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Abstract. A specific singularity of a vector field on R3 is considered, of codimension
2 in the dissipative case and of codimension 1 in the conservative case. In both
contexts in generic unfoldings the existence is proved of subordinate Sil'nikov
bifurcations, which have codimension 1. Special attention is paid to the C°°-flatness
of this subordinate phenomenon.

1. Introduction
In this paper we study some aspects of a specific singularity of a vector field in
dimension three. We consider this singularity both in the general dissipative context
and in the world of vector fields preserving a given volume. In both cases the
singularity has low codimension, namely two and one respectively. So generically
in two, respectively one, parameter families of such vector fields this singularity
will be met as a bifurcation.

This singularity was studied earlier by e.g. Takens [16] and Guckenheimer [7] in
the dissipative case, while the conservative case was investigated by Broer [2], [3],
[4]. In these studies it has emerged that, for a C2-open class of unfoldings of the
singularity, so staying within the appropriate category, from this central singularity
there is a branching of two hyperbolic saddle points. The distance between these
saddle points grows parabolically in the bifurcation parameters. Each of these saddle
points has a pair of complex eigenvalues, corresponding to an invariant manifold
of dimension two. The other eigenvalue then, of course, is real and it corresponds
to a one dimensional invariant manifold.

Owing to the interplay of the two saddle points their invariant manifolds may
exhibit homoclinic intersection. Such homoclinic intersections are not transversal:
if it happens for one of the saddle points, then its one dimensional invariant manifold
is totally contained in its two dimensional invariant manifold. Note, however, that
this homoclinic phenomenon has codimension one.

The dynamics near such a homoclinic orbit has been analyzed by Sil'nikov [12],
[13]. See also [1]. If the eigenvalues of the saddle point satisfy some open condition,
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then this dynamical behaviour is very complicated: it involves shifts on an alphabet
with infinitely many symbols: the dynamics contains at least infinitely many Smale
horseshoes. In § 2, we present a brief description of this Sil'nikov bifurcation.

The main question of this paper concerns the occurrence of such .Sil'nikov
homoclinic intersections, appearing as subordinate or secondary bifurcations in the
generic unfoldings of the central singularity referred to above. We shall show that
for C°° unfoldings this occurrence is a 'flat phenomenon' in the sense that it can
be completely annihilated by a flat perturbation. Compare [15]. This implies that
there exists a dense set of such unfoldings which do not have Sil'nikov bifurcations
near the central singularity. In the complement of this dense set we shall construct
'persistent' examples of unfoldings exhibiting subordinate Sil'nikov bifurcations in
a codimension one set of parameter points, which accumulates at the point of central
bifurcation, see § 4. Our construction implies that this Sil'nikov phenomenon also
occurs densely. We use perturbation techniques as introduced by Broer & van Strien
[5]. The 'persistence' of the examples has to be understood in a delicate way as may
be guessed from the above. It can be expressed in terms of a strong Whitney topology.
Note, however, that our construction includes another proof of [7, theorem 5], which
states that the occurrence of Sil'nikov's bifurcation is also open in the weak topology,
if only one does not require these occurrences to be close to the central singularity.
(See § 5.)

We conclude this introduction with a few remarks:
(i) It is our conjecture that the results of this paper can also be obtained in the

real analytic case, using perturbation theory as introduced in [17].
(ii) Note that the flatness of the described Sil'nikov phenomenon implies that it

cannot be traced on any finite jet of the central bifurcation. This makes the
phenomenon rather unwieldy for physical applications.

(iii) Sometimes the dynamics near Sil'nikov's bifurcation has been connected
speculatively with the existence of a strange attractor. Mostly this is inspired by
numerical work. See e.g. [1]. Since however this Sil'nikov bifurcation may occur
both in dissipative and conservative systems, see below, and since in conservative
systems there can be no attractors, it seems that the presence of dissipation induces
a dynamics exceeding Sil'nikov's results, [13], concerning the shift. Compare recent
work of Tangerman involving a dissipative bifurcation of the horseshoe map.

(iv) In our construction of the flat perturbations we do not need Mel'nikov
functions to prove the existence of homoclinic orbits.

We thank A. Chenciner and F. Takens for stimulating discussions during the
preparation of this paper.

