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Abstract

We study the Witten multiple zeta function associated with the Lie algebra so(5). Our main result shows
that its special values at nonnegative integers are always expressible by alternating Euler sums. More
precisely, every such special value of weight w at least 2 is a finite Q-linear combination of alternating
Euler sums of weight w and depth at most 2, except when the only nonzero argument is one of the two
last variables, in which case ζ(w − 1) is needed.
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1. Introduction

The Witten multiple zeta function associated with the Lie algebra so(5) was defined
by Komori, Matsumoto and Tsumura [8] as follows:

ζso(5)(s1, . . . , s4)=

∞∑
m,n=1

1
ms1ns2(m + n)s3(m + 2n)s4

. (1.1)

The sum converges provided that Re(s1 + s2 + s3 + s4) > 2, Re(s1 + s3 + s4) > 1,
and Re(s2 + s3 + s4) > 1. We call s1 + s2 + s3 + s4 the weight. Essouabri [3] and
Matsumoto [9] defined more general multiple zeta functions and studied their analytic
continuations. However, the function in (1.1) already generalizes both the zeta function
ζso(5)(s, s, s, s) suggested by Zagier [17, Section 7] after Witten [16] and the Mordell–
Tornheim double zeta function [10, 13] (see Section 2.2). Zagier and Garoufalidis
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independently showed that, for every positive integer m, there is a rational number
c(m) such that

ζso(5)(2m, 2m, 2m, 2m)= c(m)× π8m . (1.2)

This had already been proposed by Witten from physical considerations for more
general types of zeta functions associated with semisimple Lie algebras. Special values
like those in (1.2) are the main objects of study here. We regard ζso(5)(s1, . . . , s4) as
a special value when all the arguments s1, . . . , s4 are nonnegative integers. Note that
negative arguments are allowed in some other papers on special values.

In [15], Tsumura considered the special values of (1.1) at nonnegative integers. In
particular, when the weight is an odd number he showed that the special values of (1.1)
are Q-linear combinations of products of Riemann zeta values at positive integers,
with slightly stronger restrictions on the arguments than needed just to guarantee
convergence. Since the function ζso(5)(s1, . . . , s4) has depth 2, this type of result is
commonly referred to as a ‘parity relation’. For example, the (Euler–Zagier) multiple
zeta value at positive integers, given by

ζ(s1, . . . , sd) :=
∑

m1>···>md≥1

m−s1
1 m−s2

2 · · · m−sd
d , (1.3)

has the well-known property that if the weight is at least 2, and the weight and the depth
have different parities, then it may be written as a Q-linear combination of products of
multiple zeta values of lower depths (see [4, 14]). It is expected that, in general, when
the weight is even and large enough, such relations may not always hold.

We investigate the convergent special values of ζso(5)(s1, . . . , s4) at nonnegative
integers without any parity restriction on the weight. It turns out that they are closely
related to alternating Euler sums (see Section 2.1). Here is our main result.

THEOREM 1.1. Let s1, . . . , s4 be nonnegative integers such that s1 + s3 + s4 > 1,
s2 + s3 + s4 > 1 and w := s1 + s2 + s3 + s4 > 2. Then ζso(5)(s1, . . . , s4) may be
written as a finite Q-linear combination of alternating Euler sums of weight w and
depths at most 2, unless s1 = s2 = s3 = 0 or s1 = s2 = s4 = 0, in which cases ζ(w − 1)
is needed.

In [24], we considered the Witten multiple zeta function associated with the Lie
algebra sl(4). In general, we believe that not only multiple zeta values and alternating
Euler sums, but also more general special values of multiple polylogarithms at roots
of unity (see [12, 18, 23]) may be used to study many other types of Witten multiple
zeta functions, such as those appearing in the recent work of Komori et al. [5, 6, 8].
This is investigated in detail elsewhere (see, in particular, [22]).

