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Abstract

An occupancy model that has arisen in the investigation of randomized distributed
schedules in all-optical networks is considered. The model consists of B initially empty
urns, and at stage j of the process dj ≤ B balls are placed in distinct urns with uniform
probability. Let Mi(j) denote the number of urns containing i balls at the end of stage j .
An explicit expression for the joint factorial moments of M0(j) and M1(j) is obtained.
A multivariate generating function for the joint factorial moments of Mi(j), 0 ≤ i ≤ I ,
is derived (where I is a positive integer). Finally, the case in which the dj , j ≥ 1, are
independent, identically distributed random variables is investigated.
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1. Introduction

In a recent paper, Morrison et al. [3] investigated randomized distributed (RAD) schedules
in all-optical networks. A schedule consists of B time slots of the same duration. Both source-
based (S-RAD) and destination-based (D-RAD) schedules were considered. In S-RAD, sources
acting independently of each other assign time slots for transmitting to destinations. In D-RAD,
destinations acting independently of each other assign time slots for receiving transmissions
from sources. In each case there is a possibility of conflict. In the case of S-RAD, transmissions
may arrive simultaneously at a destination from more than one source. In the case of D-RAD,
a source may be given times to transmit to more than one destination.

Mathematically, S-RAD and D-RAD may each be formulated as an occupancy model with
B urns. At stage j of the process, dj balls are placed in distinct urns with uniform probability. In
D-RAD, dj corresponds to the number of time slots assigned to a given source by destination j .
Let DN = ∑N

j=1 dj ≤ B, where N is the number of destinations, and let M0(N) denote the
number of empty urns. Then the number of conflicts is DN − B + M0(N), since the source
may transmit to one of the destinations in a time slot which has been assigned by more than one
destination. In S-RAD, dj corresponds to the number of time slots assigned by source j for
transmission to a given destination, and N corresponds to the number of sources. Let M1(N)

denote the number of urns containing just one ball at the end of stage N . Then the number of
conflicts is DN − M1(N), because of arrivals in a time slot at the destination from more than
one source.

Explicit expressions were derived in [3] for the first- and second-order moments of M0(N)

and M1(N). These were used to evaluate the mean and variance of the blocking probabilities.
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The second-order moments were derived from equations for the factorial and joint moments.
Higher-order moments of M0(N) and M1(N) provide further insight into the S-RAD and
D-RAD processes. Consequently, special consideration is given in this paper to these moments.
The approach adopted here facilitates the investigation of the more general problem discussed
below, and leads to the classical result [1] if dj = 1, j ≥ 1.

If dj = d, where j ≥ 1 and d is a positive integer, then the urn model corresponds to
allocation of particles by complexes [2, Chapter VI], and if d = 1 it corresponds to the classical
problem [1]. In this paper, we consider the more general case and investigate the joint factorial
moments of all orders of the occupancies Mi(j), the number of urns containing i balls at the
end of stage j , for 0 ≤ i ≤ I (where I is a positive integer). The urn problem is formulated
in Section 2. The joint factorial moments are investigated in Section 3, and a recursion on j is
derived. An explicit expression for the joint factorial moments of M0(j) and M1(j) is derived in
Section 4. It is shown that the recursion on j for a multivariate exponential generating function
for the joint factorial moments of Mi(j), 0 ≤ i ≤ I , for I ≥ 2 leads to partial derivatives
with respect to the variables. An explicit alternative generating function for the joint factorial
moments is derived in Section 5. The case in which the dj , j ≥ 1, are independent, identically
distributed random variables is investigated in Section 6.

2. Formulation

We consider an urn model [3] that consists of B urns which are initially empty. At stage j

of the process, dj ≤ B balls are placed in distinct urns with uniform probability. Let Mi(j)

denote the number of urns containing i balls at the end of stage j , and let

Pj (s0, s1, . . . , sI ) = Pr{Mi(j) = si, 0 ≤ i ≤ I }.

