DETERMINATION OF GRASSMANN MANIFOLDS WHICH ARE BOUNDARIES

PARAMESWARAN SANKARAN

Abstract

Let $F G_{n, k}$ denote the Grassmann manifold of all k-dimensional (left) F-vector subspace of F^{n} for $F=\mathbb{R}$, the reals, \mathbb{C}, the complex numbers, or \mathbb{H} the quaternions. The problem of determining which of the Grassmannians bound was addressed by the author in [4]. Partial results were obtained in [4] for the case $F=\mathbb{R}$, including a sufficient condition, due to A. Dold, on n and k for $\mathbb{R} G_{n, k}$ to bound. Here, we show that Dold's condition is also necessary, and obtain a new proof of sufficiency using the methods of this paper, which cover the complex and quaternionic cases as well.

1. Introduction. For a positive integer n, let $\nu(n)$ be the integer such that $2^{\nu(n)} \mid n$ and $2^{\nu(n)+1} \nmid n$. Let $1 \leq k \leq n$. The purpose of this paper is to prove

Theorem 1.1. Let $F=\mathbb{R}, \mathbb{C}$, or \mathbb{H}. Then $F G_{n, k}$ bounds if and only if $\nu(n)>\nu(k)$.
Let [M] denote the unoriented cobordism class of a smooth closed manifold M. From [5] we have

$$
\begin{equation*}
\left[F G_{n, k}\right]=\left[\mathbb{R} G_{n, k}\right]^{d} \ldots \tag{1.2}
\end{equation*}
$$

for $F=\mathbb{R}, \mathbb{C}$, or \mathbb{H}, where $d=\operatorname{dim}_{\mathbb{R}} F$. We will prove that $\left[\mathbb{C} G_{2 n, 2 k}\right]=\left[\mathbb{H} G_{n, k}\right]^{2}$. Using these, and the known facts (see [4]) about $\mathbb{R} G_{n, k}$, we will prove Theorem 1.1.

We regard the left \mathbb{H}-vector space \mathbb{H}^{n} as $\mathbb{C}^{2 n}$ as follows: the n-tuple $\left(q_{1}, \ldots, q_{n}\right) \in \mathbb{H}^{n}$ of quaternions $q_{p}=a_{p 0}+i a_{p 1}+j a_{p 2}+k a_{p 3}, 1 \leq p \leq n$, is identified with the $2 n$-tuple $\left(a_{10}+i a_{11}, a_{12}+i a_{13}, \ldots, a_{n 0}+i a_{n l}, a_{n 2}+i a_{n 3}\right)$ in $\mathbb{C}^{2 n}$. Then multiplication on the left by $j \in \mathbb{H}$ yields the conjugate linear automorphism $J: \mathbb{C}^{2 n} \rightarrow \mathbb{C}^{2 n}$ where

$$
J\left(z_{1}, \ldots, z_{2 n}\right)=\left(-\bar{z}_{2}, \bar{z}_{1}, \ldots,-\bar{z}_{2 n}, \bar{z}_{2 n-1}\right) .
$$

Clearly, $J^{2}=-$ Id. Also, a \mathbb{C}-subspace V of $\mathbb{C}^{2 n}=\mathbb{H}^{n}$ is a left \mathbb{H}-subspace if and only if $J(V)=V$. Further, when $J(V)=V, \operatorname{dim}_{H} V=\frac{1}{2} \operatorname{dim}_{C} V$. From this identification of \mathbb{H}^{n} with $\mathbb{C}^{2 n}$ we obtain an imbedding of $\mathbb{H} G_{n, k}=\left\{V \subset \mathbb{H}^{n} \mid \operatorname{dim}_{\mathbb{H}} V=k\right\}$ into $\mathbb{C} G_{2 n, 2 k}=\left\{w \subset \mathbb{C}^{2 n} \mid \operatorname{dim}_{\mathbb{C}} W=2 k\right\}$. We identify $\mathbb{H} G_{n, k}$ with its image in $\mathbb{C} G_{2 n, 2 k}$ under the above imbedding.

We put the usual \mathbb{R}-valued inner product on $\mathbb{C}^{2 n}=\mathbb{H}^{n}$ so that $\langle j v, j w\rangle=\langle v, w\rangle$ for all $v, w \in \mathbb{H}^{n}$.