2. Some preliminaries

2.1. Alternating Euler sum. For positive integers s1, . . . , sd , the alternating Euler
sum is defined by

ζ(s1, . . . , sd; x1, . . . , xd) :=
∑

m1>···>md≥1

xm1
1 · · · x

md
d

ms1
1 · · · m

sd
d

, (2.1)
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where x j =±1 when 1≤ j ≤ d , and (s1, x1) 6= (1, 1). We call s1 + · · · + sd the
weight and d the depth. To save space, we write ζ(t1, . . . , td), where each t j is s j if
x j = 1 and s̄ j if x j =−1. For example, we have the familiar result ζ(1̄)= ζ(1; −1)=
−log 2, and the striking identity [21] that

ζ({3}n)= 8nζ({2̄, 1}n),

for every positive integer n, where {S}n means the string S is repeated n times.
Identities like these, which are derived by (regularized) double shuffle relations, will
be crucial in simplifying our computations in the last section of this paper.

2.2. Mordell–Tornheim zeta functions. These functions (see [10, 13]) are given by

ζMT(s1, . . . , sd; s)=
∞∑

m1,...,md=1

m−s1
1 m−s2

2 · · · m−sd
d (m1 + · · · + md)

−s . (2.2)

Recently Bradley and Zhou [2, Theorem 2.2] showed that (2.2) converges absolutely
if Re(s)+

∑`
j=1 Re(si j ) > ` for each nonempty subset {i1, . . . , i`} of {1, 2, . . . , d}.

We may use the integral test and the well-known formula

n∑
m=1

mt
=

1
t + 1

(Bt+1(n + 1)− Bt+1(0)),

where Bt+1 is the Bernoulli polynomial, to extend their proof to the following
necessary and sufficient condition for convergence when all arguments are integers.

PROPOSITION 2.1. Let s1, . . . , sd and s be arbitrary integers. Then the Mordell–
Tornheim zeta function ζMT(s1, . . . , sd; s) converges if and only if

s +
∑̀
j=1

si j > `

for each nonempty subset {i1, . . . , i`} of {1, 2, . . . , d}.

The following is a variation of [2, Theorem 1.1].

PROPOSITION 2.2. Let s1, . . . , sd and s be nonnegative integers. If at most one of
them is equal to 0, then the Mordell–Tornheim zeta value ζMT(s1, . . . , sd; s) may be
expressed as a Q-linear combination of multiple zeta values of the same weight and
depth.

In this note, we will only need this proposition when the depth is 2.

REMARK 2.3. In [2, Lemma 3.1], the arguments s1, s2, . . . are all positive integers.
But the definition of Mordell–Tornheim zeta values in [2] only requires the arguments
to be integers. A careful check of the proof of [2, Theorem 1.1] shows that

https://doi.org/10.1017/S1446788711001054 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788711001054


422 J. Zhao [4]

Proposition 2.2 holds. However, [2, Theorem 1.1] is incompatible with general
conjectures. For example, through easy manipulation we see that

ζMT(0, 0; 3)=
∞∑

n=1

∞∑
m=1

1

(m + n)3
=

∞∑
k=1

k−1∑
l=1

1

k3 = ζ(2)− ζ(3)= ζ(2)− ζ(2, 1),

but we expect that ζ(2) cannot be written as a Q-linear combination of multiple zeta
values of depth 2 and weight 3; only one such value exists, namely ζ(2, 1)= ζ(3). In
other words, we believe that ζ(2) is not a rational multiple of ζ(3).

2.3. Convergence domain of ζso(5)(s1, . . . , s4). In the following proposition, we
consider only integer arguments, although it is not hard to extend it to complex
variables. The result may be derived from the concrete singularity set given in [8],
but the following proof is more straightforward.

PROPOSITION 2.4. Let s1, . . . , s4 be nonnegative integers. Then the sum

ζso(5)(s1, . . . , s4)=

∞∑
m,n=1

1
ms1ns2(m + n)s3(m + 2n)s4

converges if and only if

s1 + s3 + s4 > 1, s2 + s3 + s4 > 1 and s1 + s2 + s3 + s4 > 2. (2.3)

PROOF. First we observe that for all m, n > 0,

m + n < m + 2n < 2(m + n).

