
Bull. Aust. Math. Soc. 83 (2011), 108–121
doi:10.1017/S0004972710000444

QUASILINEARITY OF SOME COMPOSITE FUNCTIONALS
WITH APPLICATIONS

S. S. DRAGOMIR

(Received 8 March 2010)

Abstract

The quasilinearity of certain composite functionals defined on convex cones in linear spaces is
investigated. Applications in refining the Jensen, Hölder, Minkowski and Schwarz inequalities are given.
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1. Introduction

Let X be a linear space. A subset C ⊆ X is called a convex cone in X provided the
following conditions hold:

(i) x, y ∈ C imply x + y ∈ C ;
(ii) x ∈ C , α ≥ 0 imply αx ∈ C .

A functional h : C→ R is said to be superadditive (subadditive) on C if:

(iii) h(x + y)≥ (≤) h(x)+ h(y) for any x, y ∈ C ,

and nonnegative (strictly positive) on C if it satisfies:

(iv) h(x)≥ (>) 0 for each x ∈ C .

The functional h is s-positive homogeneous on C , for a given s > 0, if:

(v) h(αx)= αsh(x) for any α ≥ 0 and x ∈ C .

In [3], the following result has been obtained.

THEOREM 1.1. Let x, y ∈ C and let h : C→ R be a nonnegative, superadditive and
s-positive homogeneous functional on C. If M ≥ m ≥ 0 are such that x − my and
My − x ∈ C, then

Msh(y)≥ h(x)≥ msh(y). (1.1)

Now, consider v : C→ R to be an additive and strictly positive functional on C
which is also positive homogeneous on C . The following result concerning other
bounds for a composite functional may be stated as well [3].
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THEOREM 1.2. Let x, y ∈ C, let h be strictly positive, superadditive and positive
homogeneous on C and let v be an additive, strictly positive and positive homogeneous
functional on C. If M ≥ m > 0 are such that x − my and My − x ∈ C, then[

h(y)

v(y)

]Mv(y)

≥

[
h(x)

v(x)

]v(x)
≥

[
h(y)

v(y)

]mv(y)

. (1.2)

As shown in [3], the above results can be applied to obtain refinements of the Jensen,
Hölder, Minkowski and Schwarz inequalities for weights satisfying certain conditions.

The main aim of the present paper is to study the quasilinearity properties of other
composite functionals and to apply the obtained results to improving some classical
inequalities as those mentioned above.

2. General results

The following result provides the quasilinearity property of a composite functional
when one of the components is additive while the other is either superadditive or
subadditive.

THEOREM 2.1. Let C be a convex cone in the linear space X and let v : C→ (0,∞)
be an additive functional on C. If h : C→ [0,∞) is a superadditive (subadditive)
functional on C and p ≥ 1 (0< p < 1), then the functional

9p : C→ [0,∞), 9p(x)= v
1−1/p(x)h(x) (2.1)

is superadditive (subadditive) on C.

PROOF. First of all, we observe that the elementary inequality

(α + β)p
≥ (≤) α p

+ β p (2.2)

holds for any α, β ≥ 0 and p ≥ 1 (0< p < 1).
Indeed, if we consider the function

f p : [0,∞)→ R, f p(t)= (t + 1)p
− t p

we have f ′p(t)= p[(t + 1)p−1
− t p−1

]. Observe that for p > 1 and t > 0 we have
that f ′p(t) > 0, which shows that f p is strictly increasing on the interval [0,∞).
Now for t = α/β (where β > 0 and α ≥ 0) we have f p(t) > f p(0) and consequently
((α/β)+ 1)p

− (α/β)p > 1, which is the desired inequality (2.2).
For p ∈ (0, 1) we have that f p is strictly decreasing on [0,∞) which proves the

second case in (2.2).
Now, if h is superadditive (subadditive) and p ≥ 1 (0< p < 1), then we have

by (2.2) that

h p(x + y)≥ (≤) [h(x)+ h(y)]p ≥ (≤) h p(x)+ h p(y) (2.3)

for all x, y ∈ C .
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Utilizing (2.3) and the additivity property of v, we have for any x, y ∈ C that

h p(x + y)

v(x + y)
≥ (≤)

h p(x)+ h p(y)

v(x)+ v(y)

=

v(x) · h p(x)
v(x) + v(y) ·

h p(y)
v(y)

v(x)+ v(y)

=

v(x) ·
[ h(x)
v1/p(x)

]p
+ v(y) ·

[ h(y)
v1/p(y)

]p

v(x)+ v(y)
=: I.

