [19] that, for each holonofig-moduleM,
there exists a finite number of indexeghe critical indexes or slopes @#, such
that the condition is satisfied fdr, s) as soon as no slope is betweeands.

Letus denote byg =1 < r1 < --- < ry = +oo the sequence of slopes of a
holonomicDx-module M. We may therefore associate to each intefwaly, ;]

a sheaf of®; (M) such that®(r,s)(M) = &;(M) whenr;_; < s < r < r; and
s < rq. This family will be called the family of vanishing cycles of the irregular
holonomic moduleM.

In fact, we use more convenient notations: K= r; is a slope, the®{r}(M)
denotes the shedf;(M) and®(-)(M) denotes the shedf; 1(M) and ifr;_1 <
r < g, then®{r}(M) = &(r)(M) = &;(M).

If M is holonomic, the sheavds, (M) areDy -holonomic and we prove that
the characteristic cycle @) (M) is equal to the corresponding microcharacter-
istic cycle of M.

Using the microlocal Cauchy theorem, we deduce that the growth of solutions
is given by the slopes o¥1 and we get an index theorem analogous to Kashiwara’s
theorem[11]. More precisely, we prove that the complex of microfunction solutions
of the holonomic modulé are perverse sheaves whose Euler characteristic may
be calculated from the microcharacteristic cyclegofind this is true for any value
of r in [1, +oc]. From this, we show analogous results for holomorphic functions
with singularities or” and Nilsson classes.

The family () (M) thus makes the connection between the geometric invari-
ants defined in [19] and the solutions.

In the one-dimensional case, a detailed study of growth of solutions in sectors
of C through Fourier transform has been performed by Malgrange in [24].

In the case of holonomic modules, N. Honda [9, 10], using the techniques of
Kashiwara and Kawig14], proved the isomorphism between SO|Uti0né$f"IX(s,l)
andCy, y whens is lower than someo. This numbersg is independent of the
manifoldY'. If we compare to our results, it seems to be the maximum of the first
slopesr; over all manifoldsy” of X.

The paper is divided in five sections. In the first one, we recall several defin-
itions that will be used later, namely the Newton polygon of an operator, the
microcharacteristic varieties.

In Section 2, we recall the definition of several sheaves of microfunctions and of
their symbols. We show that in some special cases we may restrict microfunctions
to a hypersurface.

The key result of the paper is in the third section, namely Theorem 3.1.1. This
theorem is of the same kind as a theorem of [11] showing that an operator with the
principal symbolt™ is equivalent to the operatef*. The theorem of Kashiwara
uses microlocal operators 6f-. Our theorem replaces the principal symbol by a

microlocal symbol and the she&f by the sheaDi(R’oo)(r,s).
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In Section 4, we apply this theorem to define the sheaves of vanishing cycles
(r,s)(M). We study their properties, prove the microlocal Cauchy theorem and
deduce results about nonholonoriig -modules.

In Section 5, are the results about holonomic modules, their solutions and the
index theorems.

We have added an appendix in which we give another proof of the results of
Section 5.2 which does not use the results of Kashiwara and Kemveegular
holonomic modules.

1. Microcharacteristic Varieties of a D-Module
1.1. SOME NOTATIONS

Let X be a complex analytic manifold artda submanifold ofX. We will denote
by A = Ty X the conormal bundle t& with canonical projection: A — Y and
by T* A the cotangent bundle tb.

Local coordinates ok, when used, will be denoted By1, . . ., 2,4, t1, ..., tq)
and chosen such that = {t = 0}. In this case, we havd = Ty X =
{(z,t,&,7) € T*X/t = 0, = 0}. We will denote by(x, ,z*,7*) the cor-
responding coordinates driA.

The sheaf of holomorphic functions dawill be denoted byO x and the sheaf
of differential operators with holomorphic coefficients &nby Dy . The sheaf of
microdifferential operators of [29] of* X will be denoted by .

We recall that the restriction to the zero sectivrof 7* X of the sheaty is
Dx and thatr 1Dy is a subsheaf of .

1.2. NEWTON POLYGON OF A DIFFERENTIAL OPERATOR

The Newton polygon of a differential or microdifferential operator n¥ais a
convex subset ak? defined in [18] and [19]. We recall here its definition in local
coordinates.

A differential operatot” defined in a neighborhood &f or a microdifferential
operatorP defined in a neighborhood dfhas a symbaoP =3, ., P;(,t,&,7),
where eaclP; is a holomorphic function near homogeneous of degrgén (&, 7)

(in the differential case, they are polynomial(f) 7) andj is positive). They have
a representation in Taylor’s series

Pi(x,t,&,7) = > P (x, 7)o"
a?/B

and we define the following functions @A

Pj(z, 12", 7") = Z Pﬁﬁ(ac,T)(—T*)O‘(:c*)ﬁ.
|al+|B|=i
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The Newton polygonV, (P) of P alongA is the convex hull of the union of
the setsS;; = {(\,p) € R%/A+ p < j, u < j —i}. forall (4, j) such that?;; # 0.

For each rational numbersuch that 1< » < 400, D, is the supporting line of
N (P) with slope—1/r. This is the line with equatiofii + r(j — ¢) = a} which
meets the boundary @¥, (P). The principal symbols of the operatBrare defined
in the following way:

Forl< r < 4o0, af\’“)(P) (resp.a/{\r}(P)) is the functionP;; where(i, j — )
is the point of N (P) N D, such that is maximum (resp. minimum).

It is proved in [19] that these functions are well defined (i.e., independ-

ent of coordinates) oA and they are multiplicative, that isX)(PQ) =

o (P)o(Q).

Forl< s <r < +oo,the symbobﬁ(’s)(P) is defined ag’; ; 1, if the intersec-
tion of D, and D, has integral coordinatés, &) and it is O otherwise.

Another way to define these symbols is to consider the ‘critical indexeB:. of
A numberr such that 1< » < 400 is a critical index if—1/r is a slope ofN, (P)
thatis if D,, N N (P) is notequal to one point.

Then if r is not a critical index we have/(\’")(P) = af\T}(P) = P;; where
(i,j — i) is the unique point wher®, meetsN, (P). If r is a critical index, then
a/(() (P) (resp.a/{\’"}(P)) is equal toJX’_a)(P) (resp.af\’"JrE)(P)) for0 < e < 1.
The functionaf\r’s)(P) is equal twﬁ() (P) if there is no critical index between
ands and 0 otherwise.

These definitions are independent of local coordinates and they may be extended
to any conic Lagrangian submanifaldof 7 X .

1.3. MICROCHARACTERISTIC VARIETIES

The microcharacteristic varieties were defined in [19] to which we refer for details
about the definitions recalled here.

Let A be a Lagrangian conic submanifoldof 7*X andT*A its cotangent
bundle. When we consid&ry-modules, we assume thatis the conormal bundle
Ty X to a submanifold” of X.

The manifoldA is provided with a canonical action @ which defines an
action of C* on T*A denoted byH .. On the other hand[™*A is a vector bundle
on A and is therefore provided with another actionfdenoted byH.

If r is a nonnegative rational number, writtenras: p/q with relatively prime
integers andq, we setH, = HE H{.

In local coordinatediy, H., andH, are given by:

Ho(A) @ (z,7,2%,7%) — (2,7, A\x™, A7),
Hyo(N) o (z, 12", 7%) — (.T,)\T,.T*,)\ilT*),

H.(\) : (z,7,2%,7") — (2, NP1, ANx™, NTPT™).
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We denote byO|r- (i, j) the sheaf of holomorphic functions @A which
are homogeneous of degrgéor H, andi for Hp and are polynomial in the fibers
of 71 T*A — A and byOyp- ) the sume O (7, 7).

The restriction td” of the sheaD x is provided with two canonical filtrations.
The first one is the usual filtration by the order of operators which is denoted by
(Dx ;m)m=0 and the second one is defined by [12]

ViDx = {P € Dxl|y/Vj € Z, PT}, c T,

whereZy is the ideal of definition ot” andZ{, = Ox if j < 0.

These definitions extend to the shé&af and any Lagrangian conic manifold
A in the following way [15, 19]: the usual filtration denoted (., ), we define
Vofx as the subalgebra &x |, generated by the operators of order 1 whose
principal symbol vanishes ah andV,Ex = Ex 1 Volx.

Now if » = p/q is a rational number such that& r < oo, we define a
F,filtration onEx | by Ffé’x = Z(p_q)m+qn:k Ex n NVnEx. The associated
graded ring gk, £x is isomorphic tor. Op- ).

Now we may define the microcharacteristic varieties of a cohérgnnodule
or of coheren®D x-module like the classical definition of the characteristic variety
of a coherentDx-module. A filtration of a cohererfx-module M is a good
F,filtration if it is locally of finite type that is of the forriM, = FFExuy+ -+
EFExu, for some local sectionsy, . . . , u, of M.

If M is a coherenfx-module, it has (locally) a good’.-filtration and the
associated graded ring g is a coherentr, O« -module which defines an
analytic subvarietyjf\r) (M) of T*A and a positive analytic cyclﬁf\r) (M) which
support this subvariety.

They are independent of the good filtration and we call them the microcharac-
teristic variety and the microcharacteristic cycle of type

It is proved in [19] thatzf\r) (M) is involutive and homogeneous féf, and
that there exists a finite sequence=1rg < r; < --- < ry = +oo of rational
numbers such théﬂﬁ\’")(/\/l) is independent of €|r;,r;yq[fori =1...N — 1.
The numbers; are called the critical indexes or slopes/of.

If » is not one of the critical indexes, the variét§() (M) is homogeneous for
several, hence we will say that it is bihomogeneous for any

So, the faminEX")(M) for 1 < r < +oo is the union of two finite families, the
first one indexed by the critical indexes. .. rx and the second one by the open
intervals|r;, r;+1[. The members of the second family are bihomogeneous.

Because of their relations to the solutions of the module, which we will study
in this paper, it is convenient to rename these varieties in the following way:

Chyirp(M) =20 (M) and Chmy(M) =S (Mm),

where 0< ¢ <« 1.
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By definition, these microcharacteristic varieties are all bihomogeneous and if
r is not a critical index, we have Ghr}(M) = Chy(r)(M) = EX")(M). The
microcharacteristic cycleéth{r}(M) and (%A(r)(/\/l) are defined in the same
way from = (M).

If 7 is a coherent ideal cfx, the microcharacteristic varieties 8ft = Ex /7

are
Chy(r}(M) = {0 € T*A/ VP € T, (P) = 0}, (1.3.1)
Chy()(M) = {6 € T*A/ VP € T,0\)(P) = 0}. (1.3.2)

The same is true for the varietiéé() with the functionsX; j)ep, P;-

As we will see later, the microcharacteristic variélﬁ?) characterizes the solutions
of a given growth(r). If we want to prove a relation between solutions of growth
(r) and(s), we need double indexed varieties {hs)(M). Their definition, given
in [19], uses the bifiltration associated to the two filtratidfysand F: F,f“slé‘x =
FFexNFLEx. Then the definitions of a good filtration and of the associate bigraded
module are similar to the previous one, this bigraded module is a cohe@pnt. -
module which defines a microcharacteristic variety Gh)(M).

A point @ € T*A is not in Ch(r,s)(M) if and only if for each germ of\1 at
m(0) there is an operatd?P such thatPu = 0 anday’s)(P)(Q) # 0.

The functor Ch(rs)(.) is additive, that is CR(r,s)(M) = Chy(r,s)(M") U
Chy (r,s)(M’) for any exact sequence8 M' - M — M"” — 0.

There is a relation of inclusion between these varieties:

LEMMA 1.3.1. Let M be a coherent x-module and-,r’, s, s’ be four numbers
such thatr > ' > &' > s. ThenChy(r)(M) C Chy(+',s")(M) C Chp(r,s)(M)

and the first inclusion is an equality i < » — s < 1. We have aIscEX" )(/\/l) C
ChA(r,s)(M).

This result was proved in [19, Prop. 3.3.1]. The proof is easy in the case of one
operator and the extension to the case of a module follows from Lemma 1.3.1 and

the corresponding formulas fdrx"/)(/\/l) and Ch\ (r,s)(M).

1.4. CRITICAL INDEXES AND HOLONOMY

In the case of one operatét, the critical indexes and the functioné{’s)(P) are
closely related. In the case Dfx - or £x-module, such relations are still true under
additional assumptions, for example holonomy.

There is a canonical hypersurfaceitiA which is denoted by5,. It is the
characteristic variety of the Euler vector field associated to the acti@fi of A.
In local coordinates, we have

Sy =A{(z, 7, 2%, ") € 7% /(T,7*) = 0}.
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This hypersurface is important here because our main hypothesis on coherent
Dx- or Ex-modules will be CR(r,s)(M) C Sy.

This condition is equivalent to ‘for each sectiorof M there is an operatd?
such thatPu = 0 andaf\’"’s) (P) is a local equation fof .

This condition is satisfied by large classesivf- and&x-modules as shown
by the following results.

PROPOSITION 1.4.1if M is a holonomicE x-module, the microcharacteristic
varietiesChy (r) (M) andChy {r}(M) are subvarieties of, foranyr € [1, +o0].

This proposition was proved in [19]. More precisely, we proved that the micro-
characteristic varieties of a holonomic module are Lagrangian bihomogeneous
subvarieties off™ A [19, Thm. 4.1.1] and that all Lagrangian bihomogeneous
subvarieties of * A are contained iy, [19, Prop. 4.3.1].

PROPOSITION 1.4.2If r;, and r;1 are two consecutive critical indexes of a
coherentx-moduleM, then for any(r, s) such that,, > r > s > ri1 we have

Chi (1,5 (M) = Chy () (M) = Chp(r)(M).

This proposition will be proved at the end of the section. It implies in particular
that, ifr, andr_ 1 are two consecutive critical indexes and if &h (M) C S, for
somer €]rg, rp+1], then Ch(r,s)(M) C Sy forany(r, s) withrg > r > s > rii1.
Conversely, we have:

PROPOSITION 1.4.3f M is a coheren€ x-module such thaChy (r,s)(M) C Sy,
M has no critical index ifjs, r|.

Proof. We know from Lemma 1.3.1 thétx/)(M) C Cha(rs)(M) if r > 71" >
s. Hence by the hypothesis, we haEé\’"/)(M) C Sia. We conclude with [21,

Lem. 4.5.1] which asserts thatjff\r/)(/\/l) C Sa, thenEX"/)(M) is bihomogen-
eous and thus' is not a critical index. O

In the holonomic case, these results take a very simple form:
COROLLARY 1.4.4.1f M is a holonomic&x-module, then the condition

Cha(rs)(M) C Sy is true if and only if there is no critical index between
ands.

To prove Proposition 1.4.2, we will use the following lemma:

LEMMA 1.4.5. Let M be a coheren€ x-module and-,r’, s, s’ be four numbers
such that > 1’ > s’ > s. ThenChy (r,s)(M) = Chy (r,s")(M) U Chy (+/,5)(M).
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Proof. The proof of the lemma makes full use of the results of [18], in particular
Chy (r,5)(M) is the support of the shea@g (r.s) ® -1, ¢ M with ¢: T*A —
T*X.
The sheaff\(r,s) is a sheaf of rings off™ A whose definition will be recalled in
2.3, but here we use only two properties of this sheaf:

(1) E2(rs) is flat ong~1Ex ([18, Thm. 2.6.10]).
() If r > 1" > 5, then&2(7,5)/E2 (r,s) is independent of ([18, Thm. 2.3.1]), we
denote it here by [/, r].

So we get an exact sequence-0E2 (rs) — E2(r',s) — Efr',r] — 0. AS E2(r',5)
is flat ong—1€x we get an exact sequence-9 7ory (' ], M) — E,Z\(T,s)®/\/l —
Eﬁ(w,s) ® M and the same with replaced by’

This shows that Chyr,s)(M), which is the support Qf/%(r,s) ® M is contained
in the union of Ch (+',s)(M) and of the support ofor; (£+,r], M) which itself is
contained in CR(r,s")(M), hence CR(r,s)(M) C Chy(r,s")(M) U Chy (+',5)(M).
Lemma 1.3.1 shows that this inclusion is an equality. O

Let us now come to the proof of Proposition 1.4.2. We have to prove-ghatr;,
wherery is the highest in [ry 1, ;] such that CR(r,r 1) (M) = Chy(r)(M).

Lemma 1.3.1 says that Gbr)(M) C Chy(r,s)(M) and that the inclusion is an
equality if 0< r — s < 1, SOrg > rg1.

On the other hand, i is not a critical index forM, thenzgf) (M) is biconic
and the same proof as that of [19, Prop. 3.3.1] shows that there existsssre
such that CR(s+e¢,s—)(M) = Chy(s)(M). This property and Lemma 1.4.5 show
thatrg = ry,.

2. Microlocalization and Second Microlocalization

We will use several families of sheaves which have been defined in previous papers.
Let us try first to classify them and then we will recall as briefly as possible their
definitions. So Sections 2.1 to 2.4 will simply remind us of the known definitions
while the following sections will introduce new results for multivalued sections of
some of these sheaves.

There are three levels to consider: local, microlocal and 2-microlocal.

Atthe local level, i.e., on the complex variely, are the sheaves of holomorphic
functions, holomorphic hyperfunctions and differential operators. The principal
results of this paper, at least the most explicit ones, are given at this level in
Section 5 but they are corollaries of microlocal results.

Atthe microlocal level, thatis on the cotangent buritit to X, are the sheaves
of holomorphic microfunctions, real holomorphic microfunctions and microdiffer-
ential operators. There is also a class of 2-differential operators. This level is the
natural one for our results, for example to define the vanishing cycles.
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The 2-microlocal levelis the cotangent bundte\ to a Lagrangian submanifold
A of T*X as in Section 1. It will appear in Section 3.2 and will be fully used in the
Appendix.

At each level, the sheaves are indexed by a couple) of rational numbers
giving the growth of the symbols.

2.1. HOLOMORPHIC HYPERFUNCTIONS

We keep the notations of Section 1.1 and denoté the codimension oY in X.

The sheaveé?;;olx andBy|x of holomorphic hyperfunctions ol have been
defined primitively in [29] (see also [31]). The sh@x is thedth local cohomo-
logy group ofOx with support onY” while By x is the corresponding algebraic
cohomology grouBss . = H{-(Ox), By|x = H,(Ox).

If Y has codimension 137  is thus the sheaf of holomorphic functions on
X\ 'Y modulo holomorphic functions o while By x is the subsheaf generated
by meromorphic functions oH.

If d > 1, thereis a similar representation if we wrifeas a complete intersection
Y =Y1n---Y, of smooth hypersurfaces: et be a domain of holomorphy il
andU any holomorphic neighborhood &fin X. LetU be the complementary in
UofU,_1. gYiandfori =1,...,d, U; be the complementary iti of Uy, Y.
ThenI'(V, B;}o‘x) =0x(U)] ®i=1..a Ox(U;).

In [18], we generalized these definitions to sheallesy (r) and By x {r} for
all rationalr > 1. The sheaBy | x(r) (resp.By|x{r}) is the subsheaf oB;O‘X

corresponding to functions whose growth is less than(@xfz|¥/"~1) for some
C >0 (resp.anyC' > 0) if t = (1, ...,tq) is alocal system of equations Bf
To unify the notations, we séty | x{1} = B§°|X andBy | x(«) = By |x-
Let us fix local coordinatesey, . .., x4, t1, ... ,tq) Such thaty” = {t = 0}.

