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GENERALIZED LYUBEZNIK NUMBERS

LUIS NÚÑEZ-BETANCOURT and EMILY E. WITT

Abstract. Given a local ring containing a field, we define and investigate a fam-
ily of invariants that includes the Lyubeznik numbers but captures finer infor-
mation. These generalized Lyubeznik numbers are defined in terms of
D-modules and are proved well defined using a generalization of the classi-
cal version of Kashiwara’s equivalence for smooth varieties; we also give a
definition for finitely generated K-algebras. These new invariants are indica-
tors of F -singularities in characteristic p > 0 and have close connections with
characteristic cycle multiplicities in characteristic zero. We characterize the
generalized Lyubeznik numbers associated to monomial ideals and compute
examples of those associated to determinantal ideals.

§1. Introduction

The aim of this article is to define and study a family of invariants of

a local ring containing a field. This family includes the Lyubeznik num-

bers but captures finer information than this smaller family. For exam-

ple, although the Lyubeznik numbers cannot differentiate between two 1-

dimensional rings or two complete intersection rings, the new invariants

can.

These generalized Lyubeznik numbers are defined in terms of lengths of

certain local cohomology modules in a category of D-modules. To prove

that they are well defined, we use a generalization of the classical version

of Kashiwara’s equivalence for smooth varieties. As a consequence of this

approach, our work also gives a new proof that the Lyubeznik numbers are

well defined.

Recall that if R is a local ring with residue field K admitting a surjection

from an n-dimensional regular local ring S containing a field, and if I is its

kernel, the Lyubeznik number of R with respect to i, j ∈N is defined as

λi,j(R) := dimK ExtiS
(
K,Hn−j

I (S)
)
.
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170 L. NÚÑEZ-BETANCOURT AND E. E. WITT

For R any local ring containing a field, λi,j(R) := λi,j(R̂), where R̂ is the

completion of R with respect to its maximal ideal. Remarkably, these invari-

ants do not depend on the choice of S or on the surjection (see [L1, Theo-

rem 4.1]).

The Lyubeznik numbers carry ring-theoretic information. For example,

if d denotes the dimension of R, λd,d(R) is nonzero and λi,j(R) vanishes if

either i > d or j > d (see [L1, Properties 4.4]). Moreover, if R is Cohen–

Macaulay, then λd,d(R) = 1 (see [K2, Theorem 1]). The Lyubeznik num-

bers also have extensive geometric and topological interpretations (see, e.g.,

[BlB], [GS], [K1], [W1], [Z]).

The importance of the properties that the Lyubeznik numbers detect

has motivated generalizations of the invariants. For example, Àlvarez Mon-

taner [A2, Definition 3.6] defined a larger family of invariants of local rings

admitting a surjection from a power series ring over a field of characteris-

tic zero; the definition is in terms of characteristic cycle multiplicities (see

Definition 2.2) of certain local cohomology modules.

We define a family of invariants of a local ring of any characteristic con-

taining a field. In the definition of the Lyubeznik numbers, if ES(K) denotes

the injective hull of K as an S-module, then H i
mHn−j

I (S) ∼=
⊕α

i=1ES(K)

for some α ≥ 0, and λi,j(R) = α (see [L1, Lemma 1.4, Corollary 3.6]). As

ES(K) is a simple D(S,K)-module, λi,j(R) = lengthD(S,K)H
i
mHn−j

I (S),

where D(S,K) is the ring of K-linear differential operators on S (see Sec-

tion 2). This motivates the definition of the new invariants, which are finite

by [L3, Corollary 6].

Theorem/Definition (see Theorem 4.2, Definition 4.3). Let (R,m,K)

be a local ring containing a field, let R̂ be its completion at m, and let K ′

be a coefficient field of R̂. Then R̂ admits a surjection π : S � R̂, where

S =K[[x1, . . . , xn]] for some n≥ 1, and such that π(K) =K ′. For 1≤ j ≤ s,

fix ij ∈ N and ideals Ij ⊆ R, and let Jj = π−1(IjR̂) ⊆ S. The generalized

Lyubeznik number of R with respect to K ′, I1, . . . , Is, and i1, . . . , is,

λis,...,i1
Is,...,I1

(R;K ′) := lengthD(S,K)H
is
Js
· · ·H i2

J2
Hn−i1

J1
(S),

is finite and depends only on R, K ′, I1, . . . , Is, and i1, . . . , is.

Although the generalized Lyubeznik numbers a priori depend on the

choice of a coefficient field of R̂, sometimes only one such field exists. For

example, this happens when K is a perfect field of characteristic p > 0.
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Whether it is possible in general to avoid such a dependence relies on an

open question of Lyubeznik (see Question 4.6; cf. [L4]).

A crucial component in proving that the generalized Lyubeznik numbers

are well defined is the following equivalence of categories, which is a gener-

alization of Kashiwara’s classical equivalence for smooth varieties (see [Co],

[B2], [H]).

Theorem (see Theorems 3.4 and 3.13). Let R be a Noetherian ring and

let S = R[[x]]. Let C denote the category of R-modules, and let D denote

the category of D(S,R)-modules that are supported on the Zariski-closed

subset V(xS) of Spec(S). Then the functor

G : C →D,

M �→M ⊗R Sx/S

is an equivalence of categories, with inverse functor G̃ : D → C given by

G̃(N) = AnnN (xS).

Moreover, in the setting that K is a field and R=K[[y1, . . . , yn]], so that

S = K[[y1, . . . , yn, x]], then G is an equivalence from the category of

D(R,K)-modules to the category of D(S,K)-modules supported on V(xS).

The family of generalized Lyubeznik numbers does, in fact, contain the

Lyubeznik numbers, and consequently, we give a new proof that the

Lyubeznik numbers are well defined. Vanishing results analogous to those

for the Lyubeznik numbers hold for the new invariants, and they behave

well under finite field extensions.

Results of Blickle [Bl, Theorem 4.9, Corollaries 4.10, 4.16] enable, in

certain cases, straightforward characterizations of F -regularity and

F -rationality in terms of certain generalized Lyubeznik numbers, and recent

results of the first author and Pérez [NP] imply that these invariants provide

a measure on how “far” an F -pure hypersurface is from being F -regular.

We characterize the generalized Lyubeznik numbers associated to mono-

mial ideals as certain lengths in a category of straight modules, and in char-

acteristic zero also in terms of characteristic cycle multiplicities. Examples

of the (generalized) Lyubeznik numbers associated to certain determinantal

ideals are computed, which illustrate their dependence on characteristic.

We also define a global version of generalized Lyubeznik numbers of

finitely generated K-algebras; the authors are not aware of such a previ-

ously defined global notion.
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Definition (see Definition 4.4). Let R be a finitely generated K-algebra.

Then R admits a surjection of K-algebras π : S � R, where we have that

S =K[x1, . . . , xn] for some n ∈N. For 1≤ j ≤ s, fix ij ∈N and ideals Ij ⊆R,

and let Jj = π−1(Ij)⊆ S. Then the generalized Lyubeznik number of R with

respect to I1, . . . , Is and i1, . . . , is,

λis,...,i1
Is,...,I1

(R) := lengthD(S,K)H
is
Js
· · ·H i2

J2
Hn−i1

J1
(S),

is finite and depends only on R, I1, . . . , Is, and i1, . . . , is (not on S nor on π).

§2. D-module preliminaries

In this section, we recall some relevant facts about D-modules. We refer

the reader to [B2], [B1], [Co], and [MN] for details.

Given rings A⊆ S, we define the ring of A-linear differential operators on

S, D(S,A), as the subring of HomA(S,S) defined inductively as follows. The

differential operators of order zero are given by multiplication by elements

in S. An element θ ∈ HomA(S,S) is a differential operator of order less

than or equal to k+1 if, for every r ∈ S, [θ, r] := θ · r− r · θ is a differential

operator of order less than or equal to k. From the definition, we see that

if B is a subring of A, then D(S,B)⊆D(S,A).

If M is a D(S,A)-module, then Mf has the structure of a D(S,A)-module

such that, for every f ∈ S, the natural map M →Mf is a D(S,A)-module

homomorphism. As a result, since S is a D(S,A)-module, for all ideals

I1, . . . , Is ⊆ S, and all i1, . . . , is ∈ N, H is
Is
· · ·H i2

I2
H i1

I1
(S) is also a D(S,A)-

module (see [L1, Example 2.1(iv)]).

If S = A[[x1, . . . , xn]], then D(S,A) = S〈 1t!
∂t

∂xi
t | t ∈ N,1 ≤ i ≤ n〉 ⊆

HomA(S,S) (see [Gr, Theorem 16.12.1]). Moreover, if A=K is a field, then

Sf has finite length in the category of D(S,K)-modules for every f ∈ S.

Consequently, every module of the form H is
Is
· · ·H i2

I2
H i1

I1
(S) also has finite

length in this category (see [L3, Corollary 6]).

Hypothesis 2.1. Throughout the remainder of this section, we will

assume that S is either K[x1, . . . , xn] or K[[x1, . . . , xn]], where K is a field

of characteristic zero. Let D =D(S,K).

In our case, D = S〈 ∂
∂x1

, . . . , ∂
∂xn

〉 ⊆HomK(S,S), and there is an ascending

filtration

Γi :=
{
δ ∈D

∣∣ ord(δ)≤ i
}
=

⊕
α1+···+αn≤i

S · ∂α

∂xαi
.
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Moreover, grΓ(D) ∼= S[y1, . . . , yn], a polynomial ring over S. A filtration

Ω = {Ωj} of S-modules on a D-module M is a good filtration if Ωj ⊆Ωj+1,⋃
j∈NΩj =M , ΓiΩj ⊆Ωi+j , and grΩ(M) =

⊕
j∈NΩj+1/Ωj is a finitely gen-

erated grΓ(D)-module.

If Ω is a good filtration, neither dimgrΩ(D) gr
Ω(M) nor Rad(AnngrΩ(D)×

grΩ(M)) depends on the choice of good filtration. For notational brevity,

we will omit the filtration when referring to the associated graded ring or

module.