Hence

1
2s4
ζMT(s1, s2; s3 + s4) =

∞∑
m,n=1

1
ms1ns2(m + n)s3(2m + 2n)s4

≤

∞∑
m,n=1

1
ms1ns2(m + n)s3(m + 2n)s4

≤

∞∑
m,n=1

1
ms1ns2(m + n)s3+s4

= ζMT(s1, s2; s3 + s4).

The proposition now follows immediately from the convergence criterion for the
Mordell–Tornheim double zeta function in Proposition 2.1. 2

2.4. A combinatorial lemma. The following lemma (see [11, p. 48]) will be used
often in the proof of Theorem 1.1.
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LEMMA 2.5. Let s and t be positive integers, and let x and y be nonzero real numbers
such that x + y 6= 0. Then

1
x s yt =

s−1∑
a=0

(
t + a − 1

a

)
1

x s−a(x + y)t+a +

t−1∑
b=0

(
s + b − 1

b

)
1

yt−b(x + y)s+b .

3. Proof of Theorem 1.1

We consider six mutually exclusive cases that together exhaust all the possibilities:

Case 1: s4 = 0;
Case 2: s2 > 0, s3 > 0 and s4 > 0;
Case 3: s2 > 0, s3 = 0 and s4 > 0;
Case 4: s1 > 0, s2 = 0 and s4 > 0;
Case 5: s1 = s2 = s3 = 0 and s4 > 0;
Case 6: s1 = s2 = 0, s3 > 0 and s4 > 0.

Case 1. s4 = 0. In this case, we have a Mordell–Tornheim double zeta value, which is
handled by Proposition 2.2 unless s1 = s2 = 0. If s1 = s2 = 0, then, as long as s ≥ 3,

ζso(5)(0, 0, s, 0)= ζ(s, 0)=
∑

m>n≥1

1
ms =

∞∑
m=1

m − 1
ms = ζ(s − 1)− ζ(s). (3.1)

Thus Theorem 1.1 is true in this case. This is the first of the two exceptional cases in
which we need the Riemann zeta value with the weight lowered by 1.

Case 2. s2, s3, s4 > 0. Take x = n and y = m + n in Lemma 2.5; then

ζso(5)(s1, . . . , s4)=

s2−1∑
a2=0

(
s3 + a2 − 1

a2

)
ζso(5)(s1, s2 − a2, 0, s4 + s3 + a2)

+

s3−1∑
a3=0

(
s2 + a3 − 1

a3

)
ζso(5)(s1, 0, s3 − a3, s4 + s2 + a3).

(3.2)

We recommend that the interested reader check the convergence of the above values
from (2.3). The rule of thumb is that the convergence is automatic if we apply
Lemma 2.5 when each x j is a positive combination of indices. In the following steps,
we often omit this convergence checking, since it is straightforward in most cases. The
only exception is (3.5).

Note that all the zeta values in (3.2) have the same weight, so the first sum of (3.2)
leads us to Case 3, since s2 − a2 > 0; the second sum of (3.2) leads us to Case 4 if
s1 > 0 initially; and the second sum of (3.2) leads us to Case 5 if s1 = 0 initially.