A function f of Ox(U) may be represented in Laurent series fds,t) =
Saezn fa(@)t7t .. t5?. Let us denote as in [29]

1 n!
- 2im (—t)ntl
As positive powers of any; gives 0 intﬁX, a section ofBg}O‘X onV, hence
of By|x(r) or By x{r} for any r, has a unique representation g&:,t) =
> aenn Ja(@) Do, (1) . .. Po, (tq). By definition, the symbol of the hyperfunction
represented by(x, t) is the functionu(z, 7) = 3" cnn ga(2)7%.

The growth conditions on the functions give the following characterization of
the sheaves of holomorphic hyperfunctions through their symbols [29, 18].

The sections oBy|x(r) on an open set’ of Y are the holomorphic functions
u(z,7) onV x C¢ such that

@y, (t)

VK cCcV, 3Co, 3C >0, VY(x,7)e K xC%
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lu(z, 7)| < Co exple| 7|,

while the sections 0By x{r} are the holomorphic functiong(x, ) onV' x c?
such that

VK CcCV, VYe>0, 3C.>0, V(z,7)eK xC
lu(z, 7)| < C.exple|r|¥T).

If r = 400, the functionu is polynomial inr.
The sheafD of differential operators of infinite order o may be defined
as the cohomology group

D = BY|xxx Op; 0y Py t0x = H% (Oxxx) ®,-10y Py 0y, (2.1.1)

where X is identified to the diagonal oK x X, p, is the second projection
X x X — X andQy is the sheaf of holomorphic differential forms of maximum
degreen = dim X.

This definition means that a differential operator is represented by its kernel
which is a holomorphic form oYX’ x X with singularities on the diagon&X.

The sheaf of differential operators of finite order &8s Dx = Bx|xxx B0y

-1
Py Ox.

The representation by symbols given for holomorphic hyperfunctions gives the
ordinary symbols for differential operators. This means that the form

. (_1)k+l k!

/
2in (G- pyEa

Oy (t —t')dt

is the kernel of the operatd®/dt)* whose symbol is*. This is nothing other
than the Cauchy formula.

2.2. REAL HOLOMORPHIC MICROFUNCTIONS

The sheaf’y, , of real holomorphic microfunctions has been defined in [29] as
the microlocalization of the sheé@fx of holomorphic functions, that is the Fourier
transform of the localization o0 x alongY (see [16] for a detailed study of
microlocalization). By definition, it is a sheaf dfi; X which is conic for the
canonical action oR’; .

A symbolic calculus for these microfunction was established by Boutet de
Monvel [5] and Aoki[1]. In[20], we defined a family ofshea@x(r,s) for4+oc0 >
r > s > 1sothaCy v (11 = Cy . The definition did not use microlocalization
but was given by the symbols:

We consider an open subg&fof T3 X with coordinategx, 7). An open subset
U of Uy is said to beR-conic if it is invariant under the action @& in 7 and
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convex if the fiber over each is convex. For such setg8]’ cc U means that
U n{(z,7)/|7| = 1} is relatively compact iV. Then we set [20]:

(i) S4+(c,r,U) is the set of holomorphic functions @hsuch that
VU' ccU, 3C>0, V(x,7) el |f(z,7)|<Cel™
(i) S—_(s,U) is the set of holomorphic functions @hsuch that

VU'ccU, 3§>0, 3C>0, Y(z,7)elU’, |f(z,7)]<Ce "

If U is aR-conic convex open subset 65, if +oo > r > s > 1 the set of
sections o€y, (r.s) onU is equal to

F(Uv C$|X(r,s)) - [m “11 S+(Cv Ty U)/S— (37 U) (221)
U'ccU c>0
If r = s we take the same formula, the injective limit en- 0 being replaced by
the projective limit
(U, C$|X(r,r)) = lim lim Sy(c,r,U)/S-(r,U).
U'ccU >0
If = 400 ands is finite, S; (¢, r, U) is the set of holomorphic functions
with polynomial growth. Ifr = s = 400, the definition of [20] is a little more

complicated and will not be used in this paper.
The sheal’y, \ (s) is now given for ar-conic convex open subset b and

this generates a unique shé’%f‘x(r,s) on Up. To define a sheaf ofiy- X, we need
the formulas connecting the symbols in two different coordinate systems and for
this we refer to [20, Prop. 2.2.5].

Real holomorphic microfunctions can also be represented by an alternate system
of symbols which, after Boutet de Monvel, we call formal symbols:

0] §+(c, r,s,U) is the set of serieSj o fi, of holomorphic functions ofV such
that

vU'ccU, 3C >0, 3A>0, VY(z,7)eU', Vk:=D0,
[, )] < CAR|r| = (k1) €17,

(i) S_(c,r,s,U) is the subset o (c,r, s, U) of seriesX. f;, such thatg,, with
gr(x,7) = X84 fi(w, 7) is still an element o8, (¢, 7, s, U).

If U is aR-conic open subset dfy, if +00 > r > s > 1, the set of sections of
C$|X(r,s) onU is equal to

L(U,Cyx(rs) = lim lim 8 (c,r,s,U)/S (c,r,5,U).
U'ccU c>0
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Note that herd/ does not need to be convex as beforellfs convex, the
isomorphism between the two kinds of symbols is induced by the natural map
Si(c,r,U) — Sy(e,r, s,U) which associates with a functiohthe series given
by fo = fandf, = 0,7 > 0[20].

The sheave§y | x (r,s) of holomorphic microfunctions ofy- X are simply the
global section of real holomorphic microfunctions, that is

CY|X(T75)|Y = C$|X(T75)|Ya CY\X(r73)|T;X = '7717*(C$|X(T78) T;X)a (2-2-2)
whereTy X = T3 X \ Y andy is the canonical projection @ X to the associated
projective bundle?y. X .

They were defined in [18], generalizing the definitions of [29] with the corres-

pondence
Cyixa) =C5x,  By;x® =By,
CY‘X(oo,l) = Cy|X, By\x(@O) = BY\X-

If 7y X = {(x,t,§,7) € T* X/t = 0,§ = 0}, a section o€y x (r,s) on an open
setU of Ty X is a formal serie& jcz f;(x, 7) of holomorphic functions ot/ such
that:

(i) f;is homogeneous of degrgen 7.

(i) VK ccU, 3C>0,Vj<0,V(r,7) €K, |fjlz,7)] <CTI(—j5)".

(iiy VK ccU, 3C>0,Vj>0, V(z,7) €K, |fi(x,7)] < CIFL(L/(GNH7).
If » = s then (iii) is replaced by

(i)Y VK cCc U, Ve > 0, 3C. > 0, Vj > 0, V(z,7) € K, [fj(z,7)] <
Ceed (1/(31)")
and ifr = +oo then (iii) is replaced by

(i) ImezZ VYj>m, f;=0
(if s = 400 condition (ii) is void).

From this definition we can see tha{| y (r) is the restriction to the zero section
Y of Ty X of the shealy| x (,s) whenr > s and thatBy-| x {r} is the restriction of
Cy|x(rs) Whenr = s.

The canonical morphism frorﬁ;‘ix(r,s) to C$‘X(r,s) is injective. To a symbol
Yjezf; of C,‘;‘ix(r,s) we associate a formal symbal,qgy. of Cgli‘x(r,s) given by

go = Ej)()fj andg, = fr if k <O.
Microlocal operators and microdifferential operators of finite or infinite order
are defined from holomorphic microfunctions as in (2.1.1)

R _ »R -1
Ex = Cxxxx @i, P2 80X,
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oo __ 00 -1
EX =CXxxx ®prtox P2 Qx,

-1
gX = CX|X><X ®p;lOX Do Qx.

2.3. SECOND MICROLOCALIZATION

The sheafDS of differential operators of infinite order okl may be defined as a
cohomology group by (2.1.1). Itis shown in [20] tlfa% . x may be replaced in this
definition by real holomorphic microfunctions to define ‘2-microlocal operators’

2(R, _
’DA(]R OO)(T,S) = H%;X(C$XY|X><X(T’S)) ®p2_1(9x p2 1QX

and by holomorphic microfunctions to define ‘2-microdifferential operators’

2(0c0,00 n 00 —
DA( )(7‘78) = HT{;X(CYXY‘XXX(T"S)) ®p;lOX p2 1QX
This is possible because the cohomological propertiéscpj(r,s) andCQ‘SlX(r,s)
are very similar to those of holomorphic functions ([20]). We remark that the
definitions together with formula (2.2.2) immediately gi@i(oo’oo)(r,s) =

'y*l')/* DIZ\(R’OO) (r,s).

We getin this way sheaves of rings An= 73> X. There are canonical inclusion
of sheaves of ring&s? |y C DA .5y € DA™ 5) andEE |y € DAF) )
where€x and& are the sheaves of microdifferential and microlocal operators of
[29].

Itis proved in [20] thaC%X(r,s) is aDIZ\(R’OO)(r,s)-module and thﬁgR;lX(r,s) =
Di(R’OO)(hs) ey Cyx-

Whenr > 1 > s’ > s, the canonical morphisnGy y(rs) — Cy x(".s)
induces a morphism of sheaves of ri@%Rpo)(r,s) — Di(R’OO)(r/,s/) which makes
C$|X(r',s') aDi(R’OO)(r,s)-module.

In [20] we defined symbols for sections Df\(oo’oo)(r,s) anlez\(R’oo)(r,s) gen-
eralizing those of ¢ and&% . It is the same proof as the existence of symbols for
By|x in Section 2.1. The coordinates drg 7) on A and(z, 7, 7", 7%) onT*A.

DEFINITION 2.3.1. Let(r, s) be two real numbers with & s < r < 400 and let
V be an open subset af, R-conic inT.

For eachy > OSJZF(T)(a, V') is the set of holomorphic functiongz, 7, z*, 7*)
on(V N{|r| > a}) x C" such that

de,C >0, Y(x,7,2",77),

[u(w, 7, 2%, 7%)| < C explelr[Y" + a(|a*| + |7]]77))).
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S? (r)(a, V) has the same definition but withreplaced by-c.

Sz(r,s)(V) = [m [m Si(r)(a, V/)/SE(S)(G,, V/),
a>0 V/

where the limit is taken over all open subsgtf V' which areR*-conic int and
such that/’’ N {|r| = 1} is relatively compact irV.

We proved in [20] that ifi” is contained in some half spa¢Re(\, 7) > 0},
there is an isomorphism betwedA(r,s)(V) andDzOR °°)( s)(V'). The product of
two operators ofD), 2(R, (7‘ s) is defined in [20] by a formula which is not easy
to explicit in S?(r, s)(V) These symbols are issued from the symbolé&& (r,s)
of Section 2.2 while the good formula is defined in other symbols coming from
formal symbols o’} (r.s).

However, if the symbols are independent:df the formula is meaningful in
ordinary symbols and the productBfx, z*, 7) by Q(x, z*, 7) is R(x, z*, 7) with

R(z,z", 1) = Z %<6i*)aP(:c,:c*,T) (%)QQ(ZC,ZC*,T). (2.3.1)

aENn?

This product appears as the product of differential operatarsiith holomorphic
parameter-.

In the same way, symbols dﬁx (r,s) are usedto define symbolsﬁf\(m’“)(r,s)
[18, 20], they have the following form: If > s, the setl'(U, D/Z\(OO’OO)(T,S)) of

sections ofDi(oo’oo)(r,s) on an open sel of A is in bijection with the formal
seriesP = (i, k)eNxZ Py (x, 7, x2*,7%), such thatP, (z, 7, z*, 7*) is polynomial
homogeneous of degreein (z*,7*) with coefficients holomorphic o/ and
homogeneous of degrée- & in (7, 2*) and satisfy the following inequalities

VKCccU, 3C>0, Ve>0, 3C.>0, V(z,7)€K, (2.3.2)
(=k)18 .
O 1Pate a7 | < (e C a4 7)), i i> 0k <0

(i)) |Pig(z,7,2%,7%) | < Ce'CF (|=*| + |7*))", ifi>0,k>0.

kI 4!
SubstitutingCy’  (r.s) andCyS x (rs) to O in the definition of the shedb5? of
differential operators gave us the sheaizé\gR s) andD), 2(co )( s). We may

use the same substitution in the definition&gf andé‘;}o to get the four sheaves

E2E) (o), 22, o), €228 ) and €252, ). Each of them is a sheaf of
rings onT*A
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So, the definition is

2 _
g (R R)( 78) — IU‘T;X(C;R'XY‘XXX(TVS))[n] ®p;lOX p2 1QX’

wherepr+y is the microlocalization alon@y- X diagonal of7y X x Ty X.
We geté’z( %) (.5) by substituting?™ to C¥, Ejz\(R’oo)(r,s) andgjz\(oo’oo)(r,s) by
taking the global sections on the fibers of the projectidfi'df to the corresponding

projective fiber bundle. By restriction to the zero section we recover the sheaves of
Section 2.3

g/z\(RR |A = Z(R )(r,s)| = DZ(R OO)( 15)s
5/2\(00’]R) (r.s)[a = 5/2\(00700)(7*,5)‘/\ = D?\(OO’OO)(TvS)-

In fact, we will not make full use here of these sheaves which were studied more
closely in [20]. The sheeﬂ‘zoR R) (r,s) Will be used in a special case in the Appendix,

the sheaE/Z\(R’oo)(r,s) only in Theorem 4.1.8 to calculate the characteristic variety
of vanishing cycles.

The sheaﬁ?ﬁ(oo’oo)(r,s) will be used in Section 3.2 only through its symbols
which we redefine now. We use local coordinatesYoés in Section 1.1 so that
T*A is provided with coordinatege, 7, x*, 7*) and consider an open subgebf
T*A where they are defined. We assume thad C-conicin(r, z*) and in(x*, 7).

We assume also that the rational numbers) satisfyoo > r > s > 1 (the cases
r = oo Ofr r = s are not very different but not used here).

If r > s,the sel'(U, SA(OO ) ,.5)) of sections 01’32(OO ) .5y onU is in bijection
with the formal seried® = >, 1) cz2 Pir(, 7, 2%, 7 ) such thatP (z, 7, x*, 7%)
is homogeneous of degréén (z*, 7*) and of degree’ + kin (7,2*) and satisfy
the following inequalities

VK ccU, 3C >0, Ve>0, 3C.>0, V(z,7,2",7") €K, (2.3.3)
() |Pp(z,7,2*,7%)| < CTF(=i)l(=k)'*, ifi<0, k<0,

M
(i) |Pg(x, 2", 7)| < C~ Z+k(k:|7/’r').’ if i <0, k>0,

(—k)IS
(iil) |Pg(z, 72", 7%)| < (CE)*]%Z( k) , fi>0, k<0,

7l

(V) |Pig(z, 7,2, 7%) | < Ce'Ck

e 120, k>0

The restriction of€), (r,s) to the zero section df™*A is Di(m’oo)(r,s) and
this is clearly compatlble with our definitions of the symbols.

2(00,00)
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We say thatP is of finite order if there exist$ig, ko) such thatP;, = O if
i+ rk > ig+ rko ori + sk > ig + sko. The sheaf of operators of finite order is
denoted bye2 (rs).

2.4. INVERSE IMAGE

Leti: Y — X be the canonical map. The inverse image ofanmoduleN by :
isi*N = OY ®i_1(9x 7:71./\/-.

The definition of inverse image of lef? x-modules is the same but to explicit
its structure of leftDy-module, was introduced @y, Dx )-bimodule (see [31]
for example)Dy _.x = Oy ®;-10, i *Dx and then ifM is a left Dx-module
P*M = Oy @10, i "M =Dy_x ®;-1p, i *M.

In this paper, we will define the vanishing cycles as the inverse image by

of a DA™, )-module. So, we define no®2™%) () which is a (7~ 1Dg,

D/Z\(R’oo)(r,s))-bimodule onA (with 7: A — Y). It may be defined as the inverse
image of theDx-module D™ (q) by i: Y — X that is D250 =
7Dy _x Qr-1p DJZ\(R"’O)(T,S). In this way, it is the quotient o‘Di(R’OO)(r,s)
by the right ideal generated by the equation¥’of

It may also be assimilated to the subsheaD(ﬁ@R’oo)(r,s) of operators in local
coordinates, with a symbol independentdf (i.e., operators which commutes
with the operators of symbols, . .., 7;). To make precise calculations in the next
section, we will need a cohomological definition of this sheaf.

Letus consider the canonical injective morphignY x X — X x X. It defines
amorphisnp: Ty X x Ty X — Y x Ty X which is the canonical projection.

The morphismj*: j71Oxxx — Oyxx defines a morphism [29, Lem. 2.2.5
Ch. 1]

J*: Rp: Cglixyp(xx[d] - Cglixywxx
and it was proved in [20] that this morphism may be extended to
57 R Cy sy x e x 59)[d] = Cf ey y s x (19)-
Taking the(n — d)th cohomology group, we get a morphism
Hite x (C¥ oy xxx (n9) @y " Qx — H?g;l((chY\YxX(’"vs)) ®p; Q.
The first term isDi(R’oo)(r,s) by definition and it is not difficult to verify that the
second is equal @5&1")@,5) [18, Sect. 2.10].
In the same way we may define{ﬁf\(R’C’o)(r,s), 7~1D§e)-bimodule

p2AR.0) _ D/Z\(]R,oo)

-1
A=Y (T‘,S) - (T‘,S) ®7T_1DX ™ DXHY

= H%?{(Cglixywxx(m)) ®py 'y
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It is the quotient ofDi(R’oo)(r,s) by the left ideal generated by the equations

of Y.
The sheave®y_, x andDx.y are duals a® x-modules, that is

RHOI’T}DX (ngy, Dx) [codle] =Dy_x

and,Dy _. x being flat oveDx, we immediately deduce the corresponding result

2(R,00) 2(R,00)

RHOM, 205,00 (DA2) (1.5, D) (1 ) [codimY ] = DZH) (1. s).

(r,s)

The same definitions may be stated for the she&%ed particular we may
define the sheaf

512/(%3) (rs) = 11y X (Cy sy jyxx () [n — d] @ Pz Qx
and this sheaf is, in local coordinates, isomorphic to the subsh@i‘w)(r,s)
of operators commuting with the operators of symhol . ., 7;. ReplacingC® by

c> we gete2™2) ;.4

2.5. SYMBOLS OF HOLOMORPHIC MICROFUNCTIONS

The symbolic calculus for germs of the shé@]x was defined by Boutet de
Monvel [5] and Aoki [1]. We will here be more explicit in the case of multivalued
sections. This point will be the key to the proof of Theorem 3.1.1.

It follows from the definition ofcgli‘x and [29, Prop. 1.2.4 Ch. 1] or [17,
Thm. 4.3.2] that ifU is an open subset @f- X with convex conic fibers, we have

F(U’CgR;p() = IILI H%(Va Ox),
V,Z

whereV ranges through the family of open subsetsto$uch thal’ NY = = (U)
andZ through the family of closed subsets&fsuch thatCy (Z) c U°.

Herer is the canonical projection dfy: X onY, U° is the antipodal of the
polar set o in Ty X andCy (Z) is the tangent cone t8 alongY'.

We assume now that is a domain of holomorphy of"~? and X = Y x
C?. The coordinates will be denoted By, ..., 2, _4,t1,...,tq) on X and the
corresponding coordinat¢s, 7) on7y X.

LetG = {(z,7) € Ty X |Rer; > [Im7;|,i =1,...,d}, we have

I(G.C ) = lim HE (V.0x),
Vie>1

whereV ranges through the family of open neighborhood¥ df X and

Ze ={(x,t) € X |Ret; < |elmt;|,i =1,...,d}.
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From a theorem of Siuy” has a fundamental system of neighborhoodXin
which are domains of holomorphy, so we may assumelthista holomorphy set
and define

W = {(z,t) € V|Ret; < e|Imt;]},

Wi = W, W= ) Wl
j#i 1<i<d

ThenCech cohomology gives an exact sequence

P rwll, 0x) - 1(W.,0x) — HE (V,0x) — 0.