Then Mi(j) = 0 if i > j and

Pj (s0, s1, . . . , sI ) = 0 if
I∑

i=0

si > B. (1)

The binomial coefficient
(
n
m

)
is taken to be 0 when m > n or n < 0. Then Pj (s0, s1, . . . , sI )

satisfies the following recurrence.

Theorem 1. For the above urn model,

Pj (s0, s1, . . . , sI )

=
∑

∑I+1
i=0 ai=dj

(
s0 + a0

a0

) I∏
i=1

(
si + ai − ai−1

ai

)(
B − ∑I

i=0 si − aI

aI+1

)(
B

dj

)−1

× Pj−1(s0 + a0, s1 + a1 − a0, . . . , sI + aI − aI−1), j ≥ 1, (2)

where ai , 0 ≤ i ≤ I + 1, are nonnegative integers. In terms of the Kronecker delta, the initial
condition is

P0(s0, s1, . . . , sI ) = δs0,B

I∏
i=1

δsi ,0. (3)
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Proof. The proof of (2) follows from conditioning on how state (s0, s1, . . . , sI ) may be
reached at stage j from stage j − 1, and counting the number of ways this may occur. Thus,
state (s0, s1, . . . , sI ) is reached at stage j if a0 balls are placed in s0 + a0 empty urns, ai

balls are placed in si + ai − ai−1 urns containing i balls, 1 ≤ i ≤ I , and the remaining
aI+1 = dj − ∑I

i=0 ai balls are placed in B − ∑I
i=0 si − aI urns containing more than I balls

at stage j − 1. The number of ways that the dj balls may be placed in the B urns is given by
the binomial coefficient

(
B
dj

)
.

3. Joint factorial moments

The nth descending factorial of l is

l(n) = l!
(l − n)! . (4)

For mi ≥ 0, 0 ≤ i ≤ I , we define m = (m0, . . . , mI ) and the joint factorial moments

�j(m) = E

{ I∏
i=0

[Mi(j)](mi)

}

=
∞∑

s0=0

· · ·
∞∑

sI =0

I∏
i=0

s
(mi)
i Pj (s0, . . . , sI ). (5)

We assume that
∑I

i=0 mi ≤ B, since
∏I

i=0 s
(mi)
i = 0 unless mi ≤ si , 0 ≤ i ≤ I , and

Pj (s0, . . . , sI ) = 0 unless
∑B

i=0 si ≤ B, from (1). Also, �j(m) = 0 unless mi = 0 for
i > j , since Mi(j) = 0 if i > j .

Lemma 1. It follows from Theorem 1 and (5) that

(
B

dj

)
�j(m) =

∞∑
s0=0

· · ·
∞∑

sI =0

∑
∑I+1

i=0 ai=dj

(s0 − a0)
(m0)

I∏
i=1

(si + ai−1 − ai)
(mi)

×
I∏

i=0

(
si

ai

)(
B − ∑I

i=0 si

aI+1

)
Pj−1(s0, . . . , sI ), j ≥ 1, (6)

and

�0(m) = B(m0)
I∏

i=1

δmi,0. (7)

Proof. We make use of (2) in (5), and replace s0 + a0 by s0 and si + ai − ai−1 by si ,
1 ≤ i ≤ I . Since

(
si
ai

) = 0 if si < ai , the lower limits in the sums for the new si , 0 ≤ i ≤ I ,
may be taken to be 0. The initial condition (7) follows from (3) and (5).

The goal is to express the right-hand side of (6) in terms of �j−1(·). We will make use of
the following lemmas for this purpose.

Lemma 2. For 1 ≤ i ≤ I ,

(si + ai−1 − ai)
(mi) =

mi∑
ki=0

(
mi

ki

)
a

(ki )
i−1(si − ai)

(mi−ki ).
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Proof. The result follows directly from the identity

(c + γ )(m) =
[

dm

dxm
(1 + x)c+γ

]
x=0

=
[

dm

dxm
{(1 + x)c(1 + x)γ }

]
x=0

=
m∑

k=0

(
m

k

)
c(k)γ (m−k).

