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Abstract

In this paper we extend some estimates of the right-hand side of a Hermite–Hadamard type inequality for
functions whose derivatives’ absolute values are P-convex. Applications to the trapezoidal formula and
special means are introduced.
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1. Introduction

Let I = [c, d] be an interval on the real line R, let f : I→ R be a convex function and
let a, b ∈ [c, d], a < b. We consider the well-known Hermite–Hadamard inequality

f
(a + b

2

)
≤

1
b − a

∫ b

a
f (x) dx ≤

f (a) + f (b)
2

. (1.1)

Both inequalities hold in the reverse direction if f is concave (see [12]). The classical
Hermite–Hadamard inequality provides estimates of the mean value of a continuous
convex function f : [a, b]→ R. We note that the Hermite–Hadamard inequality may
be regarded as a refinement of the concept of convexity, as follows easily from
Jensen’s inequality. The Hermite–Hadamard inequality for convex functions has
received renewed attention in recent years and a remarkable variety of refinements
and generalisations has been found; see, for example, [4–7] and references therein.

Dragomir and Agarwal in [9] used the following lemma to prove Theorems 1.2
and 1.3.

L 1.1. The following equation holds true:

f (a) + f (b)
2

−
1

b − a

∫ b

a
f (x) dx =

b − a
2

∫ 1

0
(1 − 2t) f ′(ta + (1 − t)b) dt.
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T 1.2. Assume that a, b ∈ R with a < b and f : [a, b]→ R is a differentiable
function on (a, b). If | f ′| is convex on [a, b] then the following inequality holds true:∣∣∣∣∣ f (a) + f (b)

2
−

1
b − a

∫ b

a
f (x) dx

∣∣∣∣∣ ≤ (b − a)(| f ′(a)| + | f ′(b)|)
8

.

T 1.3. Assume that a, b ∈ R with a < b and f : [a, b]→ R is a differentiable
function on (a, b). Assume that p ∈ R with p > 1. If | f ′|p/(p−1) is convex on [a, b] then
the following inequality holds true:∣∣∣∣∣ f (a) + f (b)

2
−

1
b − a

∫ b

a
f (x) dx

∣∣∣∣∣
≤

b − a
2(p + 1)1/p

·

(
| f ′(a)|p/(p−1) + | f ′(b)|p/(p−1)

2

)(p−1)/p

.

In [12] Pečarić et al. proved the following theorem.

T 1.4. Let f : I→ R be a differentiable function on I◦, a, b ∈ I◦ with a < b. If
| f ′|q is convex on [a, b] for q ≥ 1, then the following inequality holds:∣∣∣∣∣ f (a) + f (b)

2
−

1
b − a

∫ b

a
f (x) dx

∣∣∣∣∣ ≤ (b − a)
4

(
| f ′(a)|q + | f ′(b)|q

2

)1/q

.

Recall that the function f : [a, b]→ R is said to be quasiconvex if, for every
x, y ∈ [a, b],

f (tx + (1 − t)y) ≤max{ f (x), f (y)} for all t ∈ [0, 1].

Ion in [10] presented some estimates of the right-hand side of a Hermite–Hadamard
type inequality in which some quasiconvex functions are involved. The main results
of [10] are given by the following theorems.

T 1.5. Assume that a, b ∈ R with a < b and f : [a, b]→ R is a differentiable
function on (a, b). If | f ′| is quasiconvex on [a, b] then the following inequality holds
true: ∣∣∣∣∣ f (a) + f (b)

2
−

1
b − a

∫ b

a
f (x) dx

∣∣∣∣∣ ≤ (b − a) max{| f ′(a)|, | f ′(b)|}
4

.

T 1.6. Assume that a, b ∈ R with a < b and f : [a, b]→ R is a differentiable
function on (a, b). Assume that p ∈ R with p > 1. If | f ′|p/(p−1) is quasiconvex on [a, b]
then the following inequality holds true:∣∣∣∣∣ f (a) + f (b)

2
−

1
b − a

∫ b

a
f (x) dx

∣∣∣∣∣
≤

b − a
2(p + 1)1/p

(max{| f ′(a)|p/(p−1), | f ′(b)|p/(p−1)})(p−1)/p.
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On the other hand, Dragomir et al. in [7] defined the following class of functions.

D 1.7. Let I ⊆ R be an interval. The function f : I→ R is said to belong to
the class P(I) (or to be P-convex) if it is nonnegative and, for all x, y ∈ I and λ ∈ [0, 1],
satisfies the inequality

f (λx + (1 − λ)y) ≤ f (x) + f (y).