Case 3. s3 = 0 and s2, s4 > 0. In this case,

ζso(5)(s1, s2, 0, s4)=

∞∑
m,n=1

2s2

ms1(2n)s2(m + 2n)s4
=

∞∑
m,n=1

2s2−1(1+ (−1)n)
ms1ns2(m + n)s4

. (3.3)
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Breaking this into two parts and applying Lemma 2.5 with x = m and y = n to the
second part, we deduce that the right-hand side of (3.3) is equal to

2s2−1
{
ζMT(s1, s2; s4)+

s1−1∑
a1=0

(
s2 + a1 − 1

a1

) ∞∑
m,n=1

(−1)n

ms1−a1(m + n)s4+s2+a1

+

s2−1∑
a2=0

(
s1 + a2 − 1

a2

) ∞∑
m,n=1

(−1)n

ns2−a2(m + n)s4+s1+a2

}

= 2s2−1
{
ζMT(s1, s2; s4)+

s1−1∑
a1=0

(
s2 + a1 − 1

a1

)
ζ(s4 + s2 + a1, s1 − a1)

+

s2−1∑
a2=0

(
s1 + a2 − 1

a2

)
ζ(s4 + s1 + a2, s2 − a2)

}
.

Observe that the last component of every alternating Euler sum (or double zeta value)
above is positive and the weights do not change. So Theorem 1.1 holds in this case.

Case 4. s1 > 0, s2 = 0 and s1, s4 > 0. Take x = m and y = m + 2n in Lemma 2.5;
since

ζso(5)(s1, 0, s3, s4)=

∞∑
m,n=1

1
ms1(m + n)s3(m + 2n)s4

,

we find that ζso(5)(s1, 0, s3, s4) is equal to

s1−1∑
a1=0

(
s4 + a1 − 1

a1

)
1

2s4+a1
ζ(s3 + s4 + a1, s1 − a1)

+

s4−1∑
a4=0

(
s1 + a4 − 1

a4

)
1

2s1+a4
ζso(5)(0, 0, s3 + s1 + a4, s4 − a4).

(3.4)

Note that all the double zeta values in (3.4) have the same weight as when we started.
We remind the reader that to determine the weight of a multiple zeta value, it is not
enough just to add all the components to see that the weight does not change. We also
need to check that every component is positive, and in this particular case, that the
last components s1 − a1 and s4 − a4 are positive. This is guaranteed by the range of
summation of a1 and a4. Since s1 > 0 and s4 > 0, we are reduced to Case 6.

Case 5. s1 = s2 = s3 = 0 and s4 > 0. Write s = s4 ≥ 3 (for convergence); then

ζso(5)(0, 0, 0, s) =
∞∑

m,n=1

1
(m + 2n)s

=
1
2

∞∑
m,n=1

1+ (−1)n

(m + n)s

=
1
2

{
ζ(s, 0)+

∑
k>m≥1

(−1)m+k

ks

}
.
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Now the sum over m is 0 unless k is even, so by (3.1),

ζso(5)(0, 0, 0, s) =
1
2

{
ζ(s − 1)− ζ(s)+

∑
2k≥1

−1
(2k)s

}
=

1
2

{
ζ(s − 1)− ζ(s)−

1
2s ζ(s)

}
.

Thus Theorem 1.1 holds in this case. This is the second exceptional case in which we
need the Riemann zeta value with the weight lowered by 1.

Case 6. s1 = s2 = 0, s3 > 0 and s4 > 0. Write r = s3 and t = s4; then r + t ≥ 3 (for
convergence). Take x =−m − n and y = m + 2n in Lemma 2.5; then ζso(5)(0, 0, r, t)
is equal to

∞∑
m,n=1

(−1)r

(−m − n)r (m + 2n)t

=

r−2∑
a=0

(
t + a − 1

a

) ∞∑
m,n=1

(−1)a

nt+a(m + n)r−a

+

t−2∑
a=0

(
r + a − 1

a

) ∞∑
m,n=1

(−1)r

nr+a(m + 2n)t−a

+ (−1)r
(

t + r − 2
r − 1

) ∞∑
m,n=1

(
1

nr+t−1(m + 2n)
−

1

nr+t−1(m + n)

)
.

(3.5)

The inner infinite sum of the first sum is exactly (−1)aζ(r − a, t + a), while the
second sum may be dealt with by the same method as (3.3). Indeed, if u and v are
positive integers and v > 1, then

∞∑
m,n=1

1
nu(m + 2n)v

= 2u−1
∞∑

m,n=1

1+ (−1)n

nu(m + n)v
= 2u−1

{ζ(v, u)+ ζ(v, ū)}.