The following identities follow directly from (4).

Lemma 3. For s0 ≥ a0 + m0 and a0 ≥ k1,

a
(k1)
0 (s0 − a0)

(m0)

(
s0

a0

)
= s

(m0+k1)
0

(
s0 − m0 − k1

a0 − k1

)
;

for si ≥ ai + mi − ki and ai ≥ ki+1,

a
(ki+1)

i (si − ai)
(mi−ki )

(
si

ai

)
= s

(mi−ki+ki+1)

i

(
si − mi + ki − ki+1

ai − ki+1

)
, 1 ≤ i ≤ I − 1;

and, for sI ≥ aI + mI − kI ,

(sI − aI )
(mI −kI )

(
sI

aI

)
= s

(mI −kI )
I

(
sI − mI + kI

aI

)
.

With the help of Lemmas 2 and 3 we may evaluate the sum over the ai ,
∑I+1

i=0 ai = dj ,
in (6), as follows.

Lemma 4. Let

m =
I∑

i=0

mi, k =
I∑

i=1

ki . (8)

Then

∑
∑I+1

i=0 ai=dj

(
s0 − m0 − k1

a0 − k1

) I−1∏
i=1

(
si − mi + ki − ki+1

ai − ki+1

)(
sI − mI + kI

aI

)(
B − ∑I

i=0 si

aI+1

)

=
(

B − m

dj − k

)
. (9)

Proof. We rewrite the sum as

I−1∑
i=0

(ai − ki+1) + aI + aI+1 = dj − k,

and note that a
(ki+1)

i = 0 if ai < ki+1 and that ai ≥ ki+1, 0 ≤ i ≤ I − 1, ai ≥ 0, and aI+1 ≥ 0
imply that dj ≥ k. We also note that

B −m = (s0 −m0 − k1)+
I−1∑
i=1

(si −mi + ki − ki+1)+ (sI −mI + kI )+
(

B −
I∑

i=0

si

)
. (10)

The result in (9) follows by factoring (1 + x)B−m according to (10), expanding in powers of x,
and equating the coefficients of xdj −k .
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We note that the right-hand side of (9) does not depend on si , 0 ≤ i ≤ I . Hence, again
with the help of Lemmas 2 and 3, we may express the resulting sums over the si , 0 ≤ i ≤ I ,
in (6) in terms of �j−1(·). It is convenient to define vectors ei with 1s in the ith places and 0s
elsewhere, and write

m =
I∑

i=0

miei , (ei )n = δin.

We also make use of the identity

B(m)

(
B − m

dj − k

)
= d

(k)
j (B − dj )

(m−k)

(
B

dj

)
,

to obtain the following recurrence.

Theorem 2. For 0 ≤ m ≤ B, the joint factorial moments satisfy

B(m)�j

( I∑
i=0

miei

)
=

m1∑
k1=0

· · ·
mI∑

kI =0

I∏
i=1

(
mi

ki

)
d

(k)
j (B − dj )

(m−k)

× �j−1

(
m0e0 +

I∑
i=1

[(mi − ki)ei + kiei−1]
)

, j ≥ 1, (11)

where m and k are as given by (8).

Saniee (personal communication (2004)) has derived (11) in the case mi = δiI , by means
of indicator functions which denote whether or not urns contain i balls at the end of stage j .
Presumably this approach may be extended to obtain the general result in (11).

4. Exponential generating functions

Because of its relevance to all-optical networks, we first consider

�j(m − n, n) = E{[M0(j)](m−n)[M1(j)](n)}, 0 ≤ n ≤ m. (12)

From (11), for 0 ≤ m ≤ B we obtain

B(m)�j (m − n, n) =
n∑

k=0

(
n

k

)
d

(k)
j (B − dj )

(m−k)�j−1(m − n + k, n − k), j ≥ 1. (13)

We now extend the range of n in (13) to ∞, and introduce the exponential generating function

gj (m, x) =
∞∑

n=0

�j(m − n, n)
xn

n! . (14)

We then obtain the following explicit result.