(2.4)

Since for p ≥ 1 (0< p < 1) the power function g(t)= t p is convex (concave), then

I ≥ (≤)

[v(x) · h(x)
v1/p(x)

+ v(y) · h(y)
v1/p(y)

v(x)+ v(y)

]p

=

[
h(x)v1−1/p(x)+ h(y)v1−1/p(y)

v(x + y)

]p
(2.5)

for any x, y ∈ C .
By combining (2.4) with (2.5) we get

h p(x + y)

v(x + y)
≥ (≤)

[
h(x)v1−1/p(x)+ h(y)v1−1/p(y)

v(x + y)

]p

which is equivalent to

h(x + y)

v1/p(x + y)
≥ (≤)

h(x)v1−1/p(x)+ h(y)v1−1/p(y)

v(x + y)

that is, by multiplying by v(x + y),

9p(x + y)≥ (≤) 9p(x)+9p(y)

for any x, y ∈ C and the proof is complete. 2

COROLLARY 2.2. Assume that X, C and v are as in Theorem 2.1. If h : C→ [0,∞)
is a superadditive (subadditive) functional on C and p, q ≥ 1 (0< p, q < 1), then the
two-parameter functional

9p,q : C→ [0,∞), 9p,q(x)= v
q(1−(1/p))(x)hq(x) (2.6)

is superadditive (subadditive) on C.

PROOF. Observe that 9p,q(x)= [9p(x)]q for x ∈ C . Therefore, by Theorem 2.1 and
the inequality (2.2), for q ≥ 1 (0< q < 1) we have

9p,q(x + y) = [9p(x + y)]q ≥ (≤) [9p(x)+9p(y)]
q

≥ (≤) [9p(x)]
q
+ [9p(y)]

q
=9p,q(x)+9p,q(y)

for any x, y ∈ C and the statement is proved. 2
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REMARK 2.3. If we consider the functional ψp(x) := v p−1(x)h p(x), then for p ≥ 1
(0< p < 1) and h : C→ [0,∞) a superadditive (subadditive) functional on C , the
functional ψp is also superadditive (subadditive) on C .

The following result provides upper and lower bounds for a value of the functional
9p,q in the case when the composite functionals are homogeneous.

COROLLARY 2.4. Let x, y ∈ C, h : C→ R be a nonnegative, superadditive and
s-positive homogeneous functional on C and v an additive, strictly positive and
positive homogeneous functional on C. If p, q ≥ 1 and M ≥ m ≥ 0 are such that
x − my and My − x ∈ C, then

Msq+q(1−1/p)9p,q(y)≥9p,q(x)≥ msq+q(1−1/p)9p,q(y). (2.7)

In particular,
M (s+1)p−1ψp(y)≥ ψp(x)≥ m(s+1)p−1ψp(y) (2.8)

and
Ms+1−1/p9p(y)≥9p(x)≥ ms+1−1/p9p(y), (2.9)

where ψp and 9p are defined as above.

PROOF. The proof follows from Theorem 1.1 observing, from Corollary 2.2, that
the functional 9p,q is superadditive and [sq + q(1− (1/p))]-positive homogeneous,
where s > 0 and p, q ≥ 1. 2

The following result also holds.

THEOREM 2.5. Let C be a convex cone in the linear space X and v : C→ (0,∞) an
additive functional on C. If h : C→ (0,∞) is a superadditive functional on C and
0< p < 1, then the functional

8p : C→ (0,∞), 8p(x)=
1

v(1/p)−1(x)h(x)
(2.10)

is subadditive on C.

