
Canad. Math. Bull. Vol. 22 (2), 1979 

INTERNAL HOM FUNCTORS FOR 
POLARITIES 

BY 

EVELYN NELSON 

The notion of functionality for an internal horn functor H in a concrete 
category K was introduced in Banaschewski and Nelson [1], formalizing the 
condition that the structure on the H(A, B) is "pointwise" structure on sets of 
functions. It was proved there (Proposition 3) that, for a functor ® : K x K —> 
K and an internal horn H on K, any two of the following conditions implied 
the third: H is functional, ® is the functor of universal bimorphisms, and ® is 
a tensor multiplication for H, where the latter means that there is a natural 
equivalence K ( A ® B , C) = K(A, H(B, C)). 

This paper presents a study of the above notions in categories of polarities; 
these categories, a generalization of a construct due to Waterman [5], are 
described as follows. Given a concrete category K with a functional internal 
horn H and tensor multiplication ®, the category Kj9 of /-valued polarities in 
K, has as objects the triples P = (P+,P-,P0) where P0 is a K-morphism from 
P+(8>P_ into J, and as morphisms the analogue of adjoint pairs of maps. 
Recalling that morphisms P+(8)P_ —> J correspond to bimorphisms P+xP_^> J, 
a polarity morphism from P to Q can roughly be described as a pair of maps 
u+ : P+ —» Q+ and w_ : Q_ -» P_ such that (w+(a), b) and (a, w_(fr)) map to the 
same element of / via the appropriate bimorphisms. An important feature of 
polarities is that their morphisms are "covariant" in one factor and "con-
travariant" in the other; this provides each category of polarities with a natural 
self-duality. If K has a dualizer, i.e., an object D for which H ( - , D ) is a 
self-duality of K, then KD is isomorphic to the category K2 of arrows in K. 

Kj has an underlying set functor which need not be faithful, and so we are 
not dealing with concrete categories; moreover, examples will show that Kj 
need not have universal bimorphisms. Nevertheless, K7 has an internal horn 
functor Horn for which there is an associative and commutative tensor multipli­
cation. This internal horn, which is constructed using the internal horn H in K 
and is not, in general, functional, nevertheless does have many of the features 
of functional internal horns, notably the exponent law HOM(P, Hom(Q, R) = 
Hom(Q, Hom(P, R)) and the first of the two conditions defining functionality. 
Moreover, there is a dualizer for Horn in Kj iff K has an object which is free 

Received by the editors January 26, 1978 and, in revised form, June 8, 1978. 

187 

https://doi.org/10.4153/CMB-1979-026-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1979-026-7


188 E. NELSON [June 

on one generator; the latter is a much weaker condition than the existence of a 
dualizer in K, and so in this respect, Horn is better behaved than H. 

Finally, we will see that Proposition 3 of [1], mentioned above, is no longer 
valid in non-concrete categories; a counterexample is provided by the category 
Ens, (J any set, Ens the category of sets) where Horn is functional and a 
functor of universal bimorphisms exists which differs from the tensor multipli­
cation. 

Examples of categories of polarities include the category of all bilinear forms 
(over any field), the category of all residuated maps between complete p.o. sets, 
and the category of all (finite) matrices with entries from some fixed field. 

The first section of the paper recalls a few of the basic facts from [1] about 
concrete categories with internal horn functors, and provides new information 
about this setting which is needed in the later sections. In particular, it is 
proved that if (8) is a tensor multiplication for H then the natural equivalence 
K(A(g>B,C) = K(A,H(B,C)) actually lifts to a K-isomorphism H(A® 
B, C) - • H(A, H(B, C)), settling a problem left open in [1]. The second section 
contains the definitions and results on categories of polarities and their internal 
horn functors, and various examples and counterexamples are presented in 
section three. 

The reader is referred to Banaschewski-Nelson [1] for background on 
functional internal horn functors, tensor multiplications, etc., and to Mac Lane 
[3] for relevant material from category theory. The same notation will be used 
throughout for an object (of any category) and its associated identity map. 

The author is grateful to B. Banaschewski for many helpful comments, and 
to the National Research Council of Canada for financial support. 

§1. Preliminaries. In this section, K will always be a concrete category, with 
underlying set functor | • |, and with a functional internal horn functor H for 
which there is a tensor multiplication ®. 

This means that H:K*xK-»K is an internal horn functor satisfying: 
(Fl) For all A,BeK, there exists e^.A-^HiHiAB)^) such that 

lkABl(a)l(M) = l(M)l(a) for all ae\A\, u:A^B, and 
(F2) For all A,B,CeK, a set map f:\A\^\H(B,C)\ is |h| for some 

h : A -» H(B, C) whenever, for each be\B\, |/( )| (b) = \hb\ for some hb : A ~> C. 
In addition, ®:KxK-»K is a functor for which there are natural 

isomorphisms fABC :(A<g>B,C)^> (A, H(B, C)) and universal bimorphisms 
PAB : | A | X | B | - » | A ® B | . The relationship between £ and |3 can be described 
as follows: for f:A®B-»Q UABM (a)\ (b) = \f\ (0AB(a, b)) for all ae\A\, 
be\B\; also, for f:A-*Q g:B-*D, the map /(g)g: A(g>B-* C®D is uni­
quely determined by the property that |/®g| J3AB = PCD l/lx|g|- Further, the 
natural isomorphism \A\ x \B\ -* \B\ x \A\ produces a natural isomorphism A® 
B—>B®A. One other feature of this situation is that H satisfies the exponent 
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law, i.e., there are natural isomorphisms sABC : H(A, H(B, C)) -* 
H(B, H(A, O) such that \\SABC\ (U)| (b)\(a) = \u\ (a)\ (b). 