Note that all the alternating Euler sums in (3.5) have the same weight (and the second
components are all positive, since r, t > 0). So we only need to consider the last
infinite sum. Assume that s = r + t − 1> 1, and define S(N ) to be

N∑
m,n=1

(
1

ns(m + 2n)
−

1
ns(m + n)

)
=

N∑
n=1

1
ns

( N+2n∑
m=1+2n

−

N+n∑
m=1+n

)
1
m

=

N∑
n=1

1
ns

( N+2n∑
m=N+n+1

+

n∑
m=1

−

2n∑
m=1

)
1
m
.

Noting that s > 1 and therefore

N∑
n=1

1
ns

N+2n∑
m=N+n+1

1
m
<

N∑
n=1

1

ns−1 N
� log N/N → 0 as N →∞,
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we see quickly that

lim
N→∞

S(N ) =
∑

n≥m≥1

1
nsm
−

∑
2n≥m≥1

1
nsm

= ζ(s + 1)+ ζ(s, 1)− 2s−1
∑

n≥m≥1

1+ (−1)n

nsm

= (1− 2s−1)(ζ(s + 1)+ ζ(s, 1))− 2s−1(ζ(s̄, 1)+ ζ(s + 1)),

where all the Euler sums have the same weight. This concludes the proof of
Theorem 1.1. 2

REMARK 3.1. Note that Theorem 1.1 does not imply Tsumura’s result about odd
weight values, since the parity relations do not hold in general for alternating Euler
sums. For example, we know that the Q-linear space generated by the Riemann zeta
values of weight 3 has dimension one, since ζ(3)= ζ(2, 1). Broadhurst conjectures
that the dimension Fn of the space generated by weight n alternating Euler sums
over Q is a Fibonacci number: F1 = 1, F2 = 2, F3 = 3, F4 = 5, and so on. It is easy to
verify [19] that the weight-three space is spanned by ζ(3), ζ(1̄, 2) and ζ(1̄, 1, 1). Note
also that the depth-one subspace is generated by ζ(3) since ζ(3̄)=− 3

4ζ(3). Therefore
Broadhurst’s conjecture suggests that the alternating Euler sum ζ(1̄, 2) cannot be
reduced to depth 1. Since ζ(1̄, 2) has odd weight and even depth the parity relation
does not hold for it.

4. Some examples and a conjecture

Finally, we present some numerical examples, and propose a conjecture on the
space generated by the special values of ζso(5). In [15], Tsumura found some values
of ζso(5)(s1, . . . , s4) when the weight is odd. Using our general approach, we may
compute all the convergent values, and in particular we are able to confirm all the
odd weight values of ζso(5) in [14]. In practice, one may first convert our formulas
to computer programs and then compute with MAPLE. As a safeguard, we checked
all the equations in this section numerically using EZface [1]. In what follows, we
only consider the regular cases in each weight, that is, we exclude the two exceptional
cases.

We first list all the regular weight-three values:

ζso(5)(0, 0, 1, 2) = −1
2ζ(3)+ 3ζ(1̄, 2),

ζso(5)(0, 1, 0, 2) = 5
4ζ(3)− 3ζ(1̄, 2),

ζso(5)(1, 0, 0, 2) = 3
2ζ(1̄, 2)+ 1

16ζ(3),

ζso(5)(0, 0, 2, 1) = 1
4ζ(3),

ζso(5)(0, 1, 2, 0) = ζ(3),
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ζso(5)(1, 0, 2, 0) = ζ(3),

ζso(5)(0, 1, 1, 1) = 3
4ζ(3),

ζso(5)(1, 0, 1, 1) = 5
8ζ(3),

ζso(5)(1, 1, 0, 1) = 11
8 ζ(3),

ζso(5)(1, 1, 1, 0) = 2ζ(3).