[^0]2. Proof of Theorem 1.1. Let $\gamma_{m, \ell}^{F}$ denote the canonical F-vector bundle of F rank ℓ over $F G_{m, \ell}$, and let $\beta_{m, \ell}^{F}$ denote its orthogonal complement bundle, whose fibre over $W \in F G_{m, \ell}$ is $W^{\perp} \subset F^{m}$. Then the tangent bundle $\tau_{m, \ell}^{F}$ is isomorphic to $\operatorname{Hom}_{F}\left(\gamma_{m, \ell}^{F}, \beta_{m, \ell}^{F}\right) . \tau_{m, \ell}^{F}$ is a complex vector bundle when $F=\mathbb{C}$, and is a real vector bundle when $F=\mathbb{R}$ or \mathbb{H} (see [2]).

For $x \in M$, let $T_{x} M$ denote the tangent space at x to the smooth manifold M.
Because $J: \mathbb{C}^{2 n} \rightarrow \mathbb{C}^{2 n}$ is a conjugate linear automorphism, it induces a map Ψ : $\mathbb{C} G_{2 n, 2 k} \rightarrow \mathbb{C} G_{2 n, 2 k}$ where $\Psi(W)=J(W)$ for all $W \in \mathbb{C} G_{2 n, 2 k}$.

LEMMA 2.1. Let $\alpha: \tau_{2 n, 2 k}^{\mathbb{C}} \rightarrow \tau_{2 n, 2 k}^{\mathbb{C}}$ denote the map $\alpha(h)=$ ihfor all $h \in T_{X} \mathbb{C} G_{2 n, 2 k}=$ $\operatorname{Hom}_{\mathbb{C}}\left(X, X^{\perp}\right)$, for $X \in \mathbb{C} G_{2 n, 2 k}$. Then the following diagram anti-commutes for any $X \in$ $\mathbb{C} G_{2 n, 2 k}$:

That is, $T \Psi \circ \alpha=-\alpha \circ T \Psi$.
Proof. Recall, from [2], that the identification of $\tau_{m, \ell}^{F}$ with $\operatorname{Hom}_{F}\left(\gamma_{m, \ell}^{F}, \beta_{m, \ell}^{F}\right)$ is obtained as follows. Given an F-linear map $h: X \rightarrow X^{\perp}$ with $X \in F G_{m, \ell}$, let $\sigma(h)(t)=$ "graph of th" $=\{x+t h(x) \mid x \in X\}$ for $t \in \mathbb{R}$. Then $\sigma(h)$ is a smooth curve in $F G_{m, \ell}$ with $\sigma(h)(0)=X$. The h corresponds to the tangent vector $\left.\frac{d}{d t} \sigma(h)(t)\right|_{t=0}$ at X to $F G_{m, \ell}$.

Now let $X \in \mathbb{C} G_{2 n, 2 k}$, and let $h: X \rightarrow X^{\perp}$ be \mathbb{C}-linear, that is, $h \in T_{X} \mathbb{C} G_{2 n, 2 k}$. Then $T \Psi(h): \Psi(X)=J(X) \rightarrow(\Psi(X))^{\perp}=(J(X))^{\perp}=J\left(X^{\perp}\right)$ is the tangent vector $\frac{d}{d t}(\Psi \circ$ $\sigma(h)(t))\left.\right|_{t=0}$.

Consider

$$
\begin{aligned}
\Psi \circ \sigma(h)(t) & =J(\sigma(h)(t)) \\
& =\{j v \mid v \in \sigma(h)(t)\} \\
& =\{j x+t j h(x) \mid x \in X\} \\
& =\left\{j x+t j h j^{-1}(j x) \mid x \in X\right\} \\
& =\{y+t(-j h j)(y) \mid y \in J(X)\} \\
& =\sigma(-j h j)(t) .
\end{aligned}
$$

Therefore $\left.\frac{d}{d t}(\Psi \circ \sigma(h)(t))\right|_{t=0}$ is the tangent vector $-j h j: J(X) \rightarrow J\left(X^{\perp}\right)$. Hence $T \Psi(h)=$ $-j h j$. Therefore $(T \Psi \circ \alpha)(h)=T \Psi(i h)=-j i h j=i j h j=\alpha(T \Psi(-h))=-(\alpha \circ T \Psi)(h)$, as required.