It was noted in [1, p. 389, Remark 1] that the set map £ABC actually lifts to a 
morphism in K which is one-one and onto, leaving open the question whether 
this is actually an isomorphism. The following settles this question affirma­
tively, and derives some consequences which will be useful later on. 

PROPOSITION 1. For a category K as above, fABC lifts to an isomorphism 
^ABC : H(A <g)B, C) -* H(A, H(B, Q) for all A,B,Ce K. 

Proof. Let / : |A |x |B | -» (H(A, H(B, C)), C) be the set map with f(a, b) = 
\eBc\ (*>)kA,H(B,ol (a); then for all a e \A\, b e \B\, 

f(a, -) = |H(|eA,„(B,c)| (<*)> C)eBC| 

/ ( - , b) = \H(H(A, H(B, C)), |eBC| (b))eA,H(B,c)| 

and hence / is a bimorphism. Let a :A®B-*H(H(A,H(B, C)), C) be the 
corresponding morphism; then a determines a morphism <\> : H (A, H(B, C)) —» 
H(A®B,C) such that ||*|(ii)|(x) = ||a|(x)|(ii) for all u € (A, H(B, C)), all 
xe |A®B| . 

Now, writing i/r = *A B O we have, for all he{A®B, C), 

IIWI (Wl OAB(A, « H M OAB(A, *))l (1*1 00) 
= 111*1 (fc)|(û)|(« 

= |fc|(0AB(O,«) 

which shows that <£i/f is the identity map on H(A(g)B, C). 
Also, for all h e (A, H(B, C)), 

|||iWl(fc)l(û)l(« = ll*l(fc)IOABte6)) 

= l|a|OAB(fl,«)|(fc) 

= l|fc|(a)l(6) 

and this shows that i/«£ is the identity map on H(A, H(B, C)), completing the 
proof. 

COROLLARY 1. The tensor multiplication in K is associative, i.e., there is an 
isomorphism yABC : A®(B®C)-> (A<8>B)®C such that 

IYABC|0A,B®C(|A| X 0BC) = PAOB.COAB X |C|)f 

where r : |A| x(|B| x |C|) -» (|A| x |B|)x |C| is the obvious set isomorphism. 
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Proof. The required homomorphism yABC is the image of the identity map 
on (A(&B)(&C) under the following sequence of natural isomorphisms: 

H((A(g>E)®C, ( A ® B ) ® Q - > H(A®B, H(Q ( A ® B ) ® 0 ) 

-> H(A, H(B, H(Q ( A ® B ) ® O) ) 

-> H(A, H(B®Q ( A ® B ) ® O ) 

-> H ( A ® ( £ ® C), ( A ® B ) ® C ) 

where the maps in the order they occur, are ^A<S>B,C,D^ ^A,B,H(C,D)? H(A, IJ'B.C.D) 

and IAA!B(8)C,D where D = ( A ® B ) ® C 
As has been mentioned above, the tensor multiplication is commutative, and 

thus there are natural isomorphisms f:(A®B)®C-*C®(B®A) and 
g:(C®B)®A->A®(B®C) such that gYcBA/YAsc and yABC gyCBA f are 
both identity maps and this shows that Y A B C is an isomorphism. 

COROLLARY 2. The tensor multiplication in K is internal, i.e. for all A,B,Ce 
K there is a map JLLABC :H(A, B) -> H(A®Q B®C) with |JXA B C | (/) = g® C 

Proof. Let f x ^ c - |^H(AsB)tA<8CtB<g)C|((aAB ® C) YH<A,B),A.C), where a^ : 
H(A,B)<g)A->B is the morphism corresponding to the bimorphism 
( A , B ) x | A | - > | B | which maps (u,a)~»\u\(a). Then for f:A->B, ae\A\9 

ce\C\, 

HMABCI(/)I (frvcO, C)) = | a A B ® C| (|TH(A,B),A,CI (PH(A ) B) ;A®C(/5 j3A,c(a5 <0) 

= I « A B ® C| (J3H(A,B)®A,C(|3H(A,B),A(/5 « ) , C)) 

= PBC(\<*AB\ (PH(A,B)A( / , a)) , c) 

= &c(l/l(a),c) 

and hence IfXABclK/)^/®^, as required. 
The next, and final, item in this section will be used in §2, and concerns 

categories which have an object which is free on one generator. Note that if K 
is a category with functional internal horn functor for which there is a dualizer 
(see [1, §3]), i.e. an object D e K for which all eAD : A -> H(H(A, D), D) are 
isomorphisms, then, as was noted in [1, Remark in §3], H(D, D) is free on 
one generator. However, K having a dualizer is a much stronger hypothesis; 
the categories of topological spaces and continuous maps, and of p.o. sets and 
order-preserving maps have no dualizer, but do have objects free on one 
generator. 

PROPOSITION 2. For a category K as above, which has an object F which is free 
on one generator 0 e \F\, the morphism <f)A = \eFA| (0) : H(F, A)^ A is a natural 
isomorphism. 