Theorem 3. For 0 ≤ m ≤ B,

gj (m, x) = B(m)

j∏
l=1

1

B(m)

∞∑
k=0

d
(k)
l (B − dl)

(m−k) x
k

k! , j ≥ 1. (15)
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Proof. It follows from (13) and (14) that

B(m)gj (m, x) =
∞∑

k=0

d
(k)
j (B − dj )

(m−k) x
k

k!
∞∑

n=k

�j−1(m − n + k, n − k)
xn−k

(n − k)!

=
∞∑

k=0

d
(k)
j (B − dj )

(m−k) x
k

k! gj−1(m, x), j ≥ 1.

However, from (7) and (14) we have g0(m, x) = B(m), and (15) follows.

As expected, the order of the stages l, 1 ≤ l ≤ j , in (15) is irrelevant. We note that the sum
in (15) is finite, since d

(k)
l = 0 if k > dl . From (12) and (14), E{[M0(j)](m−n)[M1(j)](n)} is

the coefficient of xn/n! in gj (m, x). In particular, from (15),

E{[M0(j)](m)} = B(m)

j∏
l=1

(B − dl)
(m)

B(m)
, 0 ≤ m ≤ B, (16)

and

E{[M0(j)](m−1)M1(j)} =
j∑

i=1

di(B − di)
(m−1)

j∏
l=1
l �=i

(B − dl)
(m)

B(m)
, 1 ≤ m ≤ B, (17)

where an empty product is taken to be equal to 1. The results for m = 1 and m = 2 were
derived in [3], and an alternative derivation, using indicator functions, has been obtained by
Saniee (personal communication (2004)), without the use of recursions on j . Also,

E{[M0(j)](m−2)[M1(j)](2)}

= 2

B(m)

j∑
n=1

n−1∑
i=1

di(B − di)
(m−1)dn(B − dn)

(m−1)

j∏
l=1
l �=i
l �=n

(B − dl)
(m)

B(m)

+
j∑

i=1

d
(2)
i (B − di)

(m−2)

j∏
l=1
l �=i

(B − dl)
(m)

B(m)
, 2 ≤ m ≤ B,

where an empty sum is taken to be equal to 0. The result for m = 2 was derived in [3].
Generally,

E{[M0(j)](m−n)[M1(j)](n)} = n! B(m)
∑

∑j
l=1 nl=n

j∏
l=1

d
(nl)
l (B − dl)

(m−nl)

B(m)nl ! ,

0 ≤ n ≤ m ≤ B. (18)

For I ≥ 2, we extend the range of mi , 1 ≤ i ≤ I , in (11) to ∞, and introduce the multivariate
exponential generating function

gj (m; x) =
∞∑

m1=0

· · ·
∞∑

mI =0

�j

(
me0 +

I∑
i=1

mi(ei − e0)

) I∏
i=1

x
mi

i

mi ! , (19)

where x = (x1, . . . , xI ). We then obtain the following result.
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Theorem 4. For 0 ≤ m ≤ B, let

D(k; x) =
∑

∑I
i=1 ki=k

I∏
i=1

x
ki

i

ki !
∂k2+···+kI

∂x
k2
1 · · · ∂x

kI

I−1

(20)

and

�j(m; x) = 1

B(m)

∞∑
k=0

d
(k)
j (B − dj )

(m−k)D(k; x). (21)

Then
gj (m; x) = �j(m; x)[gj−1(m; x)], j ≥ 1, (22)

and
g0(m; x) = B(m). (23)

Proof. From (11) and (19), if we reverse the order of summation over mi and ki , and set
ni = mi − ki , 1 ≤ i ≤ I , then we obtain

B(m)gj (m; x) =
∞∑

k1=0

· · ·
∞∑

kI =0

d
(k)
j (B − dj )

(m−k)
I∏

i=1

xki

ki ! hj−1(m; x, k) ,

where k = (k1, . . . , kI ), k = ∑I
i=1 ki , and

hj−1(m; x; k) =
∞∑

n1=0

· · ·
∞∑

nI =0

�j−1

(
me0 +

I∑
i=1

ni(ei − e0) +
I∑

i=2

ki(ei−1 − e0)

) I∏
i=1

x
ni

i

ni ! .