1<i<d

A sectionu of Cglﬁ‘x on G is thus represented by a holomorphic functjoon
somelV.. Following [29] and [1], we will say thaf is a defining function fou.
For any(a, \) € (R% )% x C¢, we may replac&,W." andW. by

Gy = {(z,7) e Ty X |a;ReN 1 = ImX\ 1|, i=1,...,d},
W = {(z,t) € V|z € V,ReAt; < (a; +¢) [Im \its|},

>\i75_
i=1,...,d, >0,

we = Ol

1<i<d

Let C be the universal covering af* = C — {0} andp be the canonical
projectionY x C* — Y x C%. As usual, a section of p_lC$‘X onY x C% will
be called a multivalued sectioninon {(z,7) € Ty X |7, #0, i = 1,...,d}. We
recall that the shea{f;‘i‘X has the property of unique continuation [29, Thm. 2.2.8
Ch. 11].

For anyo; > 0, \; € C, u has a defining function o’ . for some open set
V. Two such functions differ from the sum af functions, each of them being
holomorphic in one variable; near 0. More precisely, giveh and )\, « has
defining functionse on W, ., ¢’ onWy . andy — ¢’ = 3¢, with ¢; holomorphic
on Wﬂ N WA[Z,{E. But the unionWiZ}a U WA[Z,{E is still Stein and thus we have a
decompositiorp; = v; — v} with v»; holomorphic orW/@ andy; holomorphic on

W[Z,}E. So a defining function foz is ¢ — Xv; = ¢’ — X4} which is holomorphic
on W>\75 UWy .

We may iterate this procedure dhx C¢, thereforeu has a defining functiorf
which is multivalued in each variabtgonV N {t; # 0,i = 1,...,d}. Two such
functions differ from the sum of functions which are holomorphic in one of the
variables; near 0.
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In fact this is not absolutely true because the operi’saas to be shrunk at
each turn around) = 0. This will not affect our results because we will use only a
finite number of turns.

The symbol of the section as defined in [1] is calculated from a defining
function. Here we will use the same formula, but we will take a special path:

Forb € C*, we consider a path, in C* beginning ab, ending ab, and such that
the index of the poin{0} is 1 relatively toy,. If ¢(t) is a holomorphic multivalued
function defined orD* = {t € C|0 < |t| < ¢}, then the integral op on~, is well
defined ify, c D*, it depends only oh and on the choice of the determination of
@ atb.

If a is a point of(C*)?, we defineY, (V), or Y, for short as the subset &f of
pointsz such thaix,ca) € V for anye € [0, 1].

A symbol of the microfunction with defining functionf is the function

Fy(z,7) = / Fla,t) e 7 dty . dig. (2.5.1)
Yay X+ XYag

It is defined onY, (V) x €2 and satisfy
VK CCY,, Ve>0, 3C.>0, VzekK, Vrec

Rea;7; >0, i=1...,d, |Fo(z,7)| < C. eI+ telmal

HenceF is a symbol forw on {(z, 7) € Y, x C?|Rea;; > 0}. The difference
of two defining functions being the sum of holomorphic functions in one; of
the symbol is independent of the choice of the defining function and, for the same
reason, it is independent of the choice of the determinatigh of

Usually, that is in the results of Aoki and in (2.2.1), the symbols. afiffer
from an exponentially decreasing holomorphic function. Here we have chosen one
of them which depends only an Another crucial difference is that the symbol is
dominated by a productl@!*++¢7l on an open set which is itself a product. This
will allow us to take a punctual value as follows.

Let us fix some valuer such that Re;o > 0 and consider the resulting
function F,(x, 7', 0). It is well defined and subexponential as a function'of=
(t1,...,74-1) on{(z,7') € Y, x C¥~1|Rear; > 0}, hence it is the symbol of a
sectionu,, (o) of C%YXCd_l on this set.

This section depends enand ona, but noton(as, . .., a4—1) because moving
a; modifiesF' by a function which is exponentially decreasingrin So we may
defineu,, (o) as a section afy ;. .., Multivalued inr onY;, x c?t wherey,
is the sety, fora; = --- = a4_1 =0.

Finally we proved:

LEMMA 2.5.1. Let Y be a domain of holomorphy i6G” ¢, X = Y x Cc? and
X' =Y x c?1 We identifyTy: X to Y x C? with coordinategz, 7).
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(i) Any section of C§‘§|X onY x (C*)% multivalued inr; fori = 1,...,d, has
a defining function oV N {¢; # 0, } multivalued in¢; fori = 1,...,d and
some neighborhoot of Y in X.

(i) Given a pointa € (C*)?, such a section has a uniquely determined symbol
Fy(z,7) onY,(V) x €% whereY,(V) is subset oy of pointsz such that
(z,ea) € V foranye € [0, 1].

(i) For anyo € C* such thatReayo > 0, the function(z, 7’) — Fu(x,7’,0)
defines a section afy|y, on Yo, (V) x (C*)** multivalued in7; and
independent ofas, . ..,aq—1). This section will be denoted hy,, (o) and
called the value ofi at 7y = o.

Remark2.5.2. The lemma is still true # = 1. In this cas&” = X’ and thus
C$|X, = Oy.

As we will see later, it is sometimes necessary to defing¢o) as a section on
the whole ofy” x (C*)*~*. This is possible only on a subsheaid, ..

LEMMA 2.5.3. Let Y be a domain of holomorphy ia”~%¢, X = Y x C? and
X' =Y x c?1 We identifyTy: X to Y x C? with coordinategx, 7).

If C'is a positive number, I6f|) (Y x ((C*)d,C%X) be the set of multivalued
sections otZ&X onY x (C*)?¢ which have a defining function anx {t € c¢|0 <
|t:| <1/C}.

(i) For any (o,aq) such thatReazo > 0 and|aq| < 1/C, the valuey,, (o) is
well defined as a multivalued sectiond, ., onY x (C*)* .
(i)) The resultu,, (o) is an element of (¢ (Y x (C*)*~%,C} ).
(i) Letu be a multivalued section @f,ﬁX onY x (C*)? represented by a sym-

bol u(x,7) = > ez un(z, 7), Wwhere eachy, is a holomorphic multivalued
function onY” x (C*)? homogeneous of degreen . We assume that

1C >0, VKccY, 3dCk, VYn<0, VxeKkK,
|un(z,7)] < CxC™"(—n)l.

Thenu is an element oF ¢/, (Y x (C*), Cy x)-

Proof. Let us first remark that any multivalued section(gf y onY” x (c*)d
has a symbol similar to the symbol of the lemma except that the coristasually
depends ork.

With the additional condition of the lemma, the defining functioruds it is
calculated in [29, Prop. 1.4.3] is defined bh=Y x {t € C?|0 < |t| < 1/C}
and we get the result if we apply Lemma 2.5.1 to thislset a
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These lemmas extend to all sheaﬂ§§)((r,s) defined in [20]:

First, we remark tha€y (1) is the subsheaf afy, - of the sections whose
symbols have growth exp7|%/"). This means that the defining functigiiz, t)
has growth exg|1/t|"~1). The value ok at o is thus well defined as a section
of C. | x/ (D).

If s > 1,weusethemafr) — (77,...,7]). Itdefines anisomorphism between
the sections ot’,’glilx(r,s) outside{ 7; = 0} and the sections c[f$|x(r/s,1). This
proves that Lemmas 2.5.1 and 2.5.3 extend to the she‘i%\{gsr,s) andC;ﬁX(r,s)
for all (r, s) such thattoo > r > s > 1.

2.6. NONLOCAL OPERATORS

These nonlocal operators will be used in the next section to apply the morphism of
Lemma 2.5.1. In this sectioX is of dimensiom andY” of codimensioni.

A differential operator, that is a section Bf5’ on some open séf of X is
represented in local coordinates, . .., x,) as

P(z,D,) = Z Pa(x) DY,

aEN™

wherep,,(x) is a holomorphic function oy satisfying
VK CccU, Ve>0, 3C.>0, VexekK, |pa(z)<Cel®al (2.6.1)

and such an operator defines an endomorphism of the gheaif holomorphic
functions.
If we replace 2.6.1 by

36>0, VKcCcU, 3C>0, Vzek, |pa(zx)]<Céal (2.6.2)

we getan operator which is not local 6%, the serie€p,(z) f (@ (z) is convergent
only if the Taylor series off at x converges on a polydisk of radids i.e., P
defines a map fron'(U, Ox) to I'(Us, Ox ) with Us = {x € U |Vy ¢ U, Vj =
1...,n—d,|z; —y;| > 6}

The sheaf of operators satisfying (2.6.2) may be defined by (2.1.1) where the
diagonal ofX x X is replaced by{(z,2') € X x X ||z; — x}| < 0}. Of course,
this is coordinate-dependent. Our aim here is to develop the same definition for
2-microdifferential operators, i.e., repla€s; by C$|X(7‘,s).

We set
As={(z,r, 2", 7)) e Ty X x Ty X |Vi=1,...,n—d,|z; —2}| <5, 7=71"}

and define

2(R,00 n _
DA(]R )(7‘75;6) == HA& (C$XY‘XXX(T’S)) ®p2_10X p2 1Qx.
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LEMMA 2.6.1. For all k # n we haveH} (Cy |y x(rs)) = 0.
Proof. Let (2 be a Stein open subset ®f X x Ty- X which isR* -conic and
contained in some half-spaceinWe define

Qi ={(z,7, 2", 7") e Ty X x Ty X | |x; — 2| >0}, fi=1....,n—d,
Qivnag={(x,7, 2, 7) e Ty X x Ty X ||m; — 7| >0}, ifi=1...,d.

These sets at®’, -conic Stein open sets, hengé (1;, Cywy|xxx) = 0fori>0
[20, Prop. 2.5.1]. A$) — A is covered by acyclic open sets, the lemma is true
by elementaryCech cohomology. O

PROPOSITION 2.6.2.etV be an open set dfy X and
Vs={(z,7) eVIVy ¢V, Vi=1,...,n—d, |zj —y;| > 6}.

A section ofp2*>)

(r,s;6) ONV x V defines a morphism

F(V, C$|X(r,s)) — F(‘/g, C$‘X(r,s)).

This action extends the natural actionbi(R’oo)(r,s) on the shea@§|x(r,s).

Proof. Consider the the two projectiopsandg from 7y X x Ty X to Ty X.
There is a canonical morphism

(C$><Y|X><X(r’s) ®q_1(9x qilg)() Re qilc&x(r,s)[—n] — pilc$|x(r,s). (263)

This morphism may be defined by inverse image under X — X x X x X or
asin [18, Prop. 2.1.4.] using the isomorphism

(C$‘X(rvs) ®OX QX) ®5§(7'75) C&X(r,s)[—n]
= RHOMg (. ) (Cy|x (r9), Cy x (1:9))

= RHOMg, (Cy|x,Cyx) ® Ex(rs) =~ Crzx.

The fibers ofp being of dimensiom, there is a morphism of direct image [8]
Rp!p—lc$|x(r,s)[2n] — C$‘X(r,s), hence a morphism

Rp!RFAép_lcg‘X(r,s)[zn] — Rp!p_lc$|x(r,s)[2n] — CngX(r,s)
which composed with (2.6.3) gives

Rp1(RL A (Cy oy xx x(r:9) @10 g *0Qx) @¢ Cy x(r9)[n] = Cy x(r9)

comp413.tex; 8/04/1999; 9:53; v.7; p.23

https://doi.org/10.1023/A:1000791329695 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000791329695

264 YVES LAURENT

and using Lemma 2.6.1 this gives

m ('Di(R’OO)(r,s;é)} Rc qilchaX(r,s)) — CgR;‘X(r,s). (264)
If As is replaced by the diagonal @T;}X x Ty X, p is an isomorphism on the
diagonal and we get the action @F )(r.5) on Cy|x (rs). Here we remark that

the projectiorp: ¢~ (V) N As Np~Y(U) — U is proper ifU is contained inV
and this gives the morphism of the proposition

2(R,00)

F(V X Va DA (7"73?5)) Q¢ F(Va CQR}‘X(M)) - F(V(S,C%X(ns))- g

We may also consider a shdaf/ (r s;6) as in Section 2.4

2(R,00 n— _
DY(EA )(r,s;é) = HA%d(CgR/XY‘YXX(rvs)) ® Do 1QX5
with Ay = {(z,2/,7) e Y XT3 X |Vi =1,...,n—d, |z;—2}| < ¢}. Itisidentified

with the subsheaf (ﬂ)i(R’oo)(r,s;a)] of sections commuting withy, . .., 74.

2.7. SYMBOLS OF2-MICROLOCAL OPERATORS

Let X' = {(z,t) € X |tq = 0}) andA’ = Ty, (Y x X'). We want now apply

the results of Section 2.5 to define the ‘valueat= o’ of a section ofo/(ﬁj’\o)(r,s)

as a section O,D}Z/(?E?S)(T,s). In fact, there is no such morphism and we will have to
shrink the first sheaf or to extend the second.

In this section, we fix a domain of holomorpfyof Y and consider the open sets
U={(z,7) e Iy X |z € Q, 7, # 0} andU’ = {(z,7) € ' |z € Q, 7; # O}.
The set of sections 2™ ;s and of D) ,.s) on U and the set of sections

of Dg%%)(r,s) on U’ which extend analytically along any path will be denoted

respectively by
LU, D2% ), T(U, Dé(f}\oo)(r,s)) and T'(U’, 12/(5?3)(7’ 5).
An elementP of I'(U, D}Z/(?_O}\OO)(T,S)) has a symboP = ;. P, (z, 7, 2*) given

by formula (2.3.2) where each functidf), is multivalued onU. Let us denote

by f[c}(U, D}Z/(?_O}\OO)(T,S)) the subset of these sections whose symbol satisfy the
stronger condition

VK CcU, Ve>0, 3C.>0, Y(z,7)€K, (2.7.1)

I$ :
() | P (z,7,2%)| < C.£'C~ i zk) |z** if i >0,k <0,
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1
Gyra @l Miz0k=0

PROPOSITION 2.7.1L.etC > Oand(o,a) € C* x C* such thatReac > 0 and
la| < 1/C. The morphism of Lemn#a5.1 defines the morphisms

(i) |Pig(z,m,2")| < C.etCk

2(R,00)

i 2(00,00 =
F[C}(U’ ,DYV(HA )(T’,S)) - F(Ula Y —A’ (r, S))
and

(U DY<—A (rs UF U/ Y<—A/ (rsJ))
6>0
Given a section? of T'(U, DA™ (».¢)) and an arbitrarys > 0, the image
Py () of Pisin D(U", DY 5 tr5)) if |a] is small enough
Proof. Let Z be aR’ -conic subspace dfC*)? contained in some half-space

Re(\, ) > O,QaStein neighborhood 6fin Y x Y andV = Ox Z C V x Ty X..
LetUy =V NnIyXandfork=1,...,n—d

Vi = {(z,2',7) € V |2y, # 2.}, We=(Vio W= [ Vi
j#k 1<j<n—d

The setsl, are acyclic forCy, vy, y () [20, Prop. 2.5.1], thus we have an
exact sequence &fech cohomology

@F(kac$xY\YxX(rvs)) — (W, Cg%xY\YxX(TvS))
k

(U, D2 (r6)) — 0. (2.7.2)

A section osz( )(r,s) onU1 is thus represented by a microfunctionidnwhich
has a symbOzIL(x ', 7)onW.

In the same way we may define, fdr> 0, Z’ aR* -conic subspace dfc*)¢ -1

contained in some half-space avitl= Q x 2’

V@ {(z,2',7) € V' ||z — 2} > 6},

POV, wo= N Y
j#k j=l.n—d

and we get an exact sequence

5
@F(W,ﬁ )7C$><Y\Y><X’(T75)) - F(W(é)vc$xY|YxX(rvS))
e

F(V’,’Dlz/(%ici) (r,s;(S)) — 0.
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If we replaceCy vy, x by C5%, vy« x» the corresponding result is true4fis
contractile. This was proved in [18, Thm. 1.1.3]. So we get an exact sequence

ST (Wi, Cyiyyxx(9) — TW, Gy y xx ()

— T(Uy, DZ (r.s)) — 0.

—

A section ofl"(Uy, D,Z/(ffo)(r,s)) is given by its symboP = X; yyenxz Pk (2,
T, z*). Each functionP;; is a homogeneous polynomial of degrei@ =*, hence
equal to Py (z, 1,2%) = > la|=i P (z,7)(z*)* and by definition of this sym-
bol (in [18] Sections 1.5, 1.6), the corresponding sectioR @V, Cy*, vy, x (rs))
is the microfunction of symbol: = Suy(z,2’,7) with ug(z,2',7) = 3 cww
Pog(z,7)®4(z — 2') with

(—=1)F1 k!
@a(ac) = @al(xl) e (I)ap(xp) and (I)k(CC]_) = TW
If P is a section of (U, Df/(ffo)(r,s)), the microfunctioru = Xuy extends as
a multivalued section afy?, .y, y(rs) ONY x U because the symbalF;, of P
is uniqgue and extends itself as a sum of multivalued functions. Now we may apply
the results of the previous section in two ways:
First, if P is a section of'j (U, D,Z/(f/’\oo)(r,s)), the conditions (2.7.1) implies
that v satisfies the conditions of Lemma 2.5.3, hence for a suit@ble), the
microfunctionu, (o) is defined onlW’ = Q x C* as a multivalued section. This

define a section af (U, 2% (r.s)).
2(R,00)

Second, ifP is any section of(U, Dy .\ (rs)), u satisfies the conditions of
Lemma 2.5.1, hence for a givén, o), the microfunctionu, (o) is defined on the
points of W/ = Q x C* at a distancé of the boundary for somé& > 0, hence on

W, So this define a section of(V’, Df/(ﬁj’\‘i)(r,s;a)) which extends to a section

of T(V', D25 1 s:9)). O

When a local system of coordinate is givé?f,(ffo)(r,s) is identified to the subset

of Di(oo’oo)(r,s) of operators whose symbol is independentofnd in this way is

a sheaf of rings. The same is true fl@i@fﬁ,)(r,s) subsheaf OD/Z\(,ROO)(r,s).

PROPOSITION 2.7.2A local system of coordinates being given, the morphism
i) (U, D2 (r)) — T(U', DS (1)) of Proposition2.7.1 is compatible
with the ring structures

Proof. The product of two sections ®$§f)(r,s) is given by formula (2.3.1).
In 7 it is just the ordinary product and, therefore, the operation of taking the value

at a points is compatible with the produ¢PQ),(c) = P,(0)Qa(0). O
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To end this section, let us give some extensions of Proposition 2.7.1 which will be
used only in the Appendix.
2(R,00)

First we may defind’ (U, D% +s) as the subset af (U, D2 Y (r,9))

which is the image of[c](W, C%YWXX(T,S)) in the exact sequence (2.7.2).

From Lemma 2.5.3, we deduce thiqc](U,Di(f;\oo)(r,s)) is a subset of

f[c](U, Df/(ﬁj’\o)(r,s)) and that the morphism of Proposition 2.7.1 is defined from

L(oy(U, D2 rs) to Tio(U, DA (. 5)).

