THE GROUP OF AUTOMORPHISMS OF A DIFFERENTIAL ALGEBRAIC FUNCTION FIELD

MICHIHIKO MATSUDA

Abstract

Consider a one-dimensional differential algebraic function field K over an algebraically closed ordinary differential field k of characteristic 0. We shall prove the following theorem:

Suppose that the group of all automorphisms of K over k is infinite. Then, K is either a differential elliptic function field over k or K = k(v) with $v' = \xi$ or $v' = \eta v$, where $\xi, \eta \in k$.

It will not be assumed that the field of constants of K is the same as that of k. If we set this additional assumption, then our result is contained in a theorem due to Kolchin [4, p. 809].

§ 0. Introduction

Let k be an algebraically closed ordinary differential field of characteristic 0, and K be a one-dimensional algebraic function field over k. We shall assume that K is a differential extension of k. Then, K is called a differential algebraic function field over k if there exists an element y of K such that K = k(y, y'). Let F be an algebraically irreducible element of the differential polynomial algebra $k\{y\}$ of the first order. Then, there exists a differential algebraic function field K over k such that K = k(y, y') and F(y, y') = 0. Throughout this note K will denote a differential algebraic function field over k.

We call K a differential elliptic function field over k if there exists an element z of K such that K = k(z, z') and

$$(z')^2 = \lambda z(z^2-1)(z-\delta); \lambda, \delta \in k; \lambda \neq 0; \delta^2 \neq 0, 1;$$

here δ is a constant.

Received March 15, 1978.

AMS 1970 subject classifications. Primary 12H05, 14H05. Secondary 33A25, 34A05, 34A20.

Theorem. Suppose that the group of all automorphisms of K over k is infinite. Then, K is either a differential elliptic function field over k or K = k(v) with

(1)
$$v' = \xi \quad \text{or} \quad v' = \eta v; \qquad \xi, \eta \in k.$$

We do not assume that the field of constants of K is the same as that of k. If this assumption is set, then our result is contained in a theorem due to Kolchin [4, p. 809].

The author [6] gave a differential-algebraic definition for K to be free from parametric singularities. Some results obtained there will be applied to prove our theorem.

§1. Parametric singularities

Let P be a prime divisor of K, and ν_P be the normalized valuation belonging to P. Then, K is said to be free from parametric singularities if we have $\nu_P(\tau') \geq 0$ for each P, where τ is a prime element in P. Let τ_1, τ_2 be two prime elements in P. Then, $\nu_P(\tau'_1) \geq 0$ if and only if $\nu_P(\tau'_2) \geq 0$. We have $\nu_P(\tau'_1) > 0$ if and only if $\nu_P(\tau'_2) > 0$.

We shall say that K is of *Riccati type* over k if there exists an element t of K such that K = k(t) and

(2)
$$t' = a + bt + ct^2; a, b, c \in k.$$

If K is either of Riccati type or a differential elliptic function field over k, then it is free from parametric singularities. The following two lemmas are due to the author [6]:

Lemma 1. Suppose that K is free from parametric singularities, and that the genus of K is 0. Then, K is of Riccati type over k.

Lemma 2. Suppose that K is free from parametric singularities, and the genus of K is 1. Then K is a differential elliptic function field over k.

Proposition 1. Let Γ be the set of all prime divisors P of K such that $\nu_P(\tau') < 0$. Then, Γ is finite unless it is empty.

Proof. We shall suppose that K = k(y, y'), and that y and y' satisfy an irreducible algebraic equation F(y, y') = 0 over k. Assume that P is an element of Γ satisfying $\nu_P(y) \ge 0$. We have $\nu_P(y - \zeta) > 0$ for a certain element ζ of k. Let A(y) and D(y) denote respectively the leading

coefficient of F and the discriminant of F with respect to y'. Then, either $A(\zeta) = 0$ or $D(\zeta) = 0$, because $\nu_P(\tau') < 0$.

§2. Riccati's equation

Let Q be a prime divisor of K, and $\Sigma(Q)$ denote the group of all automorphisms of K over k which leave Q invariant.