PROOF. Let s := −p ∈ [−1, 0). For s < 0 we have the inequality

(α + β)s ≤ αs
+ βs (2.11)

for any α, β > 0.
Indeed, by the convexity of the function fs(t)= t s on (0,∞) with s < 0, we have

that
(α + β)s ≤ 2s−1(αs

+ βs)

for any α, β > 0 and since, obviously, 2s−1(αs
+ βs)≤ αs

+ βs , then (2.11) holds.
Taking into account the fact that h is superadditive, then by (2.11)

hs(x + y)≤ [h(x)+ h(y)]s ≤ hs(x)+ hs(y) (2.12)

for any x, y ∈ C .
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Since v is additive, then by (2.11) we have that

hs(x + y)

v(x + y)
≤

hs(x)+ hs(y)

v(x)+ v(y)

=

v(x) ·
[ h(x)
v1/s(x)

]s
+ v(y) ·

[ h(y)
v1/s(y)

]s
v(x)+ v(y)

=

v(x) ·
[
v1/s(x)

h(x)

]−s
+ v(y) ·

[ v1/s(y)
h(y)

]−s

v(x)+ v(y)
=: J.

(2.13)

By the concavity of the function g(t)= t−s with s ∈ [−1, 0) we also have

J ≤

[
v(x) · v

1/s(x)
h(x) + v(y) ·

v1/s(y)
h(y)

v(x)+ v(y)

]−s

. (2.14)

Making use of (2.13) and (2.14) we get

hs(x + y)

v(x + y)
≤

[
v(x) · v

1/s(x)
h(x) + v(y) ·

v1/s(y)
h(y)

v(x)+ v(y)

]−s

for any x, y ∈ C , which is equivalent to

h−1(x + y)

v−1/s(x + y)
≤

v1+1/s(x)
h(x) +

v1+1/s(y)
h(y)

v(x)+ v(y)

and, since v(x + y)= v(x)+ v(y), to

v1+1/s(x + y)

h(x + y)
≤
v1+1/s(x)

h(x)
+
v1+1/s(y)

h(y)

for any x, y ∈ C .
This completes the proof. 2

The following result may also be stated.

COROLLARY 2.6. Assume that X, C and v are as in Theorem 2.5. If h : C→ (0,∞)
is a superadditive functional on C and 0< p, q < 1, then the functional

8p,q : C→ (0,∞), 8p,q(x)=
1

vq((1/p)−1)(x)hq(x)
(2.15)

is subadditive on C.

PROOF. Observe that 8p,q(x)= [8p(x)]q for x ∈ C . Therefore, by Theorem 2.5 and
the inequality (2.2) for 0< q < 1, we have that

8p,q(x + y) = [8p(x + y)]q ≤ [8p(x)+8p(y)]
q

≤ [8p(x)]
q
+ [8p(y)]

q
=8p,q(x)+8p,q(y)

for any x, y ∈ C and the statement is proved. 2
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REMARK 2.7. If we consider the functional

ϕp(x) :=
1

v1−p(x)h p(x)

then, for 0< p < 1 and h : C→ (0,∞) a superadditive functional on C , the
functional ϕp is subadditive on C .

3. Applications for Jensen’s inequality

Let C be a convex subset of the real linear space X and let f : C→ R be a convex
mapping. Here we consider the following well-known form of Jensen’s discrete
inequality:

f

(
1
PI

∑
i∈I

pi xi

)
≤

1
PI

∑
i∈I

pi f (xi ), (3.1)

where I denotes a finite subset of the set N of natural numbers, xi ∈ C , pi ≥ 0 for i ∈ I
and PI :=

∑
i∈I pi > 0.