We may also extend the results to the sfﬂ%ﬁ”f) (r,s). To make easier calcula-
tions, we will assume that the dimension}ofis 1 which is the case needed in the
appendix. Letx be a point(zo = 0,25 = 1,70) of T7 x (Y x Ty X). Then from
the definition of the microlocalization, we have

2R, .
5Y(<Ri§)(m)a = MT§X(C$><Y\Y><X(T75))[1]01 = lim H%E(Us’chY\YxX(m))
g

= |ILYI) I'(U. - ZévC$><Y|Y><X(7’75))/F(U67C$XY|Y><X(T75))7
e

with

U.={(z,2',7) e Y XY xC| |z —a'| <e,7 €T.},

Z. ={(z,2',7) €Y xY x C?|Re(zz — 2') < eIm(z — 2)|},
wherel, is a fundamental system of open conic neighborhoods.of

If we define€2™%) ;. [C], as the subset @2 ., of elements generated

by sections of' (U — Z, Cy xy|y xx(r:s), we extend Proposition 2.7.1 in the
following way:

PROPOSITION 2.7.3. (iletC > 0and(c,a) € C* x C* such thatReac > 0
and|a| < 1/C. The morphism of Lemnfa5.1 defines amultiplicative morphism

EEN [Cla — E R 9 [Clar.

(i) If P is an element oﬁ‘i(ﬁ’j’\o)(r,s)a whose symboP = X Py (z,7,z*)
satisfies the condition&.3.3) but with (iii ) replaced by(2.7.1) (ii), if the func-
tions P, (z,7,2*) extend as ramified functions in, then P is an element of

EXER) (0 9[Cla

This result is proved exactly as Proposition 2.7.1.

3. Equivalence Theorem for 2-Microlocal Equations
3.1. THE RESULT

In this section,Y” is a submanifold ocodimension lof the complex analytic
manifold X andA is the conormal bundlgy X, while A = A — Y.
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We assume that we are given local coordindtes. .., z,_1,t) of X where
(t = 0) is an equation fol. ThenA = {(z,t,7,£) € T*X |t = 0,{ = 0} and
the local coordinates &f* A are(z, 7, z*, 7).

The functiont may be considered as a differential operato®0and then as a
symbolo'"*) (t) = 7* for any(r, s).

The aim of Section 3 is to prove the following theorem:

THEOREM 3.1.1Let(r,s) € Q% such thatr > s > 1 and letP be a microdif-
ferential operator(that is a section o€x), such thatay’s)(P) = (7)™ in a
neighborhood of a pointv € A. Then there is on a neighborhood @f an iso-
. 2(R,00) 2(R,00) 2(R, 2(R, oo) m
morphismD’y (rs)/ Dy (rs)P =~ (D} " (r,5)/ Dy (r,s) 1),
In fact the isomorphism is given by a multlvalued’ matrix:

DEFINITION 3.1.2. The sheab2®>)(,. ., is the subsheaf a3*>*)(,.s) of sec-
tions which have a continuation along any path in the fibers ef Y.

PROPOSITION 3 1.3Under the hypothesis of Theoredrl.1, there is an iso-
morphismD2) (. ) /DAE) (o P~ (DA (0 /D) (g 1),

The proof will be made inthree steps. First we will prove an equivalence theorem
wheno ") (P) = (23)™. In that case, the theorem is truel > (r.5).

(The situation is similar to the case of microdifferential operators. An equival-
ence theorem is true ifi° for operators with principal symbg}® [29] while the
theorem is true only i€ when the principal symbol ig™ [11].)

Nextwe will ‘add a variable’, perform a quantized canonical transformation and
take the value of an operator at some point using (2.7.1). This will give Theorem
3.1.1 but fors’ > s. We will prove the limit case = s’ in Section 3.4.

The theorem is stated for a 1-codimensional maniigltbut extension to any
submanifold is easy (using a quantized canonical transformation).

3.2. EQUIVALENCE THEOREM FOR2-MICRODIFFERENTIAL EQUATIONS

In this section, the codimensionBfisd > 1. We keep the same notations for local
coordinates. The fiber bundle A is thus provided with coordinatés, 7, z*, 7).
We fix numbergr, s) suchthat I< s < r.

Let U be an open subset @A which is (complex) conic ifr,z*) and in
(z*,7*). Let g be a positive integey; be a rational number such thatOu < 1
andG“ ={( k) cZ?|i+rk<q i+sk<q 2+ (r+s)k<2uq}.

We deflneEf;(U) as the set of formal series of holomorphic functiondbn

Z Pik(.’I],T,fI,'*,T*),

(i,k)eGY
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such thatP; (z, 7, 2*, 7*) is a homogeneous function of degreia (z*,7*) and
of degree + k in (1, ™).
For such a series we define a Boutet de Monvel formal norm as

NE(P; S, T)

= Z Czeﬁw

i?k7a7/87,y76

X

dN*/ N /N /N . .
(o) =) (&) (37) matemar)

x §2itlal B+ I+l p-2k

where the sum is taken over all integéisk) € G¥, all (o, ) € N*~% x N4
and all(v, ) € N% x N,
The coefﬁcientf‘k% is, by definition

N!
(N + ol + DN + 18] + 18!

s = 2(2n)"*
with
: . . . (r+s)
N=inf(—i—rk+q,—i—sk+q,—i— Tk—i—,uq

andN! =T(N +1).

Whenp = 1, this formal norm is the norm of [18, Def. 2.4.3] and the same

proof as [18, Th. 2.4.9] gives
LEMMA 3.2.1.
NMP +Q;8,T) < NIP; S, T) + NMQ; S, T),

NH

b (PQ; S, T) < NiP; S, T)NK(Q; S, T).

In this lemma,< means that at each poift, 7, z*, 7*) the coefficient of each

monomialS*T" of the right side is greater than the corresponding term of the left

side and the produdP( is given by formula 3.2.4 of [20] (or Theorem 2.3.3 of
[18] but with other notations). N

We will denote byE! (U) the subset of5%(U) of elementsP such that, for
each compact subsét in U, there exists some > 0 such thatV//(P, S,T) is
convergent whelz, 7, z*, 7*) € K and|S|" < (1/C)|T,|T| < (1/C)|S|*.

Itis clear that the union of* (U) over allq € N is independent of, it will be
denoted byE(U).

Lemma 3.2.1 shows thdf(U) is a ring. In fact, foru = 1 the definition is

exactly the same as the definition of 2-microdifferential operators of finite order in
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Section 3.2.3 and thus we hali#U) = £2(r,s)(U).

LEMMA 3.2.2. Let 1 be a real number such th@t< p < 1 and for eachy € N
let P14 € E#(U). We assume that

VK ccU, 3C, Coy, C1>0, VY(z,7,2%7") €K,

1 1 Cci

T "< ST T) < =|S|° NHPW S T —1

v(S,T), IS < &7 ITI< FIST7, g (P8, )<Coq!
Thenthe serieEqP(Q) converges irfi(oo’c’o)(r,s)(U). More precisely, if the symbol

of P9 is EPZ.(,;’), the series’, =3 -0 PZ.(,;’) are convergent series of bihomogen-
eous holomorphic functions din for each(i, k) and the resulting function®;
satisfy the following inequalities for some> 0

VK ccU, 3C2>0, V(z,7,2%,7%) €K,
() | Py (z, 7, 2", 7%)| < Cy TF(=i)l(=k)!* if i <0, k<O,
(i) [P, 7, 2%, 79)| < Co (=)l /EI") if i <O, k=0

(—k)!® 1
it (=)@ + (s +v)k)]4 !

(iii) |Pig(, 7, 2%, 1) < C5F

ifi >0, k<0,
1 1
Kl (L= )i+ (r — )k)]4 !

v) | Py (x, 7, 2%, 7" < Cith+l
2

ifi>0, k>0,
([a]+ is the lowest positive integer greater than the rational number

Proof. First, we remark that inequalities (i)—(iv) immediately imply (2.3.3),
hence series satisfying (i)—(iv) define a symboEﬁ(foo’oo)(r,s).

Applying Cauchy inequalities itS,T) to N*(P@, S, T), we get for(z, T,
z*,7*)in K andN = inf(—i —rk +q,—i — sk +¢q,—i — ((r + 5)/2)k + pq)

£ NI _o(zizrh—izsk
’Pi(lg)(x,ﬁx )] <COCE?C( =)

(We denote by! the numbed’(r 4 1) for anyr € Q.)
If v is the strictly positive numbdr — s)/(2(1 — p)), we have

R =y B PRI

N=—i—sk+gq, Iif0<qg<—Vk,
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N=—i—rk+gq, If0<q<+vk.
Assume first thai < 0,k < 0, then lemma 2.4.8 of [18] gives a constént
depending only o such that

| —7 — ! .
& = w < C;Z_5k+q(—i)!(—k)!s, if 0 < q < —vk,

q! q!
Nt (=i—sk+q—(1—p)(g+vk))
g q!

1
(1= p)(g + kv)]t
This shows that the serid3;, = Eq>0P(k) is convergent and satisfy

< C;ifskJrq(_Z')! (—]C)Is

if ¢ > —vk.

’Hk(x,T,.%'*,T*)’

A 1
< CoCy R (=iN(=k)* | > i+ Y 03
0<q<—vk 9> —vk (q+ k)=
< O R (=i (=k)te.
Let us consider now the cage> 0, i < 0, then
N (i—rk+g)! - 2_i+q(—2‘)!

a 4 < A if 0 < g < vk,
N (=i—rk+q—(1—p)(q—vk))!
q q!
)! 1
< zital) L itgs vk,
k(1= p)(q = kv)]!
and we get
Al
|Pi(x, 72", 7%)| < Cg Hk(kw) )
Now we considek < 0,7 > 0, we have
N! —i— ! : —k)s
= w < C;Z_Sk-i_qﬂ, if O <qg< _yk’
q! q! 7!
N (—i—sk+q— (1—p)(q+vk))
q q!
4 yATE
< C;zfskJrq( k) 1 if q> —vk,

TN (G [y I
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butq > i + sk soqg < —kv will occur only if i < —k(v + s). We get

(ks
’ij(x,’i',x*j'r*)’ < Cé_k%’ if ¢ < —k(l/ + s),

(—k)ts 1
il A=)+ (s+v)k)V

| P (x, 72", 77)| < Céfk

if i >—k(v+s).
The lastcase is> 0,k > 0. The same calculation shows that

| Py (a, 7, 2%, 7)| < C3HF if i < k(v —r),

ki 4’

1
Ema [(L—p)(i— (v —r)k)]V
This concluded the proof of the lemma. a

| Pig(z, 7, 2", 7%)| < C%Jrk

ifi>k(v—r).

An operatorP € £2(rs)(U) is said to be of ordefq, u) if its symbol is in
EX(U).

Leta: N — N be any function. A'm x m)-matrix A of £2(r,s)(U) is said to
be of order(q, 1) if, for each(i, j), the coefficient4,; of A is a microdifferential
operator of order at most + a(i) — a(j), ). Then the order of the product of a
matrix of order(q, 1) by a matrix of order(¢’, 11) is not greater thaig + ¢/, i).
The usual order of matrices is given by= 0 but in the proof of Theorem 3.2.4,
we will usea(i) = i.

We define the formal norm of such a matrix as

NI(A;8,T) = Sup Y Nl —a Qi 8:T)
SIS 1<i<m
and it is clear that Lemmas 3.2.1 and 3.2.2 are still true for matrices.

The matrixA is said to be independent éf,, if the symbols of the microdif-
ferential operatorsl;; are independent af]. This is equivalent to the fact thait
commutes withz1. Then A may be considered as a matrix of 2-microdifferential
operators in the variablgs, . . . , z,,_4, t) with holomorphic parameter; and we
will write it as A(x1).

Such a matrix4(z1, 2, 7, 2", 7*) will be said of medium ordefs, ) if there
exists some € N such that any product gfterms

A(x(ll),x',T, x'*,T*)A(xgz),x’,T, %)L A( g_q),(L‘/,T, ', )

is of order at mos(qd, ).
For example, ifAp is a matrix of order(1, 1) and A; is a matrix of order
(1,1) nilpotent of orderm (i.e., A" = 0), thenAg + A; is of medium order

(L1 = (2= p)/m)).
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We denote by the identity(m x m)-matrix.

PROPOSITION 3.2.3.etU be an open subset @A which is (complex) conic
in (7,z*) and in (z*, 7*). We assume that for each pointy, z(, 70, 2§, 7¢) in U
the set{ A € C|(\, g, 70,25, 75) € U } is a simply connected open subsetCof
which contains the origin.

Let A be am x m-matrix of £2(rs)(U) which is independent aP,, and of
medium order(1, 1) with . < 1. Then there exists ofi an invertible matrixR?
with coefficients irf€2°>>") (. (U) such that(D,,I — A)R = RD,,.

Moreover, we may choose such thatkR = I on{z; = 0} and thenR is
unique and independent @?,,. The symbols of the coefficients Bfsatisfy the
conditions(i)—(iv) of Lemma3.2.2.

Proof. The proof is similar to the proof of Theorem 5.2.1. Ch. Il in [29]:

The equationD,,I — A)R = RD,, is equivalenttdd/0x1)R = AR where
(0/0x1) is the operator of derivation acting on the symbols of the coefficients of
R.

We define a sequend®, of matrices with coefficients iz (r,s) by Ro = I and
the relation(9/0x1) Ry = ARj_1, Ril|s,—0 = 0 and we have to prove that the
series: Ry, is convergent.

The coefficients ofAR;,_, are formal series of holomorphic function, this
is given by the formulaRy (z1) = [3* ARk—1(\) dX, where the integration is made
along any path from 0 t@;. It is independent of the path &5is simply connected
In ;.

In a productd(\)A()') there is no derivation in the variablgs, \') so we have

Ak
L(21) / / A Aer) ... AD) A Ay . A
From the hypothesis, there exists sogne N such that the matrix
1 2
B, .. 2 = A@M)A=P) .. A=)

is of order at mostg, 1), hence for each compagt x K of U, there exists some
C,Co > 0 such thaitV/(B; S, T) is bounded byCo whenz(® € Gfori =1...¢,
(o, 7, 2%, 7*) € Kand|S|" < (1/O)|T|,|T| < (1/C)|S|*.

Applying Lemma 3.2.1, we get

sup Njp (R, S,T) < <supN“BST> / /qk . d)\qk...d)\l
r1€G 1€G

< ckc ﬁ
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The same proof applies tB,;; for / = 0...¢ — 1 and this proves that the
seriesy Ry, satisfies the hypothesis of Lemma 3.2.2 and, hence, is convergent as a
m x m-matrix with coefficients irfi(oo’oo)(r,s)(U).

The matrix R = X Ry is a solution of the equation®/dz1)R = AR and
R(0) = I. We use the method of [29] to prove thatis invertible, i.e., we define
a matrix S such tha{9/0x1)S = —SA andS(0) = I. The preceding proof gives
a solution to this equation and we ha¥&(0) = I with (0/0x1)SR = 0, hence
SR = I andR is invertible.

This also proves the uniquenessiobecause if?’ is another solution, then for
the same reason we hag&?’ = I, henceR’ = R andR is independent oD,
becausérq, R| satisfy the same equation &sand is 0 onz; = 0. a

THEOREM 3.2.4.Let P a 2-microdifferential operator ofgf\(r,s) such that
a/((’s)(P) = (z%)™. Then there is, locally on, an isomorphism

£200:20) /€200 () P o (£209%) ) 1£20) (D, Y.

Proof. Using the division theorem 2.5.2 of [18], we can write

P(x,r,x2*,7%)

m—1
= E(z,1,2%,7") ((mi)m - Z Pj(z, 7,25, ... ,x:‘l_d,T*)(acI)J) ,
7=0

whereP; is a 2-microdifferential operator whose symbol do not depeneicand
Eisinvertible.
AsoV((@})m — BTGPy (2, 7,25, . 2 _g, ) (2})7) = (25)™, the symbol
P; = $P], satisfies
R{k#0:>(i+rk<m,i+sk<m and i<m if k=0)
andP; belongs toE¥,_.(U) with = max0,1— ((r — s)/2)).
The modulei‘/z\(oo’oo)(r,s)/Ef\(oo’oo)(r,s)P is isomorphic to
2(00,00 m 2(00,00 m
(X7 )™ H(ER ()™ (Dy I = A),

whereA is them x m-matrix Ag + Aq with

0O 0 O ... 0 01 0 ...0
AO— 0 ; Al— 0
0 0 0 0 0 1
P P Py 1 0 0 0
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The matrixAg is of order(1, i) for the functiona: N — N equal toa(i) = i
while the matrixA; is of order(1, 1) for the same function. Asgl; is nilpotent of
orderm, the matrixA is of medium ordef1, /) with x/ = 1 — (r — s)/2m. So
we apply Proposition 3.2.3 td and get the result. O

The symplectic structure of the manifold*A is given first by the structure of
cotangent bundle t& which gives a canonical 1-formy (hence a structure of
homogeneous symplectic manifold) and second by the acti@i ohf the fibers of
A which gives a Euler vector field ah whose principal symbat’ is well defined
onT™*A up to a multiplicative constant [18].

These data are equivalent to the canonical 2-form of the symplectic manifold
T*A and the two action&ly and H, of Section 1.3.

The 1-formw and the functiorF' define onT™* A a structure of bihomogeneous
symplectic manifold and to each bihomogeneous symplectic isomorphism is asso-
ciated an isomorphism (ﬁi(oo’oo)(r,s) and of€%(r,s) which is called a ‘quantized
bicanonical transformation’ ([18] theorem 2.9.11).

From this we can transform Theorem 3.2.4 into the following corollary:

COROLLARY 3.2.5.Let f be a bhihomogeneous holomorphic functiorifom and
@ a 2-microdifferential operator whose symbolfisLetn be a point off™* A where
w, dF anddf are linearly independent

(r,s)

Let P be a2-microdifferential operator such that, ™’ (P) = f™. Then there
is an isomorphism neay

5%00700)(7“,5)/5/%(00700)(T,S)P ~ (gi(OQOO)(7’78)/5/%(00700)(7’75)@)7”'

In local coordinates we have = Xz; dz; + X717 dr; andF = ¥7,7". The
corollary may be applied, for example, fo= 71" and@ = t¢1 if n is a point where
(12,...,7q4) # 0.

Let us consider a manifold and denoteX’ = X x Z, Y’ =Y x Z and
N =Ty, X' =Ty X x Z. Itis proved in [29, Thm. 5.3.1. Ch. ll] that, if a coherent
Ex-moduleM has a supportiff™ X x Z, thenfs, ® M is completely determined
by its inverse image oX by j: X — X’. The corresponding result is true here
(the inverse image of &, (r,s)-module was defined in [18]):

THEOREM 3.2.6.f M is a coheren€?,(r,s)-module with support if™*A x Z
there is a canonical isomorphism

2(00,00 2(00,00 —1 %
gA(/ )(T’S) ®5i, (r,s) M=¢ (/—>A )(T75) ®Q_1£[2\(T',S) 0 JM,
with o: T*A x Z — T*A, m: T*A x Z — X' and

gjz\go_cifo)(r,s) = E/Z\Eoo,oo) (r,s) ®7"_1£X/ W_lgxlgx.
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This theorem is a direct consequence of Theorem 3.2.4 with the same proof
as the corresponding result of [29]. By restriction to the zero section’of
we get the following proposition:

PROPOSITION 3.2.7.1f M is a coherent D?,(rs)-module such that

2(00,00)

Chy/(rs)(M) C T*A x Z there is a canonical isomorphisr), (r,s)
®’Di, (r,s) M = DJZ\(’O—O;/c\w) (rs) ®Di(r,s) JM.