A finitely generated D-module M is holonomic if either M = 0 or

dimgr(D) gr(M) = n. The holonomic D-modules form a full abelian subcat-

egory of the category of D-modules, and every holonomic D-module has

finite length as a D-module. Moreover, if M is holonomic, then Mf is also

holonomic for every f ∈ S. As a consequence, since S is holonomic, every

module of the form H is
Is
· · ·H i2

I2
H i1

I1
(S) is also holonomic.

Definition 2.2 (Characteristic variety, characteristic cycle, characteris-

tic cycle multiplicity). Given a holonomic D-module M , the characteristic

variety of M is

C(M) = V
(
Rad

(
Anngr(D) gr(M)

))
⊆ Specgr(D),

and the characteristic cycle of M is CC(M) =
∑

miVi, where the sum is

taken over all the irreducible components Vi of C(M), and mi is the cor-

responding multiplicity. Moreover, the (characteristic cycle) multiplicity of

M is e(M) =
∑

mi.

Remark 2.3. If 0→M ′ →M →M ′′ → 0 is an exact sequence of holo-

nomic D-modules, then CC(M) = CC(M ′) + CC(M ′′); as a consequence,

e(M) = e(M ′) + e(M ′′). In addition, CC(M) = 0 if and only if M = 0, so

that e(M) = 0 if and only if M = 0 as well.

§3. A Kashiwara equivalence

In this section, we study a functor utilized by Lyubeznik to prove that

his original invariants are well defined (see [L1, Lemma 4.3]). In order to

prove that the generalized Lyubeznik numbers are well defined, significant

development of the theory of this functor (the “direct image” functor) is

necessary. The fact that this functor is, in fact, an equivalence to a certain

category of D-modules is essential to the results here, as we will see in

Theorem 3.4.
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Definition 3.1 (Key functor G). Let R be a Noetherian ring, and let

S = R[[x]]. Let G : R-mod→ S-mod denote the functor that will be given

here by G(−) = (−)⊗R Sx/S.

Remark 3.2. For every element u ∈ G(M) there exist �,α1, . . . , α� ∈ N
and m1, . . . ,m� ∈M , uniquely determined, such that u=m� ⊗ x−α� + · · ·+
m1 ⊗ x−α1 and m� �= 0, because

(3.2.1) G(M) =M ⊗R Sx/S =M ⊗R

(⊕
α∈N

Rx−α
)
=

⊕
α∈N

(M ⊗Rx−α).

Moreover, G is an exact functor and commutes with local cohomology.

Remark 3.3. In fact, G is a functor from the category R-modules to

the category of D(S,R)-modules. Indeed, we will let M be a D(S,R)-

module. Since D(S,R) = S〈 1t!
∂t

∂xt | t ∈N〉 ⊆HomK(S,S), it is enough to give

an action of each 1
t!

∂t

∂xt on G(M). If m⊗ x−α ∈G(M), we define

(3.3.1)
( 1

t!

∂t

∂xt

)
· (m⊗ x−α) =

(
α+ t− 1

t

)
·
(
(−1)tm⊗ x−α−t

)
.

In particular, taking α= 1 and t= β, we see that, for every β ∈N,

(3.3.2) m⊗ x−β =
(−1)β−1

(β − 1)!

∂β−1

∂xβ−1
(m⊗ x−1).

Similarly, for every R-module homomorphism ϕ, G(ϕ) = ϕ⊗R Sx/S is a

homomorphism of D(S,R)-modules.

We prove an equivalence of categories that gives a general treatment of

Kashiwara’s equivalence theorem. This equivalence is known for polynomial

rings or, more generally, for smooth varieties over a field (see [Co], [B2], [H]).

However, the authors could not find the statement presented in Theorem 3.4

in the literature and include this result for completeness. We point out that

this result does not require that R contain a field.

Theorem 3.4. Let R be a Noetherian ring, and let S = R[[x]]. Let C
denote the category of R-modules, and let D denote the category of D(S,R)-

modules that are supported on the Zariski-closed subset V(xS) of Spec(S).

Then G : C → D as in Definition 3.1 is an equivalence of categories with

inverse functor G̃ :D→C given by G̃(M) = AnnM (xS).
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Proof. It is clear that for every R-module M , G̃(G(M)) is naturally iso-

morphic to M . It suffices to prove that for every D(S,R)-module N with

support on V(xS), G(G̃(N)) is naturally isomorphic to N . Let M = G̃(N) =

AnnN (xS), and let φ :G(M)→N be the R-module homomorphism defined

on simple tensors by m ⊗ x−α �→ (−1)α−1

(α−1)!
∂α−1

∂xα−1m. We will prove, in steps,

that φ is an isomorphism of D(S,R)-modules.

First, we will show that φ is a D(S,R)-module homomorphism. Since

D(S,R) = S〈 1t!
∂t

∂xt | t ∈N〉, it is enough to show that φ commutes with mul-

tiplication by x and by any 1
t!

∂t

∂xt .

We first prove commutativity with 1
t!

∂t

∂xt . Now, for any t ∈N,

φ
( 1

t!

∂t

∂xt
(m⊗ x−α)

)
= φ

((
α+ t− 1

t

)(
(−1)tm⊗ x−α−t

))
=

(
α+ t− 1

t

)
(−1)α−1

(α+ t− 1)!

∂α+t−1

∂xα+t−1
m

=
1

t!

(−1)α−1

(α− 1)!

∂α+t−1

∂xα+t−1
m

=
1

t!

∂t

∂xt

((−1)α−1

(α− 1)!

∂α−1

∂xα−1
m
)

=
1

t!

∂t

∂xt
φ(m⊗ x−α).

To prove that the map commutes with x, note that for every t ∈N,

x
1

t!

∂t

∂xt
− 1

t!

∂t

∂xt
x=− 1

(t− 1)!

∂t−1

∂xt−1

as differential operators. We conclude that

φ
(
x(m⊗ x−α)

)
= φ(m⊗ x−α+1) = φ

(
m⊗ (−1)α−2

(α− 2)!

∂α−2

∂xα−2
x−1

)
=

(−1)α−2

(α− 2)!

∂α−2

∂xα−2
φ(m⊗ x−1)(3.4.1)

= x
(−1)α−1

(α− 1)!

∂α−1

∂xα−1
φ(m⊗ x−1)− (−1)α−1

(α− 1)!

∂α−1

∂xα−1
xφ(m⊗ x−1)
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= x
(−1)α−1

(α− 1)!

∂α−1

∂xα−1
φ(m⊗ x−1)

= xφ
(
m⊗ (−1)α−1

(α− 1)!

∂α−1

∂xα−1
x−1

)
(3.4.2)

= xφ(m⊗ x−α),

where (3.4.1) and (3.4.2) are due to the commutativity with 1
t!

∂t

∂xt .

It remains to prove that φ is bijective; we proceed by contradiction.

Suppose that there exists u =m� ⊗ x−α� + · · ·+m1 ⊗ x−α1 ∈ Ker(φ) such

that m� �= 0. Then φ(m� ⊗ x−1) = φ(x�−1u) = x�−1φ(u) = 0. Thus, m� = 0

because φ|M⊗Rx−1 is bijective, which is a contradiction.

We now see that φ(AnnG(M)(x
jS)) = AnnN (xjS) for every j ≥ 1 by

induction, which will imply that φ is surjective (since N is supported

on V(xS)). Since φ(AnnG(M)(x
jS)) ⊆ AnnN (xjS) for all j, we seek the

opposite inclusion. For j = 1, take n ∈ M = AnnN (xS); then n ⊗ x−1 ∈
G(M), so φ(n⊗x−1) = n. Now take any j ≥ 1 and assume that the statement

holds for j − 1. For any u ∈ AnnN (xjS), xu ∈ AnnN (xj−1S), so xu= φ(v)

for some v = mj−1 ⊗ x−j+1 + · · · + m1 ⊗ x−1 ∈ G(M) by the inductive

hypothesis. Let w = mj−1x
−j + · · · + m1 ⊗ x−2. Thus, xφ(w) = φ(xw) =

φ(v) = xu. This means that x(φ(w)−u) = 0, and so φ(w)−u ∈AnnN (xS) =

φ(AnnG(M)(xS)) and φ(m′⊗x−1) = φ(w)−u for some m′ ∈M by the base

case. Therefore, u= φ(w−m⊗ x−1) ∈ φ(AnnG(M)(x
jS)).

Proposition 3.5. Let R be a Noetherian ring, and let S =R[[x]]. Then

M is a finitely generated R-module if and only if G(M) is a finitely generated

D(S,R)-module.

Proof. Given m1, . . . ,ms ∈M , generators for M as an R-module, m1 ⊗
x−1, . . . ,ms⊗x−1 generate G(M) as aD(S,R)-module; by (3.3.1), for β ∈N,

mi⊗x−β = (−1)β−1

(β−1)!
∂β−1

∂xβ−1 (mi⊗x−1), and the set {mi⊗x−β | 1≤ i≤ s,β ∈N}
generates G(M) as an R-module.

If u1, . . . , us ∈ G(M) generate G(M) as a D(S,R)-module, then each

ui can be written as ui = mi,1 ⊗ x−1 +mi,2 ⊗ x−2 + · · · +mi,�i ⊗ x−�i for

some �i ∈ N and mi,j ∈M . Then {mi,j ⊗ x−j | 1 ≤ i ≤ s,1 ≤ j ≤ �i} is also

a set of generators for G(M) as a D(S,R)-module. Since mi,j ⊗ x−j =
(−1)j−1

(j−1)!
∂j−1

∂xj−1 (mi,j ⊗x−1), the decomposition in (3.2.1) implies that the mi,j

must generate M .
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Corollary 3.6. Let R be a Noetherian ring, let M be an R-module, and

let S =R[[x]]. Then lengthR(M) = lengthD(S,R)G(M).

