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ON THE EDELSTEIN CONTRACTIVE 
MAPPING THEOREM 

BY 
LUDVIK JANOS 

ABSTRACT. Let X be a metrizable topological space and 
f:X->X a continuous selfmapping such that for every x G X the 
sequence of iterates {/"(*)} converges. It is proved that under 
these conditions the following two statements are equivalent: 

1. There is a metrization of X relative to which / is contractive 
in the sense of Edelstein. 

2. For any nonempty /-invariant compact subset Y of X the 
intersection of all iterates fn{ Y) is a one-point set. The relation 
between this type of contractivity and the Banach contraction 
principle is also discussed. 

1. Introduction. A mapping / from a metric space (X, d) into itself is said 
to be contractive (in sense of Edelstein) if x^y implies d(f(x),f(y))<d(x,y). The 
theorem of Edelstein [3] states that a contractive mapping f has a unique fixed 
point if for some xeXthe sequence {fn(x}} of iterates has a convergent subsequence. 
Recently Bryant and Guseman [1] partially answered the question posed by 
Nadler [7] to characterize those metric spaces for which a contractive selfmapping 
f, which has a fixed point, has the property that the sequence {fn(x)} converges 
for every xeX. We look at this problem from another angle, focusing our atten
tion rather on the mapping/itself than on the space (X, d). Our main objective 
is to give a purely topological formulation of the Edelstein theorem under the 
additional assumption that the sequence {fn(x)} converges for every x e X. It 
turns out that this is the case if and only if the function/shrinks nonempty com
pact subsets of X to a point. 

THEOREM 1.1. Let X be a metrizable topological space, f:X->X continuous and 
such that the sequence {fn(x}} converges for every xeX. Then the following two 
statements are equivalent: 

(i) There is a metric d on X compatible with the topology of X and such that fis 
contractive relative to d. 

(ii) For every nonempty compact f invariant subset Y of X the intersection of all 
iterates fn(Y) is a one point set. 

REMARK 1.1. It is seen that in our case the condition (ii) implies t h a t / h a s a 
unique fixed point a e X. Indeed, denoting by a the limit of {fn{x)} we infer, due 
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to continuity of / that / ( t f )=a. If there were two distinct fixed points a, b then the 
/-invariant compact set {a, b) would not shrink to a point as assumed in (ii). 

2. Proof of the theorem. 

(1) Proof of (i)=>(ii). If Y^Xis a nonempty compact subset such that/(10 e1 Y> 
our task is to show that A = f)^ fn(Y) is a one-point set. From compactness of 
Y it follows that A is nonempty, compact, and that / maps A onto itself. Let 
d[A] denotes the diameter of A relative to the metric d for which/is contractive. 
If A were not a singleton then d[A] would be > 0 which in turn would imply that 
the diameter d[f(A)] of f(A) is strictly less than d[A] which would contradict 
the fact tha t /maps A onto itself. 

(2) Proof of (ii)=>(i). 

LEMMA 2.1. Let (X, d) be a compact metric space and f:X-*X continuous and 
such that P| J° fn(X) be a one-point set. Then the function d* defined by 

d*(x,y) = supn>0d(fn(x),f"(y)) 

(where we put f°(x)=x and the supremum is taken over all non-negative integers) is 
a metric on X, is topologically equivalent to d and has the property that fis nonexpan-
sive relative to d*, i.e. d*(f(x),f(y))<d*(x, y)for all x9 y e X. 

Proof. For the proof see [4, Theorem 1, p. 287]. 