Proof. The naturality is clear. 
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Let g:A->H(F,A) be the morphism corresponding to the morphism F —» 
H(A, A) which maps 0 to the identity map on A, so that ||g| (a)\ (0) = a (see [1, 
Corollary 2 to Proposition 2]). 

Then for all a e \A\, |<£Ag| (a) = ||g| (a)\ (0) = a and so <f)Ag is the identity map 
on A. Also, for all ue(F,A\ ||g<fcj (II)| (0) = ||g| (|u| (0))| (0) = |M| (0); since 
morphisms on F are completely determined by their effect on 0, this shows that 
g<t>A is the identity map on H(F, A) and thus <t>A is an isomorphism. 

COROLLARY. Under the same hypotheses, the morphism vA:A®F-+ A cor­
responding to <f>A

1 : A —> H(F, A) is a natural isomorphism. 

Proof. For all A , B G K we have the natural equivalences (A<g)F,B) — 
(A,H(F,B)) — (A,B), the last coming from the natural isomorphism 
4>B : H(F, B) —» B, and hence it follows from the Yoneda lemma (see [3]) that 
vA is a natural isomorphism. 

REMARK. There is a "converse" to the above corollary: if K has an object F 
for which there are natural isomorphisms A®F^>A for A E K , then the 
natural equivalences (A, B) — (A(g)F, B) — (A, H(F, B)) together with the 
Yoneda lemma (see [3]) imply that (F, — ) represents the underlying set functor 
and hence K has an object which is free on one generator. 

§2. Categories of polarities. In this section, K will be a concrete category with 
a functional internal horn functor H, a tensor multiplication ® and concrete 
binary products and equalizers. The latter means that K has binary products 
and equalizers, and that the underlying set functor preserves them. Note that if 
K has an object which is free on one generator then the underlying set functor 
is representable and hence if K has binary products and equalizers they are 
automatically concrete. 

For an object / in K, a K-valued polarity over J is a triple P = (P+, P_, P0) 
where P+,P_eK and P0:P+<8>P--> J. A morphism P ^ O is a pair u = 
(w+, w_), where u+:P+—» Q+, w_:Q_—>P_, such that the following diagram 
commutes: 

Kj is the category of all K-valued polarities over J and such morphisms. 
These categories, for K the category of sets, where (8) is just cartesian product, 
were introduced and studied in Waterman [5]. 
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For each polarity P, let Pm:P+-+ H(P_, J) be the morphism determined by 
the adjointness (P+<g)P„, J) = (P+, H{P^ J)); then a pair (u+, u_)e 
(P+, Q+) x (Q_, J_) is a morphism from P to Q iflf Qmu+ = H(LL, JT)Pm. Conse­
quently the category Kj is isomorphic to the comma category (T | S) where 
T: K -> K is the identity map and S : K* -^ K is H(-, J). 

For convenience, for the rest of this section, let H ( - , J) = ( )*. Note that, as 
in the proof of Lemma 1 of Banaschewski-Nelson [1], it follows from (F2) for 
H that there is a morphism H(A, B)-*H(B*, A*) mapping f~+f*. 

In the special case that / is a dualizer in K, ( )* is a self-duality of K, and 
then the category Kj is equivalent with the category K2 of arrows in K ; some 
further comments on this are to be found at the beginning of §3. 

The category K7 has an underlying set functor given by |P| = |P+| and 
|(u+, M_)| = \u+\; it is not difficult to see that the underlying set functor is faithful 
on (P, Q) for all Q iff the map P_ —» H(P+, J), corresponding to Pm by the 
exponent law for H, is a monomorphism. 

There is also an "underlying" functor Kj—>K given by P»*P+, 
(u+, uJ)«*u+; this functor has a left adjoint F defined by: (FA)+ = A, (FA)_ = 
A* and (FA)m = e^ : A -» A**. This fact, for K = Ens, is contained in Water­
man [5]. 

Now, to define HOM(P, Q) for polarities P, Q e Kj consider the following 
pullback diagram; where the map h :H(0_, PJ)-*H(Pt, Q*) takes /~*/*: 

A > H(P+, Q+) 

H(P+,Qm) 

H(0_,P_) — _ - > H(P*_,Q*) — — ^ H(P+,Q*) 

H(P+(g>Q_,J) 

Let Hom(P, Q)+ = A, Hom(P, 0)_ = P+g)0_ and let Hom(P, Q)m be the 
diagonal of the above square followed by the natural isomorphism 
^PIQ.J:H(P+, Q?) -» H(P+®Q-, J). Since K has concrete binary products and 
equalizers, the underlying set functor on K also preserves pullbacks, and so 
|Hom(P, Q)| = |Hom(P, Q)+| = (P, Q), the set of morphisms from P to Q. 

Now, to define Hom(w, v) for morphisms u = (u+, u_):S->P and v = 
(D+, U_) : Q ~» JR, consider the following diagram, where the inner and outer 
squares are the appropriate pullbacks. 

Since the right-most and bottom "squares" commute, there is a unique 
K-morphism Hom(P, Q)+ -» Hom(S, JR)+ making the top and left-most 
"squares" commute. Let Hom(w, v)+ be this morphism, and let Hom(u, v)- = 
u+®u_:S+®R_-^P+®Q— It is straightforward to check that these two 
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Hom(S, R)+ >H(S+, R+) 

Hom(P, Q)+ 

H(Q_,PJ) 

H(u + , tO / 

- H(P+,Q+) 

H(P+, Q*) 

'h(u_,u_) h(u+,v*V 

H(K_, S_) - H(S+,R*) 

morphisms constitute a Kj-morphism Hom(P, Q) —» Hom(S, I?), and that this 
definition is functorial. 