Proof. If M is a simple nonzero R-module, then G(M) is a simple

D(S,R)-module since the D(S,R)-submodules of G(M) correspond pre-

cisely to R-submodules of M by Theorem 3.4. Now say that lengthR(M) =

h < ∞, so that we have a filtration of R-modules 0 = M0 � M1 � · · · �
Mh =M such that each Mj+1/Mj is a simple R-module. Then 0 =G(M0)⊆
G(M1)⊆ · · · ⊆G(Mh) =G(M) is a filtration of D(S,R)-modules such that

G(Mj+1)/G(Mj) ∼= G(Mj+1/Mj) is a simple D(S,R)-module for every j

by our initial argument. Therefore, lengthD(S,R)G(M) = h. Similarly, if

lengthR(M) =∞, then lengthD(S,R)G(M) =∞.

Remark 3.7. In the following work, we often make use of the following

observation: for R a ring and S = R[[x]], if P is a prime ideal of R, then

(P,x)S is a prime ideal of S since S/(P,x)S =R/P is a domain.

Proposition 3.8. Let R be a Noetherian ring, let M be an R-module,

and let S =R[[x]]. Then AssS G(M) = {(P,x)S | P ∈AssRM}.

Proof. Let Q ∈AssS G(M), so that Q=AnnS u for some u ∈G(M). As

H0
xS(G(M)) = G(M), x ∈ Q. Thus, u ∈ AnnG(M) xS ∼= M . (The isomor-

phism is due to Theorem 3.4.) Moreover, we have the natural epimorphism

R� S/Q with kernel P =AnnR u ∈AssRM . Thus, Q= (P,x)S.

Take Q = (P,x)S, where P = AnnR u ∈ AssRM , u ∈ M . Then Q =

AnnS(u⊗ x−1). Hence, Q ∈AssS G(M).

Lemma 3.9. Let R be a Noetherian ring, let M be an R-module, and

let S = R[[x]]. Then for every ideal I ⊆ R and all j ∈ N, G(Hj
I (M)) ∼=

Hj+1
(I,x)S(M ⊗R S).

Proof. Since S and Sx are flat R-algebras and Sx/S is a free R-module,

we know thatHj
I (M)⊗RS ∼=Hj

IS(M⊗RS),Hj
I (M)⊗RSx

∼=Hj
IS(M⊗RSx),

and Hj
I (M)⊗R Sx/S ∼=Hj

IS(M ⊗R Sx/S). Moreover, the sequence

(3.9.1) 0→Hj
IS(M ⊗R S)→Hj

IS(M ⊗R Sx)→Hj
IS(M ⊗R Sx/S)→ 0

is exact, so G(Hj
I (M))∼=Hj

IS(M ⊗R Sx)/H
j
IS(M ⊗R S).

On the other hand, we have a long exact sequence

· · · →Hj
(I,x)S(M ⊗R S)→Hj

IS(M ⊗R S)→Hj
IS(M ⊗R Sx)→ · · · .
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Since Hj
IS(M ⊗R S) → Hj

IS(M ⊗R Sx) is injective by (3.9.1), the long

sequence splits into short exact sequences

0→Hj
IS(M ⊗R S)→Hj

IS(M ⊗R Sx)→Hj+1
(I,x)S(M ⊗R S)→ 0.

Hence, G(Hj
I (M))∼=Hj+1

(I,x)S(M ⊗R S).

Proposition 3.10. Let (R,m,K) be a Noetherian local ring, let M be

an R-module, and let S =R[[x]]. Fix I1, . . . , Is ideals of R and j1, . . . js ∈N.
Then

G
(
Hjs

Is
· · ·Hj2

I2
Hj1

I1
(M)

)∼=Hjs
(Is,x)S

· · ·Hj2
(I2,x)S

Hj1+1
(I1,x)S

(M ⊗R S).

Proof. We proceed by induction on s. If s = 1, the statement follows

from Lemma 3.9. Suppose that it holds for some s ≥ 1. Let N� = Hj�
I�
· · ·

Hj2
I2
Hj1

I1
(M) for 1 ≤ � ≤ s + 1, so we need to prove that G(Ns+1) ∼=

H
js+1

(Is+1,x)S
(G(Ns)). Now,

G(Ns+1) =H
js+1

Is+1
(Ns)⊗R Sx/S ∼=H

js+1

Is+1S
(Ns ⊗R Sx/S) =H

js+1

Is+1S

(
G(Ns)

)
.

Consider the long exact sequence of functors

(3.10.1) · · · →H
js+1

Is+1S
(−)→H

js+1

(Is+1,x)S
(−)→H

js+1

Is+1S
(−⊗S Sx)→ · · · .

Since G(Ns) is supported on V(xS), H i
Is+1S

(G(Ns) ⊗S Sx) = 0 for all i ∈
N, and G(Ns) ⊗S Sx = 0. Moreover, H

js+1

Is+1S
(G(Ns)) ∼= H

js+1

(Is+1,x)S
(G(Ns)).

Hence, G(Ns+1)∼=H
js+1

(Is+1,x)S
(G(Ns)).

As G is an equivalence of categories, G(HomR(M,N)) =

HomD(S,R)(G(N),G(M)). Thus, M is an injective R-module if and only

if G(M) is an injective object in D, the category of D(S,R)-modules sup-

ported at V(xS). We now characterize precisely when G(M) is injective as

an S-module.

Proposition 3.11. Let S =R[[x]], where R is a Gorenstein ring. Given

a prime ideal P of R, let ER(R/P ) denote the injective hull of R/P over R.

Then G(ER(R/P ))∼=ES(S/(P,x)S). Moreover, M is an injective R-module

if and only if G(M) is an injective S-module.
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Proof. Let d = dim(RP ). Since R is a Gorenstein ring, Sx/S a flat

R-module, and G(Hd
P (R))∼=Hd+1

(P,x)S(S) by Lemma 3.9, we have that

G
(
ER(R/P )

)∼=G
(
Hd

PRP
(RP )

)∼=G
(
Hd

P (R)⊗R RP

)
∼=G

(
Hd

P (R)
)
⊗R RP

∼=Hd+1
(P,x)S(SP ).

As SP /(P,x)SP
∼=RP /PRP , (P,x)SP is a maximal ideal of the Gorenstein

ring SP , and

Hd+1
(P,x)S(SP )∼=ESP

(
SP /(P,x)SP

)∼=ES

(
S/(P,x)S

)
;

that is, G(ER(R/P )) ∼= ES(S/(P,x)S). Moreover, G sends injective

R-modules to injective S-modules because every injective R-module is a

direct sum of injective hulls of prime ideals.

It remains to prove that if G(M) is an injective S-module, then M is

an injective R-module. This follows because M = AnnG(M)(xS) by The-

orem 3.4; any injection of R-modules ι : N ↪→ N ′ is also an injection of

S-modules, where x acts by zero. Then any S-module map f :N →G(M)

is an R-module map and must have image in AnnG(M)(xS) = M , so the

induced map g :N →M is a map of R-modules such that f = g ◦ ι.
Proposition 3.12. Let R be a Gorenstein ring, take R-modules M and

N , and let S =R[[x]]. As R= S/xS, M is naturally an S-module via exten-

sion of scalars, so that for all i ∈N, ExtiS(M,G(N)) is an S-module anni-

hilated by xS, so that it is also naturally an R-module. As R-modules,

ExtiS
(
M,G(N)

)
=ExtiR(M,N).

Proof. Let E∗ =E0 →E1 → · · · →Ei → · · · be an injective R-resolution

of N . Then G(E∗) is an injective S-resolution for G(N) by Proposition 3.11.

We notice that HomS(M,−) = HomS(M,HomS(R,−)) as functors on the

category of S-modules. Then sinceG(ER(R/P ))∼=ES(S/(P,x)S) by Propo-

sition 3.11,

HomS

(
M,G(E∗)

)
=HomS

(
M,HomS

(
R,G(E∗)

))
=HomS(M,E∗) = HomR(M,E∗),

and the result follows.

Theorem 3.13 (Kashiwara’s equivalence for power series rings). Let K

be a field, let R =K[[x1, . . . , xn]], and let S = R[[xn+1]]. Let C denote the
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category of D(R,K)-modules, and let D denote the category of D(S,K)-

modules that are supported on V(xS). Then
(i) G : C →D given by G(M) =M ⊗R Sxn+1/S is an equivalence of cate-

gories with inverse G̃ :D→C, where G̃(N) = AnnN (xS);

(ii) M is a finitely generated D(R,K)-module if and only if G(M) is a

finitely generated D(S,K)-module; and

(iii) lengthD(R,K)M = lengthD(S,K)G(M).

Proof. The proofs of the statements are analogous to the those of Theo-

rem 3.4, Proposition 3.5, and Corollary 3.6, respectively.

§4. Definitions and first properties

Remark 4.1. Given a local ring (R,m,K), we say that a field K ′ is a

coefficient field of R if K ′ is contained in R, and the composition K ′ ↪→
R�R/m=K is an isomorphism of fields. Every complete local ring con-

taining a field has a coefficient field by the Cohen structure theorems (see

[C, Theorem 9]).

Theorem 4.2. Let (R,m,K) be a local ring containing a field, and let R̂

be its completion at m. Let K ′ be a coefficient field of R̂. Then R̂ admits

a surjection π : S � R̂, where S = K[[x1, . . . , xn]] for some n ∈ N, and

π(K) =K ′. For 1 ≤ j ≤ s, fix ij ∈ N and ideals Ij ⊆ R, and let Jj =

π−1(IjR̂)⊆ S. Then

lengthD(S,K)H
is
Js
· · ·H i2

J2
Hn−i1

J1
(S)

is finite and depends only on R, K ′, I1, . . . , Is, and i1, . . . , is (not on S nor

on π).

Proof. We may assume without loss of generality that R is complete. We

know that lengthD(S,K)H
js
Js
· · ·Hj2

J2
Hn−j1

J1
(S) is finite by [L3, Corollary 6].

Let π′ : S′ → R be another surjection, where S′ =K[[y1, . . . , yn′ ]] for some

n′ ∈ N, and π′(K) =K ′. Let J ′
1, . . . , J

′
s be the corresponding preimages of

I1, . . . , Is in S′ under π′.
Let S′′ =K[[z1, . . . , zn+n′ ]], and let π′′ : S′′ →R be the surjection defined

by

π′′(zj) =

{
π′(xj) for 0≤ j ≤ n,

π′(yj−n) for n+ 1≤ j ≤ n+ n′.