PROPOSITION 2. Suppose that the genus of K is 0, and that there exists a prime divisor Q of K such that $\Sigma(Q)$ is infinite. Then, K = k(v) with (1).

Proof. We may take an element t of K such that the principal divisor (t) of K takes the form PQ^{-1} , where P is a prime divisor of K different from Q. Then, K = k(t) and t' = R(t)/S(t), where R, $S \in k[t]$. We assume that (R, S) = 1, and that the leading coefficient of S is 1. Let Φ be an element of $\Sigma(Q)$. Then, $\Phi(t) = \alpha t + \beta$; $\alpha, \beta \in k$. Because of $\{\Phi(t)\}' = \Phi(t')$, we have the identity in t:

$$\alpha't + \beta' + \alpha R(t)/S(t) = R(\alpha t + \beta)/S(\alpha t + \beta)$$
.

Since $\Sigma(Q)$ is infinite, S can not have two roots different from each other. Hence, $S = (t - d)^s$; $d \in k$. Suppose that s > 0. Let u denote t - d, and $R^*(u)$, $S^*(u)$ be R(u + d), S(u + d) respectively. Then, $\alpha d + \beta = d$, and

(3)
$$\alpha R^*(u) + u^s \{\alpha' u + (1-\alpha)d'\} = \alpha^{-s} R^*(\alpha u).$$

Let e be the constant term of R^* . It is not 0, since (R, S) = 1. From (3) we have $\alpha e = \alpha^{-s}e$, and $\alpha^{s+1} = 1$. This contradicts our assumption that $\Sigma(Q)$ is infinite. Hence, s = 0 and S = 1. We have

(4)
$$\alpha R(t) + \alpha' t + \beta' = R(\alpha t + \beta).$$

Suppose that the degree r of R is greater than 1. Then, from (4) we have $\alpha = \alpha^r$. Let c_0 , c_1 be the coefficients of t^r , t^{r-1} in R respectively. Then,

$$\alpha c_1 = \alpha^{r-1} (rc_0 \beta + c_1) .$$

This contradicts our assumption. Hence, $r \leq 1$, and R(t) = a + bt; $a, b \in k$. From (4) we have

$$\alpha'=0$$
, $\beta'=a(1-\alpha)+b\beta$.

If $\alpha = 1$ for any Φ , then $\beta \neq 0$ for a certain Φ and $(t/\beta)' = a/\beta$. If $\alpha \neq 1$ for some Φ , then

$$(t-\gamma)'=b(t-\gamma)$$
, $\gamma=\beta(1-\alpha)^{-1}$.

PROPOSITION 3. Assume that K is of Riccati type over k, and that K = k(t) with (2). Suppose that we have an automorphism Φ of K over k taking the form:

(5)
$$\Phi(t) = (\alpha t + \beta)/(t + \varepsilon); \alpha, \beta, \varepsilon \in k.$$

Then, there exists in k a solution of (2).

Proof. From the identity

$$\{\Phi(t)\}' = a + b\Phi(t) + c\Phi(t)^2$$

in t we have

(6)
$$\begin{cases} \alpha' = a + b\alpha + c(\alpha^2 - \alpha\varepsilon + \beta); \\ \beta' = a(\varepsilon - \alpha) + 2b\beta - c(\varepsilon - \alpha)\beta; \\ \varepsilon' = -a + b\varepsilon + c(\alpha\varepsilon - \varepsilon^2 - \beta). \end{cases}$$

Let us define an element σ of k as a root of the quadratic equation:

$$\sigma^2 + (\varepsilon - \alpha)\sigma - \beta = 0.$$

If the discriminant Δ is not 0, then

$$\sigma' = (2\sigma + \varepsilon - \alpha)^{-1} \{ (\alpha' - \varepsilon')\sigma + \beta' \}.$$

If $\Delta = 0$, then $\sigma' = (\alpha' - \varepsilon')/2$. Because of (6), σ is a solution of (2) in any case.