2. The SiVnikov bifurcation
In this section we describe briefly the Sil'nikov bifurcation for its own sake, partly
quoting from Sil'nikov [12], [13], Arneodo, Coullet & Tresser [1] and others.

In U3 consider a hyperbolic saddle point with eigenvalues e ± iS and — y: e, 8 and
y being positive numbers. Assume that e < y. Consider the situation where the one
dimensional invariant manifold of this saddle point, which corresponds to the
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eigenvalue - y, is a homoclinic orbit. (These conditions are modulo change of
direction.)

Note that this phenomenon has codimension one. This means the following.
Suppose that XM, fi e U, is a one parameter family of vector fields on R3 which for
/x = /i,0 possesses such a homoclinic orbit. Also assume that the homoclinic 'crossing'
happens with positive speed as /x passes through fi0. See figure 1.

FIGURE 1. Sil'nikov's bifurcation.

Then any one parameter family Y1*, /t e R, which is close enough to X*1 in the
C1 -topology, also exhibits such a homoclinic 'crossing' for some v0 close to /oi0. In
other words: this Sil'nikov bifurcation as a one parameter family is persistent for
C1-small perturbations.

Observe that the above fact is true both for dissipative and for conservative
systems. In the conservative case the condition e < y on the eigenvalues is automati-
cally fulfilled, since then the trace of the linear part in the saddle point has to be zero.

In order to describe the dynamics near the homoclinic orbit take a transversal
section S as depicted in figure 1. On a part of 5 the Poincare first return map is
well defined. At the moment of bifurcation, i.e. of homoclinic intersection, this map
possesses at least infinitely many horseshoes. In fact it is more complicated than
that: for a symbolic dynamics on the non-wandering set one needs an alphabet of
infinitely many symbols. In other words: the restriction of this Poincare map to (a
part of) its non-wandering set is conjugate to a subshift on an infinite alphabet. For
the vector field this yields an Axiom A basic set, containing a countable dense set
of hyperbolic closed orbits of saddle type.

3. The central bifurcation; normal forms
We now proceed to describe the singularity of a vector field on R3 which plays the
central role in our present study. We shall also present normal forms for unfoldings
of this central singularity, both in the conservative and in the non-conservative
contexts.

To this purpose consider on R3 a vector field which has the origin as a singularity,
where for some positive a the eigenvalues of the linear part are 0, +ia and -ia. In
Jordan normal form we may write for this linear part

(1)
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Evidently in the linear context such a singularity has codimension two, since it will
be met only in generic families of linear systems, if they contain at least two
parameters. Further observe that the linear system (1) has divergence zero: the
corresponding matrix has trace zero. If one restricts to divergence zero linear systems,
then this singularity has codimension one: it may occur already in generic one
parameter families.

Note that the linear system (1) generates rotations around the z-axis. The idea
now is to do the following: For any unfolding of the above singularity we successively
make the higher order terms of the Taylor series invariant under these rotations,
carrying out coordinate transformations. In the conservative case these transforma-
tions can be kept volume preserving. So the Taylor series achieves a normal form.
Here we follow techniques which go back to Poincare [10] and which were developed
further by e.g. Takens [16] and Broer [3]. To be more precise:

NORMAL FORM THEOREM. Let X = X^(^) be a C°° family of vector fields, where
£ = (x, y, z) varies over U3 and where fj, is a k-dimensional parameter. Suppose that
for /* = 0 the vector field in £ = 0 has a singularity with first order term (1). Then, up
to a C°°, ̂ -dependent change of coordinates, one may write X — X +p, where:

(i) in cylindrical coordinates r, <p and z the vector field X = X"( | ) has the form

{ 4>=f(r2,z,n)
r=rg(r\z,n)
z = h(r2,z,n),

expressing rotational symmetry; also g(0,0,0) = h(0,0,0) = (dh/dz)(0,0,0) = 0 and
/(0,0,0) = a, which means that the first order terms of (2) are (1);

(ii) p=p»{£) is flat in (£/ i) = (0;0)eR3xRk;
(iii) in the case where X = X**(£) has divergence zero, the change of coordinates

may be chosen volume preserving, such that both X = XM(£) and p=pM(f) have
divergence zero.