Let J ′′
1 , . . . , J

′′
s be the corresponding preimages of I1, . . . , Is in S′′ under π′′.
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Let α : S → S′′ be the injection given by α(xj) = zj , and note that

π′′ ◦ α= π. Fix fj ∈ S such that π(fj) = π′′(zn+j), for 1 ≤ j ≤ n′. Then

zn+j − α(fj) ∈ Ker(π′′). The map β : S′′ → S, defined by β(zj) = xj for

1 ≤ j ≤ n and β(zn+j) = fj for 1 ≤ j ≤ n′, is a splitting of α. Then each

zn+j − α(fj) is in Ker(β), and the map

S′′/
(
zn+1 − α(f1), . . . , zn+n′ − α(fn′)

)
→ S

induced by β is an isomorphism, so that Ker(β) = (zn+1−α(f1), . . . , zn+n′ −
α(fn′)). Then J ′′

i = (α(Ji) + (zn+1 − α(f1), . . . , zn′+n − α(fn′))S′′. Since

z1, . . . , zn, zn+1 − α(f1), . . . , zn′+n − α(fn′)

form a regular system of parameters, we obtain that

lengthD(S′′,K)H
is
J ′′
s
· · ·H i2

J ′′
2
Hn′+n−i1

J ′′
1

(S′′)
(4.2.1)

= lengthD(S,K)H
is
Js
· · ·H i2

J2
Hn−i1

J1
(S)

by Proposition 3.10 and Theorem 3.13. Similarly, lengthD(S,K)H
is
J ′
s
· · ·

H i2
J ′
2
Hn′−i1

J ′
1

(S′) also equals the left-hand side of (4.2.1), and the result fol-

lows.

Definition 4.3 (Generalized Lyubeznik numbers). Let (R,m,K) be a

local ring containing a field, and let R̂ be its completion at m. Let K ′ be
a coefficient field of R̂. Then R̂ admits a surjection π : S � R̂, where S =

K[[x1, . . . , xn]] for some n ∈N, and π(K) =K ′. For 1≤ j ≤ s, fix ij ∈N and

ideals Ij ⊆ R, and let Jj = π−1(IjR̂) ⊆ S. Then the generalized Lyubeznik

number of R with respect to K ′, I1, . . . , Is, and i1, . . . , is,

λis,...,i1
Is,...,I1

(R;K ′) := lengthD(S,K)H
is
Js
· · ·H i2

J2
Hn−i1

J1
(S),

is finite and depends only on R, K ′, I1, . . . , Is, and i1, . . . , is (by Theo-

rem 4.2).

As finitely generated K-algebras are endowed with a natural choice of

coefficient field, a proof similar to that of Theorem 4.2, using the classical

version of Kashiwara’s equivalence, admits a global definition of generalized

Lyubeznik numbers in this case. In the proof, instead of concluding that the

elements z1, . . . , zn, zn+1−α(f1), . . . , zn′+n−α(fn′) form a regular system of

parameters, we have that K[z1, . . . , zn, zn+1 − α(f1), . . . , zn′+n − α(fn′)] =

K[z1, . . . , zn′+n].
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Definition 4.4 (Generalized Lyubeznik numbers of finitely generated

K-algebras). Let R be a finitely generated K-algebra. Then R admits a sur-

jection ofK-algebras π : S �R, where S =K[x1, . . . , xn] for some n ∈N. For
1≤ j ≤ s, fix ij ∈ N and ideals Ij ⊆R, and let Jj = π−1(Ii)⊆ S. Then the

generalized Lyubeznik number of R with respect to I1, . . . , Is and i1, . . . , is,

λis,...,i1
Is,...,I1

(R) := lengthD(S,K)H
is
Js
· · ·H i2

J2
Hn−i1

J1
(S),

is finite and depends only on R, I1, . . . , Is, and i1, . . . , is, but neither on S

nor on π.

Definition 4.4 gives a global notion of the Lyubeznik numbers; the authors

are not aware of a previously defined version in the literature. The treatment

of the generalized Lyubeznik numbers for local rings and finitely generated

algebras is very similar, but the local case requires a choice of coefficient

field. In this paper, we focus on the local case.

Remark 4.5. In Definition 4.3 (and Theorem 4.2), we rely on a choice

of coefficient field K ′ ⊆ R̂. When the election of coefficient field is clear, or

when there is only one such field, we often write λis,...,i1
Is,...,I1

(R) for λis,...,i1
Is,...,I1

(R;

K ′). In particular, when (R,m,K) is a local ring and K is a perfect field of

characteristic p > 0, if Rpe = {rpe | r ∈R}, then
⋂

e≥0R
pe ⊆R is the unique

coefficient field of R.

In general, to decide whether it is possible to avoid the generalized

Lyubeznik numbers’ dependence on the choice of coefficient field of R̂, we

would need to answer the following question, asked by Lyubeznik.

Question 4.6 ([L4, p. 131]). Let S be a complete regular local ring of

equal characteristic. For 1≤ j ≤ s, fix ij ∈ N and ideals Jj ⊆ S. Given any

two coefficient fields of S, K and L, is

lengthD(S,K)H
is
Js
· · ·H i2

J2
Hn−i1

J1
(S) = lengthD(S,L)H

is
Js
· · ·H i2

J2
Hn−i1

J1
(S)?

To the best of our knowledge, the answer to Question 4.6 is currently

unknown, even in the case when s= 1.

Remark 4.7. In Definition 4.3, we may assume that I1 ⊆ · · · ⊆ Is, because

if an R-module M is such that H0
I (M) = M for some ideal I of R, then

H i
J(M) = H i

I+J(M) for every ideal J of S. In addition, λis,...,i1
Is,...,I1

(R,K ′) =

λis,...,i2,i1
Is,...,I2,0

(R/I1,K
′).

Proposition 4.8. If (R,m,K) is a local ring containing a field, then

λi,j(R) = λi,j
m,0(R;K ′) for any coefficient field K ′ of R̂.
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Proof. Since completion is flat and the Bass numbers are not affected

by completion, we may assume that R is complete. Take S =K[[x1, . . . , xn]]

such that there exists a surjective ring map π : S �R, such that π(K) =K ′.
Set I = Ker(π) = π−1(0), and notice that the maximal ideal, η, of S is

π−1(m). By [L1, Lemma 1.4],

λi,j(R) = dimK ExtiS
(
K,Hn−j

I (S)
)
= dimK HomS

(
K,H i

ηH
n−j
I (S)

)
.

Since H i
ηH

n−j
I (S) is isomorphic to a finite direct sum of copies of ES(K) by

[L1, Corollary 3.6], and since ES(K) is a simple D(S,K)-module (see [L2]),

we obtain

dimK HomS

(
K,H i

ηH
n−j
I (S)

)
= lengthD(S,K)H

i
ηH

n−j
I (S) = λi,j

m,0(R;K ′),

and we are done.

Proposition 4.9. Given ideals I1 ⊆ · · · ⊆ Is of a local ring (R,m,K)

containing a field, ij ∈ N for 1≤ j ≤ s, and a coefficient field K ′ of R̂, we

have that

(i) λis,...,i1
Is,...,I1

(R;K ′) = 0 for i1 > dim(R/I1),

(ii) λis,...,i1
Is,...,I1

(R;K ′) = 0 for ij > dim(R/Ij−1) and 2≤ j ≤ �,

(iii) λi2,i1
I2,I1

(R;K ′) = 0 for i2 > i1,

(iv) λi1
I1
(R;K ′) �= 0 for i1 = dim(R/I1), and

(v) λi2,i1
I2,I1

(R;K ′) �= 0 if i2 = dim(R/I1)− dim(R/I2) and i1 = dim(R/I1).

Proof. We may assume that R is complete, so that it admits a surjection

π : S �R, where S =K[[x1, . . . , xn]] for some n, and π(K) =K ′. Let Jj =

π−1(Ij) for 1≤ j ≤ s.

As S is Cohen–Macaulay, depthJ1(S) = codim(S/J1) = n− dim(S/J1) =

n−dim(R/I1), so that (i) and (iv) hold since H i1
J1
(S) = 0 if i1 < depthJ1(S)

and H
depthJ1 (S)

J1
(S) �= 0.

To see (ii), note that

inj.dimH
ij−1

Jj−1
· · ·H i2

J2
Hn−i1

J1
(S)≤ dim

(
SuppH

ij−1

Jj−1
· · ·H i2

J2
Hn−i1

J1
(S)

)
≤ dim(S/Jj−1) = dim(R/Ij−1)

by [L3]. Similarly, we have that (iii) follows because inj.dimHn−i1
J1

(S) ≤
dim(SuppHn−i1

J1
(S))≤ i1.
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To prove (v), choose a minimal prime P of J2. Now, Rad(J1SP ) = PSP

in SP . Then Hp
PSP

H
dim(SP )−q
J1SP

(SP ) �= 0 when p= q = dim(SP /J1SP ) by [L1,

Property 4.4(iii)]. Noting that

dim(SP ) = dim(S)− dim(S/P ) = dim(S)− dim(S/J1) = n− dim(R/I1),

and that

dim(SP /J1SP ) = dim(S/J1)− dim(S/J2) = dim(R/I1)− dim(R/I2),

we see that H i2
J2
H i1

J1
(S)⊗S SP �= 0 if i2 = dim(R/I1)− dim(R/I2) and i1 =

dim(R/I1).

Lemma 4.10. Given an extension of fields K ⊆ L, let R=K[[x1, . . . , xn]],

and let S = L[[x1, . . . , xn]]. Via R ↪→ S, the map induced by the field exten-

sion, if M is a simple D(R,K)-module, then M ⊗R S is a simple D(S,L)-

module.

Proof. We have that S = R ⊗K L because the field extension is finite.