For a functional internal horn H, the exponent law is a consequence of the 
natural equivalence between the bimorphisms | A | X | J B | - * | C | and the morph­
isms A-*H(B, C) (see Banaschewski-Nelson [1, p. 388, Corollary 2]). In 
varietal categories the exponent law for H is enough to imply its functionality 
(Linton [2]). Here the situation is different: we will see that Horn is not 
necessarily functional, but nevertheless satisfies the exponent law, and the 
latter will be used in showing that there is a tensor multiplication for Horn. 

PROPOSITION 3. Horn satisfies the exponent law, i.e., there is a natural 
isomorphism aPOR : Hom(P, Hom(Q, R) -» Hom(Q, Hom(P, R) such that 
\\WPOR\ \(U)\ \(a)\ |(b) = ||u| (b)\ (a) for all ue(P,Hom(Q, R))9 all ae\Q\, all be 

Proof. Consider the following diagram, where the outer square is the 
pullback defining Hom(Q, Hom(P, R))+, and the named morphisms are defined 
below. 

Hom(Q,Hom(P,K))+ ^ • H(Q+, Hom(P, R)+) 

H(P+®R-, Q-) 

H(P+®(Q+®R.),J) 

• H(Q+,(P+®R-)*) 

H(Q + ®(P + ®R_) , J ) 

5 
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/ : Q + ® ( P + ® # - ) - > P + ® ( Q + ® £ - ) is the natural isomorphism 
resulting from the commutativity and associativity of ®. 

g = fclo&R-j: H(P+, H ( Q + ® £ _ , J)) -» H(P+® (Q + ® J?_), J) 

^ = tZs&R-S- H(Q + , H ( P + ® JR_, J)) -* H(Q+<g>(P+<g)R_), J) 

d is the diagonal of the pullback diagram defining Hom(P, Hom(Q, R))+9 

so that gd = Hom(P, Hom(Q, R))m. 

ir1:Hom(Q9R)+^>H(Q+9R+)9 and 7r2:Hom(Q, JR)+-^H(R_, Q_), 

are the natural projections, and # ! and 7r2 are the analogous projections on 
Hom(P,Hom(Q,£))+ . 

t = ^ ? ! ,R_ ,O_H(P + , ^2)*! :Hom(P, Hom(Q, R))+ -> H(P+(g)£_, Q_). 

Finally, the morphism r is determined by two auxiliary morphisms as follows. 
Let rt = sH(P+9 i r ^ : Hom(P, Hom(Q, R))+ -* H(Q+9 H(P+9 R+)) where 
s : H(P+9 H(Q+9 R+)) -> H(Q + , H(P + , JR+)) is the natural isomorphism given by 
the exponent law for H, and let r2 = i/fQ >R P 7r2:Hom(P, Hom(Q, !?))+-> 
H(Q + , H(JR_, P_)). A straightforward computation shows for all a G 
(P, Hom(Q, JR)), all a 6 |Q+ | , that (H l̂ (u)| (a), ||r2 | (u)| (a)) € (P, 1?), and hence 
there is a morphism r : Hom(P, Hom(Q, JR))+->H(Q+, Hom(P, R)+) with 
||r| (II) | (a) - (Ital (M)| (a), ||r2|(u)|(a)) for all u e (P, Hom(Q, R)) and all a e \Q+\. 

But then there is a unique morphism . w :Hom(P,Hom(Q, R))+-+ 
Hom(Q, Hom(P, R))+ with T^W = r and 7r2w = t. 

A straightforward calculation shows that OpQR=(w, /) is a Kj-mor­
phism from Hom(P, Hom(Q, R)) to Hom(Q, Hom(P, R))9 and that 
l|opQR|(u)|(a)|(b) = | |ii |(b)|(a) for all u e (P, Hom(Q, R))9 all a e | Q | , all be 
\P\. Moreover, further calculation shows that |OQPRO-POR | is the identity map on 
(P, Hom(Q, R)) and hence the first components of crPQR and erQPR are inverse 
to one another. The second components of these morphisms are inverse to one 
another by their very definition, and this establishes the fact that orPQR is an 
isomorphism, with inverse crOPR. The naturality is clear from the definition 
of orPOR and this completes the proof. 

COROLLARY 1. Horn satisfies (Fl) , i.e., there is a morphism EvPQ:P—» 
Hom(Hom(P, Q), Q) such that \\EvPQ\(a)\(u) = \u\(a) for all ue(P,Q), all 
a 6 |P|. 

Proof. EVPQ is the K7-morphism corresponding, via the exponent law for 
Horn, to the identity map Hom(P, Q ) ^ H o m ( P , Q). 

COROLLARY 2. For all P, Q, JR in Kj there is a morphism Hom(P, Q) —» 
Hom(Hom(Q, R), Hom(P, R)) mapping u ^ H o m ( u , R) for each u e (P, Q). 
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Proof. The required morphism is o-PHom(QR))RHom(P, Et;QR); a straightfor­
ward calculation shows that its first component maps u to Hom(w, R). 