3.3. EQUIVALENCE THEOREM FOR2-MICROLOCAL EQUATIONS

We assume now that the codimensiortofs 1. We fix local coordinategr, t) of
X such thay” = {t = 0} and thus coordinatgg:, 7) of A and(z, 7, z*, 7*) of
T*A.

ThenA is locally isomorphic tdv” x C andT*A to T*Y x CZ.

In the following proposition we consider a matrik of operators ofD3 (rs)
independent of*. This means thatl commutes with the operatdp; or that the
symbols of the elements of are independent af*.

The sheafD? (r.s) is the restriction ta\ of £2(rs) and the ordefo, ;1) has the
same meaning as in Section 3.2.

SuchamatriXi(z, 7, z*) will be said of medium ord€(, 1) if there exists some
q € Nsuchthatany productgtermsA(z, 70, z*)A(z, 7@, 2*) ... A(z, 7D, z*)
is of order at mostqd, 1).

PROPOSITION 3.3.1LetV be an open subset of andU = { (z,7,z*,7*) €
T*AN |z eV, 7#0}.

Let(r, s) be two rational numbers such tha s < r < +oo and A be a(m x
m)-matrix of 2-microdifferential operators irD? (r,s)(U) which is independent of
7* and of medium ordefl, ) with 1 < 1.

For eachs’ > s, there exists o/ an invertible matrixR in Di(R’OO)(T,s') with
coefficients independentofand multivalued in- such tha{t D,/ — A)R = RtD;.

Proof. We first add a variable and apply Proposition 3.2.3: We considet
X x CandY’ =Y x {0} C X’ with coordinatesz,t,z), A’ =Ty, X' ~ A x C
and the open sét’ = {(z,7,(, 2%, 7*,(*) €e T*AN' |z € V,7 #0,{ #0}.

The partial Legendre transform {n, z, 7,¢) onT* X" is given by

=1, 5 = 57 Y1 = Tc_l’ Y2 =2+ tTC_la = _t<> 2 = C

It defines a homogeneous isomorphism betw&eand the conormal” to the
submanifoldY” = {(z,y) € X | y2 = 0} and a bihomogeneous canonical
transformation® from T*A’ to T*A” given by

r=z, *=z" y1=7C1 m=(

yi=-7C =0l
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Itis provedin[18, Thm. 2.9.11] that to any bihomogeneous canonical transform-
ation® is associated a ‘quantized’ canonical transformation, i.e., an isomorphism
of sheaves of ringg2,(r,s) — ®~1£2,(r,s) which preserves orders and principal
symbols. It is shown in [20] that this transformation extends uniquely to sheaves
52(00,00)

A (r,s).

So, we can choose a quantized canonical transformation associdtechich
exchangesD, andy,D,, and now we are in the situation of Proposition 3.2.3
which gives an invertible matri® in £2°°°°) . 5) such that D,, — A)R = RD,,
and R(y1 = 1) = I. The matrixR is defined as a multivalued function in
because Proposition 3.2.3 is global on simply connected open sets.

As A commutes withe andt, it commutes withD,, andy,, so the same is true
for R by uniqueness.

Coming back to variableg, t) by the inverse quantized canonical transform-
ation, we find a matribx(z, z*, 7, ¢) with coefficients irfigoooo)(r,s)(U/) (muilti-
valued in7/¢) which is invertible and such that

(tDt — A)R = RtD; and R‘TZC =1.
In fact A is defined near the zero section BfA’ and is thus a matrix of

DZ(oo,oo)
A (r,s).
This equation may rewritten as

<%) R(1,¢) = A(T)R(r,¢) and R(r,7)=1.

We now want to find a solution to the initial problem as the valu&of, {) at

a point¢ = (p.
Lets’ > s andé such that < § < (s’ +v)/(s + v), we have for ali > 0 and
k<0
Nk 1 (=R
P- / < ( i—k X
B L GR EEy ) P G

This proves thatP satisfy the conditions (2.7.1) as a sectionllﬁgﬁf)(r,s/)
and we may apply Proposition 2.7.1. So, we fix samme C and(y and define the
value of the matrixi at the point{ = {o. We get a matrixky with coefficients in

Di(R’OO)(r,s/) and it is clear from the definition that

(2) i) = (2) 0 = [ (2) ] .

Onthe other hand, we know from Proposition 2.7.2 th@t) Ro(7) = (AR)(7, 00)
and also thaRo(7)R™(7,00) = [RR™|(r,00) = Id which proves thaRy is an
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invertible solution to the initial problem. O

Remark3.3.2. The proof of the proposition shows that the maftikas coeffi-
~2(R,00

cients in the subshedf, )(r,s’) (Definition 3.1.2).

Remark3.3.3. If we replace Proposition 2.7.1 by Proposition 2.7.3, we get
Proposition 3.3.1 for a matrixd of £2(».«) and the solution® is in £2%%) . ),
more precisely i€2"% . [C].

3.4. THE LIMIT CASE

We want to prove that the result of Proposition 3.3.1 is still true wdien s.

LEMMA 3.4.1. Let A be a matrix satisfying the conditions of Propositia3.1
and M be the cokernel

2 m (tDy—A) 2 m
(Di ()" —— (DR(rs)™ — M — 0.

Lets’ such thatr > s’ > s.
Then the canonicalsurjectivg morphismCy, v (rs) — Cyx(r.s') induces an
isomorphism

(M, Cy | x (ns) = RHOMpz (. (M, CY x ().

r,8) 7,8)

The result is clear ifA = 0, hence Proposition 3.3.1 gives an isomorphism
between solutions iy y (s") and iNCy, v (r) foranys’ > s” > s. The problem

is to gets” = s.

Proof. Following the beginning of the proof of Proposition 3.3.1, we add
a variablez. Keeping the same notations we find an invertible matrix of 2-
microdifferential operator®(z, z*, 7, ¢) such tha(tD,I — A)R = RtD;.

Letu be a section o¢C§‘§|X(r,s/))m in a neighborhood of a point = (xzq, 7o) of
Ty X solution of (tD; — A)u = 0. We haveD;R~Yu = R™Y(tD,I — A)u = 0.
Henceu = Rv for some section of (Cy, . (rs)™ satisfyingtDyv = 0.

There exists some > 0 such thaw is defined for|xz — xo| < ¢, 7 # 0 and
¢#0.

We want now to define the values@&ndR at a point(y. We apply the second

part of Proposition 2.7.1 and choose somso thatRy = R({p) is a section of

D/Z\(E’;o) (r,s:e/4).

Proposition 2.6.2 shows that= Rouvg on |x — zg| < €/4.
The microfunctionyg is a section o‘C%X(r,s/) satisfyingtD;vg = 0, hence of

the form f(x)6(~2(t) where f is a holomorphic function o™ ands(~¥ (¢) the
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microfunction of symbol 17. Sow is in fact a section ofy},  (r.s) and the same
is true foru ato.

We proved that ifu is a germ of(CQ‘ilX(r,s’)m at a pointo of 7y- X and satisfies
(tD; — A)u = 0, then there is a uniqué solution of the same equation in
(Cyx(r9))™ ata whose image ifCy y (r.s))™ iS u.

In the same way, we can prove ti{aD; — A) is a surjective morphism on the
germs of(Cy, x (rs))™.

COROLLARY 3.4.2.The conclusion of Propositia®3.1 is true fors’ = s.

Proof. The canonical projectiop X x Y — X defines a projectiog: Ty X x
Y — T3 X and an injective morphism of sheaves of riggaD3 (r,s) — D3 .y (r,s).
This means that we consider an operatot¥bas an operator oX x Y constant
in the second variables.

In this way the operatoftD; — A) of Proposition 2.5 may be considered as
a matrix of operators oD% (r.s) which satisfy the same hypothesis. Applying
Lemma 3.4.1 we get

RHOM;-1p2 ;. ) (M, CgR;xyp(xy(TvS))

<: RHom(jlei(T,S) (M, Cngxylxxy(r,s’))’

(M is the module defined yD; — A as in the lemma).
Applying the functoRI'r: x to this isomorphism, we get

2(R,00 ~ 2(R,00 ,
RHOM; 12 ) (M, DARR) () & RHOM; 172 . (M, DA ).

The action ofD3 (r,s) on Di@f\o)(r,s) defined here is, by definition, the action
of D2 (r,s) considered as a subring @fé@j’\o)(r,s). A solution of (tD; — A)R =
RtD, is a section oﬁ{omq,lpi(,,ys) (M,Dé@f\o)(r,s')), hence it is a section of

Homq,lpﬁ(rvs)(/\/l,fo(ﬁj’\o)(r,s)). (The same argument has been used in [11,

Sect. 3.2].)

We have proved that for any satisfying(tD; — A)R = RtD;, there exists®’
in Di@f\o)(r,s) satisfying the same equation and whose ima@ﬁﬁ_’?)(r,s’) ISR
and now we have to prove th&! is invertible.

Let S be a section oDZ™%)(;.5) whose image iD2™ ) is R~1. Then

RS = I + @Q wherel is the identity and?) is a section ofD,Z/(?ff\o)(r,s) which

vanishes irﬂ)é{ﬂif\o)(r,s/). So,(@ is very decreasing and it is easy to show that the

seriesy_ Q™ is convergent and defines an inversd to ) in Df}%ﬁ")(m.

This proves thaf?’ is invertible. O

The proof of Theorem 3.1.1 is now the same as the proof of Theorem 3.2.4 using
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the same division theorem [18, 2.5.2] and replacing Proposition 3.2.3 by Corol-
lary 3.4.2.

THEOREM 3.4.3Let M be a coherenfx or D/Z\(r,s)-module defined on an open
subsetl/ of A. We assume thath,(r,s) ¢ Sy and thatM is provided with a
goodF,s-bifiltration whose bigraded module is free of finite raNkover O [z*].

ThenD2®) (. o) & M is locally isomorphic tq D25 (¢ /A=) . 5 1) N

Proof. If M is a&x-module we replace it b3 (r,s) ® Ex, SO we may assume
now thatM is a coheren’Df\(r,s)-moduIe.

The bigraded ring oD3 (r,s) for the bifiltration F;,; is isomorphic taD [z*, 7*].
We denote byv)/z\(r,s) the subsheaf ab? (r,s) of operators with symbol independent
of 7*, its bigraded ring i€ [z*].

Letus,...,uy be a set of local sections ¢¥f whose classeg;, ..., uy is a
base of the associated bigraded moduletgas a0, [z*]-module.

Theorem 2.5.3 of [18] shows that the morphisn{D3 -,5))Y — M defined by
u1,...,uy iS an isomorphism oﬁi(r,s)-modules which respects the bifiltrations
(with fixed shifts due to the fact that the are not of orde(0, 0)). We may modify
the bifiltration so that all the; have order0, 0).

The operatotD; (whose symbol is7*) is an endomorphism oM, hence
there exists a matrid of the same order assuch thatD,u = Au with v =
(u1,...,un). With the notations of Section 3.2, this ordef1s1).

The morphism(D3 (r,s))™ /(D2 (r,s))™ (tDt — A) — M is clearly an isomor-
phism.

On A, the hypersurface, of T*A is equal to{ 7* = 0} and by definition
Chy (r, s)(M) is the support o7+, ® 1 gr M. Hence, it is contained in* = 0
and there exists some such that7*)™u = 0. This means that the principal symbol
JX’S)(Am) vanishes hence that the principal symboHois nilpotent.

So, as in the proof of Theorem 3.2.4, the matfixs the sum of a matrixdg
of order(1, 1) whose principal symbol vanishes and, hence, is of oftigr) with
uw=max0,1— ((r —s)/2)) and of a matrix4; of order(1, 1) which is nilpotent
of orderm, henceA is of medium ordef1, i/) with ' =1 — (r — s)/2m.

We may apply Corollary 3.4.2 and find an invertible matf»of Di(R’OO)
such thatR~1(¢tD; — A)R = tD,. This shows that

(rs)

DIE) gy @ M~ (DA (1,5)™ | (DAF) (1,5)™ (tDt — A)
~ (DIZ\(ROO) (r,s)/’DIZ\(]R’OO) (r,5) tDt)Na

which proves the theorent), is invertible onA). O
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4. Vanishing Cycles

4.1. DEFINITION

Let X be a complex analytic manifold arid be a submanifold ofodimension 1
of X. We denote byA\ = 73X the conormal bundle t& and setA = 73X =
TyX —Y,mA—Yandr: A — Y.

If Ais any sheaf of rings, we will denote y(.A) the derived category of the
category of leftA-modules and byD,(.A) the subcategory of perfect complexes,
i.e., of right bounded complexes which are locally quasi-isomorphidimuaded
complex offree A-modules, the bounds being uniform on the underlying space.

When A is a coherent sheaf of rings which is regular, i.e., satisfy the Hilbert
syzygy theoremD,(.A) is equivalent to the subcategory &f(.A) of bounded
complexes with coherent conomology and is also denoteBgyd). This is true
in particular for the sheavé3y and€x considered here. We will denote BY(.A)
andD;,(A) the corresponding categories for right modules.

If M is a sheaf ofd-modules, it is identified with the complex& M — 0
with M in degree 0 inD(.A). Conversely, ifM is an object ofD(.A) and if all its
cohomology groups vanish except in degree 0, we say/has$ ‘concentrated in
degree 0’ and identifyM with the sheaf%(M).

A left A-module which lies inD,,(A), i.e. which admits locally a free bounded
resolutions will be said to be a perfedtmodule. If A is coherent, then the perfect
A-modules are coherept-modules. The contrary is not true in general (because
coherent modules do not have bounded free resolutions) but this is true for all
coherent sheaves considered here.

The sheabgﬁf)(r,s) has been defined in Section 2.3 for e&cls) such that

r>s>1as
D}Z/(?E?\O)(r,s) = (Eyﬂxb\) ®5X|A D/Z\(R’Oo) (r,s)
= Wﬁloy Or-104 Di(R’OO)(r,s).

Itis a(7—1D$°, £52|4)-bimodule onA and ift is a local equation of, we have
D}Z/((Hiio) (r,s) =~ D/Z\(]R,oo) (r,s)/tDi(R’oo) (r,s).

DEFINITION 4.1.1. If M is an object ofD(Ex ) we set

2(R,00
Bir) (M) = DY ) @)y MU
d(r,5)(.) is a functor fromD(Ex|,) to D(7~1D5®). Itis a kind of inverse image
byi: Y — X. B B
If M is an object ofD(Dx), we will define®(rs)(M) = P(r,s)(Ex @r-1p,
7 IM).
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We have defined the vanishing cycle in the derived category. In that way, this
definition is always valid. In the following theorem, we show that, under suitable
conditions, the complex of vanishing cycles offa-module is a singleDy®-
module.

In the following theorem, the variet§, is the subvariety of A defined in
Section 1.2.

THEOREM 4.1.2L et (ro, so) be a rational numbers withy > so > 1 and M be
a coherent left £&x-module (or a coherentD3(r,s)-module) such that
Cha(ro, s0)(M) C Sy. Let (r,s) € Q? be such thatrg > r > s > s and
o > S.

(i) The restriction toA of ®(-s)(M) is an object opo(ﬂ’_ng;o) which is
concentrated in degre@and independent df, s) such thatg > r > s > s
andrg > s.

(i) f NRis an\(R’OO)(r,s)-module there is a canonical isomorphism

RHOmSX (M,NR)|A = RHomﬂHD? (‘i(r,s)(/\/l), (I)(N]R))’

with (V%) = DIEY (0) @1y N
A b

The point (i) means that the torsion grouﬁsrfi(ww(r’s)(D,Z/@f\o)(r,s),M)
vanishes outside the zero sectiomoif & 1 and thatb(r,s)(M) = Tory(...) is
a perfecbr”ngo-module. This module has a local presentation by fw’e’éDgo-
modules, hence is locally of the form A/ for some perfecDse-module NV
(Here7r”1 is the inverse image in the category of sheaves, nét-afodules!)

If ¢ is a local equation fol”, then ®(r,s)(M) is the kernel of the surjective
morphismD2™°°) . o & M L DEE) . o @ M.

To prove the theorem we need a lemma

LEMMA 4.1.3. Let M be a coherent Ieijz\(r,s)-moduIe such tha€hy (r,s)(r,s)
(M) C Si. ThenM has locally a finite resolutio® — £, — L;,—1 — -+ —
Lo — M — 0, by module<; satisfying the hypothesis of Theor8m.3.

Proof. If a moduleM is such that CR(r,s)(M) C Sa, then, for any section of
M, the same is true for the modulg u. We assume # 0,henceSy = {7* =0}.
Thusu is annihilated by some microdifferential operatbwith o—/(\’"’s) (P) = (%)™,

We take a finite setu, ..., u,) of local generators oM and corresponding
operatorsPs, . .., P, and setl = ®&x /Ex P;. The morphisnC — M is surject-
ive and its kerne/M’ satisfy the same property @4. Iterating the procedure, we
get long resolution€y — Ly_1 — --- — Lo — M — 0 of M by modules_;
of the same type a8 which satisfy the hypothesis of Theorem 3.4.3.
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We now have to prove that this resolution may be truncated. We assume that
N > 2n,andreplace the complexby0 Ko, — L2, 1 — -+ — Lo — M — 0,
where/lC,, is the kernel ofL,, — L2, 1. We get an exact sequencel@i(r,s)-
module and the associated bigraded sequence is an exact sequénge: of
modules, hence, by the Hilbert syzygy theoremiCgyr is a projective of finite
type and thus a stably fre8, [x*]-module. So there exists an integesuch that
grkon, @ (Op[z*])? is free.

Let N = (D3 (rs) /D3 (rs) t)? and consider the sequence

0— Koy ®N — Loy 1N — -+ — Lo— M — 0.

This sequence is exact, all modules satisfy @h)(.) C Sa and, by construction,
the bigraded modules are free (exceptg). O

Remark4.1.4. This proof is very similar to the proof of the existence of finite
free resolution foD x or £x-modules (see [31], for example) and with a little more
work, we could prove that the maximal length of the resolution of the lemma is
n — 1 instead of 2.

Proof of Theoremd.1.2. The proof of the theorem is a consequence of
Theorem 3.1.1 and is very similar to the proof of [21, Thm. 2.1.1].

First of all we have to define the morphism (ii).

As DA%, o is a (m=1D, DA%, o))-bimodule, we have a canonical
homomorphism of righD3™>°) ;. s)-modules

DAE®) () — HOM, —1pes (D22, o, DA, o)),

which sends the unit dDi(R’OO)(r,s) to the identity morphism.

Let M(r,s) = Di(R’OO)(r,s) ®ey M, then using [21, Lem. 2.3.1], we define the
following morphisms

RHOmg, (M, NF)

= RHosz<R,oo M(r,s),NR)
A

)(7“75)(
— RHom,Di(R,oo)(r’s) (M (’I", 3)7

2(R,00 2(R,00
RHOM, g (DYER 0, DYEF (9) @A)
2(R,0c0
= RHorrl,T_1D$ (DY(<—A )(r,s) ®H1‘)i<ﬁ’°°)(r,s) M(T, 3)7
2(R,00
,DY'(HA )(7‘,5) ®11‘)12\(R»00)( 8) NR)

U

= RHOW—lD;O@(hS)(M)a B(NF)).
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We have thus defined a canonical morphism
RHOMe, (M, N™) = RHOM, —1pe (D(r)(M), DNT)).

Now the proof of the theorem is local @hand we choose local coordinates ¢)
on X as in the previous section.

Let us first prove the theorem whewt = £x. y. We know from Section 2.3

that M(r.s) = D352 (r.0).