Note that the first three values do not satisfy the conditions of Tsumura’s theorem [14],
so there is no contradiction with his result, even if Broadhurst’s conjecture suggests
that they cannot be rational multiples of ζ(3). However, ζso(5)(0, 1, 1, 1)= 3

4ζ(3)
does not satisfy the conditions either, but it is reduced to depth 1. It would be
interesting to find out exactly when special values of ζso(5) reduce to Riemann zeta
values.

REMARK 4.1. The smallest weight of ζso(5)(s1, s2, s3, s4) to be considered is 3
because of the convergence constraint (2.3). We have listed all the possible regular
weight-three values above, and it seems that they do not span the whole weight-
three space over Q, because the whole space should have dimension 3 according to
Broadhurst’s conjecture. In fact, this was expected because ζso(5)(s1, s2, s3, s4) only
has depth 2, while all the depth-one and two alternating Euler sums only generate
a proper subspace of dimension 2 over Q, and this subspace may be generated by
ζ(3) and ζ(1̄, 2). We believe that this phenomenon happens in general for higher
weights.

CONJECTURE 4.2. Let w be a positive integer greater than 2. Let Vw be the
Q-vector space spanned by all the special values of ζso(5)(s1, s2, s3, s4) of weight
w, where s1, s2, s3 and s4 are nonnegative integers satisfying s1 + s2 + s3 + s4 > 0,
s1 + s2 + s3 > 0 and s1 + s2 + s4 > 0. Then Vw coincides with the Q-vector space
spanned by all the alternating Euler sums of weight w and depth at most 2.

We have verified this conjecture for all weights up to 5.
We now list all the 25 regular values of weight 4:

ζso(5)(0, 0, 1, 3) = − 7
12ζ(4)+

7
3ζ(1̄, 3),

ζso(5)(0, 1, 0, 3) = 17
24ζ(4)−

7
3ζ(1̄, 3),

ζso(5)(1, 0, 0, 3) = −19
96ζ(4)+

7
6ζ(1̄, 3)− 1

2ζ(3̄, 1),

ζso(5)(0, 0, 3, 1) = −1
4ζ(4)+ 4ζ(3̄, 1),

ζso(5)(0, 1, 3, 0) = 1
4ζ(4),

ζso(5)(1, 0, 3, 0) = 1
4ζ(4),

ζso(5)(0, 0, 2, 2) = 3
8ζ(4)− 4ζ(3̄, 1),

ζso(5)(0, 2, 0, 2) = 1
8ζ(4)+ 4ζ(3̄, 1),

ζso(5)(2, 0, 0, 2) = 9
32ζ(4),
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ζso(5)(0, 2, 2, 0) = 3
4ζ(4),

ζso(5)(2, 0, 2, 0) = 3
4ζ(4),

ζso(5)(2, 2, 0, 0) = 5
2ζ(4),

ζso(5)(0, 1, 1, 2) = 1
8ζ(4),

ζso(5)(1, 0, 1, 2) = 3
16ζ(4)− ζ(3̄, 1),

ζso(5)(1, 1, 0, 2) = 5
16ζ(4)− ζ(3̄, 1),

ζso(5)(0, 1, 2, 1) = 1
2ζ(4)− 4ζ(3̄, 1),

ζso(5)(1, 0, 2, 1) = 2ζ(3̄, 1),

ζso(5)(1, 1, 2, 0) = 1
2ζ(4),

ζso(5)(0, 2, 1, 1) = 1
4ζ(4)+ 4ζ(3̄, 1),

ζso(5)(1, 2, 0, 1) = 3
4ζ(4)+ 2ζ(3̄, 1),

ζso(5)(1, 2, 1, 0) = 5
4ζ(4),

ζso(5)(2, 0, 1, 1) = 3
8ζ(4)+ ζ(3̄, 1),

ζso(5)(2, 1, 0, 1) = 7
8ζ(4)− ζ(3̄, 1),

ζso(5)(2, 1, 1, 0) = 5
4ζ(4),

ζso(5)(1, 1, 1, 1) = 1
2ζ(4)− 2ζ(3̄, 1).