Theorem 2.2. For $F=\mathbb{R}, \mathbb{C}$ or \mathbb{H} one has

$$
\left[F G_{n, k}\right]^{4}=\left[F G_{2 n, 2 k}\right] .
$$

Proof. Note that $\Psi: \mathbb{C} G_{2 n, 2 k} \rightarrow \mathbb{C} G_{2 n, 2 k}$ is a smooth involution as $\Psi^{2}(W)=$ $\Psi(J(W))=J^{2}(W)=(-\mathrm{Id})(W)=W$, for any $W \in \mathbb{C} G_{2 n, 2 k}$. Clearly Fix $(\Psi)=\{V \in$ $\left.\mathbb{C} G_{2 n, 2 k} \mid J(V)=V\right\}=\mathbb{H} G_{n, k}$. From Lemma 2.1 above and by Theorem 22.4 of [1], we see that

$$
\left[\mathbb{C} G_{2 n, 2 k}\right]=[\operatorname{Fix}(\Psi)]^{2}=\left[\mathbb{H} G_{n, k}\right]^{2}
$$

Using (1.2) we get

$$
\left[\mathbb{R} G_{2 n, 2 k}\right]^{2}=\left[\mathbb{C} G_{2 n, 2 k}\right]=\left[\mathbb{H} G_{n, k}\right]^{2}=\left[\mathbb{R} G_{n, k}\right]^{8}
$$

Since the unoriented cobordism ring is a polynomial ring over $\mathbb{Z} / 2$, it follows that the theorem holds for $F=\mathbb{R}$. The general case now follows from (1.2).

We now turn to the proof of Theorem 1.1. First note that, using (1.2), we need only consider the case $F=\mathbb{R}$. Let $\nu=\min \{\nu(n), \nu(k)\}$. Let $m=n \cdot 2^{-\nu}$, and $\ell=k \cdot 2^{-\nu}$. By repeated use of Theorem 2.2 we get

$$
\left[\mathbb{R} G_{n, k}\right]=\left[\mathbb{R} G_{m, \ell}\right]^{4^{\nu}} .
$$

If $\nu(n)>\nu(k)$, then m is even and ℓ is odd. In this case $\mathbb{R} G_{m, \ell}$ admits a fixed point free involution. To obtain such an involution one uses the \mathbb{R}-linear automorphism of \mathbb{R}^{m} which is "multiplication by i " when \mathbb{R}^{m} is regarded as $\mathbb{C}^{m / 2}$. Hence $\mathbb{R} G_{n, k}$ also bounds. (See also [4].)

If $\nu(n) \leq \nu(k)$, then m is odd. In this case $\mathbb{R} G_{m, \ell}$ does not bound [4]. This completes the proof.

REMARK. The analogue of Theorem 2.2 for the more general F-flag manifolds is true, and can be proved similarly.
3. Decomposability of Grassmannians. It is a well-known result [3] that the projective space $\mathbb{R} P^{n}=\mathbb{R} G_{n+1,1} \cong \mathbb{R} G_{n+1, n}$ is indecomposable if and only if n is even. Thus $\left[\mathbb{R} P^{n}\right]$ can be chosen as the n-dimensional generator for the cobordism ring for n even. From Theorems 1.1 and 2.2 it follows that any $\mathbb{R} G_{n, k}$ with n even is decomposable. Indeed $\mathbb{R} G_{n, k}$ is either a boundary or is cobordant to a cartesian power of $\mathbb{R} G_{m, \ell}$ for suitable integers m, ℓ with m odd. We prove below that

