DETERMINATION OF GRASSMANN MANIFOLDS WHICH ARE BOUNDARIES

PARAMESWARAN SANKARAN

ABSTRACT. Let $FG_{n,k}$ denote the Grassmann manifold of all k-dimensional (left) F-vector subspace of F^n for $F = \mathbb{R}$, the reals, C, the complex numbers, or \mathbb{H} the quaternions. The problem of determining which of the Grassmannians bound was addressed by the author in [4]. Partial results were obtained in [4] for the case $F = \mathbb{R}$, including a sufficient condition, due to A. Dold, on *n* and *k* for \mathbb{R} $G_{n,k}$ to bound. Here, we show that Dold's condition is also necessary, and obtain a new proof of sufficiency using the methods of this paper, which cover the complex and quaternionic cases as well.

1. **Introduction.** For a positive integer *n*, let $\nu(n)$ be the integer such that $2^{\nu(n)}|n$ and $2^{\nu(n)+1} \not | n$. Let $1 \le k \le n$. The purpose of this paper is to prove

THEOREM 1.1. Let $F = \mathbb{R}$, \mathbb{C} , or \mathbb{H} . Then $FG_{n,k}$ bounds if and only if $\nu(n) > \nu(k)$.

Let [M] denote the unoriented cobordism class of a smooth closed manifold M. From [5] we have

$$[FG_{n,k}] = [\mathbb{R} G_{n,k}]^d \dots$$

for $F = \mathbb{R}$, \mathbb{C} , $or \mathbb{H}$, where $d = \dim_{\mathbb{R}} F$. We will prove that $[\mathbb{C} G_{2n,2k}] = [\mathbb{H} G_{n,k}]^2$. Using these, and the known facts (see [4]) about $\mathbb{R} G_{n,k}$, we will prove Theorem 1.1.

We regard the left \mathbb{H} -vector space \mathbb{H}^n as \mathbb{C}^{2n} as follows: the *n*-tuple $(q_1, \ldots, q_n) \in \mathbb{H}^n$ of quaternions $q_p = a_{p0} + ia_{p1} + ja_{p2} + ka_{p3}$, $1 \le p \le n$, is identified with the 2*n*-tuple $(a_{10} + ia_{11}, a_{12} + ia_{13}, \ldots, a_{n0} + ia_{nl}, a_{n2} + ia_{n3})$ in \mathbb{C}^{2n} . Then multiplication on the left by $j \in \mathbb{H}$ yields the conjugate linear automorphism $J: \mathbb{C}^{2n} \to \mathbb{C}^{2n}$ where

$$J(z_1,\ldots,z_{2n})=(-\bar{z}_2,\bar{z}_1,\ldots,-\bar{z}_{2n},\bar{z}_{2n-1}).$$

Clearly, $J^2 = -$ Id. Also, a \mathbb{C} -subspace V of $\mathbb{C}^{2n} = \mathbb{H}^n$ is a left \mathbb{H} -subspace if and only if J(V) = V. Further, when J(V) = V, $\dim_{\mathbb{H}} V = \frac{1}{2} \dim_{\mathbb{C}} V$. From this identification of \mathbb{H}^n with \mathbb{C}^{2n} we obtain an imbedding of $\mathbb{H}G_{n,k} = \{V \subset \mathbb{H}^n \mid \dim_{\mathbb{H}} V = k\}$ into $\mathbb{C}G_{2n,2k} = \{w \subset \mathbb{C}^{2n} \mid \dim_{\mathbb{C}} W = 2k\}$. We identify $\mathbb{H}G_{n,k}$ with its image in $\mathbb{C}G_{2n,2k}$ under the above imbedding.

We put the usual \mathbb{R} -valued inner product on $\mathbb{C}^{2n} = \mathbb{H}^n$ so that $\langle jv, jw \rangle = \langle v, w \rangle$ for all $v, w \in \mathbb{H}^n$.