Note that P(I) contain all nonnegative convex and quasiconvex functions. Since
then numerous articles have appeared in the literature reflecting further applications in
this category; see [1, 8, 11, 13] and references therein.

The main purpose of this paper is to establish new estimations and refinements of
the Hermite–Hadamard inequality (1.1) for functions whose derivatives in absolute
value are P-convex. Applications to the trapezoidal formula and special means are
introduced.

2. Hermite–Hadamard type inequality

In this section we generalise Theorems 1.4–1.6 with a P-convex function setting.
The next theorem gives a new result for the upper Hermite–Hadamard inequality

for P-convex functions.

T 2.1. Let f : I→ R be a differentiable function on I◦ such that the function
| f ′| is P-convex. Suppose that a, b ∈ I with a < b and f ′ ∈ L1[a, b]. Then the following
inequality holds:∣∣∣∣∣ f (a) + f (b)

2
−

1
b − a

∫ b

a
f (x) dx

∣∣∣∣∣ ≤ (b − a)(| f ′(a)| + | f ′(b)|)
4

.

P. By Lemma 1.1,

f (a) + f (b)
2

−
1

b − a

∫ b

a
f (x) dx =

b − a
2

∫ 1

0
(1 − 2t) f ′(ta + (1 − t)b) dt. (2.1)

Since | f ′| is P-convex, by (2.1),∣∣∣∣∣ f (a) + f (b)
2

−
1

b − a

∫ b

a
f (x) dx

∣∣∣∣∣ =

∣∣∣∣∣b − a
2

∫ 1

0
(1 − 2t) f ′(ta + (1 − t)b) dt

∣∣∣∣∣
≤

(b − a)
2

∫ 1

0
|1 − 2t|| f ′(ta + (1 − t)b)| dt

=
(b − a)(| f ′(a)| + | f ′(b)|)

4
.

This completes the proof. �

The corresponding version for powers of the absolute value of the derivative is
incorporated in the following result.
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T 2.2. Let f : I→ R be a differentiable function on I◦. Assume that p ∈ R,
p > 1, is such that the function | f ′|p/(p−1) is P-convex. Suppose that a, b ∈ I with a < b
and f ′ ∈ L1[a, b]. Then the following inequality holds:∣∣∣∣∣ f (a) + f (b)

2
−

1
b − a

∫ b

a
f (x) dx

∣∣∣∣∣
≤

(b − a)(| f ′(a)|p/(p−1) + | f ′(b)|p/(p−1))(p−1)/p

2(p + 1)1/p
.

P. Suppose that a, b ∈ I. By assumption, Hölder’s inequality and Lemma 1.1,∣∣∣∣∣ f (a) + f (b)
2

−
1

b − a

∫ b

a
f (x) dx

∣∣∣∣∣
≤

b − a
2

∫ 1

0
|1 − 2t|| f ′(ta + (1 − t)b)| dt

≤
b − a

2

(∫ 1

0
|1 − 2t|p dt

)1/p(∫ 1

0
| f ′(ta + (1 − t)b)|q dt

)1/q

=
b − a

2(p + 1)1/p

(∫ 1

0
| f ′(ta + (1 − t)b)|q dt

)1/q

≤
b − a

2(p + 1)1/p

(∫ 1

0
(| f ′(a)|q + | f ′(a)|q) dt

)1/q

=
b − a

2(p + 1)1/p
(| f ′(a)|q + | f ′(a)|q)1/q,

where q := p/(p − 1) and since
∫ 1

0
|1 − 2t|p dt = 1/(p + 1). �

A more general inequality using Lemma 1.1 is as follows.

T 2.3. Let f : I→ R be a differentiable function on I◦. Assume that q ∈ R,
q > 1, is such that | f ′|q is a P-convex function. Suppose that a, b ∈ I with a < b and
f ′ ∈ L1[a, b]. Then the following inequality holds:∣∣∣∣∣ f (a) + f (b)

2
−

1
b − a

∫ b

a
f (x) dx

∣∣∣∣∣ ≤ (b − a)
4

(| f ′(a)|q + | f ′(a)|q)1/q.