In the dissipative case we shall take k = 2, in the conservative case k = 1. Also we
shall assume that f(r2, z, fi)= 1 which can be obtained by a reparametrisation of
the vector fields, since a # 0. This is not an essential restriction. (For the divergence
free case this is not completely trivial; see Broer [2].) We also note the following:
apart from a formal procedure, which symmetrises the oo-jet of unfoldings in an
inductive process, the above theorem needs a Borel-like property which states that
for all formal power series there exists representing germs; see Broer [3].

4. Setting of the problem; main results
In this section we first specify a C2 open class of unfoldings of the central singularity,
which may exhibit subordinate bifurcations of the Sil'nikov type. We do this by
giving open conditions on the coefficients of the lower order terms in the normalised
Taylor series. See (2).

(a) The dissipative case. We consider the normal form (2) with two parameters, to
be denoted by fi and v. In this case we may obtain as an extra consequence that
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in (2)

f*(0;0)«|*<0;0) = 0.
dv d/J.

As a first open condition we require that

A rescaling of the parameters then leads to

Now, if we truncate (2) at order two, we obtain

!

<p = l

f=r{v-axz)

z = -fj. + bxr
2 + b2z

2 + b3/j,z + b4vz + bsfj.v,

where ax, bu b2, b3, b4 and b5 are real constants. As a second open condition - tq
be explained below - we require that

0<ai<2b2, bt>0 and &4>0.

We now have

LEMMA A. Under the above open conditions the symmetric vector field X^'", for
sufficiently small /t2 + v2 and positive n, has the following properties:

(i) X**'" possesses two hyperbolic saddle points s±(/x., v) lying on the z-axis with
z-coordinates ±Jfi/b2+O((fj.2+ v2)^);

(ii) the interval in-between S±(/JL, V) on the z-axis is a saddle connection between
the two saddle points;

(iii) in the (fi, v)-plane there exists a C00-curve T of the form v = m/x + O(/i5) as
/i JO, such that for (fi, v)eT the saddle points s±(fi, v) have coinciding invariant
manifolds of dimension two. The constant m is completely determined by the 3-jet of
Xat (0;0)eR3x[R2.

Proof. In (2) omitting the angular component <p = 1 we obtain a reduction
X = X*'"(r, z) to the (r, z)-plane. In X for / t > 0 we rescale the parameters, the
coordinates and the time in the following way:

e = S~lv, r=8~lr, z = S~lz and t = 8t,

so obtaining a system Xs'°(r, z)

dt
(4)

-4=-l+blr
2 + b2z

2+(b38+b4e)z+8(dlf
2z + d2z

3) + O(82 + e2)
dt

as 5 JO, e-»0 uniformly on compact neighbourhoods of OeR3. Note that the con-
stants cu c2, d, and d2 are uniquely determined by the 3-jet of X at (0; 0) e U3 xR2.
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Parts (i) and (ii) of the lemma follow easily from (4). To prove the remaining part,
consider the function

H(f, z) = fa(blb2r
2 + b2(a1 + bl)z

2-(al+b1)), with a = 2b2/ax.

It is easy to see that H is a first integral of the vector field X00. Let U{8, e) denote
the unstable manifold of the saddle point s_(5, e) of Xs'e, and S(8, s) the stable
manifold of s+(5, e) (see figure 2).

We denote the values of H at the points where S and U intersect the r-axis for the
first time by H(8, e; +) and H(8, e; - ) respectively. The values of 8 and e for
which S(8, e) and U(8, e) coincide are determined by the equation

(5) H(8, e;+)-H(8, e ; - ) = 0

from which we can solve e as a function of 8 using the implicit function theorem
(cf. the techniques used by Carr [6]). Note that 8 = e =0 satisfies the equation (5),
since t/(0,0) and S(0,0) coincide, constituting part of the ellipse

blb2F
2 + b2(al+bi)z

2-(a]+bl) = 0. O

Remark. The condition b4>0 imposed on the system (3) justifies the use of the
implicit function theorem to solve equation (5).

Geometrically the lemma means that for (/A, V) G T the symmetric approximation
X"" of the unfolding X"'" exhibits an invariant 2-sphere with the saddle points
s±(fi, v) at its 'north' and 'south' poles.

T: v =

FIGURE 3

This 'globe' minus the opposite pole is the two dimensional invariant manifold of
each of these two saddle points. Note that the size of this globe is of order -Jfi.