Letj: Y xY — X x Y be the canonical immersion, this defines an exact
sequence 8- Oxxy B Oxxy — j Oy yy — 0 and by microlocalization

-1 R t AR
0—m "Oyxy — CYxY\XxY - CYxY\XxY -0,

with 71 T3y X XY — Y X Y. As Exxx(rs) is flat onEx . x, we apply the
tensor product by¥ x . x (r,s) and get, for allr, s), the exact sequence

O — 7TI:LOY><Y — ngy‘xxy(T,S) l) C&XYLXXY(T’S) — O (411)

and now we apply the functd{%;X(.) ® ng;l) and get the exact sequence

0— 7T_1D§./O — DIZ\OE:;O) (r,s) i> DIZ\OE:;O) (r,s) — 0.

In fact, we just need this exact sequence locally and we could get it by an
elementary calculation on the symbols of Section 2.3.

This proves tha®(r,s)(Ex._y) = 7 1D§° for any (r, s) and that (i) is true in
this case.

If V% is aD2®>)(,. o-module, we have

RHOMe, (Ex oy, N¥) = RHOMe, (Exy,Ex) ®g, NF
= Ey_x ®%X NE = &’(./\/R)
= ]RHornﬂ.—l'D;o (7T_1D§./o, i(N’R)),
becaus®Homg, (Ex—v,Ex) = Ev—x ([29]).
The theorem is now proved foWl = £x. y and we assume now thatl is any
D3 (r,s)-module such that Gi{ro, so) C Sx. Lemma 4.1.3 gives a resolution

O—-Ly—LN 11— —Ly—>M—=0,

by modulesZ; which, by Theorem 3.4.3, are such tifat-,s) is locally isomorphic

to some power oD2%5%) . ).
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As Di(R’OO)(r,s) is flat OnDlz\(r,s) this gives an exact sequence

0 — (D) g)py — (D2F20)

AH;O ))owl

(r7s

— e — ( lz\(ﬁlo/vo)(r,s))po — M(r,s) — 0.
We proved thaRHomD%R,oo) (m)( i@ﬁ;o)(r,s), Di(&o/o)(r,s)) = 171D§?, hence

the morphisms in this exact sequence are given by matricss]dﬁg}o.
We have a commutative diagram

0 0
0— (& DFE)yy AN, AL (A TIDEY sy (M) —— 0
0 (Di(ﬂ_?’;O)(r,s))pN —’AN —>A1 (Di(§’$)(r,.e))po —_— M(r,s) —0
t t t
0 ——r (Di(]E’;O)(r,s))pN A s A (Di(§’$)(r,s))po —_— M(r,s) —0
0 0 0

which gives the theorem:

(1) The middle and low lines are exact sequences, henté(r,s) — M(r,s) IS
surjective.

(2) The vertical lines are exact sequences, hence the higher horizontal line is exact
and thusb(-,s)(M) is a perfecbr’_ng’/o-moduIe.

(3) The isomorphism_;(r,s) ~ (DIZ\QE;;O)(T,S))W is given by a matrixRk from
Proposition 3.3.1 which, by Corollary 3.4.2, does not dependros) such

thatrg > r > s > sg and thUS&)(r,s)(M) is independent ofr, s) as a
7~ 'Dge-module.

(4) The diagram proves that locally(r.s) ~ D35 . 5) ©r-ipee B(r,s)(M).

Moreover, this diagram proves that for any- 0, Tori(D/Zﬁ;;o)(r,s), B(r.5)(M))
vanish, hence the equality is true in the derived category:

M(T,S) ~ DIZ\(%)C;O) (r,s) ®%’71D§° ‘i’(r,s)(M)
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If N®is aD/Z\(R’OO)(r,s)-module, we thus have

RHOMe, (M, NF)
_ R
— RHomDi(R,oo)(T,S)(M(r,s),N )
2(R,00 I
= RHomDIZX(R’OO)(T,S) (DA(EY )(T‘,S) ®]7L.‘./—lfD}o/o (P(TVS)(M)’NR)

= RHomﬂ./—lfD}o/o (@(T,S)(M),

RHOM _o(z,00) (D,Z\(f;ff )(T,s),./\/ )
D) (r,s)
— RHomﬂ,flpﬁo(é(r,s)(M), B(rs) (N)). O

If we replace Theorem 3.1.1 by Proposition 3.1.3 and d@a&?\o)(r,s) from
Da{%io)(r,s) as in Definition 3.1.2, we get

PROPOSITION 4.1.5f Chy (r.s)(M) C S, then

&)(r,s)(M) = 7512/(%?\0)(7"75) ®I(L‘5X|A) (M’A)[_l]

If M is abounded complex éfx-module, we denote by Ghr,s)(M) the union
over alli of Chy(r.s)(H'(M)) and by D, ,(€x) the subcategory ab?(Ex) of
the complexeg\ such that CR(r,s)(M) C Sy.

COROLLARY 4.1.6. ®(s)(.) is an exact functor fromD, ) (Ex|;) to
D, (7' 71Dg9).
This is a direct consequence of the theorem.

We define now a functob(r,s)(.) from D (DA 5| ) to D,y (x'~*D52) and
a functor©(r,s)(.) from Dp(w”ngo) to Dp(D/Z\(R’OO)(r,s)) by

(M) = DY) ey, (M1,

(r,8)
O0(N) = DREF 00 &, e ).

PROPOSITION 4.1.7If M is an object ofD, (D™ ()| ;) which is locally

equal to atensor produdPi(R’oo)(r,s) ®" £ for some object of D, (x| ), then

M = O(r,5)®(r.s)(M). If N is an object ofD, ('~ D) thend (r5)O (r.s)(N) =

N.
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Proof. We know from the proof of Theorem 4.1.2 that

DZ(]R,OO)

2 )
VX 00 @ DALY ()

r,5)

(R, (R,
- RHomDi<R,oo) (o )(DA(E;O) (rs), D A(E;o) (r,s))

— 7' D[-1],

This proves the second part of the proposition. To prove the first part, we have to
define a canonical morphism fromt to O (r,s)®(r,s)(M).
In fact, Theorem 4.1.2 shows that

RHom,Di(R,oo) (Ma @(T,S)@(T‘,S) (M))

(r,s)

= RHomﬂth? (‘i(r,s) (M), &)(r,s)@(r,s)q)(r,s)(./\/l))
= RHOM, -1 (®(r.5)(M), D(r,5)(M)).

The identity ofd(r,s)(M) defines a canonical morphist — O (r,s)®(r,s)(M)
which is an isomorphism. O

The microlocalization oﬁ(r,s)(M), hence its characteristic variety may be calcu-
lated directly fromM, in fact we will prove a ‘2-microlocal’ Theorem 4.1.2.

The immersioni: Y — X defines morphismg™*y <2 (T*X) xx ¥ =%
T* X, while the projectiont: T3:X — Y givesT*Y < (T*Y) xy A % T*A.
We denote byrp: T*A — A andry: (T*Y) xy A — A the canonical projections.

As Y is of codimension 1, the variet§, is the union ofwz‘l(Y) and of
(T*Y) xy A (Y is identified to the zero section df).

Let 25500 = 77 (Eyv_xla) D1 ln) o 12BN g 1t is a

(w1ese, g—lgi(R’oo)(r,s))-bimodule.

THEOREM 4.1.8Let M, rg and sg satisfying the hypothesis of Theordrh.2.
The cohomology groups 553?\0)(7’,8) ®L_1£X 7 *MvanishonT*Y) x (A)
1

except in degree-1. We denote the nonvanishing group/bp (.s)(M).

-®(r,5) (M) is aleft perfecto—1£9°-module on(T*Y') xy (A), hence locally
isomorphic tocw— 1N for some perfecEy®-module V" and does not depend on
(r,s) suchthato > r > s > spands < ro.

The restriction ofu-®(r.s)(M) to the zero section of T*A is ®(rs)(M) and

D) (M) = @ EF ® 1 7 1 (rs)(M).
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Proof. Using the proof of Theorem 4.1.2 we have just to prove the theorem
whenM = £x .y, and thus the exactness of

0— e — g2 o L g2 0. (4.1.2)
The functorur; x applied to the sequence (4.1.1) gives an exact sequence

0— w168 - 2080 L 2000 -0 (4.1.3)

and the global sections of this sequence on the orbits gfive (4.1.2). O

Let ¢ be the projection: T*Y — Y. The characteristic variety of By -module
N is equal to the support &y ®,-1p, ¢ N and, asty” is faithfully flat oné&y,
it is equal to the support @® ®,-1p, ¢ V.

So we can define the characteristic variety dP&-module " as the support
of &7 ®y-1pee ¢ V. If Fisa perfech’_ng}O-module, it is locally constant on
A and locally of the formr’~*A with A a perfectDy*-module. The characteristic
variety of F is independent of the choice @f. In factew—1Char\) is equal to
the support of~1£¢° By ~1pr-1pge 71~ LF. We define this set as the characteristic

variety of 7 and denote it by ChéaF).

COROLLARY 4.1.9.1f Chy(ro, so)(M) C Sy, the characteristic variety of
®(r.5)(M) is equal to the support ¢f-®(r,s)(M) that is to the microcharacteristic
variety Chy (r,s)(M) of M.

To prove the corollary we have just to prove that the suppomt—étr,s)(/\/l) is
equal to the microcharacteristic variety.
As Chy (r,s)(M) is the support Of/%(r,s) ®ﬂglgx szl/\/l according to the defin-

ition of [18], and asz\(Roo)(r,s) is faithfully flat on glz\(r,s) [20], it is the support of
g/z\(R,OO)(T7S) ®ﬂ—*lg 7T2_1M-
2 X

To prove that this sheaf am:@(r,s)(/\/l) have the same support, we may use
the same proof as Theorem 4 1.2 or prove that Proposition 4.1.7 is still valid with
DAE)(, ) replaced bye ™), 5) which is easy.

In fact, with the same proof as Theorem 4.1.2 we haveMfsatisfy the

hypothesis of Theorem 4.1.2 and® is agjz\(R’Oo)(r,s)-module there is a canonical
isomorphism

Q_lRHom,r_ng (7'('_1./\/1, NR)

= RHOM, 1500 (11-B(r,5) (M), p-B(NF),
with
B = 17 E ) ey 0 NN
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4.2. MONODROMY

We proved in the previous section that, Ml is a coherentx-module with
Chy(r,s)(M) C Sy, then®(r,s)(M) is locally constant on the fibers of: A — Y.
In other Words,rf(r,s)(/\/l) is isomorphic tor’ "IN for someD5°-module N on
any simply connected open subsetAofAs A is a complex fiber bundle of rank
1 overY, it is provided with a canonical orientation. This defines a canonical
endomorphism of monodromy &r,s)(M) which will be denoted by

In order to define this endomorphism in the derived category, we use Proposi-
tion 4.1.5 to defin@(r,s)(M).

The endomorphism of monodromy (r,s) iIs well defined as this sheaf
has the property of unique continuation, hence it induces an endomorfphism
the object(r.s)(M) of D,,(x'~*D52) for any M in Dy, ¢ (Ex|;)-

Vanishing cycles are usually defined as a sheaf dnstead of a sheaf of as
we did here. If an equation df is given the two points of view are equivalent:

Leto be a continuous section af= 7% X, that is a continuous map Y — A
such thatr’ o = idy. Such a section ol is equivalent to a’*-equation ofY’.

As &)(r,s)(/\/{) is locally equal tor’ A/, the sheab—1®(r,s)(M) is a sheaf on
Y of Dy°-modules with locally free resolutions.

(1R 00)

DEFINITION 4.2.1. Lets be a continuous section 8 X and letM be an object
of D, 5)(€x). Then the complex ofanishing cycl~e3 of type,s) of M alongY is
the object ofD,(D$°) given by ®(r,s)(M) = o~ 1d(r,s)(M). It is provided with
the endomorphism of monodroniy,

In this definition,o1 is the inverse image in the category of sheaves. If we
consider two sections; ando, thenO'Il(I)(r,s)(M) andO'Z_l‘I)(r,s)(M) are locally
isomorphic. N

Conversely, we may recovéx,s)(M) from ®(r,s)(M) and its endomorphism
Tif Misin D, . (Ex). Thisis clear if® (-.5)(M) is a single module. In the general
case where it is an object of the derived category, it is a little more complicated:
we have to derive the category of complexes provided with an endomorphism of
monodromy instead of the category of complexes (see [4]).

Let us still remark that®(rs)(.) is an exact functor fromDy, ,)(Ex) to
D%(Dy).

EXAMPLES 4.2.2.

(i) M=Cyx.
We haveD/Z\(]R °°)(r HROM = Cy|X r,s) (cf. 2.3) and thus, for angr, s)

(I)(r,s)(./\/l) = gyﬂx ®%X C&X(r,s)[—l] = 71—/*101/,
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henced(r,s)(M) = Oy with T' = Identity.

(i) M=Ex_y.
From the Proof 4.1.2 we have

EIv)(r,s)(./\/[) = 7T/_1'D§./O
and thusb(r,s)(M) = Ds° with T' = Identity for any(r, s).

(iii) Assume thatX = Y x C with a coordinatet on C. If M is the Ex-
modulex /Ex (tD; — &) with a € C thend(rs)(M) = '~ DT+, hence
P (r,s)(M) = D§° with T = €™ for any(r, s).

(iv) If MisEx /Ex(t?D; — 1) thend(r,s)(M) = D with T = Identity for
2>r>s>1landr =2> swhile ®(s)(M)=0forr > s> 2.

Moderate vanishing cycles of a specializasle or Dx-module have been
defined in[21] for modules which are specializable. Itis a coheretiby-module
denoted byd(M).

PROPOSITION 4.2.3.et M be a coherenf x-module which isg-specializable
for somerg > 1. Then for eachr > s > g there is a canonical isomorphism of
7 1De-modulest DS ®,-1p, P(M) = D(r,5)(M).

Proof. The sheafb(M) is defined in [21] as we did here f@r(-s)(M) but the
sheafelz\(R’oo)(r,s) was replaced by the SUbSh&if(oo,l).

Hence, there is a canonical morphismpof Dy -modulesb (M) — B(r,s)(M),
which gives the morphism of the theorem. N

When M = Ex._y, this morphism is an isomorphism becauBeM) =
71Dy and®(r,s)(M) = 71D,

Itis provedin[21] (Theorem 2.2.1) that¥1 is ro-specializable, theﬁﬁ(oo,l@
7~tM has (locally) a resolution by modules which are isomorphic to a power of
EZ(c0,1) ® mLEx _y which proves the proposition. o

4.3. DUALITY AND MICROLOCAL SOLUTIONS

If M is an object ofD'(£x), the derived category of the category of the right
Ex-modules, the definition of the vanishing cycles B(s) (M) =
2(R,00

M&% | DREP -1,

If M is an object ofD.(Ex), its dual is the objectM* of D’ (£x) defined as
M* = RHomg, (M, Ex)[dim X].

In the same way, iV € D,(D§°), then\™* = RHompz: (M, D§f)[dim Y] and
if N € D,(x'1D$0), then\'* = RHOM,, -1 (M, 7 ~Dge)[dim Y.

Applying Theorem 4.1.2 to Example 4.2.2 (ii) we get thatcommutes to
duality:
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COROLLARY 4.3.1If M € Dy, ,)(£x), we haved(r,s)(M*) = ®(r,s)(M)* and
for any continuous sectiom of A ®(r,s)(M*) ~ B(r,s)(M)*.

If we apply now the same theorem to example (i), we get the following corollary:

COROLLARY 4.3.2Let M be an object oD?(Ex) such thaiChy (r,s)(M) C Sy
and(r', sy withr > 7' > s’ > sandr > ¢, then

RHOmMg,, (M,C$|X(r’,s’))‘/\ = RHomw,_lpé,Vo((f(r,s)(M), ﬂ/_loy)
and if o is a continuous section df then
o TRHOMe, (M, Cy x (' s)) = RHOMpex (®(r,5)(M), Oy ).

Let us denote as in [21] b§y|x(r,s) the subsheaf odf&X(r,s) of the sections

which have a continuation along any path in the fiberdof> Y. Then in the
situation of Corollary 4.3.2, the sheéfr,s)(M) has this property of continuation
(Proposition 4.1.5), hence the two members of the isomorphism of the corollary
have it. This proves that

RHOrngX (M, 5ylx(r,s)) = RHorngX (M, C$|X(r75))

Let us denote by id the identity morphism &fr,s)(M) and by ®g(r,s)(M)
T—id
the mapping cone of the morphis(r,s)(M) -5 & (r,s)(M) in the cate-

- T—id
gory D%(Dy). More precisely, we consider the compl&x= Df}(ﬂiio)(r,s) it

D253 (1) in D(Ex) and definebo(r,s) (M) = T @ M.
The sheal’y x (r,s) is equal tm*ly*cgli‘X(r,s) with ~: Ty X — P}y X, hence
we have

COROLLARY 4.3.3.Under the hypothesis of the Corolla#y3.2 we have
RHOMe (M, Cy|x ()] = 7'~ RHOMpes (Po(r.s) (M), Oy).
The proof is the same proof as Corollary 3.1.8. in [21].

4.4. GROWTH OF SOLUTIONS

HereY is a complex submanifold oX of any codimension and is a coherent
Ex-module defined neak = 77 X.
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THEOREM 4.4.11 etU be an open subset @ X and letrg > sg > 1 be such
that Chy (ro,s0) N 72U C Sx. Then we have oty

RHOMe, (M, C x(rs)) = RHOMe, (M, Cy|x(rs)
= RHOMe, (M, Cy|x(ro,5)))

for any(r, s) suchthatrg > r > s > sgp andrg > s. _
Proof. The proof being local oX', we first choose a point* of 73 X. Then

after a quantized canonical transformation, we may assumdthﬁt has been
transformed into the conormal to a hypersurfac&oflhat is, we may assume that
Y has codimension 1 and apply the results of Section 4.3.

If now x* is a point of Y, we considerA = T;;X{O}X x C and M’ =
M & D¢ /Dct near the pointz*; (0, 1)) which is not on the zero section. We
apply the preceding result and we conclude as usually in this situation (see [31]
Section 2.8 for example). O

The restriction Ofcy|X(r s) to the zero sectioy” is equal toBy x(r) if 7 > s
and toBy | x {r} if r = s hence:

COROLLARY 4.4.2.Let M be a coherenDx-module and letg > sg > 1 be
such thatChy (r,50) (M) C Si. Then we have

RHOMp, (M, By |x(r0)) = RHOMp, (M, By |x(r))
= RHomp, (M, By|x{r})
= RHonbx(legY\X{50})

for anyr such thatrg > r > so.

Now we come back to codimension 1. Following [21] we consider several
sheaves of holomorphic functions and formal power series with exponential growth.

First, we denote by x|y the restriction td” of the sheal x and by(’)ﬁ its
formal completion alond”. We interpolate between them with the fami?y |y (r):

By definition,O x|y (r) is the subsheaf ai’r))ﬂ? of the elements which are written
in alocal char(xy, ..., z,,t) such that” = {t = 0} as

u= Zan(x)t" with Zan )1t/ ()"t < +oo.

n>0 n>0

Whenr = +oo, we setOxy(o0) = O)?\? and by definition we have
Oxy (1) = Oxy-

On the other side, we interpolate between the skigafy] of meromorphic
functions with poles orY” and the sheaOx (+y) = j71,0x (j: Y — X) of
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holomorphic functions onX with essential singularities ol with the family
Ox (+y)((r)) Of sections ofDx (xv) with growth less than expl/|¢|)Y/ ("),
Such functions may be written in coordinates as

u= Z an(z)t™  with Z an ()" ((—n)!)" "t < +o0.

nezZ n<0

We will also considerOx (+v)(r,s) = Ox(V)((r) ®oyx Ox|y(s) and extend
the sheafNxy of Nilsson class functions ol to Ny (rs) = Ox(=Y)(rs)

®ox+v] Nx|v-

COROLLARY 4.4.3Let M be a coherenD x-module such thaChy (ro,s0) (M) C
Sn and let F(rs) be one of the sheave®yy(r) Nx‘y Yy Ox Y (),
Ox (+Y)(rs) OF Nx|y(rs). Then the complex of solutlorHSHomDX (M, F(rs))
is independent dfr, s) such thatg > r > s > sp.