One further comment about the resemblance of Horn to a functional internal 
horn functor: in a concrete category K with concrete products the functionality 
of an internal horn H is equivalent to the existence of suitable embeddings 
H(A, B)—>B |A|; see [1, Proposition 1]. Now, the category Kj does have 
products: it is easy to see that the product P of polarities Piiiel) has 
P+ = Y\Pi+(ieI), P_ = ]J Pj_(i G I) and Pm the unique morphism such that for 
all a e l l P i , Pm(a)ej = Pjm(a) where et :J^_->]JP»- is the natural injection 
Moreover, it is easy to see that there are naturally arising morphisms 
iPQ:Hom(P, Q ) ^ P I Q I with \PJPO\(u) = \u\(a) for ae\P\, ue(P,Q) where 
pa:P

l®l->P+ is the a'th projection. However, iPQ will not, in general, be an 
embedding. 

The category Kj has a natural self-duality arising from the exponent law for 
H in K. For a polarity P, definePd = P_, P d = P+ and Pi : P_ -* H(P+ , J) to be 
the map corresponding to Pm via the exponent law for H. It is obvious that if 
u = (u+,uJ)e(P,Q) then ud = (w_, u+)e(Qd, Pd) , and so this defines a self-
duality ( )d of Kj. Moreover, this is even compatible with Horn in the following 
sense: for polarities P and Q there is a natural isomorphism 
ôPQ:Hom(P, Q) ->Hom(Q d ,P d ) with (8PO)+(u) = ud and (ôP Q )_:Q_(g)P+^ 
P + ® Q - the natural isomorphism given by the commutativity of (8>. This 
compatibility, together with the exponent law for Horn, produces a tensor 
multiplication in Ks. The next proposition, for K the category of sets, is also in 
Waterman [5]. 

PROPOSITION 4. For all polarities P, Q and R there are natural isomorphisms 
Hom(Hom(P, Qd)d, R) = Hom(P, Hom(Q, R)). 

Proof. The required isomorphism is the composite of the following sequence 
of natural isomorphisms: Hom(Hom(P, Qd)d , K) -» Hom(£d , Hom(P, Q d ) ) -» 
Hom(P, Hom(£ d , Qd))-^Hom(P,Hom(Q, £)) where the first and last result 
from the compatibility of ()d with Horn and the second results from the 
exponent law for Horn. 

The tensor multiplication Hom( - , ( - )d )d is clearly commutative, 
and its associativity results from this, and the following sequence of 
natural isomorphisms: Hom(Hom(P, Qd)d , Rd)d =HOm(R, Hom(P, Qd))d =* 
Hom(P, Hom(£, Qd))d =Hom(Hom(Q, JRd)d,Pd)d. For K the category of 
sets this associativity is proved by direct computation in Waterman [5]. 

For each polarity A G KJ the exponent law for Horn implies that H o m ( - , A) 
is self-ad joint on the right; one question that arises is whether the self-duality 
( ) d of Kj is equivalent to some Hom(- ,A) , and whether K has a dualizer. 
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These questions have a surprisingly tidy answer: 

PROPOSITION 5. There is a polarity A for which there is a natural isomorphism 
H o m ( - , A) — ()d iff K has an object which is free on one generator. 

Proof. Suppose there is a natural isomorphism H o m ( - , A) — ()d . For each 
A e K, let FA be the polarity with (FA)+ = A, (FA)_ = H(A, J) and (FA)m = 
eAA. Then there is a natural isomorphism A = (FA)*: -» Hom(FA, A) = A®A_ 
and by the remark at the end of §1, this ensures that K has an object which is 
free on one generator. 

For the converse, suppose Fe K is free on one generator 0 e \F\ and let A be 
the polarity with A+ = J, A_ = F and Am : J —» H(F, J) the natural isomorphism 
(in the notation of Proposition 2, Am = fa1). 

For PeKj let w1 = ^ p _7r 2 :Hom(P,A) + ^P_ (where TT2:Hom(P,A)+ -> 
JÏ(A_, P_) is the second projection) and let u2 = Vp*:P+-»P+®F be the 
natural isomorphism. We will see that uP = (wl5 u2) is a natural isomorphism 
from Hom(P, A) to Pd . Since the naturality of uP follows from that of <f> and v 
and since u2 is by definition an isomorphism, it is only necessary to show that 
ux is an isomorphism, and that P^Wi = u% Hom(P, A)m. Verification of the latter 
is a straightforward computation; for the former, let r:P_^>H(P+,J)x 
H(F,PJ) be the map with 7r1r = P^ , ^2r = fa\ where TTJ and 7r2

 a r ^ the 
projections on H(P+,J)xH(F,PJ). Then r factors through Hom(P, A)+ to 
provide a map which is the inverse of uu and this completes the proof. 

As was mentioned before, if K has a dualizer then it has an object which is 
free on one generator, but the latter is a strictly weaker assumption. 

COROLLARY 1. IfFeKis free on one generator then A = (J, F, vF) is a dualizer 
in Kj. 

Proof. The proof of the proposition provides natural isomorphisms 
Up : Hom(P, A) -> Pd for P e Kj9 and it is straightforward to check that 

P - ^ ^ H o m ( H o m ( P , A), A) "Hom(P'A) >Hom(P, A ) d ^ ^ - * ( P d ) d = P 

is the identity morphism on P. Since uHom(P)A) and (upX)d are isomorphisms, it 
follows that EvPA is an isomorphism. 