Within the 3-disc bounded by the globe there is a connection of the saddle points
s+(/j,, v) and s_(/u,, v) along the z-axis.
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northern hemisphere

southern hemisphere

homoclinic orbit

\ heteroclinic
orbit

FIGURE 4. 'Cut open' perturbed globe with Sil'nikov homoclinic orbit.

The condition 0 < a.\ < 2b2 ensures that both saddle points have eigenvalues which
satisfy the open condition necessary for the possibility of the Sil'nikov bifurcation.
See § 2.

Of course for the symmetric family X there will be no homoclinic intersections,
but the 'perturbation' X = X +p generically is not symmetric any more. In fact,
according to the Kupka-Smale theorem, see e.g. [9], for generic vector fields XM"
the invariant manifolds will be transversal. Slightly more subtle results hold in our
situation with parameters; compare [14] or [8]. To be more precise: for generic
'perturbations' X = X +p:
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(i) the saddle points s±(fi, v) are persistent and for sufficiently small n2 + v2 they
remain hyperbolic and satisfying Sil'nikov's condition;

(ii) the saddle connection along the z-axis breaks;
(iii) in the complement of a codimension one set of parameter points the two

dimensional invariant manifolds of the saddle points are transversal.
The transversality of the two dimensional invariant manifolds, described in (iii), is
depicted in figures 4a and b. (Figure 4b is a slightly modified version of [2, fig. 21],
also see [3, fig. 5]. Again we thank J. J. Duistermaat for his help in designing it.) In
the first case the invariant manifolds have empty intersection, in the second they
meet transversally along heteroclinic orbits.

Moreover these pictures correspond to a perturbation.p = pM"(f) and a parameter
point (fi, v) such that X*'" = X*-v +/>"" has a Sil'nikov homoclinic orbit. The
existence of such perturbations /> = />/i'"(£) is the content of our main result, the
dissipative version of which is formulated now. The proof is postponed to the last
section.

THEOREM OF THE EXISTENCE OF 'SIL'NIKOV UNFOLDINGS': DISSIPATIVE CASE. Let

X = X*'v{£) be any symmetric family which satisfies the above open conditions. Also
let F be as in lemma A. Then there exist flat perturbations p = />M'"(£) such that along
the curve F the family X = X +p possesses a sequence of Sil'nikov bifurcations. This
sequence occurs at parameter points (/*;, vt) e F, which accumulate at (fx, v) — (0,0).
Moreover in the (fi, v)-plane there exists an immersed C°° curve C, having possible
components, such that

(i) C lies in a wedge-shaped neighbourhood W of F in R2\{(0,0)}, of a width that
is flat in fj., as /x. JO;

(ii) the boundary of C has empty intersection with W;
(iii) the curves F and C intersect transversally at the points (fi,, p,), leN;
(iv) if the parameter pair (fi, v) moves transversally through the curve C, then

undergoes Sil'nikov's bifurcation.

C

FIGURE 5

Remark. See figure 5. The existence of the curve C follows from the earlier part of
the theorem using the same type of Kupka-Smale arguments as quoted before.
These arguments concern transversality (implicit function theorem) in the sense that
the homoclinic orbits cross the two dimensional invariant manifolds with positive
speed. See § 2.
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(b) The conservative case: In the second part of this section we consider the normal
form (2) in the conservative case, i.e. with one real parameter, to be denoted by fi.
In the first place we require as a generic condition that

and a rescaling of the parameter again leads to

f(0;0) = - l .
dfx

See above. Truncation of the normal form at order two then yields

(<P = 1

(6) < f=r(-alz+a2/x)

for real constants a,, a2, bt and b2. We now require the open condition

a, > 0 and b, > 0.

In this case we have (similar to lemma A):

LEMMA B. Under the above open conditions the symmetric vectorfield X, for sufficiently
small positive p, has the following properties:

(i) X*1 possesses two hyperbolic saddle points s±(/x) lying on the z-axis, with
z-coordinates ±V/i/a, +O(|/x|);

(ii) along the z-axis there is a saddle connection between s+(/x.) and s~(fi);
(iii) the two dimensional invariant manifolds of s+(fi) and s_(fi) coincide (if one

disregards the singularities s±(/t) themselves).