Let us fix I ∈ P f (N) (the class of finite parts of N) to be a set consisting of two or
more indices and xi ∈ C (i ∈ I ). Now consider the functional J : S+(I )→ R given by

JI (p) :=
∑
i∈I

pi f (xi )− PI f

(
1
PI

∑
i∈I

pi xi

)
≥ 0, (3.2)

where
S+(I ) := {p= (pi )i∈I | pi ≥ 0, i ∈ I and PI > 0}

and f is convex on C .
We observe that S+(I ) is a convex cone and the functional JI is nonnegative and

positive homogeneous on S+(I ).

LEMMA 3.1 [5]. The functional JI (·) is a superadditive functional on S+(I ).

Define the functional

Jp,q,I (p) :=
[

P(p−1)/p
I

∑
i∈I

pi f (xi )− P(2p−1)/p
I f

(
1
PI

∑
i∈I

pi xi

)]q

(3.3)

for p > 1 and q ≥ 1.
The following proposition can be stated.

PROPOSITION 3.2. The functional Jp,q,I (·) is superadditive on S+(I ) for any p > 1
and q ≥ 1.

PROOF. Define v(p)= PI and h(p)= JI (p). Then, for p > 1 and q ≥ 1,

9p,q(p)= vq(1−(1/p))(p)hq(p)= Pq(1−(1/p))
I J q

I (p)= Jp,q,I (p)

for any p ∈S+(I ).
Since v(·) is additive and JI (·) is superadditive on S+(I ), on applying Corollary 2.2

we conclude that Jp,q,I (·) is also superadditive on S+(I ). 2
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REMARK 3.3. We observe that, in particular, the functionals

Jp,I (p) := P(p−1)/p
I

∑
i∈I

pi f (xi )− P(2p−1)/p
I f

(
1
PI

∑
i∈I

pi xi

)
and

J̃p,I (p) :=
[

P(p−1)/p
I

∑
i∈I

pi f (xi )− P(2p−1)/p
I f

(
1
PI

∑
i∈I

pi xi

)]p

are superadditive on S+(I ) for any p > 1.

The following result provides a refinement and a reverse for Jensen’s inequality
when bounds for the weights are known.

PROPOSITION 3.4. If p, q ∈ S+(I ) and M ≥ m ≥ 0 are such that Mp≥ q≥ mp, that
is, Mpi ≥ qi ≥ mpi for each i ∈ I , then

M (2p−1)/p
(

PI

Q I

)(p−1)/p[∑
i∈I

pi f (xi )− PI f

(
1
PI

∑
i∈I

pi xi

)]
≥

∑
i∈I

qi f (xi )− Q I f

(
1

Q I

∑
i∈I

qi xi

)

≥ m(2p−1)/p
(

PI

Q I

)(p−1)/p[∑
i∈I

pi f (xi )− PI f

(
1
PI

∑
i∈I

pi xi

)]
,

(3.4)

for any p > 1.

PROOF. Applying Corollary 2.4 for the functional 9p,q(p)= Jp,q,I (p) and s = 1,

Mq(2−1/p)
[

P(1−1/p)
I

∑
i∈I

pi f (xi )− P(2−1/p)
I f

(
1
PI

∑
i∈I

pi xi

)]q

≥

[
Q(1−1/p)

I

∑
i∈I

qi f (xi )− Q(2−1/p)
I f

(
1

Q I

∑
i∈I

qi xi

)]q

≥ mq(2−1/p)
[

P(1−1/p)
I

∑
i∈I

pi f (xi )− P(2−1/p)
I f

(
1
PI

∑
i∈I

pi xi

)]q

.

(3.5)

Taking the power 1/q > 0 in the inequality (3.5) we deduce the desired
result (3.4). 2

The above Proposition 3.4 can be utilized to obtain various inequalities generated
by the appropriate choices of the convex function f .
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(1) If f : X→ R, f (x)= ‖x‖r , r ≥ 1, p > 1 where (X, ‖ · ‖) is a normed linear
space, then we can state the inequality