Then M⊗RS =M⊗KL and the action of ∂ ∈D(S,L) is given by ∂(v⊗a) =

∂(v)⊗ a. Let e1, . . . , eh be a basis for L as K-vector space. If v ∈M ⊗K L is

not zero, then v =w1 ⊗ e1 + · · ·+wh ⊗ eh for some wj ∈M , where at least

one wj is not zero. We assume that w1 �= 0 and that there exist operators

δj ∈D(R,K) such that wj = δjw1 because M is simple. Let δ = δ1+ · · ·+δh,

and let u= e1 · · · eh. Then v = δ(w1⊗a) = aδ(w1⊗1). Since v �= 0, δ(w1) �= 0

and there exists ∂ ∈D(S,L) such that ∂δw1 = w1. Then u−1∂v = w1 ⊗ 1.

Therefore, for every v ∈M ⊗K L nonzero, v ∈D(S,L) ·w1⊗ 1, and w1⊗ 1 ∈
D(S,L) · v. Hence, M ⊗K L is a simple D(S,L)-module.

Proposition 4.11. Let K ⊆ L be a finite field extension, and here let

R=K[[x1, . . . , xn]], and let S = L[[x1, . . . , xn]]. Then for all ideals I1, . . . , Is
of R and all i1, . . . , is ∈N,

λis,...,i1
Is,...,I1

(R) = λis,...,i1
IsS,...,I1S

(S).

Proof. We have that S =R⊗K L because the field extension is finite. Let

0 =M1 � · · ·�M� =H is
Is
· · ·H i2

I2
Hn−i1

I1
(S)

be a filtration of D(R,K)-modules such that each Mi+1/Mi is a simple

D(R,K)-module. Since S is a faithfully flat R-algebra, Mi+1/Mi ⊗K L ∼=
(Mi+1⊗KL)/(Mi⊗KL) is a simpleD(S,L)-module. Thus, λis,...,i1

Is,...,I1
(R) = �=

λis,...,i1
IsS,...,I1S

(S).
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Proposition 4.12. Let I1, . . . , Is be ideals of S =K[[x1, . . . , xn]], whereK

is a field of characteristic zero. Then λis,...,i1
Is,...,I1

(S) ≤ e(H is
Is
· · ·H i2

I2
Hn−i1

I1
(S)),

where e(M) denotes D(S,K)-module characteristic cycle multiplicity of a

holonomicD(S,K)-moduleM (see Definition 2.2).

Proof. Since H is
Is
· · ·H i2

I2
Hn−i1

I1
(S) is a holonomic D(S,K)-module, the

claim follows from Remark 2.3.

For R a 1-dimensional or complete intersection ring, λi,j(R) = 1 if i =

j = dimR and vanishes otherwise. However, Propositions 4.13 and 4.14 will

show that the generalized Lyubeznik numbers capture finer information that

can distinguish these cases.

Proposition 4.13. Let (R,m,K) be a complete local ring containing a

field such that dim(R) = 1. Fix a coefficient field K ′ of R, and let P1, . . . , P�

denote the minimal primes of R. Then

λ1
0(R;K ′) = λ1

0(R/P1;K
′) + · · ·+ λ1

0(R/P�;K
′) + �− 1.

Proof. By way of induction on �, first let � = 1, and take a surjection

π : S =K[[x1, . . . , xn]]� R ∼= S/I , where I = Ker(π) and π(K ′) =K. If P

denotes the minimal prime of R, then π−1(P ) = Rad(I) is the only minimal

prime of I . Then

λ1
0(R;K ′) = lengthD(S,K)H

n−1
I (S) = lengthD(S,K)H

n−1
π−1(P )

(S)

= λ1
0(R/P ;K ′).

Now suppose that the formula holds for �− 1. Take a surjection π : S �
R ∼= S/I , where S =K[[x1, . . . , xn]] and π(K ′) = K. Let Qi = π−1(Pi), so

that Rad(I) =Q1∩· · ·∩Q�, and let J =Q1∩· · ·∩Q�−1. Since Rad(J+Q�) =

η, the maximal ideal of S, the Mayer–Vietoris sequence in local cohomology

with respect to J and Q� then gives the exact sequence

0→Hn−1
J (S)⊕Hn−1

Q�
(S)→Hn−1

I (S)→Hn
η (S)→ 0,

where Hn
I+J(S)

∼= ES(K), a simple D(S,K)-module (see [L2]). Then

λ1
0(R;K ′) equals

lengthD(S,K)H
n−1
I (S)

= lengthD(S,K)H
n−1
J (S) + lengthD(S,K)H

n−1
Q�

(S) + 1
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= λ1
0(S/J ;K

′) + λ1
0(S/Q�;K

′) + 1, and inductively,

=
(
λ1
0(S/Q1;K

′) + · · ·+ λ1
0(S/Q�;K

′) + �− 2
)
+ λ1

0(S/Q�;K
′) + 1

= λ1
0(R/P1;K

′) + · · ·+ λ1
0(R/P�;K

′) + �− 1, as R/Pi
∼= S/Qi.

Proposition 4.14. Let S =K[[x1, . . . , xn]], where K is a field. Let f1,

. . . , f� ∈ S be irreducible, and letf = fα1
1 · · ·fα�

� , αi ∈N. Then

λn−1
0 (S/f)≥ λn−1

0 (S/f1) + · · ·+ λn−1
0 (S/f�) + �− 1.

Proof. Since H i
I(S) =H i√

I
(S) for every ideal I ⊆ S, we may assume that

α1 = · · ·= α� = 1. By way of induction on �, we first note that when �= 1,

the statement is clear. Assume that the statement holds for � − 1 such

elements, and let g = f1 · · ·f�−1. Since f� and g form a regular sequence, the

Mayer–Vietoris sequence gives the exact sequence

0→H1
gS(S)⊕H1

f�S
(S)→H1

fS(S)→H2
(g,f�)S

(S)→ 0.

Since H2
(g,f�)S

(S) �= 0, lengthD(S,K)H
2
(g,f�)S

(S)≥ 1. Moreover,

λn−1
0 (S/fS)

= lengthD(S,K)H
1
fS(S)

≥ lengthD(S,K)H
1
gS(S) + lengthD(S,K)H

1
f�S

(S) + 1

= λn−1
0 (S/gS) + λn−1

0 (S/f�S) + 1, and inductively,

≥ λn−1
0 (S/f1S) + · · ·+ λn−1

0 (S/f�−1S) + �− 2 + λn−1
0 (S/f�S) + 1

= λn−1
0 (S/f1S) + · · ·+ λn−1

0 (S/f�S) + �− 1.

Definition 4.15 (Lyubeznik characteristic). Let (R,m,K) be a local

ring containing a field such that dim(R) = d. Fix a coefficient field K ′ of R̂.

The Lyubeznik characteristic of R (with respect to K ′) is defined as

χλ(R;K ′) :=
d∑

i=0

(−1)iλi
0(R;K ′).

If the choice of the coefficient field is clear, we simply write χλ(R).

Proposition 4.16. Let I and J be ideals of a local ring (R,m,K) con-

taining a field. For any coefficient field K ′ of R̂,

χλ(R/I;K ′) + χλ(R/J ;K ′) = χλ

(
R/(I + J);K ′)+ χλ(R/I ∩ J ;K ′).
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Proof. This is an immediate consequence of the Mayer–Vietoris sequence

for local cohomology with respect to I and J .

Proposition 4.17. Given an ideal I = (f1, . . . , f�) of S =K[[x1, . . . , xn]],

where K is a field, then

χλ(S/I) = (−1)n
�∑

j=0

∑
1≤i1<···<ij≤�

(−1)jλn−1
0

(
S/(fi1 · · ·fij )

)
.

In particular, if f1, . . . , f� form a regular sequence or if char(K) = p > 0 and

S/I is a Cohen–Macaulay ring of dimension d, then λn−�
0 (S/(f1, . . . , f�)S) (or

λd
0(S/I), resp.) equals

∑�
j=0

∑
1≤i1<···<ij≤�(−1)n−d+jλn−1

0 (S/(fi1 · · ·fij )).
Proof. Let D =D(S,K). The definition of local cohomology in terms of

the Čech-like complex gives

�∑
j=0

(−1)j lengthDHj
I (S) =

�∑
j=0

(−1)j
∑

1≤i1<···<ij≤�

lengthD Sfi1 ·...·fij ,

and the short exact sequence 0→ S → Sg →H1
(fi1 ·...·fij )

(S)→ 0 gives that

lengthD Sfi1 ·...·fij = lengthDH1
(fi1 ·...·fij )

+1. The first statement then follows

from a straightforward calculation. The statement for a regular sequence is

an immediate consequence, and the final statement follows since the only

nonvanishing local cohomology module is Hn−d
I (S) by [PS, Proposition 4.1],

since S/I is Cohen–Macaulay.

The following two remarks indicate that the generalized Lyubeznik num-

bers of the form λd
0(R), where dimR = d, measure singularities in charac-

teristic p > 0.

Remark 4.18. Blickle’s results [Bl, Theorem 4.9, Corollaries 4.10

and 4.16] indicate that the generalized Lyubeznik numbers detect

F -regularity and F -rationality. Let (R,m,K) be a complete local domain

of characteristic p > 0 and of dimension d, such that K is F -finite. For any

coefficient field K ′ of R, the following hold.

• If λd
0(R;K ′) = 1, then 0∗

Hd
m(R)

is F -nilpotent.

• If R is F -injective and λd
0(R;K ′) = 1, then R is F -rational.

If K is additionally assumed to be perfect, the following also hold.

• We have λd
0(R) = 1 if and only if 0∗

Hd
m(R)

is F -nilpotent.

• If R is F -rational, then λd
0(R) = 1.
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• If R is F -injective, then λd
0(R) = 1 if and only if R is F -rational.

If, in addition, R is 1-dimensional, the following hold.

• If λd
0(R;K ′) = 1, then R is unibranch.

• If K is perfect, then λd
0(R) = 1 if and only if R is unibranch.