Proof: See Broer [2], [3]. In the conservative case the symmetric family X is
integrable, X*1 possesses the first integral

HM(r, z) = -^r2(-fi+^blr
2 + alz

2-2a2iJLZ + b2fi.
2)+h.o.t •

Remarks, similar to the ones made after lemma A, apply here. Things are a bit
simpler now, since there is only one_parameter involved. Again there is the X*-
invariant globe, with size of order v/i , in this case occurring for an open set of
parameter values. The north and south pole saddle point are connected along the
z-axis. We here recall the fact, mentioned in § 2, that the condition on the eigenvalues
necessary for the possibility of Sil'nikov's bifurcation, is automatically fulfilled in
this conservative (divergence zero) case.

Also here there is a Kupka-Smale theorem according to Robinson [11], implying
that for a generic divergence zero vector field the invariant manifolds will be
transversal. In our situation, with a parameter, it means that for a generic perturbation
P-p"U;) the vector fields X* = X* +P* have transversal invariant manifolds,
except for a discrete set of parameter values. Note that in this divergence zero
situation only the case of figure 4b can occur!
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We now formulate our main result for the conservative case:

THEOREM OF THE EXISTENCE OF 'SIL'NIKOV UNFOLDINGS': CONSERVATIVE CASE.

Given any symmetric family X which satisfies the above open conditions, there exist
flat perturbations p= />**(£) such that the family X = X +p possesses a sequence of
SiVnikov's bifurcations, taking place for parameter values /A {> (JL2

> ' ' ', accumulating
at fi=0.

(c) We conclude this section by making some general remarks concerning the
dynamics of the unfoldings discussed in the parts (a) and (b) of this section.

(i) Consider the saddle manifolds both for X and X = X+p, see figure 4. The
X-invariant manifolds remain within a certain neighbourhood of the X-invariant
manifolds and this neighbourhood collapses in a flat manner into the X-invariant
manifolds, as the point of central bifurcation is approached. (The X-invariant globe,
in turn, collapses parabolically into the central singularity.)

(ii) The 3-disc which is bounded by the X-invariant globe may contain quasi-
periodic flow. In the conservative case it is even established that the 3-disc contains
a vague attractor of Kolmogorov, see Broer [4]. For a definition of vague attractor
see Abraham & Marsden [0].

(iii) The two dimensional X-invariant manifolds have an effect of uncertainty
on integral curves which come close to them. If such an integral curve comes from
the 'outside', then the X-invariant manifolds may capture it and pass it to the
'inside'. Then, after an indeterminate amount of time, it may come out again, but
also it may remain 'inside' for ever after (as the parameters move also). This last
remark only applies to the case of figure 4b.

5. Denseness and persistence
We now present a description of the 'genericity' of our Sil'nikov unfoldings. The
'persistence' especially is problematic: we shall describe it in terms of a strong
C'-Whitney topology, or equivalently in terms of a specific topology on a space of
germs.

The conservative and the non-conservative case will be treated simultaneously.
We start with the central singularity as introduced in § 3. Let 3£ denote the set of
all C°°fc-parameter unfoldings of this singularity, situated at the origin of R3. As
before we take k = 1 in the conservative case and k = 2 in the non-conservative case.
In this section we consider a fc-parameter family of vector fields on R3 as a 'vertical'
vector field on R3xRk. Now we fix a relatively compact neighbourhood K of (0; 0)
in R3 x Rk. The set 36K is defined as containing all restrictions of unfoldings in %? to
the set K. Next let JK be the subset of 3?K defined by the open conditions on the
2-jet of the normal form, as specified in § 4(a), (b). Also we define 3K as the subset
of 3>K of which the elements have a symmetrisable germ at (0; 0) e R3 xRk, symmetris-
able by an appropriate change of coordinates. Finally let Sf denote the subset of
JK where the unfoldings exhibit our Sil'nikov phenomenon: every neighbourhood
of (0; 0) in R3 xUk contains an infinite number of subordinate Sil'nikov bifurcations,
occurring in a codimension one set of parameter points.
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We now formulate the main result of this section:

TOPOLOGICAL THEOREM: CONSERVATIVE AND DISSIPATIVE CASE, (i) J>K is a C2-open
subset of 3dK;

(ii) 3K is a C°°-dense subset of JK;
(iii) Sf<=J>K \3K is a Cx-dense subset of $K ;
(iv) if the elements of3£ are restricted to U3 x(R*c\{0}), then correspondingly £f is

an open subset of 3K in the strong C1 -Whitney topology.