Theorem 3.1. For $2 \leq k \leq n-2, \mathbb{R} G_{n, k}$ is decomposable.
Proof. Let $p=\operatorname{dim} \mathbb{R} G_{n, k}=k(n-k)$. Denote by $S_{p}=S_{p}\left(\sigma_{1}, \ldots, \sigma_{p}\right)$ the power sum $\sum_{1 \leq j \leq q} y_{j}^{p}$ expressed as a polynomial in the elementary symmetric polynomials σ_{j} 's in q "unknowns" $y_{1}, \ldots, y_{q}, q \geq p$. Let $w_{j}=w_{j}\left(\gamma_{n, k}\right) \in H^{j}\left(\mathbb{R} G_{n, k} ; \mathbb{Z} / 2\right), 1 \leq j \leq k$. Write $w\left(\gamma_{n, k}\right)=1+w_{1}+\cdots+w_{k}=\Pi_{1 \leq j \leq k}\left(1+e_{j}\right)$. Then

$$
w\left(\mathbb{R} G_{n, k}\right)=\prod_{1 \leq i<j \leq k}\left(1+e_{i}+e_{j}\right)^{-2} \prod_{1 \leq j \leq k}\left(1+e_{j}\right)^{n},
$$

where the e_{i} 's satisfy-among others-the following relation: $e_{i}^{n}=0$ (see [6]).
Choose r such that $n \leq 2^{r}$. Then $\left(1+e_{i}+e_{j}\right)^{2 r}=1$. Therefore

$$
\left(1+e_{i}+e_{j}\right)^{-2}=\left(1+e_{i}+e_{j}\right)^{2^{2}-2}
$$

Hence $w\left(\mathbb{R} G_{n, k}\right)=\Pi_{1 \leq i<j \leq k}\left(1+e_{i}+e_{j}\right)^{)^{r}-2}$. $\Pi_{1 \leq i \leq k}\left(1+e_{i}\right)^{n}$. Thus we can (and do) regard the $j^{\text {th }}$ Stiefel-Whitney class $w(j)$ of $\mathbb{R} G_{n, k}$ as $j^{\text {th }}$ elementary symmetric polynomial in $e_{i}+e_{j}, \quad 1 \leq i<j \leq k$, each with multiplicity $2^{r}-2$, and $e_{i}, \quad 1 \leq i \leq k$, each with multiplicity n. Thus

$$
\begin{aligned}
S_{p}\left(\mathbb{R} G_{n, k}\right): & =S_{p}(w(1), \ldots, w(p)) \\
& =\text { sum of the } p^{\text {th }} \text { powers of }\left(e_{i}+e_{j}\right) \text { 's, } 1 \leq i<j \leq k, \\
& \quad \text { and of } e_{i}^{\prime} \text { 's counted with appropriate multiplicities. } \\
& =\sum_{1 \leq i<j \leq k}\left(2^{r}-2\right)\left(e_{i}+e_{j}\right)^{p}+\sum_{1 \leq i \leq k} n e_{i}^{p} \\
& =\sum_{1 \leq i \leq k} n e_{i}^{p} .
\end{aligned}
$$

Now $2 \leq k \leq n-2$ implies that $p=k(n-k) \geq n$. Since $e_{i}^{n}=0$ for all i, we get $S_{p}\left(\mathbb{R} G_{n, k}\right)=0$. The theorem now follows from this by a well-known result of R . Thom. See, for example [3].

Note. The decomposability of $\left[F G_{n, k}\right]$ for $F=\mathbb{C}$ or \mathbb{H} follows from (1.2).
The author would like to thank Professor K. Varadarajan for encouragement.

References

1. P. E. Conner, Differentiable periodic maps. 2nd ed., L.N.M. - 738, Springer-Verlag, 1979.
2. K. Y. Lam, A formula for the tangent bundle of flag manifolds and related manifolds, Trans. Amer. Math. Soc. 213(1975), 305-314.
3. J. W. Milnor and J. D. Stasheff, Characteristic classes, Ann. Math. Studies 76(1974), Princeton Univ. Press, Princeton, N. J.
4. P. Sankaran, Which Grassmannians bound?, Arch. Math. 50(1988), 474-476.
5.

, Cobordism of flag manifolds, submitted to Arch. Math.
6. R. E. Stong, Cup products in Grassmannians, Topology and App. 13(1982), 103-113.

The Institute of Mathematical Sciences
C.I.T. Campus

Madras 600113
India

[^0]: Received by the editors October 3, 1988, revised March 2, 1989.
 AMS subject classification: 57R75.
 (C) Canadian Mathematical Society 1991.