However, from (19), we find that

∂k2+···+kI

∂x
k2
1 · · · ∂x

kI

I−1

gj−1(m; x)

=
∞∑

m1=k2

· · ·
∞∑

mI−1=kI

∞∑
mI =0

�j−1

(
me0 +

I∑
i=1

mi(ei − e0)

) I−1∏
i=1

x
mi−ki+1
i

(mi − ki+1)!
x

mI

I

mI ! . (24)

If we let ni = mi − ki+1, 1 ≤ i ≤ I − 1, and nI = mI , then we find that the right-hand side
of (24) is equal to hj−1(m; x; k), and (22) follows. The initial condition (23) follows from (7)
and (19).

We note that the sum in (21) is finite, since d
(k)
j = 0 if k > dj . The order of the stages l,

1 ≤ l ≤ j , should be irrelevant, and we establish this with the help of the following result,
proved in Appendix A.

Theorem 5. The partial differential operator D(k; x) defined by (20) is commutative and,
hence, from (21),

�j(m; x)�l(m; x) = �l(m; x)�j (m; x). (25)

We obtain the following result from (22) and (23).
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Corollary 1. The exponential generating function is given by

gj (m; x) = B(m)

j∏
l=1

�l(m; x)[1].

In particular,

g1(m; x) =
∞∑

k=0

d
(k)
1 (B − d1)

(m−k) x
k
1

k!
and

g2(m; x) = 1

B(m)

∞∑
n=0

∞∑
k=0

d
(n)
2 (B − d2)

(m−n)d
(k)
1 (B − d1)

(m−k)

×
min(k,n)∑

n2=0

x
k+n−2n2
1 x

n2
2

(k − n2)! (n − n2)! n2! .

If dj = 1, j ≥ 1, then, from (20)–(22),

Bgj (m; x) =
(

B − m + x1 +
I∑

i=2

xi

∂

∂xi−1

)
gj−1(m; x), j ≥ 1. (26)

We introduce the generating function

G(m; x; z) =
∞∑

j=0

(Bz)j

j ! gj (m; x).

From (23) and (26), we have

∂G

∂z
= (B − m + x1)G +

I∑
i=2

xi

∂G

∂xi−1
, G(m; x; 0) = B(m).

The solution to this may be obtained by the method of characteristics, and it is readily verified
that

G(m; x; z) = B(m)e(B−m)z exp

( I∑
i=1

xiz
i

i!
)

.

Hence, with M = ∑I
i=1 imi ,

gj (m; x) = j ! B(m)
∞∑

m1=0

· · ·
∞∑

mI =0

(1 − m/B)j−M

BM(j − M)!
I∏

i=1

x
mi

i

(i!)mi mi ! .

From (5) and (19) we obtain the classical result [1]

E

{ I∏
i=0

[Mi(j)](mi)

}
= j ! B(m)(1 − m/B)j−M

BM(j − M)! ∏I
i=1(i!)mi

, m =
I∑

i=0

mi. (27)

We adopt a different approach in the next section.
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5. Alternative generating function

To analyze the joint factorial moments in general, we first state an equivalent form of
Theorem 2.

Theorem 6. For 0 ≤ m ≤ B and positive integers lp,

B(m)�j

( m∑
p=1

elp

)
= (B − dj )

(m)�j−1

( m∑
p=1

elp

)

+ dj (B − dj )
(m−1)

m∑
p=1

1{lp>0}�j−1

(
elp−1 +

m∑
q=1
q �=p

elq

)

+
m−1∑
k=2

d
(k)
j (B − dj )

(m−k)
∑

p(1)<···<p(k)

1{lp(n)>0 : 1≤n≤k}

× �j−1

( k∑
n=1

elp(n)−1 +
m∑

n=k+1

elp(n)

)

+ d
(m)
j 1{lp>0 : 1≤p≤m}�j−1

( n∑
p=1

elp−1

)
, j ≥ 1, (28)

where 1 ≤ p(n) ≤ m for 1 ≤ n ≤ k and 1{·} denotes the indicator function.