M (2p−1)/p
(

PI

Q I

)(p−1)/p[∑
i∈I

pi‖xi‖
r
− P1−r

I

∥∥∥∥∑
i∈I

pi xi

∥∥∥∥r]
≥

∑
i∈I

qi‖xi‖
r
− Q1−r

I

∥∥∥∥∑
i∈I

qi xi

∥∥∥∥r

≥ m(2p−1)/p
(

PI

Q I

)(p−1)/p[∑
i∈I

pi‖xi‖
r
− P1−r

I

∥∥∥∥∑
i∈I

pi xi

∥∥∥∥r]
(3.6)

and, in particular,

M (2p−1)/p
(

PI

Q I

)(p−1)/p[∑
i∈I

pi‖xi‖ −

∥∥∥∥∑
i∈I

pi xi

∥∥∥∥]
≥

∑
i∈I

qi‖xi‖ −

∥∥∥∥∑
i∈I

qi xi

∥∥∥∥
≥ m(2p−1)/p

(
PI

Q I

)(p−1)/p[∑
i∈I

pi‖xi‖ −

∥∥∥∥∑
i∈I

pi xi

∥∥∥∥]
(3.7)

for I ∈ P f (N) and p, q ∈ S+(I ) with Mp≥ q≥ mp and M ≥ m > 0, for any
vectors xi ∈ X , i ∈ I .

(2) For xi > 0 and pi ≥ 0 (i ∈ N) so that PI > 0, let us denote

A(I, p, x) :=
1
PI

∑
i∈I

pi xi , G(I, p, x) :=

(∏
i∈I

(xi )
pi

)1/PI

,

to be the weighted arithmetic and geometric means, respectively.

Applying the above Proposition 3.4 for the convex function f (x)=−ln x , x ∈
(0,∞), we can state the inequality[

A(I, p, x)

G(I, p, x)

]M(2p−1)/p(PI /Q I )
(2p−1)/p

≥
A(I, q, x)

G(I, q, x)

≥

[
A(I, p, x)

G(I, p, x)

]m(2p−1)/p(PI /Q I )
(2p−1)/p (3.8)

for p > 1, I ∈ P f (N) and p, q ∈ S+(I ) with Mp≥ q≥ mp and M ≥ m > 0, for any
xi > 0, i ∈ I .

It is well known that if f : C→ R is a strictly convex function and not all vectors
xi ∈ C , i ∈ I are equal between them, then a strict inequality holds in Jensen’s
result (3.1). Therefore, we can consider the functional

Rp,q,I (p) :=
1

vq((1/p)−1)(x)hq(x)
(3.9)
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where, as above, v(p)= PI , h(p)= JI (p) and 0< p, q < 1.
In a more explicit way we then have

Rp,q,I (p)=
1

Pq/p
I

[ 1
PI

∑
i∈I pi f (xi )− f

( 1
PI

∑
i∈I pi xi

)]q . (3.10)

We can also consider the particular functional

Rp,I (p)=
1

PI
[ 1

PI

∑
i∈I pi f (xi )− f

( 1
PI

∑
i∈I pi xi

)]p . (3.11)

By utilizing Corollary 2.6, we can state the following result.

PROPOSITION 3.5. If f : C→ R is a strictly convex function and not all vectors
xi ∈ C, i ∈ I are equal between them, then the functional Rp,q,I is subadditive on
S+(I ) for any p, q with 0< p, q < 1.

As a simple example, we can consider the functional

λp,q,I (p) :=
1

Pq/p
I

[
ln
( A(I,p,x)

G(I,p,x)

)]p , (3.12)

which is therefore subadditive on S+(I ) for any p, q with 0< p, q < 1 and any xi > 0,
i ∈ I that are not all equal between them.

4. Applications for Hölder’s and Minkowski’s inequalities

Let (X, ‖ · ‖) be a normed space and I ∈ P f (N). We define

E(I ) := {x = (x j ) j∈I | x j ∈ X, j ∈ I }

and
K(I ) := {λ= (λ j ) j∈I | λ j ∈K, j ∈ I }.

