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ON THE LIMIT OF THE MODULUS OF A
BOUNDED REGULAR FUNCTION

by N. A. BOWEN
(Received 16th September 1963)

1. Introduction
M. L. Cartwright has given ((2), 180-181) the following theorem, together

with a neat proof of it.

Theorem C. Suppose that f(z) is regular and

l/(z)|<l • (1)
in the half-strip S

ot<x<p, y>l (z = x + iy) (2)

of the complex plane.
Suppose also that for some constant a in a<a<P

\f(a+iy)\^l (3)
as y-*ao. Then for every <5 > 0

\f(X + iy)\^l (4)
uniformly as y-*oa for a. + 5^x^p—d.

The object of this note is to give a new proof of Theorem C, with reduced
hypotheses. Observing the strong resemblance between Theorem C and
Montel's limit theorem, a standard proof of which follows from Vitali's
convergence theorem, one wonders whether a result of Vitali type but involving
the moduli of a sequence of regular and bounded functions instead of the
sequence of functions itself, exists, and, if so, whether Theorem C can be
obtained from it. Theorems 1 and 2 below show that this is in fact the case.

2. Theorem 1
Letfn(z) be a sequence of functions regular and satisfying

| /n(z) |<l (« = 1, 2, 3, ...) (5)

for every z in the circle y,
| z | < l (6)

Let zn be a sequence of points in (6) such that

zn-+0as n-»oo, (7)
and suppose that

|/n(zn)Hl as n^co (8)
Then for every <5>0

l / ( ) | -» l (9)
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uniformly in ys,
| * | g l -S

as M—>oo.

Remarks on Theorem 1
(i) It is convenient in (7) to take 0 for the limit point of the zn, but it will

be seen that the method with slight elaboration applies if any limit point b
satisfying | b | < 1 be given. Further, it is clear, by conformal transformation
or otherwise, that the circle y may be replaced by any simply connected bounded
region, y6 being transformed into an interior region.

(ii) It is of course tempting to try to replace the upper bound 1 in (5) by
M{> 1) as in Vitali's Theorem. This however cannot be done, since it would
imply by the method given in Section 4 below, that the upper bound 1 of
| /(z)| in Theorem C above could likewise be replaced by M(> 1). The function f
F(z) = e*inb z considered in the half strip — 1 < X < 1 , J > > 1 shows that Theorem
C thus modified is false; | F(z)\, though bounded, tends to unity as j->oo
along one line only, viz. x = 0.

3. Proof of Theorem 1
Applying Schwarz' Lemma $ to the function /n(z) —/n(0) in the circle y

(| z | < 1) and using (5), we get

\fn(z)-fn(0)\<2co (|z|ge»,0<e><l) (10)

and hence

Thus, given £>0, we find that

| / . ( 0 ) |> . l - e («>no(e))..: (11)

by setting a> = ^e, z = zn, and taking n0 large enough to .ensure that | zn l ^ e
and |/n(zn)| > 1 —Je, inequalities that follow from (7) and (8) respectively.

Again, for all n sufficiently large, /n(z) can have no zero in the circle yid,
viz. | z | ^ l — iS, (0<<5<l). For if we suppose on the contrary that /n(z)
has a zero at z = c, where | c \ ̂  1 -$8, then, applying the maximum modulus
theorem to the function /n(z)(l —cz)l(z — c) which is regular in | z | < 1, we. get,

1— cz
and hence

which contradicts (11) if e be chosen less than \5, that is, for all sufficiently
large n. Thus, for all n sufficiently large, each/n(z) has no zeros in yid.

t Given in (3), 401, where, incidentally, it is shown that M >1 may be taken if the line x = a
of TheoremC be replaced by two lines *=a, x = b and, in some cases, f(z)¥=0 in the half-
strip is assumed.

t.(4), 168.
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We may therefore apply Caratheodory's inequality! to log <j)(z) in yi},-
where 0(z) = {/B(z)}/{/„(<))}. This gives J

log {m(/n,r)/|/n(0)|}^ - £ - log

Whence, over Ogrg 1 — <5, using (5) and (11),

log m(/n, r) k - - ^ - log M(/n, r) + ( ^
w —r \w —r

^-85~le (0<E<i8,n>no(s)),

and, remembering that <5(>0) is fixed, we have a fortiori

log | / n (z ) |>-e ' (n>N0(e')), (12)

where e'(>0) is arbitrary, uniformly over the circle ys,

\z\^\-5 (13)

The inequalities (12) and (5) give the result (9) uniformly over the circle
yt defined by (13).

4. Theorem 2

The conclusion of Theorem C remains valid if the hypothesis (3) is replaced by

\f(xn+iyn)\-+\ as n-oo (14)

where the points zn = xn + iyn include a sequence U having the following properties,

a + 5'^xn^p-5', (8'^5) (15)

the xn have only one limit point x0 say,

2<yjoo, (16)
and

(17)

Proof of Theorem 2
Letz,e{7. By (16) and (17)

0<yn+i-yn<U, (n>no) (18)

where A is a constant in (say) 2</l<oo.
For all such n consider the sequence

Liz) =f{z+i(yn-l)} (19)
in the rectangle R:

cc<x<P, 0<y<L
Clearly

t (1), 3; (4) 174-5.
t m(fny r), Af(/nf r) denote respectively min | / (z) | , max | / (z ) | on | z | =r.
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in R, by (1), and
I/„(*„ +01 = l/(*n+'>,,)l-l asn-»co.

Also, we have assumed that the xn concerned have only one limit point x0

say, which by (15) satisfies the inequality

It follows by Theorem 1, applied for a rectangular region (see remarks on
Theorem 1 in Section 2), that the sequence |/n(z)| converges uniformly to 1
in the rectangle Rt:

and hence, by (18) and (19), remembering also that <5>0 is small, we have

uniformly as_y->oo in
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