There are 46 regular values of weight 5 and 74 regular values of weight 6. Here are
some interesting weight-six values:

ζso(5)(0, 2, 2, 2)= 1
105ζ(2)

3
=

1
22680π

6
= 0.042 389 294 28 · · ·

ζso(5)(2, 0, 2, 2)= 1
210ζ(2)

3
+

3
8ζ(3, 3)− 2

3ζ(3̄, 3)= 0.037 725 802 07 · · ·

ζso(5)(2, 2, 0, 2)= 4
105ζ(2)

3
−

3
8ζ(3, 3)+ 2

3ζ(3̄, 3)= 0.153 026 022 05 · · ·

ζso(5)(2, 2, 2, 0)= ζMT(2, 2; 2)= 8
105ζ(2)

3
=

1
2835π

6
= 0.339 114 354 3 · · ·

ζso(5)(1, 1, 2, 2)= 1
84ζ(2)

3
−

3
8ζ(3, 3)+ 2

3ζ(3̄, 3)= 0.036 455 462 864 9 · · ·

ζso(5)(1, 2, 1, 2)= 3
140ζ(2)

3
−

3
8ζ(3, 3)+ 2

3ζ(3̄, 3)= 0.078 844 757 114 2 · · ·

ζso(5)(2, 1, 1, 2)= 1
60ζ(2)

3
=

1
12960π

6
= 0.074 181 265 00 · · ·

ζso(5)(1, 2, 2, 1)= 1
30ζ(2)

3
−

3
4ζ(3, 3)+ 4

3ζ(3̄, 3)= 0.115 300 219 979 2 · · ·

ζso(5)(2, 1, 2, 1)= 3
140ζ(2)

3
+

3
8ζ(3, 3)− 2

3ζ(3̄, 3)= 0.111 907 067 007 7 · · ·

ζso(5)(2, 2, 1, 1)= 23
420ζ(2)

3
−

3
8ζ(3, 3)+ 2

3ζ(3̄, 3)= 0.227 207 286 987 0 · · · .

Finally, we return to the question about Zagier’s original version of Witten’s zeta
function attached to so(5). We would like to know the rational coefficients in (1.2),
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and the following formulas provide the first four such values:

ζso(5)(2, 2, 2, 2)=
3

700
ζ(2)4 =

2× 3
5× 9!

π8,

ζso(5)(4, 4, 4, 4)=
4311

297797500
ζ(2)8 =

25
× 479

5× 17!
π16,

ζso(5)(6, 6, 6, 6)=
2490861

45593675752625
ζ(2)12

=
27
× 5× 43× 19309

32 × 7× 13× 23!
π24,

ζso(5)(8, 8, 8, 8)=
138835874547

670007833199392187500
ζ(2)16

=
28
× 13× 241× 64009163

5× 17× 31!
π32.

A complicated formula for ζso(5)(2m, 2m, 2m, 2m) may be found by analytical
methods (see [7]) or algebraic methods (see [20]). This formula implies that c(m)
is equal to

28m−3

(8m)!

m∑
ν=0

B2νB8m−2ν

(
8m

2ν

){2m−1∑
µ=0

(
22ν−1

22m+µ
− (−1)µ

)
×

(
4m − µ− 2

2m − 1

)(
2m − 2ν + µ

2m − 2ν

)
+

2m−2ν∑
µ=0

(
1

22m+µ
+ (−1)µ

)(
4m − 2ν − µ− 1

2m − 1

)(
2m − 1+ µ

2m − 1

)}
,

where the B2ν are Bernoulli numbers. So we have come full circle, back to the
values with which we began, but now the rational coefficients of the powers of π
are determined precisely.
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