ON THE LIMIT OF THE MODULUS OF A BOUNDED REGULAR FUNCTION

by N. A. BOWEN (Received 16th September 1963)

1. Introduction

M. L. Cartwright has given ((2), 180-181) the following theorem, together with a neat proof of it.

Theorem C. Supp	pose that f(z)	is regu	ılar and	
in the half-strip S		<i>f</i> (<i>z</i>) <	<1	
	$\alpha < x < \beta$,	y>1	(z = x + iy)	(2)

of the complex plane.

Suppose also that for some constant a in $\alpha < a < \beta$

$$|f(a+iy)| \rightarrow 1$$
(3)

uniformly as $y \rightarrow \infty$ for $\alpha + \delta \leq x \leq \beta - \delta$.

as $y \rightarrow \infty$. Then for every $\delta > 0$

The object of this note is to give a new proof of Theorem C, with reduced hypotheses. Observing the strong resemblance between Theorem C and Montel's limit theorem, a standard proof of which follows from Vitali's convergence theorem, one wonders whether a result of Vitali type but involving the moduli of a sequence of regular and bounded functions instead of the sequence of functions itself, exists, and, if so, whether Theorem C can be obtained from it. Theorems 1 and 2 below show that this is in fact the case.

2. Theorem 1

Let $f_n(z)$ be a sequence of functions regular and satisfying

 $|f_n(z)| < 1$ (n = 1, 2, 3, ...)(5)

for every z in the circle γ ,

| *z* | < 1.(6)

Let z_n be a sequence of points in (6) such that

and another that	$z_n \rightarrow 0 \text{ as } n \rightarrow \infty, \dots$	(7)
and suppose that	$ f_n(z_n) \to 1 \text{ as } n \to \infty.$	(8)
Inen for every $0>0$	$ f_n(z) \rightarrow 1$	(9)

uniformly in γ_{δ} ,

 $|z| \leq 1-\delta$

as $n \rightarrow \infty$.

Remarks on Theorem 1

(i) It is convenient in (7) to take 0 for the limit point of the z_n , but it will be seen that the method with slight elaboration applies if any limit point b satisfying |b| < 1 be given. Further, it is clear, by conformal transformation or otherwise, that the circle γ may be replaced by any simply connected bounded region, γ_{δ} being transformed into an interior region.

(ii) It is of course tempting to try to replace the upper bound 1 in (5) by M(>1) as in Vitali's Theorem. This however cannot be done, since it would imply by the method given in Section 4 below, that the upper bound 1 of |f(z)| in Theorem C above could likewise be replaced by M(>1). The function $\ddagger F(z) = e^{\sinh z}$ considered in the half strip -1 < x < 1, y > 1 shows that Theorem C thus modified is false; |F(z)|, though bounded, tends to unity as $y \to \infty$ along one line only, viz. x = 0.

3. Proof of Theorem 1

Applying Schwarz' Lemma \ddagger to the function $f_n(z) - f_n(0)$ in the circle γ (| z | < 1) and using (5), we get

$$|f_n(z) - f_n(0)| < 2\omega$$
 ($|z| \le \omega, 0 < \omega < 1$)(10)

and hence

$$|f_n(0)| > |f_n(z)| - 2\omega.$$

Thus, given $\varepsilon > 0$, we find that

$$|f_n(0)| > 1 - \varepsilon \quad (n > n_0(\varepsilon))....(11)$$

by setting $\omega = \frac{1}{3}\varepsilon$, $z = z_n$, and taking n_0 large enough to ensure that $|z_n| \leq \frac{1}{3}\varepsilon$ and $|f_n(z_n)| > 1 - \frac{1}{3}\varepsilon$, inequalities that follow from (7) and (8) respectively.

Again, for all *n* sufficiently large, $f_n(z)$ can have no zero in the circle $\gamma_{\pm \delta}$, viz. $|z| \le 1 - \frac{1}{2}\delta$, $(0 < \delta < 1)$. For if we suppose on the contrary that $f_n(z)$ has a zero at z = c, where $|c| \le 1 - \frac{1}{2}\delta$, then, applying the maximum modulus theorem to the function $f_n(z)(1 - \overline{c}z)/(z - c)$ which is regular in |z| < 1, we get, by (5),

$$\left|f_{n}(z)\right| \leq \left|\frac{z-c}{1-\bar{c}z}\right| \quad (|z|<1)$$

and hence

$$\left|f_{n}(0)\right| \leq \left|c\right| \leq 1 - \frac{1}{2}\delta,$$

which contradicts (11) if ε be chosen less than $\frac{1}{2}\delta$, that is, for all sufficiently large *n*. Thus, for all *n* sufficiently large, each $f_n(z)$ has no zeros in $\gamma_{\pm\delta}$.