Proof. Let
I∑

i=0

miei =
m∑

p=1

elp , (29)

so that lp = i for mi values of p, 0 ≤ i ≤ I . The number of terms in (28) corresponding to
k = ∑I

i=1 ki is (
m − m0

k

)
=

∑
∑I

i=1 ki=k

I∏
i=1

(
mi

ki

)
.

However, for each set (k1, . . . , kI ),
∏I

i=1

(
mi

ki

)
counts the number of arguments of �j−1 in (28)

which are equal to m0e0 + ∑I
i=1[(mi − ki)ei + kiei−1]. The theorem then follows from (11).

We again let x = (x1, . . . , xm), and define the symmetric functions

S0(x) = 1, S1(x) =
m∑

p=1

xp, Sk(x) =
∑

p(1)<···<p(k)

k∏
n=1

xp(n), 2 ≤ k ≤ m. (30)

In particular,

Sm(x) =
m∏

p=1

xp.
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We also define the multivariate generating function

fj (m; x) =
∞∑

l1=0

· · ·
∞∑

lm=0

�j

( m∑
p=1

elp

) m∏
p=1

(xp)lp . (31)

We then obtain the following explicit result.

Theorem 7. For j ≥ 1,

fj (m; x) = B(m)

j∏
l=1

1

B(m)

m∑
k=0

d
(k)
l (B − dl)

(m−k)Sk(x). (32)

Proof. It follows from (28), (30), and (31) that

B(m)fj (m; x) =
m∑

k=0

d
(k)
j (B − dj )

(m−k)Sk(x)fj−1(m; x).

However, from (7) and (31),
f0(m; x) = B(m),

and (32) follows.

Corresponding to (29), we take

lp = i,

i−1∑
r=0

mr + 1 ≤ p ≤
i∑

r=0

mr, 0 ≤ i ≤ I,

where empty sums are equal to 0. Then, from (5) and (31), E{∏I
i=0[Mi(j)](mi)} is the coefficient

of
I∏

i=0

( ∑i
r=0 mr∏

p=∑i−1
r=0 mr+1

xp

)i

in fj (m; x), where empty products are equal to 1. In particular, E{[Mi(j)](m)} is the coefficient
of (

∏m
p=1 xp)i in fj (m; x). If dj = 1, j ≥ 1, then, from (30) and (32),

fj (m; x) = B(m)

[(
1 − m

B

)
+ 1

B

m∑
p=1

xp

]j

= B(m)

j∑
k=0

j !
(j − k)!

(
1 − m

B

)j−k 1

Bk

∑
∑m

p=1 np=k

m∏
p=1

x
np
p

np! ,

which again leads to (27) (the classical result).
Generally, for 0 ≤ n ≤ m, E{[M0(j)](m−n)[M1(j)](n)} is the coefficient of

∏m
p=m−n+1 xp

in fj (m; x) and, hence, because of the symmetry in x, it is also the coefficient of
∏n

p=1 xp.
Thus,

E{[M0(j)](m−n)[M1(j)](n)} = ∂nfj (m; x)

∂x1 · · · ∂xn

∣∣∣∣
x=0

. (33)
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However, from (30) we obtain

Sk(0) = δk0,
∂Sk(x)

∂xq

∣∣∣∣
x=0

= δk1, (34)

and
∂rSk(x)

∂xq(1) · · · ∂xq(r)

∣∣∣∣
x=0

= δkr , q(1) < · · · < q(r), 2 ≤ r ≤ m. (35)

The result in (18) follows from (32) and (33)–(35).
We now consider the first- and second-order factorial moments of Mi(j). First, from (30)

and (32),
j∑

i=0

E{Mi(j)}xi = fj (1; x) = B

j∏
l=1

(
1 − dl

B
+ dl

B
x

)
.