§3. Proof of Theorem

Consider K as an algebraic function field over k free from the differentiation. Then, the following two theorems are well known (cf. Hurwitz [2], and Iwasawa [3, pp. 117–118], Kolchin [4, pp. 818–819] respectively):

Lemma 3. The group of all automorphisms of K over k is finite if the genus of K is greater than 1.

LEMMA 4. If the genus of K is 1, then $\Sigma(Q)$ is finite for any Q.

Proof of Theorem. By Lemma 3, we may assume that the genus of

K is either 0 or 1. Let Γ be the set in Proposition 1. We shall prove that Γ is empty. To the contrary suppose that Γ is not empty. it is finite by Proposition 1. The set Γ is left invariant by any automorphism of K over k. Hence, there exists an element Q of Γ such that $\Sigma(Q)$ is infinite. By Lemma 4, the genus of K is 0. By Proposition 2, K = k(v) with (1). It is of Riccati type over k and free from parametric singularities. This contradicts our assumption. Hence, Γ is empty. By Lemma 1 and Lemma 2, K is either of Riccati type or a differential elliptic function field over k. Assume that K = k(t) with (2). We have $(t) = PQ^{-1}$ with certain prime divisors P, Q of K. Suppose that any automorphism Φ of K over k does not take the form (5). Then, $\Sigma(Q)$ is infinite. Hence, in this case, we have K = k(v) with (1) by Proposition 2. Suppose that some automorphism Φ of K over k takes the form (5). Then, by Proposition 3, there exists an element σ of k which satisfies (2). For each element η of k, let $P(\eta)$ denote the prime divisor of K determined by

$$\nu_{P(\eta)}(t-\eta)>0.$$

Then, we have

$$u_{P(\eta)}(\tau(\eta)') > 0$$

if and only if η is a solution of (2), where $\tau(\eta)$ is a prime element in $P(\eta)$. We shall define the set Λ as that of all prime divisors P^* of K such that $\nu_{P^*}(\tau^{*'}) > 0$, where τ^* is a prime element in P^* . It is not empty, because $P(\sigma) \in \Lambda$. Suppose that Λ is infinite. Then, there exist in k two solutions, σ_1, σ_2 of (2) different from each other. Hence, we have K = k(v) with (1) (cf. Forsyth [1, pp. 192–193]). Suppose that Λ is finite. Then, there exists an element P^* of Λ such that $\Sigma(P^*)$ is infinite, because any automorphism of K over k leaves the set Λ invariant. By Proposition 2, we have K = k(v) with (1).

§4. Automorphisms of a differential elliptic function field

Assume that K is a differential elliptic function field k(z, z') over k with

$$(z')^2 = 4S(z) = 4z(1-z)(1-\kappa^2 z);$$

here κ^2 is a constant of k different from 0 and 1. For a pair of elements

a, b of k satisfying $b^2 = S(a)$, let us define $\phi(z, z'; a, b)$ by

$$\phi = \frac{a(1-z)(1-\kappa^2 z) + bz' + z(1-a)(1-\kappa^2 a)}{(1-\kappa^2 a z)^2}.$$

For a pair of (∞, ∞) we shall define ϕ by

$$\phi(z,z';\infty,\infty)=\kappa^{-2}z^{-1}.$$

Consider K as an elliptic function field over k free from the differentiation. Let Φ be an automorphism of K over k. Then, $\Phi(z)$ takes the form (cf. [4, p. 804], [9, Chap. 3, § 3]:)

$$\Phi(z) = \omega \phi(z, z'; a, b) + \gamma$$
:

Here, (ω, γ) is either (1, 0) or the following pair: (-1, 0) if $\kappa^2 = -1$; (-1, 1) if $\kappa^2 = 2$; (-1, 2) if $\kappa^2 = 1/2$; $(-\kappa^2, 1)$, $(-\kappa^2, \kappa^{-2})$ if $\kappa^4 - \kappa^2 + 1 = 0$. Let y denote $\Phi(z)$. Then, $S(y) = \omega^3 S(\phi)$, and [K: k(y)] = 2.

