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Abstract

Consider a one-dimensional differential algebraic function field K over
an algebraically closed ordinary differential field 2 of characteristic 0.
We shall prove the following theorem:

Suppose that the group of all automorphisms of K over k is infinite.
Then, K is either a differential elliptic function field over & or K = k(v)
with v/ = & or v = yv, where &, e k.

It will not be assumed that the field of constants of K is the same
as that of k. If we set this additional assumption, then our result is
contained in a theorem due to Kolchin [4, p. 809].

§0. Introduction

Let £ be an algebraically closed ordinary differential field of char-
acteristic 0, and K be a one-dimensional algebraic function field over k.
We shall assume that K is a differential extension of k. Then, K is
called a differential algebraic function field over k if there exists an ele-
ment y of K such that K = k(y,y). Let F be an algebraically irreduci-
ble element of the differential polynomial algebra k{y} of the first order.
Then, there exists a differential algebraic function field K over & such that
K = k(y,y) and F(y,y’) = 0. Throughout this note K will denote a dif-
ferential algebraic function field over k.

We call K a differential elliptic function field over k if there exists
an element z of K such that K = k(z, 2’) and

@Y =22(2"— 1)z —9d);2,0ek; 2+ 0;0+0,1;

here § is a constant.
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THEOREM. Suppose that the group of all automorphisms of K over k
is infinite. Then, K is either a differential elliptic function field over k or
K = k(v) with

(1) V=¢& or vV =y & nek.

We do not assume that the field of constants of K is the same as
that of k. If this assumption is set, then our result is contained in a
theorem due to Kolchin [4, p. 809].

The author [6] gave a differential-algebraic definition for K to be
free from parametric singularities. Some results obtained there will be
applied to prove our theorem.

§1. Parametric singularities

Let P be a prime divisor of K, and v be the normalized valuation
belonging to P. Then, K is said to be free from parametric singularities
if we have vp(z’) = 0 for each P, where z is a prime element in P. Let
71, 7, be two prime elements in P. Then, vp(r]) = 0 if and only if vp(r;) = 0.
We have vp(z])) > 0 if and only if vp(z;) > 0.

We shall say that K is of Riccati type over k if there exists an ele-
ment ¢ of K such that K = k(¢) and

(2) ! =a+ bt+ ct’;a,bcek.

If K is either of Riccati type or a differential elliptic function field
over k, then it is free from parametric singularities. The following two
lemmas are due to the author [6]:

LemmA 1. Suppose that K is free from parametric singularities, and
that the genus of K is 0. Then, K is of Riccati type over k.

LeEmmaA 2. Suppose that K is free from parametric singularities, and
the genus of K is 1. Then K is a differential elliptic function field over k.

ProrosiTiON 1. Let I' be the set of all prime divisors P of K such
that vp(c’) < 0. Then, I' is finite unless it is empty.

Proof. We shall suppose that K = k(y, y’), and that y and y’ satisfy
an irreducible algebraic equation F(y,y’) = 0 over k. Assume that P is
an element of I'" satisfying vp(y) = 0. We have vp(y — ) >0 for a cer-
tain element { of k. Let A(y) and D(y) denote respectively the leading
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coefficient of F' and the discriminant of F' with respect to y’. Then, either
A(©) = 0 or D) = 0, because vp(z’) < 0.

§2. Riccati’s equation

Let @ be a prime divisor of K, and 2(€) denote the group of all
automorphisms of K over k which leave @ invariant.

PropositioN 2. Suppose that the genus of K is 0, and that there ex-
ists a prime divisor @ of K such that 2(Q) is infinite. Then, K = k(v)
with (1).

Proof. We may take an element ¢ of K such that the principal di-
visor (¢) of K takes the form PQ™!, where P is a prime divisor of K dif-
ferent from @. Then, K = k(¢) and ¢’ = R(?)/S(t), where R, Sck[t]. We
assume that (R, S) = 1, and that the leading coefficient of S is 1. Let
@ be an element of 3(@). Then, &) = at + B;«, e k. Because of {O(t)}
= O(t), we have the identity in ¢:

&t + B + aR@)/S(t) = R(at + p)/S(at + f) .