Proof, (i) is trivial.
(ii) is an immediate consequence of the normal form theorem.
(iii) follows from the normal form theorem and the existence theorems in § 4.

In order to prove (iv) we observe the following (conservative case only, the other
case is analogous):
Let X = XM (£) be an unfolding in $K \3K, which for the parameter values fj.t> fi2>
• • •, accumulating at fi = 0, undergoes Sil'nikov's bifurcation. For fixed / e 1̂  we
consider the family X**, as /J. varies near /A,. The C1-persistence of the Sil'nikov
bifurcation then yields a neighbourhood W, of X = X^(^) in the set 3>K, such that
all families YeW, undergo Sil'nikov bifurcation at some vt near n,. Now define

then for all YeW one finds a Sil'nikov sequence vx > v2 > • • •. The normal form
theorem clearly implies that for all such Y the difference X—Y must be flat in
(f, fi) = (0; 0): the neighbourhoods W, 'decrease' as I increases. Now it is clear that
if the domain of definition is restricted to K n {̂ t > 0} the set W is a strong
C'-neighbourhood of X. •

Remarks, (i) Point (iv) in the above theorem points out in which way our Sil'nikov
phenomenon is persistent. We shall now describe this persistence in an alternative
way. To this purpose fix an oo-jet u of an unfolding in 3>K, taken at (0; 0) e U3 xUk.
Then define %(u) to be the set of germs at (0; 0) € R3 xRk of all unfoldings in J>K,
having this fixed u as their oo-jet. A natural topology on 3£{u) can be given in the
following way: For any germ p: (R3 xRk, (0; 0))-> (R, 0) of a flat C°° function, which
is positive except at (0;0) and for any arbitrary X e f ( u ) define the set

YP(X) = {Ye X(u): \\ Y(x, n)-X(x, M)||

+ \\DY(x, /*) - DX(x, M)| | < p(x, M) as germs}.

Evidently the sets VP(X) define a system of neighbourhoods for a topology on
3£(u). Equivalent to point (iv) in the above theorem we now may say that the germs
corresponding to the set Sf, having the same oo-jet w, constitute an open subset of

(ii) We conjecture that the property of not having such a Sil'nikov 'sequence' is
just as well persistent in this same way.

(iii) As a consequence of the above theorem we see that JK is an open set of
unfoldings, none of which is structurally stable: the elements in 3K and in $
are topologically different and both sets are dense.
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6. Existence proof
In this final section we shall prove the existence theorems from § 4, presenting
appropriate flat perturbation terms p for a given symmetric unfolding X, such that
X = X +p exhibits the Sil'nikov phenomenon.

Our main considerations are concerned with the case of figure 4b, which can
occur both in the dissipative and the conservative context, see above. We construct
flat terms which have divergence zero, since in that case the perturbation technique
is most difficult. It may be emphasised, however, that this also provides a proof of
the existence theorem in the dissipative situation!

At the end, moreover, we include a remark on the dissipative case which is
depicted in figure 4a.

(a) As before a point £ e R3 will be given Cartesian coordinates (x, y, z) or cylindrical
coordinates (r, <p, z), where as usual x = r cos <p and y = r sin <p. Following Robinson
[11] we start with divergence zero perturbations P = P"(£;) of type

(7)

z = 0,

where /3 = )3pi(f) is a bump function. We control the perturbation by writing

where 5 = S(fi) is a suitable function, flat for fi = 0. Also compare Broer [2].

(b) For the sake of convenience we rescale the coordinates by VjT, that is we
introduce new variables x, y, z, f and ip by

which implies that
r = rV/i and <p = <p.

In these rescaled coordinates the symmetric vector field XM blows up to

(8)

as /tlO, uniformly on compact sets containing the origin. Compare (6). Note that
now the invarint 3-disc under consideration has a size of order 1. In the limit for
/i 10 its boundary is the pure ellipsoid with equation
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Also consider the perturbation (7) in the rescaled variables. Its blown up version
becomes

1 d
\ffi dy

(9)
* = V/T dx
: = 0.