This brings us to the question of universal bimorphisms in Kj. For all 
polarities P, Q, j3P+Q+ : |P| x |Q| -* |P+ <g> Q+ | = |Hom(P, Qd)d\ is actually a 
bimorphism (relative to Kj). Moreover, if Horn is functional (i.e. satisfies (F2)) 
then every bimorphism <£ : |P |x |Q | -» | i l | factors through (3P+Q+: functionality 
implies that there is a morphism <j> :P—»Hom(Q, R) with \\<f>\(p)\(q) = <t>(p, q) 
and then the fact that H o m ( - , ( - ) d ) d is a tensor multiplication yields a 
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morphism u : Hom(P, Qd)d -> R with \u\ j3P+Q+ = <f>. The only obstruction to 0 
being universal is that this u may not be uniquely determined, if the underlying 
set functor is not faithful on (Hom(P, Qd)d, R). Using the following lemma, 
examples are given in the next section to show that Kj need not have universal 
bimorphisms. 

LEMMA. If K has an object F which is free on one generator, then there is a 
universal bimorphism on \P\x\F\ relative to Ks (where F+ = F, F = J and 
FM:F-> H(J, J) maps the generator of F to the identity map on J) iff P^ = gh 
where g is a monomorphism and h is a right invertible map in K. 

Proof. Suppose |3 : |P |x |F | -» |Q| is a universal bimorphism. The map 
4> : |P| x \F\ -» \P\ such that <f>(a,b) is the image of b under the map F-+P 
mapping the free generator 0 to a is a bimorphism, and hence there exists a 
unique morphism u:Q-*P with \u\ |8 = <t>. Let v :P —» Q be a morphism with 

M = 0(-,o). 
Then for all ae\P+\, \vu\ (/3(a,0)) = |u| (<Ma,0)) = |u| (a) = 0(a,O) and thus 

\vu\(5 = f$. The universality of 0 then implies that vu is the identity morphism 
on Q, and so v+u+ and w_u_ are identity maps. Moreover, for all ae|P+|, 
\u+v+\(a) = \u+\(f$(a,0)) = a and this shows that u+v+ is the identity map on 
P+. Since (u_, w+) is a morphism from Pd to Qd and u+ is an isomorphism with 
inverse v+ it follows that Pm =H(v+, TïQ^u— Now Q^ is a monomorphism 
because the universality of |3 implies that the underlying set functor is faithful 
on (0,1?) for all R, and so H(t>+, 7)0^ is a monomorphism; since w_ has a 
right inverse, this produces the required factorization. 

Conversely, suppose P^ = gh where h : P_ —» B has right inverse / and 
g : B -» H(P+, J) is a monomorphism. Let Q+ = P+, Q_ = B and Qd = g; then 
0 : |P| x |F| -> |Q| defined by: j3(a, b) is the image of b under the map F-+P+ 
mapping 0 to a, can be shown to be a bimorphism. We will see that it is 
universal. Suppose 4> :|P|x|F|—» |J?| is any bimorphism, and let u = 
(w+, u_) : P —> I? with |u| = <£(-, 0). Then since (P+, h) is a morphism from Q to 
P, (H+, w_h) is a morphism from Q^> R, and moreover |u+| |8 = <£. The unique­
ness of (w+, u_h) follows from the fact that Q^^g is mono and hence the 
underlying set functor is faithful on (Q, R). 

§3. Examples and counterexamples. 

1. Kj when J is a dualizer in K. 

It has already been mentioned that if J is a dualizer in K then Ks — K2, the 
category of arrows in K. Here, a morphism u = (u+, w_) : / -> g is a pair of maps 
such that gu+ = u_f, and Hom(/, g) is just the diagonal of the following pullback 
diagram (where D and C indicate domain and co-domain respectively). 
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DHom(/,g) Vl > H(Df,Dg) 

Pullback H(Df, g) 

H(Cf,Cg) ^ ^ H(Pf,Cg) 

Note that if g is an isomorphism then Hom(/, g) = H(/, Cg) with equality 
holding if g is an identity map. Since J is a dualizer, H (J, J) is free on one 
generator in K, and so K2 has a dualizer; in fact the dualizer in K2 is just the 
identity map on J, and the functor ()d corresponds to H(-,J). 

The internal horn just described can of course be defined in any category K2, 
irregardless of whether or not K has a dualizer, and the resulting functor will 
satisfy the exponent law and (Fl). However, without the assumption of a 
dualizer in K, K2 need no* have a dualizer. In fact, there need not even be a 
tensor multiplication for Horn; this will be shown for K = Ens, the category of 
sets, in the next part of this section. 

There is a second internal horn for K2 which is described as follows: for 
K-morphisms / and g, Hom(/, g) is the left vertical arrow (i.e. the second 
projection) in the above pullback diagram defining Hom(/, g). There is always a 
tensor multiplication for Horn, which is the functor K 2 x K 2 - ^ K2 obtained by 
defining the tensor multiplication ® in K "pointwise". For a cartesian closed 
category K, HOM is precisely the functor of exponentiation in K2; these facts 
can be found in Nelson [4]. HOM also satisfies the exponent law and (Fl) but it 
can be shown that it is not functional even in the case that K is the category of 
sets. Moreover, even if K has a dualizer, there need not be a dualizer for 
HOM; the category CJSL of complete join semilattices will be seen to provide 
such an example. 