Since (@) is infinite, S can not have two roots different from each other.
Hence, S = (¢t — d)*; de k. Suppose that s > 0. Let u denote t — d, and
R*(u), S*(u) be R(u + d), S(u + d) respectively. Then, ad + g = d, and

(3) aR*(w) + w{ad'u + (1 — ®)d’} = a~*R*(u) .

Let e be the constant term of R*. It is not 0, since (B, S)=1. From
(3) we have ae = a%e, and a'*' = 1. This contradicts our assumption
that 2(Q) is infinite. Hence, s=0 and S = 1. We have

(4) aR() + o't + ' = R(at + p) .

Suppose that the degree r of R is greater than 1. Then, from (4) we

have o« = o”. Let ¢, ¢, be the coefficients of #, #~! in R respectively.
Then,

ac, = a’ "N (re,f + ¢) .

This contradicts our assumption. Hence, r <1, and R() = a + bt;a,bck.
From (4) we have

o =0, B =all —a) + b5.
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If « =1 for any @, then 8+ 0 for a certain @ and (¢/8) =a/f. fa+1
for some @, then

C—n'=0bt—-7), r=p1—a)".

ProrosiTioN 3. Assume that K is of Riccati type over k, and that K
= k() with (2). Suppose that we have an automorphism @ of K over k
taking the form:

(5) () = (at + Pt + e);, e e k.
Then, there exists in k a solution of (2).
Proof. From the identity
@O = a + bO(E) + Oty
in ¢ we have

o = a+ ba + cla® — as + P);
(6) B = ale — @) + 2bB — c(c — &)B;
¢ = —a+ be+clae—e—p).

Let us define an element ¢ of £ as a root of the quadratic equation:
¢+ (—apg—p=0.
If the discriminant 4 is not 0, then
0 =20 +e— )y — & + p}.
If 4 =0, then ¢’ = («/ — ¢')/2. Because of (6), ¢ is a solution of (2) in any

case.

§3. Proof of Theorem

Consider K as an algebraic function field over k free from the differ-
entiation. Then, the following two theorems are well known (cf. Hurwitz
[2], and Iwasawa [3, pp. 117-118], Kolchin [4, pp. 818-819] respectively):

LeEmMA 3. The group of all automorphisms of K over k is finite if the
genus of K is greater than 1.

LeEmMMA 4. If the genus of K is 1, then 2(Q) is finite for any Q.

Proof of Theorem. By Lemma 3, we may assume that the genus of
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K is either 0 or 1. Let I" be the set in Proposition 1. We shall prove
that I" is empty. To the contrary suppose that I is not empty. Then,
it is finite by Proposition 1. The set I' is left invariant by any auto-
morphism of K over k. Hence, there exists an element @ of I such that
2(Q) is infinite. By Lemma 4, the genus of K is 0. By Proposition 2,
K = k(v) with (1). It is of Riccati type over k and free from parametric
singularities. This contradicts our assumption. Hence, I" is empty. By
Lemma 1 and Lemma 2, K is either of Riccati type or a differential el-
liptic function field over k. Assume that K = k() with (2). We have
(?) = PQ™' with certain prime divisors P, @ of K. Suppose that any
automorphism @ of K over k does not take the form (5). Then, 2(Q) is
infinite. Hence, in this case, we have K = k(v) with (1) by Proposition
2. Suppose that some automorphism @ of K over k takes the form (5).
Then, by Proposition 3, there exists an element ¢ of £ which satisfies (2).
For each element 7 of k, let P(5) denote the prime divisor of K determined
by

“Pw)(t —7>0.