Observe that if />M(f) = S(/t)PM(£) is flat for (f; /A) = (0; 0), then its blown up version
is flat, uniformly on compact sets containing the origin, as ft 10.

(c) Our perturbation p=p^{$), which creates a Sil'nikov 'sequence', will be con-
structed in two steps. In the first step we perturb the two dimensional invariant
manifolds near the plane z = 0. In the second step we break the saddle connection
along the z-axis. Here we use the perturbation techniques from Broer & van Strien
[5].

The first step consists of the construction of a divergence zero perturbation Pf
with support in a flow-box of toroidal shape, centred at the circle x2+y2 = 2/bu

z = 0, which is near the equator of the X"-invariant globe and disjoint from the
z-axis. Pf can be made such that (for \x > 0 sufficiently small) each vector field in
the family has, for example, two heteroclinic orbits, along which the two dimensional
invariant manifolds of the north and south pole saddle points intersect transversally.

Finally we make the perturbation flat at (0; 0) e R3 xR by choosing a flat function
8l = S1(fi), which is positive for /x>0, and taking the first perturbation to be
pt = Si(fi) • Pf. Oberve that this perturbation does not affect the saddle connection
along the z-axis.

For the second perturbation p£ (I) = ^ ( A O P ? (f) we choose

(10)

where y is a bump function, which is C°° and nowhere negative, such that
supp (y) = [-2,2] and y(s) =1 for -1 < s< 1 (compare Broer & van Strien [5]).

FIGURE 6

In figure 6 we visualise the support of fi^, in rescaled coordinates and modulo
revolution around the z-axis. Note that in the doubly shaded area of figure 6 by
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(9) we have for P£:

since in this region the function j3M depends only on z.
The flat function S2= S2(/Ji) will be chosen later on; here we specify only that 52

must be positive for /x > 0.

(d) We proceed by formulating some properties of the perturbed vector field
X" = XM +p? +P2, /•<• positive and small. Our interest is in homoclinic intersections
connected with the south pole saddle point. Its one dimensional stable invariant
manifold is denoted by W^, its two dimensional unstable invariant manifold by W^.

First recall the facts that for sufficiently small, positive fj. we have

supp (pf)nsupp (/>2) = 0 and supp (p2l)n{z = O} = 0 .

The question now is what is the effect of the perturbation pf concerning the shape
of the set

(11) W^n{z = 0}.

In particular we are interested in the part of this where the integral curves leaving
the southern hemisphere hit the plane z = 0 for the first time. We denote this subset
of (11) by LM.

Let r and <p = <p be rescaled polar coordinates as introduced in part (b) of this
section. Assume that the angle <p has been lifted to R. The following then states
that asymptotically, as / t | 0 , the set L^ is a logarithmic spiral:

LEMMA C. There exists a positive flat function S3 = S3(/J.) such that for fi>0 and p.
sufficiently small the set L^ satisfies the equation

f= r(<p, n) where r(<p, fj.) = 53(/u,) e'
vJ>ia'

as <p -> co.

Remark. The symbol = here means that the expressions on both sides are of the
same order as <p -* oo.

Proof of lemma C: Let tt-ty^it) be one of the heteroclinic orbits of XM, obtained
by the perturbation pf. See part (c) of this section. At its intersection with the plane
z = 0 we take a one dimensional transversal section crM, which is totally contained
in W1^. Recall that dim (W^) = 2. Suppose that trM is chosen depending smoothly
on fj.. Now consider

sM = U * f K) ,

where Xf denotes the time t evolution of the vector field XM. Clearly

LM<=2Mn{z = 0};

LM is obtained from 2 / i n{z = 0} by taking 'first' intersections.
Next apply the A-lemma, see e.g. [9], to the north pole saddle point. It follows

that the set SM, being a cylinder on the curve t-^y^it), intersects a transversal
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section contained in the plane z = v l / a , - e along a logarithmic spiral with the
'same' asymptotic behaviour as the integral curve -yM. Consider the linear part of
the expression (8) near the north pole saddle in order to obtain this asymptotic
behaviour. This same behaviour translates to the plane z = 0, as can be seen e.g. by
using the blown up version of the first integral //M from the proof of lemma B. In
fact the integral curves are contained in level surfaces of H^, which are asymptotically
parallel to the z-axis. •

The effects of the perturbation p2 were studied by Broer & van Strien [5]. Consider
the integral curve of XM that is contained in the stable manifold W^ of the south
pole saddle point. Let R(/JL) be the r-coordinate of the point where this integral
curve enters supp (p2), the last time before its disappearance into the south pole
saddle point. Then:

LEMMA D (see [5]).