It follows that

E{M0(j)} = B

j∏
l=1

(
1 − dl

B

)
, E{M1(j)} =

j∑
n=1

dn

∏
l=1
l �=n

(
1 − dl

B

)
, (36)

corresponding to m = 1 in (16) and (17), and

E{Mi(j)} = B
∑

l(1)<···<l(i)

i∏
r=1

dl(r)

B

j∏
l=1

l �=l(r), 1≤r≤i

(
1 − dl

B

)
, 2 ≤ i ≤ j. (37)

Saniee (personal communication (2004)) derived the results in (36) and (37) directly by means
of indicator functions.

Next, E{Mk(j)[Mi(j) − δik]} is the coefficient of xiyk in

fj (2; (x, y)) = B(B − 1)

j∏
l=1

{(
1− dl

B

)[
1− dl

(B − 1)
+ dl

(B − 1)
(x + y)

]
+ dl(dl − 1)

B(B − 1)
xy

}

=
j∑

r+s=0

Ar,s(xy)r (x + y)s

=
j∑

r+s=0

Ar,s(xy)r
s∑

p=0

(
s

p

)
xpys−p,

where the coefficients Ar,s may be written down explicitly. Hence,

E{Mk(j)[Mi(j) − δik]} =
min(i,j−k)∑

p=i−k

(
2p + k − i

p

)
Ai−p,2p+k−i , 0 ≤ k ≤ i ≤ j.
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6. Random number of balls

So far we have assumed that at stage j of the process a prescribed number, dj ≤ B, of balls
are placed in distinct urns. We now consider the case when the dj , j ≥ 1, are independent
random variables with common distribution

Pr{dj = r} = P(r),

B∑
r=1

P(r) = 1.

Now,

E

{ I∏
i=0

[Mi(j)](mi)

}
=

B∑
d1=1

· · ·
B∑

dj =1

E

{ I∏
i=0

[Mi(j)](mi)

∣∣∣∣ dl, 1 ≤ l ≤ j

} j∏
l=1

P(dl).

The corresponding generating function is, for j ≥ 1,

Fj (m; x) =
B∑

d1=1

· · ·
B∑

dj =1

fj (m; x)

j∏
l=1

P(dl)

= B(m)

{
1

B(m)

m∑
k=0

E{d(k)
l (B − dl)

(m−k)}Sk(x)

}j

, (38)

from (32).
Analogously, from (15), for 0 ≤ n ≤ m and j ≥ 1, E{[M0(j)](m−n)[M1(j)](n)} is the

coefficient of xn/n! in

Gj(m, x) =
B∑

d1=1

· · ·
B∑

dj =1

gj (m, x)

j∏
l=1

P(dl)

= B(m)

{
1

B(m)

∞∑
k=0

E{d(k)
l (B − dl)

(m−k)}x
k

k!
}j

. (39)

We let

ckm = 1

B(m)
E{d(k)

l (B − dl)
(m−k)} = 1

B(m)

B∑
r=1

[r(k)(B − r)(m−k)]P(r).

Then, from (38) and (39),

Fj (m; x) = B(m)

[ m∑
k=0

ckmSk(x)

]j

, Gj (m, x) = B(m)

( ∞∑
k=0

ckm

xk

k!
)j

.

In the nonrandom case, corresponding to P(r) = δrd ,

dj = d, j ≥ 1, ckm = d(k) (B − d)(m−k)

B(m)
. (40)
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As a simple example,

Fj (1; x) = B(c01 + c11x)j = B

j∑
i=0

(
j

i

)
(c01)

j−i (c11x)i .

Hence,

E{Mi(j)} = B

(
j

i

)
(c01)

j−i (c11)
i , 0 ≤ i ≤ j. (41)

If dj = d, j ≥ 1, then, from (40), c01 = 1 − d/B and c11 = d/B, and (41) agrees with the
result of [2, Chapter VI].