Suppose that $a = \infty$ or b = 0. Then, $(y')^2 = 4S(y)$ if and only if $(\omega, \gamma) = (1, 0)$.

PROPOSITION 4. Suppose that $a \neq \infty$ and $b \neq 0$. Then, $(y')^2 = 4S(y)$ if and only if we have

$$4(1-\omega)S(a)+4ba'+(a')^2=0.$$

Proof. Let us define $\psi(z, z'; a, b)$ by

$$\psi = \phi_z z' + 2\phi_{z'} S_z(z);$$

here $(z')^2$ is replaced by 4S(z) and ψ is linear in z'. Then, we obtain the identity in z, z', a, b (cf. [6]):

$$\psi^2 = 4S(\phi) .$$

Let us define $\chi(z, z'; a, b)$ by

$$\chi = 2b\phi_a + \phi_b S_a(a);$$

here b^2 is replaced by S(a) and χ is linear in b. Then, we have the identity in z, z', a, b:

By the definition of ψ and χ ,

$$y' = \omega \{ \psi + a' \gamma / (2b) \}.$$

Because of (8) and (9), $(y')^2 = 4S(y)$ if and only if we have (7).

COROLLARY. The group of all automorphisms of K over k is infinite if K is a differential elliptic function field over k.

In fact we have (7) if a' = 0 and $\omega = 1$.

§ 5. Remarks

In the previous section let us assume that the field of constants of K is the same as that of k. Then, $(y')^2 = 4S(y)$, if and only if $(\omega, \gamma) = (1, 0)$ and α is either a constant or ∞ . This result is due to Kolchin [4, p. 807].

Suppose that K = k(y, y') with F(y, y') = 0, and that K has a transcendental constant c over k. Let P be a prime divisor of K satisfying $\nu_P(c) > 0$, and τ be a prime element in P. Then, $\nu_P(\tau') > 0$. For any constant a of k, c + a is a transcendental constant over k. Hence, infinitely many prime divisors P of K satisfy $\nu_P(\tau') > 0$, and there exist in k infinitely many solutions of F = 0 (cf. [8]).

Suppose that K = k(v) with (1). Then, the following four conditions are equivalent (cf. [7], [5] on (iv)):

- (i) K has a transcendental constant over k:
- (ii) In K we have a solution of $v' = \xi$ or a nontrivial solution $v' = \eta v$:
 - (iii) There exists an element w of K such that K = k(w) and w' = 0:
- (iv) We have two elements w_1 , w_2 of K such that $K = k(w_1) = k(w_2)$ and $w_1' = \zeta_1$, $w_2' = \zeta_2 w_2$, where ζ_1 , $\zeta_2 \in k$.

BIBLIOGRAPHY

- A. R. Forsyth, A treatise on differential equations, 6th ed., Macmillan and Co., London, 1933.
- [2] A. Hurwitz, Ueber algebraische Gebilde mit eindeutigen Transformationen in sich, Math. Ann. 41 (1893), 403-442.
- [3] K. Iwasawa, Theory of algebraic function fields (in Japanese), Iwanami Shoten, Tokyo, 1952.
- [4] E. R. Kolchin, Galois theory of differential fields, Amer. J. Math. 75 (1953), 753-824.
- [5] M. Matsuda, Liouville's theorem on a transcendental equation $\log y = y/x$, J. Math. Kyoto Univ. **16** (1976), 545-554.
- [6] —, Algebraic differential equations of the first order free from parametric singularities from the differential-algebraic standpoint, J. Math. Soc. Japan, 30 (1978), 447-455.
- [7] M. Rosenlicht, On the explicit solvability of certain transcendental equations, Publ. Math. Inst. HES., no. 36 (1969), 15-22.

- [8] $\frac{}{}$, An analogue of L'Hospital's rule, Proc. Amer. Math. Soc. 37 (1973), 369-373.
- [9] I. R. Shafarevich, Basic algebraic geometry (in Russian), Nauka, Moscow, 1972: Translation (in English), Springer, Berlin, 1974.

Department of Mathematics Osaka University