P. Suppose that a, b ∈ I◦. By the P-convexity of f and Lemma 1.1, and using the
well-known power mean inequality,∣∣∣∣∣ f (a) + f (b)

2
−

1
b − a

∫ b

a
f (x) dx

∣∣∣∣∣
≤

b − a
2

∫ 1

0
|1 − 2t|| f ′(ta + (1 − t)b)| dt
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≤
b − a

2

(∫ 1

0
|1 − 2t|p dt

)1−1/q(∫ 1

0
|1 − 2t|| f ′(ta + (1 − t)b)|q dt

)1/q

=
b − a

4

(∫ 1

0
| f ′(ta + (1 − t)b)|q dt

)1/q

≤
b − a

4
(| f ′(a)|q + | f ′(a)|q)1/q.

This completes the proof. �

3. An extension to functions of several variables

In this section some Hermite–Hadamard inequalities for functions of several
variables on convex subsets of Rn will be given. First we introduce the notion of
P-convexity for functions on a convex subset of Rn.

D 3.1. The function f : U → R is said to be P-convex on U if it is nonnegative
and, for all x, y ∈ U and λ ∈ [0, 1], satisfies the inequality

f (λx + (1 − λ)y) ≤ f (x) + f (y).

The following proposition will be used throughout this section.

P 3.2. Let U ⊆ Rn be a convex subset of Rn and f : U → R be a function.
Then f is P-convex on U if and only if, for every x, y ∈ U, the function ϕ : [0, 1]→ R,
defined by

ϕ(t) := f ((1 − t)x + ty),

is P-convex on I with I = [0, 1].

P. Let x, y ∈ U be fixed. Assume that the function ϕ is P-convex on I with
I = [0, 1]. Suppose that λ ∈ [0, 1]. Then

f ((1 − λ)x + λy) = ϕ(λ) = ϕ((1 − λ) · 0 + λ · 1)

≤ ϕ(0) + ϕ(1) = f (x) + f (y).

It follows that f is P-convex on U. Conversely, let f be P-convex on U. Fix
x, y ∈ U and t1, t2 ∈ [0, 1]. Set z1 := (1 − t1)x + t1y and z2 := (1 − t2)x + t2y. Then, for
every λ ∈ [0, 1],

ϕ((1 − λ)t1 + λt2) = f ([1 − (1 − λ)t1 − λt2]x + [(1 − λ)t1 − λt2]y)

= f ((1 − λ)z1 + λz2)

≤ f (z1) + f (z2)

= ϕ(t1) + ϕ(t2).

Therefore, ϕ is P-convex on I with I = [0, 1]. �
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The following theorem is a generalisation of [10, Proposition 1].

T 3.3. Let U ⊆ Rn be an open convex subset of Rn. Assume that f : U → R is a
differentiable P-convex function on U. Then, for every x, y ∈ S and every a, b ∈ [0, 1]
with a < b, the following inequality holds:∣∣∣∣∣12

∫ a

0
f ((1 − s)x + sy) ds +

1
2

∫ b

0
f ((1 − s)x + sy) ds

−
1

b − a

∫ b

a

(∫ s

0
f ((1 − θ)x + θy) dθ

)
ds

∣∣∣∣∣
≤

b − a
4

max{ f ((1 − a)x + ay), f ((1 − b)x + by)}.

(3.1)

P. Let x, y ∈ S and a, b ∈ (0, 1) with a < b. Since f is a P-convex function, by
Proposition 3.2 the function ϕ : [0, 1]→ R+ defined by

ϕ(t) := f ((1 − t)x + ty)

is P-convex on I with I = [0, 1]. Define the function φ : [0, 1]→ R+ by

φ(t) :=
∫ t

0
ϕ(s) ds =

∫ t

0
f ((1 − s)x + sy) ds.

Obviously, for every t ∈ (0, 1),

φ′(t) = ϕ(t) = f ((1 − t)x + ty) ≥ 0.

Hence |φ′(t)| = φ′(t). Applying Theorem 2.1 to the function φ implies that∣∣∣∣∣φ(a) + φ(b)
2

−
1

b − a

∫ b

a
φ(s) ds

∣∣∣∣∣ ≤ (b − a)[φ′(a) + φ′(b)]
4

,

and we deduce that (3.1) holds. �

4. Applications to the trapezoidal formula

Assume that ∆ is a division of the interval [a, b] such that

∆ : a = x0 < x1 < · · · < xn−1 < xn = b.

For a given function f : [a, b]→ R we consider the trapezoidal formula

T ( f , ∆) =

n−1∑
i=0

f (xi) − f (xi+1)
2

(xi+1 − xi).