Remark 4.19. In certain cases, the generalized Lyubeznik numbers may

measure how “far” an F -pure ring is from being F -regular. Take an element

f of an F -finite regular local ring S of characteristic p > 0 such that the quo-

tient ring S/fS is F -pure. As demonstrated by Vassilev [V, Corollary 3.4],

if τ1 denotes the pullback of the test ideal of S/fS to S, and if, for i > 1,

τi is the pullback of the test ideal of the ring S/τi−1 to S, then we have a

chain of ideals

(f)� τ1 � τ1 � · · ·� τ� = S,

where each quotient S/τi is F -pure. The first author and Pérez [NP] have

shown that λd
0(S/fS;K

′)≥ �, where d= dim(S/fS). Thus, S/fS must be

F -regular if λd
0(S/fS;K

′) = 1, and a large value for λd
0(S/fS;K

′) may indi-

cate that S/fS is “far” from being F -regular.

§5. (Generalized) Lyubeznik numbers of ideals generated by max-

imal minors

We begin this section by illustrating how the behavior of the Lyubeznik

numbers may differ in the local and global cases. Using this observation,

we give an example in which the generalized Lyubeznik numbers depend on

the characteristic (see Example 5.4).

Lemma 5.1. Suppose that K is a field of characteristic zero, that R =

K[x1, . . . , xn], and that S =K[[x1, . . . , xn]]. Take a homogeneous polynomial

f ∈R. If for some N ∈N, D(S,K) · 1/fN = Sf , then D(R,K) · 1/fN =Rf .

Proof. Let DR =D(R,K), and let DS =D(S,K). For every r ∈N, there
exists δ =

∑
α gα

∂α

∂xα ∈DS = S〈 ∂
∂x1

, . . . , ∂
∂xn

〉 such that δ(1/fN ) = 1/f r. In

addition, there exist μ ∈ N and homogeneous hα ∈ R such that μ > r and
∂α

∂xα
1
fN = hα/f

μ, so δ(1/fN ) =
∑

α gα(hα/f
μ) = 1/f r.

We have that
∑

α gαhα = fμ−r, and there exist homogeneous gα,t ∈R of

degree t such that gα =
∑∞

t=0 gα,t. If tα = (μ− r)deg(f)− deg(hα), then

fμ−r =
∑
α

gαhα =
∑
α

∞∑
t=0

gα,thα =
∑
α

gα,tαhα

because f and hα are homogeneous polynomials.
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Let δ̃ =
∑

α gα,tα
∂α

∂xα ∈DR. Then

δ̃ · 1

fN
=
∑
α

gα,tα
∂α

∂xα
1

fN
=
∑
α

gα,tα
hα
fμ

=

∑
α gα,tαhα
fμ

=
fμ−r

fμ
=

1

f r
.

Hence, 1/f r ∈DR · 1/fN , and the result follows.

Remark 5.2. The conclusion of Lemma 5.1 is not necessarily true if

f is not a homogeneous polynomial. Indeed, let m denote the homoge-

neous maximal ideal of R. If f ∈ R is any polynomial such that Rm/fRm

is a regular local ring, then even if D(R,K) · 1/fN �= Rf , we have that

D(S,K) · 1/f = Sf .

Fix f ∈ R = K[x1, . . . , xn]. If s denotes an indeterminate, there exist

b(s) ∈K[s] and δ(s) ∈D[s] =K[s]⊗K D such that for all � ∈ Z,

(5.2.1) b(�)f � = δ(�) · f �+1.

All such b(s) ∈ K[s] satisfying (5.2.1) form an ideal of K[s]. The unique

monic generator of this ideal is denoted bf (s) and is called the Bernstein–

Sato polynomial of f [Co, Chapter 10].

Remark 5.3. Let bf (s) denote the Bernstein–Sato polynomial of f ∈
R = K[x1, . . . , xn] over R. If N = max{j ∈ N | bf (−j) = 0}, then we have

D(R,K) ·1/fN−1 �=Rf (see [W2, Lemma 1.3]). Therefore, if f ∈R is homo-

geneous, lengthD(S,K)H
1
(f)(S)≥ 2 by Lemma 5.1.

Example 5.4. Let R = K[X] be the polynomial ring over a field K

in the entries of an r × r matrix X of indeterminates, and let det(X)

denote the determinant of X . If K is a perfect field of characteristic p > 0,

R/(det(X)) is F -rational (see [HH, Theorem 7.14]), so by Remark 4.18,

λr2−1
0 (Rm/det(X)Rm) = 1. In contrast, if K has characteristic zero, the

Bernstein–Sato polynomial of the determinant of X over R is bdet(X)(s) =

(s+ 1)(s+ 2) · · · (s+ r), so by Remark 5.3, λr2−1
0 (Rm/det(X)Rm) ≥ 2. In

particular, even when a generalized Lyubeznik number is nonzero in both

characteristic zero and characteristic p > 0, its values may differ.

Now we study the case when the matrix is not square in characteristic

zero.

Notation 5.5. Let R be the polynomial ring over a field K of charac-

teristic zero in the entries of X = [xij ], an r × s matrix of indeterminates,
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where r < s. Let m denote its homogeneous maximal ideal, let It be the ideal

generated by the t× t minors of X , and let I = Ir be the ideal generated by

the maximal minors of X .

Example 5.6. Under Notation 5.5, H
r(s−r)+1
I (R) ∼= ER(K), 0 �=

H i
I(R) ↪→H i

I(R)It+1
∼=ER(R/It+1) for i= (r−t)(s−r)+1,0< t < r, and all

other H i
I(R) = 0 (see [Wi, Theorem 1.1]). In particular, λj

0(Rm/IRm) equals

one for j = r2 − 1 and vanishes if j �= r2 + t(s− r)− 1 for some 0 ≤ t < r.

Moreover, λ0,j(Rm/IRm) equals one if j = r2 − 1 and vanishes otherwise.

We now compute the Lyubeznik numbers λi,j(Rm/IRm) in a special case.

Proposition 5.7. Under Notation 5.5, if r = 2, then

λ0,3(Rm/IRm) = λs−1,s+1(Rm/IRm) = λs+1,s+1(Rm/IRm) = 1,

and all other λi,j(Rm/IRm) = 0.

Proof. By Example 5.6, the only two nonzero local cohomology modules

H i
I (R) are H2s−3

I (R)∼=ER(K) and Hs−1
I (R) ↪→ER(R/I). Replace R by its

localization at m, and consider the spectral sequence Ep,q
2 =Hp

mHq
I (R) =⇒

p

Hp+q
m (R) = Ep,q

∞ (see [Ha, Proposition 1.4]). Now, H0
mH2s−3

I (R) ∼= ER(K)

and Hp
mH2s−3

I (R) = 0 for p > 0; in particular, λ0,3(R/I) = 1. Also note that

dimR/I = s+1, so that Hp
mHs−1

I (R) = 0 for p > s+1. These observations

are incorporated in Figure 1.

The only possibly nonzero Ep,q
2 =Hp

mHq
I (R) such that p+ q = dim(R) is

Es+1,s−1
2 . Since the spectral sequence maps to and from the (s+1, s−1) spot

must all be zero, we must have that Hs+1
m Hs−1

I (R)∼=Es+1,s−1
∞ ∼=ER(K), so

that λs+1,s+1(R/I) = 1 (and all other Ep,q
∞ = 0).

The sole differential that is possibly nonzero is d0,2s−3
s−1 : E0,2s−3

s−1
∼=

ER(K)→ Es−1,s−1
s−1 . After taking cohomology with respect to the dp,qs−1, we

must get zero at both the (s − 1, s − 1) and (0,2s − 3) spots, so d0,2s−3
s−1

must be an isomorphism, and Hs−1
m Hs−1

I (R) =Es−1,s−1
s−1

∼=ER(K), so that

λs−1,s+1(R/I) = 1. Since all other maps are zero, and after taking coho-

mology with respect to dp,qs−1 we must also get zero, all remaining local

cohomology modules Hp
IH

q
m (R) = 0, so that λp,q(R/I) = 0.

Corollary 5.8. With Notation 5.5, let r = 2. As Hs−1
I (R) ↪→Hs−1

I (R)I
by Example 5.6, we also have natural injections Hs−1

I (R)xij ↪→ Hs−1
I (R)I
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q
...

...
...

...
...

...
...

2s− 2 0 0 0 · · · 0 0 0 0 · · ·
2s− 3 ER(K)

d0,2s−3
s−1

0

d1,2s−3
s−1

0

d2,2s−3
s−1

· · · 0 0 0 0 · · ·
2s− 4 0 0 0 0 0 0 0 · · ·

...
...

...
...

...
...

s 0 0 0 0 0 0 0 · · ·
s− 1 E0,s−1

2 E1,s−1
2 E2,s−1

2 · · ·Es−1,s−1
2 Es,s−1

2 Es+1,s−1
2 0 · · ·

s− 2 0 0 0 · · · 0 0 0 0 · · ·
...

...
...

...
...

...
...

...

0 1 2 · · · s− 1 s s+ 1 s+ 2 p

Figure 1: Ep,q
2 =Hp

mHq
I (R).

for each indeterminate xij . Under this identification,

Hs−1
I (R)∼=

⋂
i=1,...,r
j=1,2

Hs−1
I (R)xij ⊆Hs−1

I (R)I .

Proof. Let C denote the cokernel of the initial injection, so that we have

the long exact sequence

0→H0
mHs−1

I (R)→H0
m

(
Hs−1

I (R)I
)
→H0

m(C)→H1
mHs−1

I (R)

→H1
m

(
Hs−1

I (R)I
)
→ · · · .

Since I is the only associated prime of Hs−1
I (R) and of Hs−1

I (R)I ∼=
ER(R/I), it follows thatH0

mHs−1
I (R) =H0

m(Hs−1
I (R)I) =H1

m(Hs−1
I (R)I) =

0, so that H0
m(C)∼=H1

mHs−1
I (R), which vanishes by Proposition 5.7.