Received by the editors October 3, 1988, revised March 2, 1989.

AMS subject classification: 57R75.

[©] Canadian Mathematical Society 1991.

2. **Proof of Theorem 1.1.** Let $\gamma_{m,\ell}^F$ denote the canonical *F*-vector bundle of *F*-rank ℓ over $FG_{m,\ell}$, and let $\beta_{m,\ell}^F$ denote its *orthogonal complement* bundle, whose fibre over $W \in FG_{m,\ell}$ is $W^{\perp} \subset F^m$. Then the tangent bundle $\tau_{m,\ell}^F$ is isomorphic to $\operatorname{Hom}_F(\gamma_{m,\ell}^F, \beta_{m,\ell}^F)$. $\tau_{m,\ell}^F$ is a complex vector bundle when $F = \mathbb{C}$, and is a real vector bundle when $F = \mathbb{R}$ or \mathbb{H} (see [2]).

For $x \in M$, let $T_x M$ denote the tangent space at x to the smooth manifold M.

Because $J: \mathbb{C}^{2n} \to \mathbb{C}^{2n}$ is a conjugate linear automorphism, it induces a map Ψ : $\mathbb{C} G_{2n,2k} \to \mathbb{C} G_{2n,2k}$ where $\Psi(W) = J(W)$ for all $W \in \mathbb{C} G_{2n,2k}$.

LEMMA 2.1. Let $\alpha : \tau_{2n,2k}^{\mathbb{C}} \to \tau_{2n,2k}^{\mathbb{C}}$ denote the map $\alpha(h) = ih$ for all $h \in T_X \mathbb{C} G_{2n,2k} =$ Hom_C (X, X^{\perp}) , for $X \in \mathbb{C} G_{2n,2k}$. Then the following diagram anti-commutes for any $X \in \mathbb{C} G_{2n,2k}$:

$$\begin{array}{cccc} T_X \mathbb{C} \ G_{2n,2k} & \stackrel{\alpha}{\longrightarrow} & T_X \mathbb{C} \ G_{2n,2k} \\ & \downarrow \ r \Psi & & \downarrow \ r \Psi \\ T_{\Psi(X)} \mathbb{C} \ G_{2n,2k} & \stackrel{\alpha}{\longrightarrow} & T_{\Psi(X)} \mathbb{C} \ G_{2n,2k} \end{array}$$

That is, $T\Psi \circ \alpha = -\alpha \circ T\Psi$.

PROOF. Recall, from [2], that the identification of $\tau_{m,\ell}^F$ with $\operatorname{Hom}_F(\gamma_{m,\ell}^F, \beta_{m,\ell}^F)$ is obtained as follows. Given an *F*-linear map $h: X \to X^{\perp}$ with $X \in FG_{m,\ell}$, let $\sigma(h)(t) =$ "graph of th" = $\{x + th(x) \mid x \in X\}$ for $t \in \mathbb{R}$. Then $\sigma(h)$ is a smooth curve in $FG_{m,\ell}$ with $\sigma(h)(0) = X$. The *h* corresponds to the tangent vector $\frac{d}{dt}\sigma(h)(t)|_{t=0}$ at *X* to $FG_{m,\ell}$.

Now let $X \in \mathbb{C} G_{2n,2k}$, and let $h: X \to X^{\perp}$ be \mathbb{C} -linear, that is, $h \in T_X \mathbb{C} G_{2n,2k}$. Then $T\Psi(h): \Psi(X) = J(X) \to (\Psi(X))^{\perp} = (J(X))^{\perp} = J(X^{\perp})$ is the tangent vector $\frac{d}{dt} (\Psi \circ \sigma(h)(t))|_{t=0}$.