It is well known that if f is twice differentiable on (a, b) and

M = sup
x∈(a,b)

| f ′′(x)| <∞,
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then ∫ b

a
f (x) dx = T ( f , ∆) + E( f , d),

where the approximation error E( f , d) of the integral
∫ b

a
f (x) dx by T ( f , ∆) satisfies

|E( f , d)| ≤
M
12

n−1∑
i=0

(xi+1 − xi)3. (4.1)

Clearly, if the function f is not twice differentiable or the second derivative is not
bounded on (a, b), then (4.1) does not hold true. In that context, the following result is
important in order to obtain some estimates of E( f , d).

T 4.1. Let f : I→ R be a differentiable function such that | f ′| is P-convex.
Suppose that a, b ∈ I with a < b and f ′ ∈ L1[a, b]. Then, for every division ∆ of the
interval [a, b],∣∣∣∣∣T ( f , ∆) −

∫ b

a
f (x) dx

∣∣∣∣∣ =
| f ′(a)| + | f ′(b)|

2

n−1∑
i=0

(xi+1 − xi)2. (4.2)

P. Applying Theorem 2.1 on the subinterval [xi, xi] (i = 0, . . . , n − 1) of the
division ∆ and adding from i = 0 to i = n − 1, we deduce that∣∣∣∣∣T ( f , ∆) −

∫ b

a
f (x) dx

∣∣∣∣∣ =
1
4

n−1∑
i=0

(xi+1 − xi)2( f ′(xi) + f (x′i+1)). (4.3)

On the other hand, for every xi ∈ [a, b] there exists αi ∈ [0, 1] such that

xi = αia + (1 − αi)b.

By the P-convexity of | f ′|,

| f ′(xi)| ≤ | f ′(a)| + | f ′(b)|.

Thus
| f ′(xi) + f (x′i+1)| ≤ 2(| f ′(a)| + | f ′(b)|). (4.4)

Therefore, combining relations (4.3) and (4.4) implies that (4.2) holds true and the
proof is complete. �

5. Applications to special means

We now give applications of our theorems to some special means of real numbers.
We consider the following means for arbitrary real numbers α, β (α , β).
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(1) Arithmetic mean:

A(α, β) =
α + β

2
, α, β ∈ R.

(2) Logarithmic mean:

L(α, β) =
α − β

ln |α| − ln |β|
, |α| , |β|, α, β , 0, α, β ∈ R.

(3) Generalised logarithmic mean:

Ln(α, β) =

(
βn+1 − αn+1

(n + 1)(β − α)

)1/n

, n ∈ N, α, β ∈ R, α , β.

Using the results of Section 2, we have the following propositions.

P 5.1. Let a, b ∈ R, a < b, and n ∈ N, n ≥ 2. Then

|Ln
n(a, b) − A(an, bn)| ≤

n(b − a)
4

(|a|n−1 + |b|n−1).

P. The assertion follows from Theorem 2.1 applied to the function f (x) = xn,
x ∈ R, because | f ′| is P-convex. �

P 5.2. Let a, b ∈ R, where a < b and 0 < [a, b]. Then

|L−1(a, b) − A(a−1, b−1)| ≤
b − a

4
(|a|−2 + |b|−2).

P. The assertion follows from Theorem 2.1 applied to the function f (x) = 1/x,
x ∈ [a, b], because | f ′| is P-convex. �

P 5.3. Let a, b ∈ R, a < b, and n ∈ N, n ≥ 2. Then, for all p > 1,

|Ln
n(a, b) − A(an, bn)| ≤

(b − a)(|a|−2p/p−1 + |b|−2p/p−1)(p−1)/p

2(p + 1)1/p
.

P. The assertion follows from Theorem 2.2 applied to the function f (x) = 1/x,
x ∈ R, because for all p > 1 the function | f ′|p/(p−1) is P-convex. �
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[12] J. Pečarić, F. Proschan and Y. L. Tong, Convex Functions, Partial Ordering and Statistical
Applications (Academic Press, New York, 1991).

[13] K. L. Tseng, G. S. Yang and S. S. Dragomir, ‘On quasiconvex functions and Hadamard’s
inequality’, RGMIA Res. Rep. Coll. 14 (2003), article 1.

A. BARANI, Department of Mathematics, Lorestan University,
PO Box 465, Khoramabad, Iran
e-mail: alibarani2000@yahoo.com, barani.a@lu.ac.ir

S. BARANI, Department of Civil Engineering, Shahid Chamran University,
PO Box 135, Ahvaz, Iran
e-mail: seebb86@yahoo.com

https://doi.org/10.1017/S0004972711003029 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972711003029