2. Ens. the category Ens of sets obviously has an internal horn functor; here 
the tensor multiplication is just cartesian product. 

For any set J, the functor Horn in EnSj is actually functional, i.e., satisfies 
(F2): If v :P+—>Hom(Q, JR)+ is a set map for which there are morphisms 
ty> = (ty>+> ub ):P—» R such that \v()\(b) = ub+ for each b e Q + then define 
w:Q+xR_—>P_ by w(b, c) = uh (c); a straightforward calculation shows that 
(D, W) is a morphism from P to Hom(Q, R). 

A similar argument shows that in Ens2, Horn is functional, although the 
functor HOM is not functional even here. The following discussion shows that 
there is no tensor multiplication for Horn in Ens2. Suppose there were such a 
tensor multiplication (g) and let / = Ô(8)Ô: A —»B, (0:2—>2 the constant map 
with value 0). Then for any h : 1 —» 2, Hom(Ô, h) is a constant map 2 —> 4, and 
from this one can see that there are 24 morphisms Ô —» Hom(Ô, h). Also, there 
are 2 |B_imf'morphisms / -> h, and thus \B - imf | = 4. Now let g : 3 -^ 2 be defined 
by g(0) = 0, g(l) = g(2) = 1. Then straightforward calculations show that there 
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are 10 morphisms Ô -> g, and that Hom(Ô, g) is isomorphic to the map 10 -» 4 
which takes 0 and 1 to 0 and everything else to 1. From this one can show that 
there are 22 • 22 morphisms (u, u):Ô-»Hom(Ô, g) with u(0) = 0 and 22-72 

morphisms (u, i;):Ô-*Hom(Ô, g) with u(0) = l, and so there are 22x53 
morphisms Ô -» Hom(Ô, g) all together. On the other hand, since \B -imf| = 4, 
it follows that for each a : 2 —» 3 which is the first half of a morphism / —» g 
there are exactly 24 morphisms |3:B—»2 with (a, |3) a morphism /—»g. 
Consequently the number of morphisms / - » g is divisible by 24. Since 22x53 
evidently does not have this property this shows that there is no tensor product 
0(2)0 relative to Horn. 

Since the one-element set is free on one generator in Ens, the polarity 
(J, 1, TTX) is a dualizer for Horn in Ens, for any set J. Moreover, Ens, has 
universal bimorphisms: for polarities P and Q, write Hom(P, Od)m = gh where 
g is a monomorphism and h is epi, and hence right invertible. Then the 
polarity U with U+ = Hom(P, Qd)î(=P+ x Q+), U. = Dg (the domain of g) and 
l/^ = g is a retract of Hom(P, Qd)d with the property that the underlying set 
functor is faithful on (U,R) for all R. But now every bimorphism |JP| x |Q| —> 
\R\ which factors through Hom(P, Qd)d also factors through U, and the latter 
factorization will be unique. Since Horn is functional, the discussion im­
mediately following Corollary 1 of Proposition 5 shows that the identity map 
P + x Q + - ^ ? + x Q + is a universal bimorphism with respect to Ensj. Thus EnSj 
has a functor of universal bimorphisms, and if card J>2, this differs from the 
tensor product in Ensj9 despite the fact that here Horn is functional. This then 
provides the promised counterexample to [1, Proposition 3] if the "concrete-
ness" restriction is relaxed. 

3. POEns. The category POEns of partially ordered sets and order-
preserving maps has a functional internal horn functor, and here, as in Ens, the 
tensor product is just cartesian product, and the one-element set is free on one 
generator, so that there is a dualizer in POEnsj. 

Unlike the situation for Ens/9 there are not universal bimorphisms in 
POEns2, for 2 the two-element chain: Let P+ = 2, then H(P+,2) is the three 
element chain. Let P_ be the disjoint union of two two-chains, and let 
Pt :P_-»H(P+,2) be a function mapping onto H(P+,2), Then Pd does not 
decompose into a right invertible map followed by a monomorphism, and so 
the lemma at the end of §2 shows that POEns2 does not have universal 
bimorphisms. 

Moreover, the functor Horn in POEns2 is not functional: Let P = (2,2, P0) 
where P 0 : 2x2 -»2 is the constant map with value 0. Then Hom(P,P)+ = 
{ÔJ, if._ Let f:_ |Hom(P, P)+\ -> |Hom(P, P)+| be theset map with f(i,u) = 
(i, 0), /(0, u) = (0, 0 and /(Ï, u) = (ï, Ï) for all u e{Ô, ï, i}, then / satisfies the 
hypotheses of F2 but does not underly a morphism in POEns2 since it is not 
even order-preserving. 
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4. CJSL. The category CJSL of complete join semilattices and complete 
join-preserving maps has a functional internal horn functor, and the two-
element chain 2 is a dualizer, so that CJSL2 =* CJSL .̂ Here, as in POEns2, the 
functor Horn is not functional: DHom(Ô, Ô) = {Ô, i}x{Ô, i} and the set map 
/ : DHom(Ô, 0)2-» DHom(Ô, Ô) with /(Ô, u) = (Ô, i) and /(i, u) = (i, Ô) for each 
u, satisfies the hypotheses of F2 but does not underly a morphism Hom(0,0) —» 
Hom(Ô, Ô). 

