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DETERMINATION OF GRASSMANN MANIFOLDS
WHICH ARE BOUNDARIES

PARAMESWARAN SANKARAN

ABSTRACT.  Let FG, denote the Grassmann manifold of all k-dimen-
sional (left) F-vector subspace of F" for F = R, the reals, C, the complex
numbers, or H the quaternions. The problem of determining which of the
Grassmannians bound was addressed by the author in [4]. Partial results were
obtained in [4] for the case F = R, including a sufficient condition, due to
A. Dold, on n and k for R G, 4 to bound. Here, we show that Dold’s condition
is also necessary, and obtain a new proof of sufficiency using the methods of
this paper, which cover the complex and quaternionic cases as well.

1. Introduction. For a positive integer n, let v(n) be the integer such that 2/™|n
and 2"™*! fn. Let 1 < k < n. The purpose of this paper is to prove

THEOREM 1.1. Let F = R,C,orH. Then FG, bounds if and only if v(n) > v (k).

Let [M] denote the unoriented cobordism class of a smooth closed manifold M. From
[5] we have

(1.2) [FGui] = [RGuil”...

for F = R,C,orH, where d = dimg F. We will prove that [C G5, 2] = [H G,,‘k]2. Using
these, and the known facts (see [4]) about R G, 4, we will prove Theorem 1.1.

We regard the left H-vector space H” as C2" as follows: the n-tuple (g1, ...,g,) € H"
of quaternions g, = apo + iap| +jay +kays, 1 < p < n,is identified with the 2n-tuple
(aro +iapy, ain +iags, . . ., @no + iy, Gn + iay3) in C2*. Then multiplication on the left by
j € H yields the conjugate linear automorphism J: C?" — C2" where

J(le .. ’ZZH) = (_ZZ’Z|’° .. ’_ZZnsZ-val)-

Clearly, J> = —1Id. Also, a C-subspace V of C2" = H" is a left H-subspace if and only
if J(V) = V. Further, when J(V) = V,dimy V = %dimc V. From this identification
of H" with C?" we obtain an imbedding of HG,, = {V C H" | dimy V = k} into
CGonx = {w C €| dimg W = 2k}. We identify HG,x with its image in C Gy,
under the above imbedding.

We put the usual R -valued inner product on C2" = H" so that (jv, jw) = (v,w) for
allv,w € H".
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2. Proof of Theorem 1.1. Let 7/, denote the canonical F-vector bundle of F-
rank £ over FG,, and let ﬁ,ﬁ ¢, denote its orthogonal complement bundle, whose fi-
bre over W € FG,, is W= C F™. Then the tangent bundle 7,7, is isomorphic to
Homp(Y} ¢, B ). 7,5, is a complex vector bundle when F = C, and is a real vector

bundle when F = R or H (see [2]).
For x € M, let T,M denote the tangent space at x to the smooth manifold M.
Because J:C?" — C?" is a conjugate linear automorphism, it induces a map ¥:
CG2n,2k — C Ganok Where Y(W)=J(W)forall W e C Gonok.

LEMMA2.1. Leto: Ticn,zk — T{;LZ,C denote the map a(h) = ihforallh € TxC Gapox =
Homg (X, X1), for X € € Gy, k. Then the following diagram anti-commutes for any X €
CGanok:

TxCGumu —  TxCGaxn
Ly |y

[ed
Tyx)CGaupk — Tyx)CGank

Thatis, TYoa = —a o TY.

PROOF. Recall, from [2], that the identification of 7.}, with Homg(v[ ,, B ,) is ob-
tained as follows. Given an F-linear map h: X — X1 with X € FGpy, let o(h)(t) =
“graph of th” = {x + th(x) | x € X} fort € R. Then o (h) is a smooth curve in FG,, ¢
with o (h)(0) = X. The h corresponds to the tangent vector %a(h)(t) li=0 at X t0 FGypnp.

Now let X € CGy,ax, and let h: X — X+ be C-linear, that is, h € TxC G2, Then
T¥(h): ¥(X) = JX) — (Y0)" = (JoO)" = Jxb) is the tangent vector 4 (¥ o
a(h)(®)) |i=o.

Consider

¥ o g (h)(t) = J(a (h)(1))
= {jv|veamm)
= {jx+jh(x0) | x € X}
= {jx+1jhj~'(ix) | x € X}
{y+ (=)o) | y € X))}
o (—=jh)(®).