We consider the functional

HI (p, λ, x; α, β) :=

(∑
j∈I

p j |λ j |
α

)1/α(∑
j∈I

p j‖x j‖
β

)1/β

−

∥∥∥∥∑
j∈I

p jλ j x j

∥∥∥∥.
for α, β > 1, where 1/α + 1/β = 1.

The following result has been proved in [3].

LEMMA 4.1. For any p, q ∈ S+(I ),

HI (p+ q, λ, x; α, β)≥ HI (p, λ, x; α, β)+ HI (q, λ, x; α, β), (4.1)

where x ∈ E(I ), λ ∈K(I ) and α, β > 1 with 1/α + 1/β = 1.

https://doi.org/10.1017/S0004972710000444 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972710000444


[10] Quasilinearity of some functionals 117

REMARK 4.2. The same result can be stated if (B, ‖ · ‖) is a normed algebra and the
functional H is defined by

HI (p, λ, x; α, β) :=

(∑
i∈I

pi‖xi‖
α

)1/α(∑
i∈I

pi‖yi‖
β

)1/β

−

∥∥∥∥∑
i∈I

pi xi yi

∥∥∥∥,
where x = (xi )i∈I , y = (yi )i∈I ⊂ B, p ∈ S+(I ) and α, β > 1 with 1/α + 1/β = 1.

Define the following functional on S+(I ):

Hp,q,I (p, λ, x; α, β) := Pq(1−(1/p))
I Hq

I (p, λ, x; α, β). (4.2)

Since H(·, λ, x; α, β) is positive homogeneous, on utilizing Corollary 2.4, we can
state the following result.

PROPOSITION 4.3. If p, q ∈ S+(I ) and M ≥ m ≥ 0 with Mp≥ q≥ mp, then

M (2p−1)/p
(

PI

Q I

)(p−1)/p[(∑
i∈I

pi |λi |
α

)1/α(∑
i∈I

pi‖xi‖
β

)1/β

−

∥∥∥∥∑
i∈I

piλi xi

∥∥∥∥]

≥

(∑
i∈I

qi |λi |
α

)1/α(∑
i∈I

qi‖xi‖
β

)1/β

−

∥∥∥∥∑
i∈I

qiλi xi

∥∥∥∥
≥ m(2p−1)/p

(
PI

Q I

)(p−1)/p[(∑
i∈I

pi |λi |
α

)1/α(∑
i∈I

pi‖xi‖
β

)1/β

−

∥∥∥∥∑
i∈I

piλi xi

∥∥∥∥],

(4.3)

for x ∈ E(I ), λ ∈K(I ), p > 1 and α, β > 1, where 1/α + 1/β = 1.

PROOF. By Corollary 2.4 applied to the functional 9p,q(p)= Hp,q,I (p, λ, x; α, β),

Mq(2−1/p)Pq(1−1/p)
I

[(∑
i∈I

pi |λi |
α

)1/α(∑
i∈I

pi‖xi‖
β

)1/β

−

∥∥∥∥∑
i∈I

piλi xi

∥∥∥∥]q

≥ Qq(1−1/p)
I

[(∑
i∈I

qi |λi |
α

)1/α(∑
i∈I

qi‖xi‖
β

)1/β

−

∥∥∥∥∑
i∈I

qiλi xi

∥∥∥∥]q

≥ mq(2−1/p)Pq(1−1/p)
I

[(∑
i∈I

pi |λi |
α

)1/α(∑
i∈I

pi‖xi‖
β

)1/β

−

∥∥∥∥∑
i∈I

piλi xi

∥∥∥∥]q

.

(4.4)

Taking the power 1/q > 0 in the inequality (4.4) we deduce the desired result (4.3). 2
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We define the functional

MI (p, x, y; α) =

[(∑
i∈I

pi‖xi‖
α

)1/α

+

(∑
i∈I

pi‖yi‖
α

)1/α]α
−

∑
i∈I

pi‖xi + yi‖
α,

(4.5)

where p ∈ S+(I ), α ≥ 1 and x, y ∈ E(I ).
The following result concerning the superadditivity of the functional MI (·, x, y; α)

holds [3].