(e) We now finish our proof by constructing a 'Sil'nikov sequence'. In particular
we shall indicate how to choose the flat function S2 = S2(fi) once the perturbation
pt = 8,(/A) • Pf has been chosen. So we assume that pf is fixed in the way described
above. This provides us with a flat function S3 = S3(fi), as in lemma C. The choice
of the supports of pf and p% ensures the latter perturbation does not affect the
logarithmic spirals UM>o^M created by the former. We define (f(fjL), <p(fi)) to be
the point where the stable manifold W^ of the south pole saddle point of the vector
field

hits the plane z = 0 for the last time. A sufficient condition for the existence of a
homoclinic orbit of this vector field X11 is

(12) ( r V ) ^ U ) ) e i , -

So we have to choose S2 = S2(fi) in such a way that the corresponding curve
fi^(f(fi),<p(fi), jx) hits the surface [J 0L/J. infinitely often as /A | 0 . See figure 7.

FIGURE 7. \J^0 L^.

Analytically condition (12) reads: There exists a non-negative integer / such that

(13)
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Here r = r{tp,n) determines the logarithmic spirals L ,̂ see lemma C.
In other words, we have to ensure that our choice of S2 = 82(/A) gives rise to

sequences {/*,} of parameter values and {/,} of positive integers, such that /A, is a
solution of (13) with / = /,, such that fij 10 asy -» oo. We distinguish two main situations
(other cases are also possible):

(i) The sequence {/,} is unbounded; and
(ii) the sequence {/J is bounded.

In case (i) the distance r(/x) of the 'arrowhead' (r(fx), <p(fx)) and the z-axis shrinks
faster than any characteristic distance of the logarithmic spiral LM, as fxiO, while
in case (ii) this approach to zero has approximately the same speed.

Before we decide how to effect the situations (i) and (ii) we first observe the
following. In view of lemma D we write

(14) r(n)^82(n)J~^ as/ijO.

Moreover we note that the perturbation p2 does not cause large oscillations of the
arrowhead (f(fx), (p(fx)), in fact

(15) *(/i) = o(l) as^ iO.

Now, using (14) and (15) together with lemma C easily shows that case (i) will
occur if, for example, we take

(16)

In order to bring about case (ii) we restrict the angle <p to a bounded interval, and
we obtain

(17) f(?,Ai)«83(/*) as fi JO.

Then, in view of (14), (15) and (17) it is obvious that we can take S2 = S2(fi) such
that, for example

(18) f(M) = ?(?(/*),/*)-(l+sinO//*)) as/UO.

In this case we find ourselves in case (ii) with (, = 0 and /*,- = \/jir.
The homoclinic intersections, occurring for parameter values (x{ > fx2> • • •, with

lim^oo fij = 0, do not necessarily have to be 'generic SiFnikov bifurcations' yet, as
ix moves through the subsequent fij. This, however, can be arranged by carrying
out countably many small perturbations near the /i,, with disjoint supports and with
a flat sum. Compare [15] and the transversality arguments used above. This completes
our construction concerning the case of figure 4b.

Remark on the case of figure 4a. In the dissipative case we may, for example, take
the perturbation pf1" to be rotationally symmetric with respect to the z-axis, in such
a way that the two dimensional invariant manifolds behave as indicated in figure
4a. In that case the unstable manifold of the south pole saddle point of the vector
fields ATM>" +/»!*•" intersects the plane z = 0, near the z-axis, in finitely many circles.
These circles collapse into the point (x, y, z) = (0,0,0) as (//., v) -* (0,0), their radii
being of flat order in fj.2 + v2. Compare lemma C.
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Now we take the perturbation pf = 82(fi, v)P£" similar to the one described in
case (ii) above. In this way we create a Sil'nikov sequence along the curve F (see
figure 5). This sequence can be made 'generic' as described before, thus creating
the curve C of the dissipative existence theorem.
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