I

Therefore (%(‘P o a(h)(t))|,=o is the tangent vector —jhj: J(X) — J(X1). Hence TW(h) =
—jhj. Therefore (T o a)(h) = TW(ih) = —jihj = ijhj = o (T¥(—h)) = —(c o T¥)(h),
as required. -

THEOREM 2.2. For F = R, C orH one has

[FG,4)* = [FGaal.

https://doi.org/10.4153/CMB-1991-019-8 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1991-019-8

GRASSMANN MANIFOLDS 121

PROOF. Note that W: CGy,or — CGanpx is @ smooth involution as YA(W) =
Y(J(W)) = JA(W) = (—1d)(W) = W, for any W € € Gy . Clearly Fix(¥) = {V €
CGonok | J(V) = V} = HG,y. From Lemma 2.1 above and by Theorem 22.4 of [1], we
see that

(€ Ganatl = [Fix(P))’ = [HG,4)?

Using (1.2) we get
[R Gk = [CGonn] = [HGrp* = [R Gyl

Since the unoriented cobordism ring is a polynomial ring over Z /2, it follows that the
theorem holds for F = R. The general case now follows from (1.2). ]

We now turn to the proof of Theorem 1.1. First note that, using (1.2), we need only
consider the case F = R. Letv = min{v(n),v(k)}.Letm=n-2"",and £ =k-27".
By repeated use of Theorem 2.2 we get

[RGux] = [RGpel".

If v(n) > v(k), then mis even and £ is odd. In this case R G,,, admits a fixed point free
involution. To obtain such an involution one uses the R -linear automorphism of R™
which is “multiplication by i when R " is regarded as C"/2. Hence R G, also bounds.

(See also [4].)
If v(n) < v(k), then m is odd. In this case R G,, ¢ does not bound [4]. This completes
the proof. =

REMARK. The analogue of Theorem 2.2 for the more general F-flag manifolds is
true, and can be proved similarly.

3. Decomposability of Grassmannians. It is a well-known result [3] that the pro-
jective space RP" = R Gpy11 = R Gyyi 0 is indecomposable if and only if # is even.
Thus [R P"] can be chosen as the n-dimensional generator for the cobordism ring for n
even. From Theorems 1.1 and 2.2 it follows that any R G, with n even is decompos-
able. Indeed R G, is either a boundary or is cobordant to a cartesian power of R Gy, ¢
for suitable integers m, £ with m odd. We prove below that

THEOREM 3.1. For2 <k <n—2, RG,4 is decomposable.

PROOF. Letp = dim R G, = k(n — k). Denote by S, = S,(a1,...,0,) the power
sum Y <j<q yf expressed as a polynomial in the elementary symmetric polynomials o;’s
in g “unknowns” yi,...,y4,q > p. Let wj = wj(Yox) € H(RGny;Z/2),1 < j < k.
Write W(,yn,k) =1+ wi+-+w = nggk(l + Ej). Then

wRG, )= [] (+e+e)™ [ A+e),

1<i<j<k 1<j<k
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where the e;’s satisfy—among others—the following relation: e} = 0 (see [6]).
Choose r such thatn < 2". Then (1 +¢; + ¢;)* = 1. Therefore

(I+ei+e) 2= (1+e+e)” %

Hence w(R G,x) = ITi<icj<k(1+e;+€;)* 2. [li<i<k(1 +¢;)". Thus we can (and do) regard
the j Stiefel-Whitney class w(j) of R G, as j® elementary symmetric polynomial in
ei+e, 1 <i<j<k, eachwith multiplicity 2" —2,ande;, 1 < i <k, each with
multiplicity n. Thus

SpRGup) 2 = Sp(w(l),....w(p))
= sum of the p™ powers of (e; + ¢;)’s, | <i < j <k,
and of ¢;’s counted with appropriate multiplicities.

>R =2)ei+e) + > ne

1<i<j<k 1<i<k

= 3 ne.

1<i<k

Now 2 < k < n — 2 implies that p = k(n — k) > n. Since ¢} = 0 for all i, we get
Sp(R G, x) = 0. The theorem now follows from this by a well-known result of R. Thom.
See, for example [3]. n

NOTE. The decomposability of [FG, x| for F = C or H follows from (1.2).
The author would like to thank Professor K. Varadarajan for encouragement.
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