Noting that the injections Hs−1
I (R)xij ↪→ Hs−1

I (R)I are induced

since the only associated prime of Hs−1
I (R) is I and xij /∈ I , let M =⋂

1≤i≤r,1≤j≤2H
s−1
I (R)xij ⊆ Hs−1

I (R)I under the identification. Then

M/H i
I(R) injects into Hs−1

I (R)I/H
s−1
I (R) = C. Moreover, since every ele-

ment of M/H i
I(R) is killed by a power of m, M/H i

I(R) =H0
m(M/H i

I(R)) ↪→
H0

m(C) = 0. Thus, M =Hs−1
I (R).
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§6. Generalized Lyubeznik numbers of monomial ideals

In this section we characterize the generalized Lyubeznik numbers associ-

ated to monomial ideals. To do so, we make use of the categories of square-

free and straight modules introduced by Yanagawa ([Y1], [Y2]); we begin

with some definitions and notation he first introduced.

Notation 6.1. Let S =K[x1, . . . , xn], K a field, and consider the nat-

ural Nn-grading on S. For α = (α1, . . . , αn) ∈ Zn, we define Supp(α) = {i |
αi > 0} ⊆ [n] = {1, . . . , n}. For a monomial xα = xα1

1 · · ·xαn
n , Supp(xα) :=

Supp(α). We say that xα is square-free if, for every i ∈ [n], αi ∈ {0,1}. Let
ei denote the vector (0, . . . ,0,1,0, . . . ,0) ∈Nn, where “1” is in the ith entry.

If F ⊆ [n], let PF denote the prime ideal generated by {xi | i /∈ F}. If F ⊆ [n],

we will often use F to denote
∑

i∈F ei; for instance, x
F denotes

∏
i∈F xi.

Given a Zn-graded S-module M and β ∈ Z, M(β) denotes the Nn-graded

S-module that has underlying S-module M but with a shift in the grading:

M(β)α =Mα+β . Let ωS = S(−1, . . . ,−1) denote the canonical module of S,

and let *Mon denote the category of Zn-graded S-modules.

Definition 6.2 (Square-free monomial module). An Nn-graded

S-module M =
⊕

β∈Nn Mβ is square-free if it is finitely generated, and

the multiplication map Mα
·xi−→ Mα+ei is bijective for all α ∈ N and all

i ∈ Supp(α). The category of square-free S-modules is denoted Sq, a sub-

category of *Mon.

If I is a square-free monomial ideal, then both I and S/I are square-free

modules. Moreover, if 0 → M ′ → M → M ′′ → 0 is a short exact sequence

in *Mon, then M is a square-free module if and only if both M ′ and

M ′′ are square-free modules. In addition, if M is a square-free module, then

ExtiS(M,ωS) is a square-free module for every i ∈N (see [Y1, Theorem 2.6]).

Moreover, for any subset G ⊆ F ⊆ [n], S/PF (−G) is a square-free module

(where the grading of PF (−G) satisfies [PF (−G)]� = [PF ]�−G).

Remark 6.3. An Nn-graded square-free S-module M is a simple square-

free module if it has no proper nontrivial square-free submodules. In fact,

such a square-free module is simple if and only if it is isomorphic to S/

PF (−F ) for some F ⊆ [n].

Proposition 6.4 ([Y1, Proposition 2.5]). An Nn-graded S-module M is

square-free if and only if there exists a filtration of Nn-graded submodules

0 = M0 � M1 � · · · � Mt = M such that, for each i, 0 ≤ i ≤ t − 1, M i =
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Mi/Mi+1
∼= S/PFi(−Fi) for some Fi ⊆ [n] (and so is, in particular, a simple

square-free module).

As a consequence of Proposition 6.4, every square-free module M has

finite length in Sq. We now recall the following definition (see [Y2]).

Definition 6.5 ([Y2, Definition 2.6] Straight module). A Zn-graded

S-module M =
⊕

β∈Zn Mβ is straight if dim(Mβ) < ∞ for all β ∈ Zn and

the multiplication map Mα
·xi−→ Mα+ei is bijective for all α ∈ Zn and all

i ∈ Supp(α). The category of straight S-modules is denoted Str, a subcat-

egory of *Mon.

Remark 6.6. If M =
⊕

β∈Zn Mβ is a straight module, then M denotes

the Nn-graded (square-free) submodule
⊕

β∈Nn Mβ . On the other hand, if

M is a square-free module, we can define the straight hull of M , M̃ , as fol-

lows. For α ∈Nn, let M̃α be a vector space isomorphic to MSupp(α), and let

φα : M̃α →MSupp(α) denote such an isomorphism. Let β = α+ ei for some

i ∈ [n]. If Supp(α) = Supp(β), we define M̃α
·xi−→ M̃β by the composition

M̃α
φα−→MSupp(α)

φ−1
β−→ M̃β ; otherwise, we define M̃α

·xi−→ M̃β by the compo-

sition M̃α
φα−→MSupp(α)

xi−→MSupp(β)

φ−1
β−→ M̃β . Then M̃ is straight, and its

Nn-graded part is isomorphic to M .

Proposition 6.7 ([Y2, Proposition 2.7]). Continuing with the notation

above, the functor Str→ Sq defined by M →M is an equivalence of cate-

gories with inverse functor N → Ñ .

Remark 6.8. Let L[F ] denote the straight hull of PF (−F ). By Propo-

sition 6.7 (noting Remark 6.3), L[F ] is a simple straight module. We have

that L[F ]α = k if Supp(α) = F and is zero otherwise (see [Y2, p. 48]). Thus,

L[F ]∼=H�
PF

(ωS), where �= n− |F |.

Remark 6.9. Any straight module M may be given the structure of a

D(S,K)-module. Indeed, it suffices to define an action of 1
t!

∂t

∂xi
t for every 1≤

i≤ n and t≥ 1. Take v ∈Mα, where α= (α1, . . . , αn). If 1≤ αi ≤ t, we define
1
t!

∂t

∂xi
t v = 0. Otherwise, there exists w ∈Mα−tei such that xtiw = v, and we

define 1
t!

∂t

∂xi
t v =

(
αi
t

)
w if αi > 0 and we define 1

t!
∂t

∂xi
t v = (−1)−αi+1

(−αi
t

)
w

if αi < 0. This fact is noted in [Y2, Remark 2.12] in a specific setting, but

it holds for any field. We note that this D(S,K)-structure gives an exact

faithful functor from Str to the category of D(S,K)-modules.
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Theorem 6.10. Let K be a field, let S = K[x1, . . . , xn], and let Ŝ =

K[[x1, . . . , xn]]. Let I1, . . . , Is ⊆ S be ideals generated by square-free mono-

mials. Then

λis,...,i1
Is,...,I1

(Ŝ) = lengthStrH
is
Is
· · ·H i2

I2
Hn−i1

I1
(ωS)

=
∑

α∈{0,1}n
dimk

[
H is

Is
· · ·H i2

I2
Hn−i1

I1
(ωS)

]
−α

.

Moreover, if char(K) = 0, then λi1,...,is
I1,...,Is

(Ŝ) = e(H is
Is
· · ·H i2

I2
Hn−i1

I1
(S)), where

e(M) denotes D(S,K)-module characteristic cycle multiplicity of a holo-

nomic D(S,K)-module M (see Definition 2.2).

Proof. In this case, we let M = H is
Is
· · ·H i2

I2
Hn−i1

I1
(S), so that

λi1,...,is
I1,...,Is

(Ŝ) = length
D(Ŝ,K)

M . By applying [Y2, Corollary 3.3] iteratively,

we see that H is
Is
· · ·H i2

I2
Hn−i1

I1
(ωS) is an straight module. By Propositions

6.4 and 6.7, there is a strict ascending filtration of Nn-graded submodules

0 =M0 �M1 � · · ·�Mt =M such that each quotient Mi/Mi+1 is isomor-

phic to ˜PFi(−Fi)∼=H
n−|Fi|
PFi

(ωS), and is also a filtration of D(S,K)-modules

by Remark 6.9. Moreover,

0 =M0 ⊗S Ŝ �M1 ⊗S Ŝ � · · ·�Mt ⊗S Ŝ =M ⊗S Ŝ

is a filtration of D(Ŝ,K)-modules such that (M̃i ⊗S Ŝ)/(M̃i−1 ⊗S Ŝ) ∼=
˜PFi(−Fi)⊗S Ŝ ∼=H

n−|Fi|
PFi

(Ŝ). Since H
n−|Fi|
PFi

(Ŝ) is a simple D(Ŝ,K)-module

for every F ⊆ [n], length
D(Ŝ,K)

M ⊗S Ŝ = t as well.

If K has characteristic zero, due to the filtration above and noting

Remark 2.3,

CC(M) =

t∑
i=1

CC(M̃i/M̃i−1) =

t∑
i=1

CC
(
H

n−|Fi|
PFi

(S)
)

(see Definition 2.2). By [A1, Corollary 3.3 and Remark 3.4], each

CC(H
n−|Fi|
PFi

) = T ∗
{xi=0|xi∈PFi

} Spec(S). As a result, each e(H
n−|F |
PF

) = 1, and

so e(M) = t. Then λi1,...,is
I1,...,Is

(Ŝ) = lengthSqM = lengthStrM = e(M).

Remark 6.11. The Lyubeznik numbers with respect to monomial ideals

may depend on the field, as shown in [AV, Example 4.6].
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Remark 6.12. For K a field of characteristic zero, let S =K[x1, . . . , xn],

and take I ⊆ S an ideal generated by monomials. Let Ŝ =K[[x1, . . . , xn]].

Combining work of Álvarez Montaner [A1, Theorem 3.8 and Algorithm 1]

with Theorem 6.10 provides an algorithm to compute λj
0(Ŝ/IŜ) in terms of

P1, . . . , PN , the minimal primes of I . A consequence of this algorithm is the

following inequality:

λj
0(Ŝ/IŜ)≤

∑
1≤i1<···<i�<N

δn−j
i1,...,i�

,

where δri1,...,i� = 1 if height (Pi1 + · · · + Pi�) = r + � − 1 and equals zero

otherwise.

Remark 6.13. By Remark 6.12, there is a straightforward algorithm to

compute the λi
0(Ŝ/IŜ) using the minimal primes of I .