† Given in (3), 401, where, incidentally, it is shown that M > 1 may be taken if the line x=a of Theorem C be replaced by *two* lines x=a, x=b and, in some cases, $f(z) \neq 0$ in the halfstrip is assumed.

‡.(4), 168.

THE MODULUS OF A BOUNDED REGULAR FUNCTION 23

We may therefore apply Carathéodory's inequality \dagger to $\log \phi(z)$ in $\gamma_{\frac{1}{2}\delta}$, where $\phi(z) = \{f_n(z)\}/\{f_n(0)\}$. This gives \ddagger

$$\log \{m(f_{n,r})/|f_n(0)|\} \ge -\frac{2r}{w'-r} \log \{M(f_{n,r})/|f_n(0)|\}, \quad (0 \le r < w' = 1 - \frac{1}{2}\delta).$$

Whence, over $0 \leq r \leq 1 - \delta$, using (5) and (11),

$$\log m(f_{n,r}) \ge -\frac{2r}{w'-r} \log M(f_{n,r}) + \left(\frac{w'+r}{w'-r}\right) \log |f_n(0)|$$
$$\ge -8\delta^{-1}\varepsilon \quad (0 < \varepsilon < \frac{1}{2}\delta, n > n_0(\varepsilon)),$$

and, remembering that $\delta(>0)$ is fixed, we have a fortiori

where $\varepsilon'(>0)$ is arbitrary, uniformly over the circle γ_{δ} ,

 $|z| \leq 1 - \delta. \tag{13}$

The inequalities (12) and (5) give the result (9) uniformly over the circle γ_{δ} defined by (13).

4. Theorem 2

The conclusion of Theorem C remains valid if the hypothesis (3) is replaced by

 $|f(x_n+iy_n)| \rightarrow 1 \text{ as } n \rightarrow \infty$(14)

where the points $z_n = x_n + iy_n$ include a sequence U having the following properties, $\alpha + \delta' \le x_n \le \beta - \delta', \quad (\delta' \ge \delta)$ (15)

the x_n have only one limit point x_0 say,

$$2 < y_n \uparrow \infty$$
,(16)

and

Proof of Theorem 2

Let $z_n \in U$. By (16) and (17)

$$0 < y_{n+1} - y_n < \frac{1}{2}\lambda, \quad (n > n_0)$$
(18)

where λ is a constant in (say) $2 < \lambda < \infty$.

For all such n consider the sequence

in the rectangle R:

$$\alpha < x < \beta, \quad 0 < y < \lambda.$$

Clearly

$$|f_n(z)| < 1$$

† (1), 3; (4) 174-5. ‡ $m(f_{n, r}), M(f_{n, r})$ denote respectively min $|f(z)|, \max |f(z)|$ on |z| = r. in \hat{R} , by (1), and

$$|f_n(x_n+i)| = |f(x_n+iy_n)| \rightarrow 1 \text{ as } n \rightarrow \infty.$$

Also, we have assumed that the x_n concerned have only one limit point x_0 say, which by (15) satisfies the inequality

$$\alpha + \delta \leq \alpha + \delta' \leq x_0 \leq \beta - \delta' \leq \beta - \delta.$$

It follows by Theorem 1, applied for a rectangular region (see remarks on Theorem 1 in Section 2), that the sequence $|f_n(z)|$ converges uniformly to 1 in the rectangle R_{δ} :

$$\alpha + \delta \leq x \leq \beta - \delta, \quad \delta \leq y \leq \lambda - \delta$$

and hence, by (18) and (19), remembering also that $\delta > 0$ is small, we have

$$|f(z)| \rightarrow 1$$

uniformly as $y \to \infty$ in $\alpha + \delta \leq x \leq \beta - \delta$.

REFERENCES

(1) R. P. BOAS, Entire Functions (New York, 1954).

(2) M. L. CARTWRIGHT, Journal London Math. Soc., 37 (1962), 179-184.

(3) HARDY, INGHAM and PÓLYA, Proc. London Math. Soc. (2), 27 (1928), 401-409.

(4) E. C. TITCHMARSH, Theory of Functions (Oxford, 1939).

THE UNIVERSITY LEICESTER

24