Consider

$$\Psi \circ \sigma(h)(t) = J(\sigma(h)(t))$$

$$= \{jv \mid v \in \sigma(h)(t)\}$$

$$= \{jx + tjh(x) \mid x \in X\}$$

$$= \{jx + tjhj^{-1}(jx) \mid x \in X\}$$

$$= \{y + t(-jhj)(y) \mid y \in J(X)\}$$

$$= \sigma(-jhj)(t).$$

Therefore $\frac{d}{dt} (\Psi \circ \sigma(h)(t))|_{t=0}$ is the tangent vector $-jhj: J(X) \to J(X^{\perp})$. Hence $T\Psi(h) = -jhj$. Therefore $(T\Psi \circ \alpha)(h) = T\Psi(ih) = -jihj = ijhj = \alpha (T\Psi(-h)) = -(\alpha \circ T\Psi)(h)$, as required.

THEOREM 2.2. For $F = \mathbb{R}$, \mathbb{C} or \mathbb{H} one has

$$[FG_{n,k}]^4 = [FG_{2n,2k}]$$

PROOF. Note that $\Psi: \mathbb{C} G_{2n,2k} \to \mathbb{C} G_{2n,2k}$ is a smooth involution as $\Psi^2(W) = \Psi(J(W)) = J^2(W) = (-\operatorname{Id})(W) = W$, for any $W \in \mathbb{C} G_{2n,2k}$. Clearly Fix $(\Psi) = \{ V \in \mathbb{C} G_{2n,2k} \mid J(V) = V \} = \mathbb{H} G_{n,k}$. From Lemma 2.1 above and by Theorem 22.4 of [1], we see that

$$[\mathbb{C} G_{2n,2k}] = [\operatorname{Fix}(\Psi)]^2 = [\mathbb{H} G_{n,k}]^2$$

Using (1.2) we get

$$[\mathbb{R} G_{2n,2k}]^2 = [\mathbb{C} G_{2n,2k}] = [\mathbb{H} G_{n,k}]^2 = [\mathbb{R} G_{n,k}]^8$$

Since the unoriented cobordism ring is a polynomial ring over $\mathbb{Z}/2$, it follows that the theorem holds for $F = \mathbb{R}$. The general case now follows from (1.2).

We now turn to the proof of Theorem 1.1. First note that, using (1.2), we need only consider the case $F = \mathbb{R}$. Let $\nu = \min\{\nu(n), \nu(k)\}$. Let $m = n \cdot 2^{-\nu}$, and $\ell = k \cdot 2^{-\nu}$. By repeated use of Theorem 2.2 we get

$$[\mathbb{R} G_{n,k}] = [\mathbb{R} G_{m,\ell}]^{4^{\nu}}.$$

If $\nu(n) > \nu(k)$, then *m* is even and ℓ is odd. In this case $\mathbb{R} G_{m,\ell}$ admits a fixed point free involution. To obtain such an involution one uses the \mathbb{R} -linear automorphism of \mathbb{R}^m which is "multiplication by *i*" when \mathbb{R}^m is regarded as $\mathbb{C}^{m/2}$. Hence $\mathbb{R} G_{n,k}$ also bounds. (See also [4].)

If $\nu(n) \leq \nu(k)$, then *m* is odd. In this case $\mathbb{R} G_{m,\ell}$ does not bound [4]. This completes the proof.

REMARK. The analogue of Theorem 2.2 for the more general *F*-flag manifolds is true, and can be proved similarly.

3. **Decomposability of Grassmannians.** It is a well-known result [3] that the projective space $\mathbb{R} P^n = \mathbb{R} G_{n+1,1} \cong \mathbb{R} G_{n+1,n}$ is indecomposable if and only if *n* is even. Thus $[\mathbb{R} P^n]$ can be chosen as the *n*-dimensional generator for the cobordism ring for *n* even. From Theorems 1.1 and 2.2 it follows that any $\mathbb{R} G_{n,k}$ with *n* even is decomposable. Indeed $\mathbb{R} G_{n,k}$ is either a boundary or is cobordant to a cartesian power of $\mathbb{R} G_{m,\ell}$ for suitable integers *m*, ℓ with *m* odd. We prove below that

THEOREM 3.1. For $2 \le k \le n-2$, $\mathbb{R} G_{n,k}$ is decomposable.