Now we show that this lemma applies also to our space X which need not be 
compact. We apply it so to speak locally, to/invariant compact subsets. Choosing 
a metric d on X compatible with the topology of X and defining the function 
d*(x9y)=supn>0 d(fn(x)9f

n(y)) as in Lemma 2.1 we have to show that d* is a 
metric on X and that d* and d are equivalent. From the fact that fn(x)-+a for all 
x eX it follows easily that if Z^X is an arbitrary nonempty compact subset of 
X then the set Z(f) defined by 

2(f) = {y | y = fn(z) for some zeZ and some n > 0} U {a} 

where a is the unique fixed point of/(see Remark 1.1) is compact and/invariant. 
This implies that d* is a well defined metric on X. To prove that d* is equivalent 
to d we first observe that d*>d, so all we need is to show that any sequence 
{xn} converging relative to d converges also relative to d*. Assume this is not so. 
Then there is some sequence {xn}->x converging to some xeXwhich is divergent 
relative to rf*. But choosing Z={xn\n>l} U {x} this would contradict the 
Lemma 2.1. applied to the compact space Z(f) defined above. 

Having proved the equivalence of d* to d with d* satisfying 

d*(f(x)9f(y))£d*(x,y) for all x9yGX 
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we proceed with construction of still another metric d** o n l relative to which 
/ i s contractive. We define 

d**(x,y) = f±d*(nx),r(y)) 
w=o 2 

and we see at once that d** is a metric equivalent to d* and hence to d since we 
have */*<rf**<2<i*. We verify also readily t h a t / i s nonexpansive also relative 
to rf**. To show t h a t / i s contractive relative to J** assume for some x^y that 
d**(f(x),f(y))=sd**(x,y). This would imply that rf*(/n(x),/n(j))=^*(/n+1(* 
/n + 1(y)) for all « > 0 which would contradict the fact that both sequences converge 
to the same point a e X. Thus / i s contractive relative to d** which completes the 
proof of our theorem. 

3. Relation to Banach contraction principle. Let (X, d) be a metric space and 
let/ :Z->Xbe a contraction in the sense of Banach, i.e. there is a constant c e (0, 1) 
such that for all x,yeX we have d{f{x),f{y))<lcd{x,y). If we assume t h a t / 
has a fixed point aeX (we do not assume completeness of (X, d)) then it follows 
that a is a unique fixed point and that the sequence {fn(x)} converges to a for 
all x. Thus this observation may raise a conjecture whether the contractivity of/ 
in sense of Edelstein together with the assumption that the sequence {fn(x)} 
converges for every x implies the contractivity in sense of Banach relative to a 
suitable equivalent remetrization of X. An example of the operator of integration 
T: C->C mapping the Frechét space C of all continuous real valued functions 
defined on the real line JR into itself disproves this conjecture (see [5]). There 
exists a metric on C relative to which T is contractive but there is not a metric 
on C relative to which T would be a contraction in the sense of Banach. However 
if one generalizes the idea of contraction using pseudo-metrics on X instead of 
metrics one arrives at a similar conjecture concerning a converse of the following 

THEOREM 3.1. Let X be a metrizable space and let {dn\n>\} be a countable 
family of pseudometrics on X generating the topology of X relative to which X is 
complete {see [2, p. 308]). Letf:X-+Xbe continuous and such that for some c e (0, 1) 
we have 

dn(f(x),f(y))^cdn(x,y) for all x9yeX 

and all n>l. Then there is a unique fixed point aeX of f towards which every 
sequence {fn(x)} converges and there is a metric on X inducing the topology of X 
relative to which fis contractive. 

Proof. The fact t h a t / h a s a unique fixed point and that {fn(x)} converges for 
every xeX follows from the generalized Banach contraction theorem (see [5, 
Proposition 1.1]) and it is easy to verify that the metric d defined by 

d(x,y) = l±- d»(x'y) 

T2"l+dn(x,y) 
has the required property. 
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REMARK. If we postulate the convergence of the sequence {/"(*)} for some 
x G l w e may drop the requirement of the completeness of X relative to the family 
{dn\n>\} from the hypotheses of the above theorem. 

This result can be quoted saying that the Banach contraction via pseudometrics 
implies Edelstein contractivity relative to a suitable metric. The conjecture is 
whether the converse is also true. 

The relevance of the Edelstein concept of contractivity and of the ideas developed 
in this note to the theory of differential and operator equations will be the topic 
of the forthcoming paper by W. Derrick and the author. 
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