Moreover, as was mentioned above, despite the fact that CJSL has a 
dualizer, there is no dualizer for HOM in CJSL2: Suppose there were a 
dualizer A for HOM, then for each morphism / in CJSL, ecf:C/—» 
H(H(Cf, CA), CA) would be an isomorphism so that CA would be a dualizer 
in CJSL. Thus CA = 2. Now let / be the identity map on 2, then since 2 is free 
in CJSL on one generator, it follows that Hom(/, A) =* H(f, A) - A. Thus 
HOM(HOM(/,A),A)-HOM(A,A). Now it is easy to see that if card DA>3 
then card DHOM(A, A)>3, and this shows that card DA<2. If DA = 1 then 
DHOM(A,A) = l. If DA = 2 and A is constant then card DHOM(A,A) = 4. 
Thus DA = 2 and A is the identity map on 2. But then for all g e CJSL2, 
HOM(g, A) is an isomorphism, and so this shows that A is not a dualizer. 

Finally, we see that CJSL2 does not have universal bimorphisms. Let 
A = (co U {co}) x 2 and let B be the subset of A consisting of all points except 
(co, 0) with the induced order; then the mapping A —» B which takes (co, 0) to 
(a), 1) and maps everything else identically does not decompose into a 
monomorphism preceded by a right invertible map, and so by the lemma at the 
end of §2, CJSL2 does not have universal bimorphisms. 

5. The final example is the category M whose objects are all (finite) matrices 
with entries from some field, where a map A —> B is a pair (C, D) of matrices 
with DA = BC. Clearly M = M2,, where M0 is the category whose morphisms 
are all matrices, with composition given by matrix multiplication, and whose 
objects are the identity matrices. Some preliminary discussion is needed to 
describe the internal horn and tensor multiplication in MQ. 

Recall that the category \fd of all finite-dimensional vector spaces has a 
functional internal horn H for which there is a tensor multiplication and a 
dualizer. For vector spaces U and V, bases {ux,..., i^} and {vu . . . , vn} for U 
and V respectively, give rise to a basis {81U 8l2,..., £lm, 8 2 i , . . . , 
2̂m> • • , 8nm} for H(U, V); 8^ is the linear transformation mapping Uj to vt 

and all other basis vectors to 0. Each choice of bases for U and V produces 
the familiar correspondence between linear transformations from U to V 
and rcXm matrices; the matrix of a linear transformation / : [/—>V has the 
components of f(Uj) as the /th column. Given f:R—>U and g: V-^S, and a 
particular choice of bases for U, V, R and S, easy calculations show that the 
matrix corresponding to the map H(f, g):H(U, V)^>H(R, S), relative to 
the bases for H(U, V) and H(R, S) as described above, is Al®B, where A 
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and B are the matrices corresponding to / and g respectively, ()' indicates 
transpose, and ® is the Kronecker product of matrices, so that 

A<g)B = 

Abu 

Ab21 

Ab12 

Ab22 

Abln~ 

Ab2n 

Abk^ Ah \ i Ah 'knj 

Moreover, the matrix corresponding to the map /®g is just A®B. 
MQ is essentially the skeleton subcategory of \fd consisting of the spaces kn 

(k the field). More precisely, MQ is the category whose morphisms are all finite 
matrices with entries from fc, composition is just matrix multiplication, and the 
objects are the identity matrices In. MQ has an underlying set functor: the 
underlying set of In is the set kn and the underlying morphism of an mxn 
matrix A is given by \A\ : kn -> fcm, 

\A\(x) = A 

There is a canonical isomorphism from the set of all mxn matrices ( = the 
set of all morphisms In^> Im) to |Imn| = fcmn given by 

Â~»(all9 a1 2 , . . . , aln, a21, a2 2 , . . . , a2 n , . . . , am l , . . . , amn). 

Define HiMjxMo-^Mo by H(In,Im) = Inm and H(A,B) = A'(g)E; the func­
tionality of H follows from the matrix identity (A(g>JB)(C<g>D) = AC&BD. 
Moreover, an easy calculation shows, for A : In —> Im, B:Ik-> In, C:Im—> Ik, 
that |H(A, B)\ (C) = (BCA)~. and thus H is an internal horn functor for MQ. The 
Kronecker product provides a tensor multiplication, and MQ inherits the 
property from V/d of having universal bimorphisms, so H is functional. The 
identity matrix Ix = (1) is a dualizer for H. 

Consequently the category M = 1V̂  whose objects are all matrices has an 
internal horn functor Horn for which there is a dualizer and a tensor multiplica­
tion. It can be shown that Horn is not functional. 

A detailed description of Horn can be given by first observing what pullbacks 
in MQ look like. The product, in Mo, of In and Im is Inm with projection maps 
ir1 = (In, 0) and 7r2 = (0, Im) where the first 0 is the n x m zero matrix and the 
second 0 is the mxn zero matrix. The pullback of A : In —» Im and B : Ik -» Im 

is the equalizer of the maps (A, 0):Ink -» Jm and (0, B) : Ink -> Im, and this is 
just the kernel of (A, —B). Finally, the kernel, ker A, an m x n matrix of rank k 
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is the matrix consisting of the last n — k columns of the matrix which results 
from performing Gramm-Schmidt orthogonalization on the columns of the 
matrix (A\ In). 

A straightforward calculation now shows that for matrices A and B, (mxn 
and kxh respectively), Hom(A, B) = (In<g)B, 0) Ker(Af®Ifc, -B<8>In). 
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