LEMMA 4.4. For any p, q ∈ S+(I ),

MI (p+ q, x, y; α)≥ MI (p, x, y; α)+ MI (q, x, y; α),

where x, y ∈ E(I ) and α ≥ 1.

Since the functional MI (·, x, y; α) is positive homogeneous on S+(I ), then on
utilizing Corollary 2.4, we can state the following proposition.

PROPOSITION 4.5. If p, q ∈ S+(I ) and M ≥ m ≥ 0 with Mp≥ q≥ mp, then

M (2p−1)/p
(

PI

Q I

)(p−1)/p{[(∑
i∈I

pi‖xi‖
α

)1/α

+

(∑
i∈I

pi‖yi‖
α

)1/α]α
−

∑
i∈I

pi‖xi + yi‖
α

}

≥

[(∑
i∈I

qi‖xi‖
α

)1/α

+

(∑
i∈I

qi‖yi‖
α

)1/α]α
−

∑
i∈I

qi‖xi + yi‖
α

≥ m(2p−1)/p
(

PI

Q I

)(p−1)/p{[(∑
i∈I

pi‖xi‖
α

)1/α

+

(∑
i∈I

pi‖yi‖
α

)1/α]α
−

∑
i∈I

pi‖xi + yi‖
α

}
,

(4.6)

where x, y ∈ E(I ), p > 1 and α ≥ 1.

5. Applications for Schwarz’s inequality

Let X be a linear space over the real or complex number field K and let us denote
by H(X) the class of all positive semi-definite Hermitian forms on X or, for simplicity,
nonnegative forms on X , that is, the mapping 〈·, ·〉 : X × X→K belongs to H(X) if
it satisfies the conditions:

(i) 〈x, x〉 ≥ 0 for all x ∈ X;
(ii) 〈αx + βy, z〉 = α〈x, z〉 + β〈y, z〉 for all x, y ∈ X and α, β ∈K;
(iii) 〈y, x〉 = 〈x, y〉 for all x, y ∈ X .
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If 〈·, ·〉 ∈H(X), then the functional ‖ · ‖ = 〈·, ·〉1/2 is a semi-norm on X and the
following version of Schwarz’s inequality holds:

‖x‖‖y‖ ≥ |〈x, y〉| (5.1)

for each x, y ∈ H .
Now, let us observe that H(X) is a convex cone in the linear space of all mappings

defined on X2 with values in K. Also, we can introduce on H(X) the following binary
relation [4]:

〈·, ·〉2 ≥ 〈·, ·〉1 if and only if ‖x‖2 ≥ ‖x‖1 for any x ∈ H. (5.2)

This is an order relation on H(X) (see [4]).
Consider the functional [4]

σ :H(X)× X2
→ R+, σ (〈·, ·〉; x, y) := ‖x‖‖y‖ − |〈x, y〉|,

which is closely related to the Schwarz inequality in (5.1).

LEMMA 5.1 [4]. The functional σ(·; x, y) is nonnegative, superadditive and positive
homogeneous on H(X).

Now, if we consider the composite functional

9p,q,e(〈·, ·〉, x, y) = 〈e, e〉q(1−(1/p))σ q(〈·, ·〉; x, y)

= ‖e‖2q(1−(1/p))
[‖x‖‖y‖ − |〈x, y〉|]q

(5.3)

where x, y, z ∈ X , and p, q ≥ 1, then, by Corollary 2.2, we can state the following
result.

PROPOSITION 5.2. The functional 9p,q,e(·, x, y) is superadditive and monotonic
nondecreasing on H(X).

The following proposition concerning some inequalities for equivalent norms
generated by inner products is of interest for applications.