Next,
Fj (2; (x, y)) = B(B − 1)[c02 + c12(x + y) + c22xy]j .

The coefficient of yl in Fj (2; (x, y)) is

B(B − 1)

(
j

l

)
(c12 + c22x)l(c02 + c12x)j−l

= B(B − 1)j !
l∑

n=0

(c22x)n(c12)
l−n

n! (l − n)!
j−l∑
q=0

(c12x)q(c02)
j−l−q

q! (j − l − q)! .

Hence, for 0 ≤ l ≤ i ≤ j , the coefficient of xiyl in Fj (2; (x, y)) is

E{Ml(j)[Mi(j) − δil]} = B(B − 1)j !
l∑

n=0

(c22)
n(c12)

l+i−2n(c02)
j−l−i+n

n! (l − n)! (i − n)! (j − l − i + n)! .

If dj = d, j ≥ 1, then, from (40),

c02 = (B − d)(B − d − 1)

B(B − 1)
, c12 = d(B − d)

B(B − 1)
, c22 = d(d − 1)

B(B − 1)
,

and, for 0 ≤ l ≤ i ≤ j ,

E{Ml(j)[Mi(j) − δil]}

= j ! di

[B(B − 1)]j−1

l∑
n=0

(d − 1)ndl−n(B − d)j−n(B − d − 1)j−l−i+n

n! (l − n)! (i − n)! (j − l − i + n)! .

Appendix A.

Here we prove Theorem 5. From (20), we obtain

D(k; x)D(n; x) =
∑

∑I
i=1 ki=k

∑
∑I

i=1 ni=n

θ(k, n; x), (42)

where

θ(k, n; x) =
k2∑

r2=0

· · ·
kI∑

rI =0

I−1∏
i=1

x
ki+ni−ri+1
i

ri+1!
x

kI +nI

I

φ

I∏
i=2

∂ki+ni−ri

∂x
ki+ni−ri
i−1

(43)
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and

φ = k1!
I−1∏
i=1

(ki+1 − ri+1)! (ni − ri+1)! nI !

=
(

k −
I∑

i=2

ki

)
!

I∏
i=2

(ki − ri)!
(

n −
I∑

i=2

ni − r2

)
!
I−1∏
i=2

(ni − ri+1)! nI !,

where an empty product is equal to 1. We let ki + ni = si and consider prescribed values of k,
n, and ri and si , 2 ≤ i ≤ I . Then

φ =
(

k −
I∑

i=2

ki

)
!

I∏
i=2

(ki − ri)!
[
n +

I∑
i=2

(ki − si) − r2

]
!

×
I−1∏
i=2

(si − ri+1 − ki)! (sI − kI )!, (44)

so 1/φ vanishes unless ri ≤ si − ri+1, 2 ≤ i ≤ I − 1, and rI ≤ sI .
We first let I = 2. If we replace k2 by s2 + r2 − k2 in the expression

s2∑
k2=r2

1

φ
=

s2∑
k2=r2

[(k − k2)! (k2 − r2)! (n + k2 − s2 − r2)! (s2 − k2)!]−1,

we find that it is symmetric in k and n. For I ≥ 3, if we replace ki by si + ri − ri+1 − ki ,
2 ≤ i ≤ I − 1, and kI by si + rI − kI in the expression

s2−r3∑
k2=r2

· · ·
sI−1−rI∑

kI−1=rI−1

sI∑
kI =rI

1

φ
,

where φ is given by (44), we find that it is symmetric in k and n. It follows from (42) and (43),
by summing over ki + ni = si , 2 ≤ i ≤ I , and noting that k1 + n1 = k + n − ∑I

i=2 si , that

D(k; x)D(n; x) = D(n; x)D(k; x). (45)

However, from (21),

�j(m; x)�l(m; x) = 1

[B(m)]2

∞∑
k=0

∞∑
n=0

d
(k)
j (B − dj )

(m−k)d
(n)
l (B − dl)

(m−n)D(k; x)D(n; x).

If we interchange k and n and use (45), we obtain (25).
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