Then, we have

”Pw)(z'(?)’> >0

if and only if 7 is a solution of (2), where () is a prime element in
P(p). We shall define the set 4 as that of all prime divisors P* of K
such that vp«z*’) > 0, where ¢* is a prime element in P*. It is not empty,
because P(c) € A. Suppose that 4 is infinite. Then, there exist in k two
solutions, g, 0, of (2) different from each other. Hence, we have K = k(v)
with (1) (cf. Forsyth [1, pp. 192-193]). Suppose that A is finite. Then,
there exists an element P* of A such that X(P*) is infinite, because any

automorphism of K over k leaves the set 4 invariant. By Proposition 2,
we have K = k(v) with (1).

§4. Automorphisms of a differential elliptic function field

Assume that K is a differential elliptic function field k(z, 2’) over &
with

() = 4S(2) = 42(1 — 2)(1 — #’2);

here «* is a constant of k& different from 0 and 1. For a pair of elements
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a, b of k satisfying b* = S(a), let us define ¢(z, 2’; a, b) by
¢ = {a(l — 2)1 — #%2) + b2’ + 2(1 — a)(1 — Fa)}/(1 — #az)®.
For a pair of (oo, o) we shall define ¢ by
#(2, 2'; 00, ) = k%271,

Consider K as an elliptic function field over k free from the differentia-
tion. Let @ be an automorphism of K over k. Then, @(z) takes the form
(cf. [4, p. 804], [9, Chap. 3, §3]:)

D(2) = wg(z, 2';a,b) + 1:

Here, (o, 7) is either (1, 0) or the following pair:(—1,0) if #* = —1;(—1,1)
if #=2;(—1,2) if ##=1/2; (=641, (=%, k™) if £ — £ +1=0. Let ¥y
denote @(z). Then, S(y) = &*S(¢), and [K: k(y)] = 2.

Suppose that @ = oo or b=0. Then, () =4S(y) if and only if
(0,7) = (1, 0).

ProrosiTioN 4. Suppose that a + o and b+ 0. Then, (v')* = 4S(y)
if and only if we have

(7) 41 — w)S(a) + 4ba’ + (@)’ = 0.
Proof. Let us define V(z, 2’; a, b) by
V= $.2' + 2¢..5,(2);

here (2)? is replaced by 4S(2) and + is linear in 2. Then, we obtain the
identity in z, 2/, a, b (cf. [6]):

(8) P = 48(¢) .
Let us define y(z, 2’; a, b) by
%= 2b¢o + $:Sa(a);

here b* is replaced by S(e) and y is linear in b. Then, we have the iden-
tity in 2,2, a, b:

(9) r=1.
By the definition of 4 and y,
Y = of¥ + a’7/(2b)} .
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Because of (8) and (9), (¥)* = 4S(y) if and only if we have (7).

CoROLLARY. The group of all automorphisms of K over k is infinite
if K is a differential elliptic function field over k.

In fact we have (7) if ¢’ =0 and o = 1.

§5. Remarks

In the previous section let us assume that the field of constants of
K is the same as that of k. Then, (y')* = 4S(y), if and only if (e, 7) = (1, 0)
and a is either a constant or co. This result is due to Kolchin [4, p. 807].

Suppose that K = k(y,y’) with F(y,y’) = 0, and that K has a tran-
scendental constant ¢ over k. Let P be a prime divisor of K satisfying
vp(c) >0, and ¢ be a prime element in P. Then, vp(z’) > 0. For any
constant a of &, ¢ + a is a transcendental constant over k. Hence, infi-
nitely many prime divisors P of K satisfy vp(z’) > 0, and there exist in &
infinitely many solutions of F = 0 (cf. [8]).

Suppose that K = k(v) with (1). Then, the following four conditions
are equivalent (cf. [7], [6] on (iv)):

(i) K has a transcendental constant over k:

(ii) In K we have a solution of v = £ or a nontrivial solution v’
= qu:

(ii1) There exists an element w of K such that K = k(w) and w’ = 0:

(iv) We have two elements w,, w, of K such that K = k(w,) = k(w,)
and w; = ¢, w, = L,w,, where , ¢, € k.
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