Lemma 6.14. Let S =K[[x1, . . . , xn]], K a field. For a monomial f with

|Supp(f)|= j, lengthD(S,K) Sf = 2j .

Proof. By 6.10, lengthD(S,K)H
1
(xi1

·...·xij
) (S) = 2j − 1. Since local coho-

mology depends only on the radical of an ideal, H1
f (S) =H1

(xi1
·...·xij

) (S) =

2j − 1. Because of the exact sequence 0→ S → Sf →H1
f (S)→ 0 and the

fact that S is a simple D(S,K)-module, we have that lengthD(S,K)Sf =

lengthD(S,K)S + lengthD(S,K)H
1
f (S) = 2j .

Proposition 6.15. Let K be a field, let S =K[[x1, . . . , xn]], and let I be

an ideal of S generated by square-free monomials f1, . . . , f� ∈ S. Then

χλ(S/I) = (−1)n
�∑

j=0

∑
1≤i1<···<ij≤�

(−1)j2deg lcm(fi1 ,...,fij ).

Moreover, if S/I is also Cohen–Macaulay, the above equation equals

(−1)dλd
0(S/I). If, further, f1, . . . , f� form a regular sequence, this equals

(−1)n−1
∏�

i=1(2
deg fi − 1)�.

Proof. Since |Supp(fi1 · . . . · fij )| = deg lcm(fi1 , . . . , fij ), the first state-

ment follows from Lemma 6.14 and Proposition 4.17.

If S/I is Cohen–Macaulay, then by [A1, Proposition 3.1] (which is stated

in characteristic zero, although the argument is characteristic independent),

Hj
I (S) = 0 for all j �= ht I = n − d, and the statement follows. If the fi
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also form a regular sequence, lcm(fi1 · · ·fij ) = fi1 · · ·fij and deg(fi1 · · ·fij ) =∑j
r=1 deg fir , and

�∑
j=0

∑
1≤i1<···<ij≤�

(−1)j2(
∑j

r=1 deg fir ) =

�∏
i=1

(1− 2deg fi)�

=−
�∏

i=1

(2deg fi − 1)�.

6.1. Lyubeznik characteristic of Stanley–Reisner rings

Definition 6.16 (Simplicial complex, faces/simplices, dimension of a

face, i-face, facet). A simplicial complex Δ on the vertex set [n] = {1, . . . , n}
is a collection of subsets, called faces or simplices, that are closed under tak-

ing subsets. A face σ ∈Δ of cardinality |σ|= i+1 is said to have dimension

i and is called an i-face of Δ. The dimension of Δ, dim(Δ), is the maximum

of the dimensions of its faces (or −∞ if Δ =∅). We denote the set of faces

of dimension i of Δ by Fi(Δ). A face is a facet if it is not contained in any

other face.

Remark 6.17. If Δ1 and Δ2 are simplicial complexes on the vertex set

[n], then Δ1 ∩Δ2 and Δ1 ∪Δ2 are also simplicial complexes.

Definition 6.18 (Simple simplicial complex). We say that a simplicial

complex Δ on the vertex set [n] is simple if it is equal to P(σ), the power

set of a subset σ of [n].

Remark 6.19. If σ1, . . . , σ� are the facets of Δ, then Δ = P(σ1) ∪ · · · ∪
P(σ�). In particular, a simplicial complex is determined by its facets.

Notation 6.20. If Δ is a simplicial complex on the vertex set [n] and

σ ∈Δ, then xσ denotes
∏

i∈σ xi ∈K[x1, . . . , xn].

Definition 6.21 (Stanley–Reisner ideal of a simplicial complex). The

Stanley–Reisner ideal of the simplicial complex Δ is the square-free mono-

mial ideal IΔ = (xσ | σ /∈Δ) of K[x1, . . . , xn]. The Stanley–Reisner ring of

Δ is K[x1, . . . , xn]/IΔ.

Theorem 6.22 ([MS, Theorem 1.7]). The correspondence Δ �→ IΔ defines

a bijection from simplicial complexes on the vertex set [n] to square-free

monomial ideals of K[x1, . . . , xn]. Furthermore, IΔ =
⋂

σ∈Δ(x
[n]\σ).
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Proposition 6.23. Under the correspondence in Theorem 6.22, IΔ1∩Δ2 =

IΔ1 + IΔ2 and IΔ1∪Δ2 = IΔ1 ∩ IΔ2 for all simplicial complexes Δ1 and Δ2.

Proof. For the first statement, we see that

xσ ∈ IΔ1∩Δ2 ⇔ σ /∈Δ1 ∩Δ2 ⇔ σ /∈Δ1 or σ /∈Δ2

⇔ xσ ∈ IΔ1 or xσ ∈ IΔ1 ⇔ xσ ∈ IΔ1 + IΔ2 .

The proof of the second statement is analogous.

Theorem 6.24. Take a simplicial complex Δ on the vertex set [n]. Let

R be the Stanley–Reisner ring of Δ, and let m be its homogeneous maximal

ideal. Then

χλ(Rm) =

n∑
i=−1

(−2)i+1
∣∣Fi(Δ)

∣∣.
Proof. Let S =K[x1, . . . , xn], and let η be its maximal homogeneous ideal.

We proceed by induction on d := dim(Δ). If d = 0, then Δ = {∅}. Then
IΔ = η and R=K, so that χλ(Rm) = 1 = (−2)0 =

∑n
i=−1(−2)i+1|Fi(Δ)|.

Assume that the formula holds for all simplicial complexes of dimension

less than or equal to d. Take a simplicial complex Δ of dimension d + 1.

Consider all its facets, σ1, . . . , σ�. We now proceed by induction on �. If

� = 1, suppose that Δ1 = P(σ1), where σ1 = {i1, . . . , ij} and dim(σ1) = j.

Then IΔ1 = (xi | i /∈ σ1)S, R∼=K[x1, . . . , xn−j ], and

χλ(Rm) = length
D(Ŝη ,K)

Hj
IΔ1

(Ŝη) = (−1)j = (1− 2)j =

j∑
k=0

1j−k(−2)k
(
j

k

)

=

j−1∑
k=−1

(−2)k+1

(
j

k+ 1

)
=

j−1∑
k=−1

(−2)k+1
∣∣Fk(Δ)

∣∣.
Assume that the formula is true for simplicial complexes of dimension

d+1 with � facets, and take a simplicial complex Δ of dimension d+1 with

� + 1 facets, σ1, . . . , σ�. Let Δi = P(σi), and let Δ′ = Δ1 ∪ · · · ∪Δ�. Then

Δ=Δ′ ∪Δ�+1. We may assume, by renumbering, that dim(Δ�) = dim(Δ).

Then dim(Δ′ ∩ Δ�) < dim(Δ�) by our choice of Δ� and as we chose the

decomposition given by the facets. Therefore, χλ (Rm) equals

χλ

(
(S/IΔ′∪Δ�

)η
)

= χλ

(
(S/IΔ′ ∩ IΔ�

)η
)

by Proposition 6.23
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= χλ

(
(S/IΔ′)η

)
+ χλ

(
(S/IΔ�

)η
)

− χλ

((
S/(IΔ′ + IΔ�

)
)
η

)
by Proposition 4.16

= χλ

(
(S/IΔ′)η

)
+ χλ

(
(S/IΔ�

)η
)

− χλ

((
S/(IΔ′∩Δ�

)
)
η

)
by Proposition 6.23

=

n∑
i=−1

(−2)i+1
∣∣Fi(Δ

′)
∣∣+ n∑

i=−1

(−2)i+1
∣∣Fi(Δ�)

∣∣
−

n∑
i=−1

(−2)i+1
∣∣Fi(Δ

′ ∩Δ�)
∣∣

=

n∑
i=−1

(−2)i+1
(∣∣Fi(Δ

′)
∣∣+ ∣∣Fi(Δ�)

∣∣− ∣∣Fi(Δ
′ ∩Δ�)

∣∣)
=

n∑
i=−1

(−2)i+1
∣∣Fi(Δ

′ ∪Δ�)
∣∣= n∑

i=−1

(−2)i+1
∣∣Fi(Δ)

∣∣.
We note that [AGZ, Corollary 2.2], using [Mu, Theorem 3.3], shows

that when K has characteristic zero and when R=K[x1, . . . , xn] and m=

(x1, . . . , xn), then the D(R,K)-module characteristic cycle multiplicities of

the local cohomology modules H i
IΔ
(R) are determined by (and, in fact,

determine) the graded Betti numbers of the Alexander dual of IΔ. By The-

orem 6.10, λi
IΔ
(Rm) = e(Hn−i

IΔ
(R)), which determines the Lyubeznik char-

acteristic χλ(Rm).

Example 6.25. Let K be a field, and let S =K[x1, x2, x3, x4, x5]. Con-

sider the ideal

I = (x1x3, x1x4, x2x3, x2x4, x2x5) = (x1, x2)∩ (x2, x3, x4)∩ (x3, x4, x5)

of S, so that R := S/I is the Stanley–Reisner ring of the simplicial com-

plex in Figure 2. If m= (x1, x2, x3, x4, x5) ⊆ S, Theorem 6.24 implies that

χλ(Rm) = 1 · 1 + (−2) · 5 + 4 · 5 + (−8) · 1 = 3. This calculation can be con-

firmed by applying Proposition 4.16 iteratively using the primary decom-

position of I .

Remark 6.26. In characteristic zero, Àlvarez Montaner [A1, Proposi-

tion 6.2] has given formulas for |Fi(Δ)| in terms of the characteristic cycle

multiplicities of Hj
IΔ
(K[x1, . . . , xn]).

https://doi.org/10.1215/00277630-2741026 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2741026


GENERALIZED LYUBEZNIK NUMBERS 199

Figure 2: Simplicial complex in Example 6.25.

Remark 6.27. Theorem 6.24 shows that the Lyubeznik characteristic of

Stanley–Reisner rings does not depend on their characteristic, although their

Lyubeznik numbers do have such a dependence (see [AV, Example 4.6]).

Acknowledgments. Many thanks go to Josep Àlvarez Montaner, Xavier
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