To prove this theorem, we first remark that Theorem 4.4.1 is still true for the
shealCy x (r.s) which is equal twly*cgli‘X(r,s). Then we use the exact sequences
of [21] Proposition 3.2.10 to conclude (see the proof of Corollary 5.3.7).

If we interpret Theorem 4.4.1 in terms of holomorphic functions, we get the
growth of holomorphic solutions in large sectors (i.e., larger thanit would
be very nice to have the corresponding results for small sectors. To do this, it is
necessary to translate Theorem 4.4.1 through Fourier transform and get results on
the specialization. This must not be very difficult with the results of Malgrange’s
book [24].

4.5. NONSMOOTH HYPERSURFACES

The sheaves of irregular vanishing cycles may be defined whismnot smooth.
The results are exactly the same as in [21, Sect. 3.3].

We denote byA = Ox(-Y) the vector bundle oveX whose holomorphic
sections are the holomorphic functions &nwhich vanish onY” at order 1. We
denote byr the projectionA — X and byA the restriction ofA to Y. On the
regular part ofY’, there is a canonical isomorphisinx 77 X.

LetU be an open subset &f andy be a local equation df onU. We consider
the graphmap: U — U x C = X given byg(xz) = (z, p(z)) and the subvariety

= U x {0} of X.

The functiony defines a trivialization\|;; ~ U x C and therefore an isomor-
phismg: Aly — T*X U x C.

If M isan object ofD(Ex), its direct image ig.M = Rg.(Eg._; ®g, M).

It is an object ofD (&) with support in the graph(U) of . If M is a coherent
Ex-module thery, M is a coherenf ¢-module.
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We denote byD,, ,(Ex) the subcategory oD’ (£x) whose objects satisfy
Chy. 5 (rs)(geM) C Sy ¢ and we defineb(r,s)M = G 1P(r,5)g. M, whereg—*
Y Y

is the inverse image in the category of sheaves.
The same proof as [21, Sect. 3.3] gives:

(1) The definition ofDy, ) (Ex) and®(-s)(M) are independent of the choice
of the equationp.

(2) @(5)(.) is an exact functor fromD, ,)(€x) to the subcategory of
D,(m~1DY) of object with cohomology supported by

(3) If a continuous nonvanishing sectionof A is given (i.e., aC'-equation
for Y) then®(s)(.) = o~ 1®(,5)(.) is an exact functor fronD, ) (Ex) to the
subcategory oD, (D%) of object with cohomology supported by.

4.6. SUBMANIFOLDS OF HIGHER CODIMENSION

The theory may also be extended to smooth subvarigtiescodimension greater
than 1 and also to smooth conic Lagrangian submanifoldsaf. The method is
the same as [21, Sect. 3.4] and we refer to it for details.

Let X be a complex analytic manifold anidbe an homogeneous Lagrangian
submanifold of 7% X = T*X — X. We denote by?A = A/C* the associated
projective bundle and by: A — PA the projection.

There exist om\ a shea®D® which is locally isomorphic to~Dg the inverse
image byy of the sheaf of differential operators of infinite orderioh.

If A =T} X, thenDY° is canonically isomorphic t9~1Dg? .

An operator adapted ta is a microdifferential operato® of order 1 whose
symbolf = 01(x, &) + Oo(x, &) + - - - in some coordinate systefn, &) satisfy:

(@) 01]ao = 0 anddy|p = 0.
(b) dd1 = wx modulolQ1 wherewy is the canonical 1-form df”*A and
the definition ideal of\ in T*X.

This definition does not depend on the local coordinate system and such an
operator always exists locally.

We defined (rs)(M) = (Ex /OEx) @k (DAF)(rs) @k M)[—1]. Thi

Ars) (M) = (Ex /OEx) ®éx (Dy (rs) ®¢, M)[-1]. This

sheaf is independent of the choice@®fis aD}°-module.

This definition is clearly invariant under quantized canonical transformations.
In this way, we may transform into the conormal of a smooth hypersurface and
prove that the results of the previous sections remain valid. We get:

THEOREM 4.6.1.Let A be an homogeneous Lagrangian submanifold" 6
and M an object ofD%(Ex).

Let(ro, so) be two rational numbers such that > so > 1andChy (ro,s0) C Si.
Let(r, s) suchthatg > r > s > sp andrg > s.
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(i) ®a(rs)(M) is an object ofD,(D3°) independent of the choice 6f and of
(r, s). Itis locally of the formy =1\ with A" an object ofD,,(D33).

(i) If M is an object oD, ,(£x) and N an object ofDi(R’oo)(r,s), then
RHOMe, (M, N) = RHOIT]ZSXO(&)A(T,S)(M), B 7 (r5)(N)).

(iii) If Y is a submanifold ofX andA = T;;X, then@A(r,s)(M) is canonically
an object ofD,, (71 Dgn).
(iv) If Y is a submanifold of{, then

RHO”]gX (M, C$|X(r,s)) = RHomy_lpm (&)A(r,s) (M), ’Y_lOPA).

(v) The characteristic variety oiA(r,s)(M) is equal to the microcharacteristic
variety Chy (r,s)(M).

5. Vanishing Cycles of Holonomic Modules
5.1. CRITICAL INDEXES

If M is a holonomic€x or Dx-module, we know (Proposition 1.4.1) that
Cha(r)(M) C Sy for anyr > 1 and (1.4.2) that Clyr,s)(M) C Sy if and
only if there is no critical indexg such thatr > ro > s. The sheaf of vanishing
cycles®(r,s)(M) is thus well defined as soon as there is no critical ind€x,in|.

In the case of holonomic modules, we set the following definitions:

cT){r}(./\/l) = &’(T,T)(M), cT)(r)(./\/l) = &’(T,T—E)(M),

(with 0 < £ <« 1 such thatM has no critical index it — e, ).
With these notations, the previous results may be stated in the following way:

THEOREM 5.1.1.Let M be a holonomi&€x or Dx-module and letl = rg <
ry<---<ry<ryy1= +oo beits critical indexes

(i) The sheaves of vanishing cyctes} (M) and ®(-)(M) are well defined as a
perfectr —1D3°-module for any- > 1.
(ii) If r; andr; 1 are two consecutive critical indexes and< r < r;1, then

D[} (M) = D) (M) = BHM) = Biriyy (M),

so that there is only a finite number of distinct sheaves of vanishing cycles and
P(r}(M) = O(r)(M) if r is not a critical index

(iii) The sheaf of vanishing cycl@s- s)(M) is well defined for anyr, s) with no
critical index in the intervalr, s| and equal tod(-)(M).

(iv) The characteristic variety (tﬁ{r}(/\/l) (resp.cf(r)(/\/l)) is equal taChy {r} (M)
(resp.Chy (r)(M)).
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If o is a continuous section df, we have the same results withinstead of®,
that is with sheaves @pg°-modules.

As the microcharacteristic varieties of holonorfiig-modules are Lagrangian,
the characteristic varieties of these modules are also Lagrangian.

Corollary 4.3.2 shows that the complex of soluti®¥gomg,, (M, C§‘§|X(r,s)) is
independent ofr, s) if r, > r > s > r1 for somek and is equal to the complex
of solutions of®(r) (M) in 710y

5.2. ADMISSIBILITY

A D{P-module N is said to be holonomic admissible (or simply holonomic) if
there exists some holonont2,--moduleNy such that\" = D§° ®@p,. No.

The characteristic cycle @fyis independent of the choice&df[11, Thm. 3.2.1]
and will be the characteristic cycle of.

If A is holonomic admissible, the complex of solutiaR&{omp,, (N, Oy)
is perverse and the modul§h, may be obtained from this complex via the
Riemann-Hilbert correspondence. This shows that holonomic admissibility is a
local property.

THEOREM 5.2.11f M is a holonomic€ x-module then, for any > 1, &{r}(M)
and ®(r)(M) are admissible holonomiP§°-modules. Their characteristic cycles
are equal to the corresponding microcharacteristic cycledof

@ ICh(@{r}(M)) = Chy(r}(M), @ 'Ch(®(r)(M)) = Chy(r)(M).

Proof. Let us first assume that! is r-specializable. This is always true for great
r [21, Thm. 1.1.4] and we may apply Proposition 4.2.3 and [21, Corollary 3.1.9]
to get the result.

Let us now assume = 1 but. M is not 1-specializable. Theorem 5.2.1 of [15]
shows that there exists a regular holonogticmodule Mg such thatf'f ®e¢,

M = EF ®gy Mireg The sheaﬂgﬁf)(r,s) is a right€P-module ifr = s = 1,
hence Definition 4.1.1 shows thé&{1}(M) = ®{1}(Meg).

A regular holonomi&x-module is 1-specializable [21, Thm. 1.1.4] (this result
was proved by Kashiwara and Kawa in [14]) and we apply the first casétg.

(If M is regular the result is also known from [27] and [6].)

Let us consider the general case. We fix local coordinates and look at the
maps,: (x,7) — (z,7") on the universal covering dfy; X — Y. The inverse
image bys, is well defined on the symbols 0‘F§|X(r,r) and defines a morphism
EXN sr_lC%X(r,r) — C$|X'

The sheaDz(R’oo)(r,r) has been defined cohomologically fr (r,r), hence
YA |X

we get a morphism of rings;: s 1D2%) .y — D) (11). When restricted

to £x this morphism gives a morphisgy: s 1€x — Ex[1/q] wheregq is the
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denominator ofr and £x[1/¢| is the sheaf of microdifferential operators with
fractional order. It is clear from the definition that for a® in £x we have
oD (s:P) = o) (P).

If M is a holonomic€ x-module, thers} M is a coherenf x [1/g]-module and
we haveCh, (1)(s* M) = Chy(»)(M). In particular Ch(1)(s*M) is Lagrangian
and as this variety is the tangent cone aldng the characteristic variety of M,
this shows that; M is holonomic.

The theory of holonomi€x [1/¢] is the same as that of holonongig -module
(see [30] for the details) and in particular there exists a regular holonggic
moduleMyegsuch that’k ®g, Mieg= EX ®g[1/4 55M. We may now conclude
as before becausi(r}(M) = 1)(sp M) = ®(1)(Myeg).

As O(r) (M) = Pfr—e}(M) and(ﬁ]A(r)(M) = Chafr—e} if € < 1, the same
result is true with®(»)(M). 0

The proof of Theorem 5.2.1 is rather simple but uses the deep results of Kashiwara
and Kawidi[14, 15]. We give another proof in Appendix.

5.3. INDEX THEOREMS

Let X be a complex analytic manifold* X its cotangent bundle anl be a
Lagrangian homogeneous analytic subs&foX. ThenX is a union of setﬁ“}jX
whereX; is a subvariety ofX’ andT’ X is the closure of the conormal bundle to
the regular part of(;.

Any positive cycles with suppors may thus be written a8 = >0y [T)*(]_ X]
with m; € N.

The Local Euler Obstructiorof  at a pointz € X is defined ass(r) =
> mj(—1)4mX; By (x), whereEy, (x) is the local Euler obstruction of; at
z. (See [3] for more detailsb}i(x) is a constructible function o/.

If M andF are two leftDx-modules, we will say thatM, F) has finite index
atz if all Exty, (M, F), are finite-dimensionat-vector space and then we will
sety(M, F), = >;(—1)7 dimeéxty, (M, F),.

It was proved by Kashiwara in [11] that#1 is a complex oD x-modules with
holonomic cohomology, theRHomp, (M, Ox ) is a complex ofC-vector spaces
with constructible cohomology and is a holonomi® x-module, itis a perverse
sheaf.(M, F) has finite index at each € X andx(M,Ox), = Eah(M)(x),

whereCh(M) is the characteristic cycle o¥1.

THEOREM 5.3.1Let M be a holonomi& x-module andY” be a submanifold of
X (of any codimension

(i) For any r € [1,+o00], RHOMg, (M,C%X(r,r)) is a complex ofC-vector
spaces with constructible conomology an= 77 X and a perverse sheaf
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on A = Ty X — Y. At each pointz € A we havex(M,C§‘§|X(r,r))x =

Eehy iy (®):

(i) If r, and r;,1 are two consecutive slopes 8ft, then for any(r, s) such
thatry, > r > s > rp_1, RHOMg, (M,C§‘§|X(r,s)) is a complex ofC-vector
spaces with constructible cohomology Arand a perverse sheaf ok It is
independent ofr, s) and at each point € A we haveX(M,C%X(r,s))w =

Egh, (rym) (@):

Remarks.3.2. Ifr = s = 1 this theorem has been proved by Kashiwara and
Schapira in [17], their method is purely geometric.

Proof. Assume first that € A. After a guantized canonical transformation, we
may assume that has codimension 1.

Corollary 4.3.2 shows th&Homg, (M, C%X(r,s)) is independent ofr, s) and
equal toRHompgs (P (r,s)(M), Oy ). Then we may use Theorem 5.2.1 and apply
the result of Kashiwara t@(r,s)(M).

We may also use directly Theorem 6.2.1 which shows that the characteris-
tic cycle of the sheaRHomg, (M,C$‘X(T,s)) as defined in [13] is equal to the
microcharacteristic cyclﬁy\(r,s)(/\/l). Then we apply the result of [13] which
calculates the index of a perverse sheaf from its characteristic cycle.

Regarding the zero section, we get the result by adding a variable. The proof is
the same as the proof of [21, Thm. 4.4.1] and we refer to it for details. O

On the zero sectio” of 7y X we havecgli‘x(,«,s)yy = Byx(n if > s and
Cy|x(nr)ly = By|x{r}, hence

COROLLARY 5.3.3.Let M be a holonomi® x-module and” be a submanifold
of X.

Foranyr € [1, +-oc], RHOMp, (M, By|x(r)) is @ complex of-vector spaces
with constructible cohomology adn.

If r, and r;_, are two consecutive slopes @f#f, then for anyr such that
rp > 1 > rp_1 we have

RHOMp, (M, By |x(r)) = RHOoMp, (M, By |x(r))
= RHomp, (M, By |x{r})
= RHomp (M, By |x{ri-1})-

At any pointz € Y, we have

x(M, BY\X(T))I = EGhA(r)(M) (),
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X(M, By | x{r})s = EahA{r}(M)(x)'

In this formula, we calculate the index &Homp, (M, By |x(r)) Which is a

complex only” throughChy (-)(M) which is a positive analytic cycle GR; X. This
is related to the fact that this complex has constructible cohomology but is not a
perverse sheaf.

We assume now that is a submanifold of codimension 1 i and we will
calculate the index as the Euler function of the difference of two positive analytic
cycles ony’.

The projectiom\ = 7y X — Y and the embedding — A define maps

TV L2 (TY) xy A 25 T*A,
TV L2 (T*A) x, Y 22 T*A.
The mapg1 andp, are submersions whilg andj, are immersions. With local

coordinategz, t) of X such that” = {¢t = O} andA = {(z,t,{,7) e T* X/ t =
0,¢ = 0} and the corresponding coordinatesz*) of Y and(z, 7, z*, 7*) of A,

we get
pl(x’x*’T) = (‘T’x*)a jl(x’x*aT) = ($,T,$*,O),
pZ(x’x*)T*) = (‘T’x*)a jZ(x’x*’T*) = (CC,O, .CC*,T*).

This proves that the union gi ((7*Y) xy A) and of j2((T*A) x, Y) is the
hypersurface, of T*A.

PROPOSITION 5.3.4.et M be a holonomi® x-module
The microcharacteristic cycl€hy (-) (M) has a unique decomposition

Chy(n)(M) = j1p7 181 (M) + japy 1S2(m) (M),

whereS; and S, are positive Lagrangian cycles @f*Y'. Moreover,S“vl(r)(M) is
the characteristic cycle 6b(r)(M).

The proof of this result is the same as [21, Thm. 4.5.2].

AN@ a direct consequence of the definition, we can see tﬂat the Egler obstruction
of Chy(r)(M) is the difference of the Euler Obstructions $f(r) and Sz(r). We
get

COROLLARY 5.3.5.Let M be a holonomi@® x-module and” be a submanifold
of X. Then at any point € Y, we havex(M, By |x(r): = E

Eg, ey (@):

S ®) —
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The indexy (M, By x (). is therefore the Euler function of the (nonpositive)
analytic cycleSi(r) — So(r). The same result is true withr} replacing(r).

LEMMA 5.3.6. Let M be a holonomi€x-module andr, s) such thattoo > r >
s> 1.

We assume that no slope g#t is in |s,r[, then RHomg, (M, Cy|x(rs))
is a complex ofC-vector spaces with constructible cohomology Bnand
X(M, Cyx(rs)) = 0.

Proof. Corollary 4.3.3 shows thakHomg, (M, Cy|x(rs)) is equal to the
complex of holomorphic solutions of a complex Dfy-module with holonom-
ic cohomology and a characteristic cycle equal to 0. a

Let z be a point ofY” andz* be a point ofA whose projection is:. We denote
by x(r) the indexy (M, By x (). given by Corollary 5.3.5, i.eEgl(r)

B, (®) and

@) =

x{rt = x(M, BY\X{T})m = Egl{,«}(M)(x) - Egz{r}(M)(x)-

COROLLARY 5.3.7.Let M be a holonomi® x-module and” a submanifold of
X of codimensiod.We have the following index theorems:

X(M, Oxjy )z = —Xx{r},

X(M, Ox[+Y](r))z = X(o0) = X{r},
XM, Ox (+Y)((1)) = X(r) — X(1),
X(M, Ox (+Y)(r,s))z = X(r) — X{s},
XM, Cy | x(r,s))a = X(r) — x{s}-

Proof. They are direct consequences of [21, Prop. 3.2.10] and the previous
results. More precisely, the exact sequence

0 — By|x{r} = ©+Cy|x(rr) = Ox|y(r) = 0
and Lemma 5.3.6 give the first equality while

0 — Byx(r) = Cy|x(rs) = Oxjy(s) — 0
and

0 — Oxy(s) = Ox(+Y)(r,s) = By|x(r) — 0
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give the others. O

We may extend the result @ x (r,s) to a submanifold” of codimension greater
than 1 and t&€x-modules

PROPOSITION 5.3.8Let M be a holonomic€x-module and(r, s) such that
+00 > r > s > 1. ThenRHomg, (M, Cy | x(r.s)) is @ complex ofC-vector spaces
with constructible cohnomology dfi> X and

XM, Cyix o) = gy 00 (8) — By ) (2)-

Proof. On the zero section df* X, the result is in Corollary 5.3.3, hence we
have to prove the result out of the zero section.

Corollary 1.6.4 of [15] shows that there exists some quantized canonical trans-
formationy such thatp(73 X)) is the conormal bundle to a smooth hypersurface
of X andy(ChaiM)) is in generic position.

So using a quantization of, we may assume that has codimension 1 and
Chat M) is in generic position. A result of Byk [2, Thm. 8.6.3] shows that there
exists a holonomi® x-moduleN such thatM = Ex ®,-1p, 7 IN.

