Correspondence

DEAR EDITOR,

In Note 81.26 (July 1997) there appears a version of an often-repeated incorrect statement about Pythagorean triples, namely that for integers $m>n>0$ the formulae

$$
\begin{equation*}
x=m^{2}-n^{2}, \quad y=2 m n, \quad z=m^{2}+n^{2} \tag{1}
\end{equation*}
$$

give all the positive-integer solutions of $x^{2}+y^{2}=z^{2}$.
The correct result is, of course, that these formulae with coprime integers $m>n>0$ of opposite parity give all the primitive Pythagorean triples (x, y, z), i.e. those positive-integer solutions x, y, z having no common divisor (apart from 1); and then all Pythagorean triples are given by

$$
\begin{equation*}
x=\left(m^{2}-n^{2}\right) k, \quad y=2 m n k, \quad z=\left(m^{2}+n^{2}\right) k \tag{2}
\end{equation*}
$$

for any positive integer k.
If m and n have greatest common divisor d, say $m=m^{\prime} d$ and $n=n^{\prime} d$, then (1) becomes

$$
\begin{equation*}
x=\left(m^{\prime 2}-n^{\prime 2}\right) d^{2}, \quad y=2 m^{\prime} n^{\prime} d, \quad z=\left(m^{\prime 2}+n^{\prime 2}\right) d^{2} \tag{3}
\end{equation*}
$$

where $m^{\prime}>n^{\prime}>0$ and m^{\prime}, n^{\prime} are coprime; but (3) fails to yield all the Pythagorean triples because, even when m^{\prime}, n^{\prime} have opposite parity, k in (2) need not be a perfect square.

If we employ (2) instead of (1), we find that the argument in Note 81.26 gives $b=\frac{1}{2}\left(m^{2}+n^{2}\right) h$ and $a c=\frac{1}{4} m n\left(m^{2}-n^{2}\right) h^{2}$, where $m>n>0$ are coprime integers with opposite parity and h is now any even positive integer, say $h=2 k$. So all the desired monic quadratics (i.e. with $a=1$) are

$$
x^{2}+\left(m^{2}+n^{2}\right) k x+m n\left(m^{2}-n^{2}\right) k^{2}=0
$$

They can be listed systematically in families (for given m, n and variable k), starting with $m=2, n=1$. For example, the $(4,1)$ family is

$$
\begin{gathered}
\left\{x^{2}+17 k x+60 k^{2}=0: k \in \mathbb{N}\right\} \\
\text { Yours sincerely }
\end{gathered}
$$

FRANK GERRISH
43 Roman's Way, Pyrford, Woking GU22 8TB
DEAR EDITOR,
I would like to comment on two recent notes.

1. Note 81.1 A Pascal-like triangle for $\alpha^{n}+\beta^{n}$.

Since α and β are roots of $a x^{2}+b x+c=0$ then

$$
\alpha^{n+2}-l \alpha^{n+1}+m \alpha^{n}=0
$$

where $\alpha+\beta=l$ and $\alpha \beta=m$ as defined in Note 81.1. An equivalent result holds for β.