PROPOSITION 5.3. Let M ≥ m > 0 and let 〈·, ·〉1, 〈·, ·〉2 be two inner products on X
such that M‖x‖1 ≥ ‖x‖2 ≥ m‖x‖1 for each x ∈ X. If e ∈ X, e 6= 0 and p ≥ 1, then

M2(2p−1)/p
(
‖e‖1
‖e‖2

)2(p−1)/p

(‖x‖1‖y‖1 − |〈x, y〉1|)≥ ‖x‖2‖y‖2 − |〈x, y〉2|

≥ m2(2p−1)/p
1

(
‖e‖1
‖e‖2

)2(p−1)/p

(‖x‖1‖y‖1 − |〈x, y〉1|),

(5.4)

for any x, y ∈ H.
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PROOF. On applying Corollary 2.4, we deduce that

M2q(2−(1/p))
‖e‖2q(1−1/p)

1 [‖x‖1‖y‖1 − |〈x, y〉1|]
q

≥ ‖e‖2q(1−1/p)
2 [‖x‖2‖y‖2 − |〈x, y〉2|]

q

≥ m2q(2−1/p)
‖e‖2q(1−1/p)

1 [‖x‖1‖y‖1 − |〈x, y〉1|]
q

(5.5)

for x, y fixed in X .
Taking the power 1/q > 0 in the inequality (5.5), we deduce the desired result

(5.4). 2

The above result can be used to obtain some inequalities for positive definite
operators.

COROLLARY 5.4. Assume that A : H → H is a self-adjoint linear operator on the
Hilbert space (H, 〈·, ·〉) satisfying the property that there exist 0 ≥ γ > 0 such that
0 I ≥ A ≥ γ I in the operator order (that is, 0‖x‖2≥〈Ax, x〉≥γ ‖x‖2 for any x ∈ H).
Then for p ≥ 1 we have the inequality

0(2p−1)/p

〈Ae, e〉(p−1)/p
(‖x‖‖y‖ − |〈x, y〉|)≥ 〈Ax, x〉1/2〈Ay, y〉1/2 − |〈Ax, y〉|

≥
γ (2p−1)/p

〈Ae, e〉(p−1)/p
(‖x‖‖y‖ − |〈x, y〉|),

(5.6)

for any x, y ∈ H and e ∈ H with ‖e‖ = 1.

The following result for invertible operators also holds.

COROLLARY 5.5. Assume that A : H → H is an invertible linear operator on the
Hilbert space (H, 〈·, ·〉). Then for p ≥ 1 and e ∈ H with ‖e‖ = 1 we have the
inequality

‖A‖2((2p−1)/p)

‖Ae‖2((p−1)/p)
(‖x‖‖y‖ − |〈x, y〉|)≥ ‖Ax‖‖Ay‖ − |〈Ax, Ay〉|

≥
‖A−1

‖
−2((2p−1)/p)

‖Ae‖2((p−1)/p)
(‖x‖‖y‖ − |〈x, y〉|),

(5.7)

for any x, y ∈ H.

PROOF. Since A is invertible,

‖A‖‖x‖ ≥ ‖Ax‖ ≥ ‖A−1
‖
−1
‖x‖

for any x ∈ H . Applying Proposition 5.3 we deduce the desired result (5.7). 2
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REMARK 5.6. Similar results can be stated if one uses the following nonnegative,
superadditive and positive homogeneous functionals on H(X) (see [2, pp. 8–15]):

σr (〈·, ·〉; x, y) := ‖x‖‖y‖ − Re〈x, y〉,

δ(〈·, ·〉; x, y) := ‖x‖2‖y‖2 − |〈x, y〉|2,

δr (〈·, ·〉; x, y) := ‖x‖2‖y‖2 − (Re〈x, y〉)2,

γ (〈·, ·〉; x, y) :=
‖x‖2‖y‖2 − |〈x, y〉|2

‖y‖2
,

where, in the definition of γ , 〈·, ·〉 is an inner product and y is not zero, and

β(〈·, ·〉; x, y) := (‖x‖2‖y‖2 − |〈x, y〉|2)
1
2 ,

for each x, y ∈ X .
The details are left to the interested reader.

REMARK 5.7. For other examples of superadditive (subadditive) functionals that can
provide interesting inequalities similar to the ones outlined above, we refer to [1, 6–9].
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