So, we may assume thatl is aDx-module and apply the corollary. O

Let us remark that the exact sequence (iii) of [21, Prop. 3.2.10]
0 — Cyx(rs) — 5Y|X(7’75) - 5Y|X(7’75) —0

shows thaRHom(M,5y|X(r,s)) is not constructible itM has a slope ifs, .
Indeed, if it were constructible, then the indexamx(r,s) would be 0 and this
contradicts Proposition 5.3.8. The same is true/\f'gr‘y(r,s).

If there is no slope of thé>x-module M betweenr and s, they have both
constructible conomology. The index 6§ x (r,s) is given by Theorem 5.3.1 that
is Esi(r)(M)(x) while the index inVx |y () is given by the exact sequence (iv) of
Proposition 3.2.10 in [21] and is equaIES&z(r)(M)(x).

5.4. RECONSTRUCTION

THEOREM 5.4.1.Let M be a holonomicx-module or a complex ab.(Ex)
with holonomic cohomology. Le},_; andr, be two consecutive critical indexes
of M. Then, for eaclir, s) withry > r > s > r,_1 andry > s
2(R,00) ~ R R
D) (r,5) gy |y M| = RHOM: (RHomgX (M,CY‘X(r,s)),CYlX(r,s)) .

This theorem is a generalization of [21, Thm. 4.3.1] and is deduced from the
previous results in the same way.
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6. Appendix

We give here a proof of the results of Section 5.2 which does not use the difficult
results of Kashiwara and Kaw#§l4] and is more general as it is true for 2-
microdifferential equations.

6.1. A NEW EQUIVALENCE THEOREM

Theorems of the same kind as Propositions 3.2.3 and 3.3.1 may be proved when
D,, ortisreplaced byD; andx1. At points where the condition of Corollary 3.2.5

is not satisfied, these theorems are not true in the sﬂ?ﬁé%fo)(r,s) but only in

£2058) () (see Section 2.3 for its definition).

As in the previous sections, we consider a complex manifolf dimensiom,

a submanifold” of codimensioni and denote b\ = 75 X the conormal bundle
toY.

We consider a matri¥ with coefficients in the sheag (-,s) of 2-microdifferential
operators of finite order. We assume tHatommutes withD,,, , which is equivalent
to the fact that it has a symbol independent of\We keep the order of Section 3.2
and say thatd(z', 7, z3, 2'*, 7*) is of medium order(d, 1) if there exists some
g € N such that any product gfterms

A2 7, M\, ", TA(Z', T, A2, z'”, ). A T Ag» ', )
is of order at mostqd, 1).

PROPOSITION 6.1.1Let A be am x m-matrix of the sheaf? (r,s) of 2-micro-
differential operators which is independentgfand of medium orde(O, 1) with
u <1

There exists an invertible matrik with coefficients ir€3™* () commuting
with D,, and such thatz1/ — A)R = Rx;.

Proof. We use the same proof as for Proposition 3.3.1: We add a vagable
that is we considelX’ = X x C, Y’ = Y x C andA’ = T}, X'. Then we
make a ‘quantized bicanonical transformation’ and apply Proposition 3.2.3. In this
way, denotingr’ = (z2,...,2,_4), we find a matrixRy(z’, x*, y*, 7, 7*) with

coefficients irﬁi(/oo’oo)(r,s) solution of

(3?’{) Ry = A2, 2", 7,7")Ry.

A solution to the initial problem is the valuk of R, aty* = yg. To show that
such a value does exist, we use the same proof as for Lemma 2.5.1. Indeed, we

have defined?i(oo’R) (r,s) = ug}g?( (C;OXy‘XxX(r,s)) and we may copy the proof of
the lemma, replacing by Ty X x Ty X, Y by Ty X andOx by C3, vy x (:5).
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(), oy which is a subsheaf &7 .¢). 0

In this way, we find a solution iﬁi

Assume now that—d = 1. The matrixRs («*, y*, 7, 7*) is given by Proposition
3.2.3, hence satisfy the conditions of Lemma 3.2.2, and so fos’anys, R, is in
E2R) (. #)[C] (see the proof of Proposition 3.3.1) and thus its valug*at: y;,
ie., Risin E250 0 v)[C).

In the next proposition, we assume tiat= C?, Y = {(z,t) € X |t = 0}.

PROPOSITION 6.1.2.et P and(Q be two operators of (r,s) such thatr/((’s)(P) =

(T )N andaf(’s)(Q) =aM. LetL = E%(rs) /E2(r,5) P + E2(r,5)Q and assume that
L # 0. Then there exists some inteder- 0 such that

5§(R7R) (r,s) ®£12\(1",s) L~ (5/%(R’R)(T,s)/gi(]R’R)(TvS)t + 5/2\(R7R) (r’s)x)L'

Proof. We will denote in this proof by the shea{‘,‘/{(r,s) and by&F the sheaf

Ei(R’R) (r,s). We will also denote b¥ i, j] the subsheaf of of operators of order
1 for the F,.-filtration and;j for the F;-filtration. In particular, the operatar of
symbolr*isin&[qg — p,q — p'] if r = p/q ands = p’ /¢’ while the operatos: of
symbolz is in £]0, 0]. The hypothesis implies th&t is in E[N (¢ — p), N(¢' — p')]
while @ is in £[0, Q].

Using the preparation theorem [18, Thm. 2.7.2], we may write

P=F ((T*)N - Z Pk(.’IJ,T,(L‘*)(T*)k) ,

0<k<N

where E is invertible in £, each P, commutes withD, and o{""((7*)N —
YP.(7*)*) = (*) which means that the order & (x, 7, z*)(7*)* is at most
(N(g—p),N(¢' = p)).

We may also divide by P using [18, Thm. 2.7.1]QQ = AP + > ocpen
Qr(z,7,2z*)(7*)F the orders ofA and theQ,’s being such thab/({"’s)(Q) =
oV (AP) + 0" (£Qu(r)F). As ol(Q) = 2, we haver "™ (Qo) = =
while the symbol of orde(0, 0) of Q(7*)* is 0 if £ > 0. Finally we may assume
thatQ is equal toQ = =™ + Yooy Qr(z, 7,2%)(7%)*, whereQy(7%)* is in
£[0,0] and its symbol of ordef0,0) isO fork =0,..., N — 1.

The moduleg /£ P is isomorphic tae€™Y /N (tTy — A) wherely is the identity
matrix andA is the matrix
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01 0 0

A= . 0 | (6.1.1)
0 ... ... 0o 1
Po Pi ... ... Py

This isomorphism is induced by: £V — & defined byp(ag,...,ay_1) =
Ya;t! while its inverse is induced by: £ — £V defined byy(3) = (5,0,...,0).

Let £ be the subsheaf & of operators commuting witt,, i.e., of operators
having a symbol independent of. Thanks to the division theorem, the modules
£/EP andeN JEN (tIy — A) are both isomorphic t6’", hence the image of an
operatorR of £ in EN /&N (tIy — A) has a unique representationdH" .

This appliesin particulart@Q = xM+20<k<Nth’“ (recallthat* is the symbol
of ¢, hence they represent the same operator) whose imagei®yQ, 0, ..., 0)
which is equal tdz™ + Qo, Q1,...,Qn_1) modulo(tIy — A).

We may also calculate the image @): we havetQ = Qt — [Q,t] and the
symbol of[Q, t] is (3/07)Q while Qt = Qn_1t" + 2Mt + Socrn_1Qxt* 1 has
animage by equaltaQn_1P, 2™ +Qo+QN—1Py,...,Qn_2+QN—1Pyn_1).
So, the image of@ by ¢» may be written (modul@t/y — A)) in the form

(O,CCM,O,... )O) + (Q%’Q%""’Q}Vfl)’

where the order o} is ((1 —4)(q — p), (L —i)(¢' — p')) (i.e., Q'L is of order
(0, 0)) with the principal symbodrﬁ(’s) equal to 0.

The same calculation shows that the imagé®6f for 0 < k < N — 1 undery
is of the form(0,..., 2, 0,...,0) + (Q§, Q%, ..., Q% ;) whereQ¥ is of order
((k—1)(¢—p),(k—1)(¢ — p")) with the principal symbol 0.

The modulel = £/EP + £Q is thus isomorphic tE™ /EN (tIy — A) +
EN(zM Iy — B) where each eleme®;; of B is in £’ and of order((i — j)(q —
p), (i — 7)(¢" — p")) with principal symbol 0.

The preparation theorem [18, Thm. 2.7.2] shows that the matixy — B
may be written

eMIy — B(z,7,2*) = E | 2MIy — Z Bk(T,ZC*)CCk )
O<k<M -1

whereF is invertible and the elements of eaBh satisfy the same conditions about

the order thatB. (In fact the preparation theorem was proved for single operators

and not for matrices but its proof extends immediately to the case of matrices.)
Let X = N M. Ifwe consider the morphisiav, . . ., an—13-1) — Sa;tiad

from £X to £, we then obtain an isomorphism betwegn= £/£P + £Q and
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ERJER(tT — A') + EX (2] — B'), wherel is the(K, K)-identity matrix, A’ is the
(K, K) square matrix given by/ diagonal blocks equal to thgV, V) matrix A
and B’ is the matrix given by the same formula 4sin (6.1.1) but with eactP;
replaced by a matris;.

The matrixA satisfy the conditions of Proposition 3.2.2, hence there is an invert-
ible matrix Ro(z, 7, *) with coefficients inf* independent of *, i.e., commuting
with Dy, such thaio(tIy — A)Ry* = tIy. If Risthe(K, K') square matrix given
by M diagonal blocks equal ty, we getR(t] — A )R~ = t1.

The matrixB’ satisfies the conditions of Remark 3.3.3, hence there is an invert-
ible matrix S(z*, 7) with coefficients in¢ such thatS(zI — B')S~! = zI. As R
commutes with, we get an isomorphisi® ~ E8* /(SR 11+ €7 2U (z, 7, 2%)),
whereU = SR~ 1is invertible and commutes with,, i.e., is independent af*
andf® = ER @ L.

If U commutes with, £¥ is isomorphic by to &8 /(eI + % 2T) and
the proposition is proved but this is not the case in general, so we will now prove
that L has another representation wheié is replaced by a matrix commuting
with ¢.

The kernel o€ /EP — LisEQ/(EP N EQ) and, as a subsheaf 6§ EP, it is

supported by* = 0, hence there exits soni& with o—/(\’"’s) (Pp) = (7*)M and some
C such thatP1Q = C'P. We have an exact sequerntce Py A EJEP — L — 0.

The matrixR, defines an isomorphism betwegh/£* P andg®" /e*¢I and
for the same reason, there is an isomorphi@hie® P, = 8N /eRN T hence
there is an exact sequeng®"? /&8N A g®V jerlNyr  p® L,

Let F' be any(N1, V)-matrix with coefficients ir€® such that the morphism
A is equal to the right multiplication by'. Dividing F' by ¢, we may assume
that F' is independent of*, but¢F is in the module€®"¢I and thus we have
[t,F] = (0/07)F = Zt. As F is independent of, this meangd/or)F = 0 and
so F' is independent of, 7*, i.e., commutes with and D;.

RemarkThe sequence (4.1.3) shows that the subsheaf of opera&ﬁ@{@f (r,s)
commuting witht and D, is isomorphic to the she&f of microlocal operators on
Y. What we did is produce an elementary proof of the fact Hiamne= (E® /ERt,
ERJERE) = &F. So we have found an exact sequence

grFyjgrEyyp TP opk oKy
— (R + ¥ 2U (2, 7, 2%)) — 0. 6.1.2)

The second morphism being induced by the identit&]ﬂﬁlf proves that there exists
some matrixd such thatU(x, 7, 2*) = H(z, 7,2 )F(x, z*).

Let s’ such thatr > s’ > s, C > 0 and let us denote b§*[C] the sheaf
52(R,R)
Eyn s)][C].
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The remark after Proposition 6.1.1 shows that (for af)ythere exists some
C > 0 such thatS is a matrix with coefficients i€*[C] and Remark 3.3.3 shows
that the matrixR has coefficients i€ [C] for suitableC, henceU has the same
property. For the same reason, the morph&8meR P, = ERNl/eRNltI is given
by a matrix R; with coefficients in£®[C] for someC. So, the exact sequence
(6.1.2) is still defined and exact when the sh&fis replaced by the she&f[C]
and the equality U (x, 7, 2*) = H (z, 7,2*)F(x,z*) is an equality of operators of
ERC).

Proposition 2.7.3 shows that and H have a value at = 1 which is well
defined in, the morphisnt (z, 7, 2*) — U(x, 10, z*) being multiplicative. As
U is invertible we have

aU(x,1,2*) = H(z,1,2")F(z,z*) and U(z,1,z")U Y(z,1,2%) = I.

HenceUp(z,z*) = U(z,1,z*) is invertible and sazU(z,1,2*) = H(z,1,
z*)F(z,2*) belongs tof§ F(x, z*). ThereforexUp(x, 2*) belongs to the mod-
ule EX5 41 + EXF R (2, 2%).

Letus remark that operators&f are identified with operators 6f commuting
with ¢t and D; and that such operators areﬁﬁ(R’R)(r,s) for any (r, s), hence the
equalityzU (z,1,2*) = H(x,1,2*)F(z,z*) which was proved for som& > s
is true fors’ = s.

As Uy commutes witht, this shows that

i ERK/(ERKH + eFF xUo(z, 2" ) + ERKlF(:C, x"))

g,z
Yo ) Ry (eRKer 4 8K up 4 e¥ Ry (27)).

(We may divideF; by x and assume that it depends only.6n)
Our problem is now to show thdf; is a constant matrix. As we do not know
how to prove Conjecture 6.1.3, we remark that the previous proof is still valid if we

reverse the variablesandt. This shows that’® is isomorphic ta€®/ /(€%7t1 +
ER 2T + E*'G(r)). So, we have an isomorphism

X J(ERNHT 4+ ¥ T + MRy (2¥))
Z e® )R] + € o + 7 G(r)).

This isomorphism is given by the multiplication by a mat#AxWe may divide
Z by tI andzl so that its symbol is independenticdndx and then, exactly as it
was for F’, the symbol ofZ is also independent of andx*, i.e., Z is a constant
matrix and thereforé” andG are constant. This shows that is 0 or a power of
ERJ(ERt + ERx). O
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CONJECTURE 6.1.3. The modufg /&2 has no proper submodule.

(The corresponding result fék: is easy to show.)

6.2. MICRO-CONSTRUCTIBILITY

The sheaﬁ’f\(r,s) is provided with two filtrations which extend the filtratiod$
andF; of Ex [18]. If M is a coheren£? (r,s)-module, the multiplicity ofM along
an irreducible component of its support is defined with these filtration exactly as
in Section 1.3. IfM is a coherenEx-module, the multiplicity o2 (r,s) ® M is

the same as the multiplicity of the microcharacteristic cﬁm(r,s)(M).

THEOREM 6.2.1LetY be a smooth Lagrangian bihomogeneous submanifold of
T*A and Mg be a coheren£ (»,s)-module with supporE and multiplicity 1. Let
M be a coheren£? (rs)-module with supporE and multiplicitym. Let

M&)R = 512\(R,R) (r.s) ®5,%(7“,5) Mo and M" = Ei(RJR) () ®5i(r,s) M.

Then Homgi(m)(/\/lo,MR) is locally isomorphic to (Cy)™ and
Sxtfé2 (r,s)(Mo, M%) is equal to0 if j # 0. The canonical morphism
A

M]IO{ Rc 'HOmgi(m) (MO, MR) i MR

is an isomorphism

Proof. A similar result was proved by Kashiwara in [11] fo€&-module and
we follow Kashiwara’s proof.

We first remark that the theorem is invariant under ‘quantized bihomogeneous
canonical transformation’ of [18, Thm. 2.9.11], hence we may assume_tist

given byE = {($,7,$*,T*) € T*A|$l = x; = ... = x: = 7% = 0}
Let X’ be the submanifold ok given byz, = --- =z, = 0andj: X' — X.
Let

Y=X'nY,N =Ty, X" and ¥ = {(z1,7,21,7%) € T*A' |z1 = 7" = 0}.

The modulej* M is a coherenff\,(r,s)-module with support ir’ [18, Thm.
2.10.4] and its multiplicity isn. In the same way* Mg has multiplicity 1.

If the theorem is true fof* M andj* Mg, we use Proposition 3.2.6 to prove the
result forM and M.

So, in this proof, we may now assume tat= C? and¥. = {(z, 7, 2*,7*) €
T*A|z = 7 = 0}. We denote by¢ the sheafc2(.s) and by E® the sheaf
5/2\(R,R) (r,s).

Proposition 6.1.2 shows that( is isomorphic ta€® /&%t 4+ £%2 and we may
assume that g is equal tof /Et + Ex.
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A sectionu of M is supported ir* = z = 0, hence there exis8 andQ@ in £
such thatPu = Qu = 0,0\ (P) = (+*)N ando"(Q) = 2.

Let (ug,...,u;) be alocal set of generators.®, there exists, fof = 1,...,1,
an operatorP; such thatay’s)(Pj) = (r*)Ni and an operator); such that

aﬁ(’s)(Qj) = xMi. Let us denote byM; the direct sum\ty = @€ /EP; + £Q);.

The kernel of the morphisovl; — M satisfy the same properties.&$, hence
M is the cokernel of a morphisovi, — M; where M, is of the same type as
M.

By Proposition 6.1.2M5 (k = 1,2), is isomorphic ta(M§)™ wheremy, is
the multiplicity of M, and we have an exact sequernges)™2 — (M§)™ —
ME — 0.

As RHomgx (Mg, M§) = C, the morphism(M§)™2 — (M§)™ is given by
a constant matrix, hence we havg® ~ (Mg)™' .

We have to prove now that’ is the multiplicity m of M.

By definition of the multiplicity, the graded module #f is, generically ort,

a freeOpx;-module of rankm. Then, using the division theorem of [18, 2.7.1] we

conclude that generically is a free€-module of rankn (where€ is the subsheaf
of £ of operators commuting witl; andD,). Then if we extend the coefficients
to £¥ we get(M§)™ which shows thatn = m/. O

Let us say that ®$-module M is a holonomicD$?-module if it satisfies:

(1) The suppork of £ Dr-1p3e 71 M is a complex Lagrangian subvariety of
T*X.

(2) For any point of the smooth part oE and any holonomi€ x-module Mg
with supportX near¢ and multiplicity 1, near¢ there is an isomorphism
betweerts @, -1pe 7 M and(Ex ® Mo)™.

The numbern is the multiplicity of M onX. at€. Itis constant on the irreducible
components of the varie®y. In this way we define an analytic cycle with support
> which we will call the characteristic cycle d#1.

Kashiwara proved in [11] that any holononiity-module satisfies these prop-
erties, that is for any holonomiD x-module M, the D-module DS © M is
holonomic according to this definition.

Applying the morphism of vanishing cycles to Theorem 6.2.1, we get

COROLLARY 6.2.2L et M be aholonomi€x-module. Thé$°-moduled {r} (M)
is holonomic for any > 1and its characteristic cycle ivith : (T*Y) xy A —
T*Y) @ ICh(®{}(M)) = Chy{r}(M).

Moreover, the proof of the index theorem in [11] is still valid with no modific-
ation for holonomicD$-modules (one step of that proof being precisely to show
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that what we call here holonomie$e-modules satisfy the index theorem). So we
recover all the results of Section 5.3.

In fact, this proves that the complex of holomorphic solutions of these modules
is a perverse sheaf, so the Riemann—Hilbert correspondence shows that they are
admissible. This definition of holonomiPs-modules is therefore equivalent to
the definition of Section 5.2 but what we wanted to point out here is that the index
theorems may be proved independently of Riemann—Hilbert.
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