PROOF. Let $p = \dim \mathbb{R} G_{n,k} = k(n-k)$. Denote by $S_p = S_p(\sigma_1, \ldots, \sigma_p)$ the power sum $\sum_{1 \le j \le q} y_j^p$ expressed as a polynomial in the elementary symmetric polynomials σ_j 's in q "unknowns" $y_1, \ldots, y_q, q \ge p$. Let $w_j = w_j(\gamma_{n,k}) \in H^j(\mathbb{R} G_{n,k}; \mathbb{Z}/2), 1 \le j \le k$. Write $w(\gamma_{n,k}) = 1 + w_1 + \cdots + w_k = \prod_{1 \le j \le k} (1 + e_j)$. Then

$$w(\mathbb{R} G_{n,k}) = \prod_{1 \le i < j \le k} (1 + e_i + e_j)^{-2} \prod_{1 \le j \le k} (1 + e_j)^n,$$

where the e_i 's satisfy—among others—the following relation: $e_i^n = 0$ (see [6]).

Choose *r* such that $n \leq 2^r$. Then $(1 + e_i + e_j)^{2^r} = 1$. Therefore

$$(1 + e_i + e_j)^{-2} = (1 + e_i + e_j)^{2^r - 2}.$$

Hence $w(\mathbb{R} G_{n,k}) = \prod_{1 \le i < j \le k} (1 + e_i + e_j)^{2^r - 2}$. $\prod_{1 \le i \le k} (1 + e_i)^n$. Thus we can (and do) regard the *j*th Stiefel-Whitney class w(j) of $\mathbb{R} G_{n,k}$ as *j*th elementary symmetric polynomial in $e_i + e_j$, $1 \le i < j \le k$, each with multiplicity $2^r - 2$, and e_i , $1 \le i \le k$, each with multiplicity *n*. Thus

$$S_p(\mathbb{R} G_{n,k}) := S_p(w(1), \dots, w(p))$$

= sum of the pth powers of $(e_i + e_j)$'s, $1 \le i < j \le k$,
and of e_i 's counted with appropriate multiplicities.

$$= \sum_{1 \le i < j \le k} (2^r - 2)(e_i + e_j)^p + \sum_{1 \le i \le k} ne_i^p$$
$$= \sum_{1 \le i \le k} ne_i^p.$$

Now $2 \le k \le n-2$ implies that $p = k(n-k) \ge n$. Since $e_i^n = 0$ for all *i*, we get $S_p(\mathbb{R} G_{n,k}) = 0$. The theorem now follows from this by a well-known result of R. Thom. See, for example [3].

NOTE. The decomposability of $[FG_{n,k}]$ for $F = \mathbb{C}$ or \mathbb{H} follows from (1.2). The author would like to thank Professor K. Varadarajan for encouragement.

REFERENCES

- 1. P. E. Conner, Differentiable periodic maps. 2nd ed., L.N.M. 738, Springer-Verlag, 1979.
- K. Y. Lam, A formula for the tangent bundle of flag manifolds and related manifolds, Trans. Amer. Math. Soc. 213(1975), 305–314.
- **3.** J. W. Milnor and J. D. Stasheff, *Characteristic classes*, Ann. Math. Studies **76**(1974), Princeton Univ. Press, Princeton, N. J.
- 4. P. Sankaran, Which Grassmannians bound?, Arch. Math. 50(1988), 474–476.
- 5. _____, Cobordism of flag manifolds, submitted to Arch. Math.
- 6. R. E. Stong, Cup products in Grassmannians, Topology and App. 13(1982), 103-113.

The Institute of Mathematical Sciences C.I.T. Campus Madras 600 113 India