IDENTIFICATION OF A COMPLETE SAMPLE OF NORTHERN ROSAT ALL-SKY SURVEY X-RAY SOURCES

J. KRAUTTER¹, I. THIERING¹, F.-J. ZICKGRAF¹, I. APPENZELLER¹, R. KNEER¹, W. VOGES², A. SERRANO³ AND R. MUJICA³ ¹Landessternwarte Königstuhl, Heidelberg, Germany ²MPI für Extrat. Physik, Garching, Germany ³Instituto Nacional de Astrofísica, Optica y Electronica, Puebla, Mexico

Abstract. We present results of the optical identification of a spatially complete, flux limited sample of about 700 ROSAT All-Sky X-ray sources contained in 6 study areas north of $\delta = -9^{\circ}$ with $|b^{II}| > 20^{\circ}$ (including one region near the North Galactic pole (NGP), another one near the North Ecliptic pole (NEP)). Countrate limits are 0.01 cts s^{-1} near the NEP and 0.03 cts s^{-1} for the other areas. The optical observations were performed at the 2.15-m telescope of the Guillermo Haro Observatory, Mexico, using the Landessterwarte Faint Object Spectrograph Camera which allows to carry out direct CCD imaging and multi-object spectroscopy. The limiting magnitude is about 19^m for spectroscopy and about 23^m for B and R direct imaging. Our analysis shows a dependency of the ratio of 'extragalactic' (e.g., AGN, cluster of galaxies) to 'stellar' (e.g., coronal emitters, activebinaries) counterparts on $N_{\rm H}$. In the area near the NGP (low $N_{\rm H}$) 'extragalactic' counterparts dominate, while in the area with the highest $N_{\rm H}$ 'stellar' counterparts dominate.

449