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Abstract. It is proved that a homeomorphism h, which conjugates a smooth unimodal
map of the interval with negative Schwarzian derivative and positive Lyapunov
exponent along the forward trajectory of the critical value with a tent map, and its
inverse h~l are Holder continuous.

0. Introduction
We shall deal with a nondegenerate S-unimodal map / of the closed interval (0,1)
into itself, more exactly we assume that:
( a ) / eC 3 , / ( 0 )= / ( l ) = 0.
(b) There is a unique ce (0,1) such that/ is strictly increasing on (0, c) and strictly

decreasing on (c, 1) and f'(c) T4 0.
(c) 5/<0 on <0, l)\{c} where Sf=f'//'-f(/'//')2.

We use the following notation: / ' = / and f"+1=f"°f; xn =/"(*); Df" =
(d/dx)(f). We assume additionally
(d) There are no sinks i.e. for every p with pn =p, \Df"{p)\> 1.

Let (x,y) denote the open interval with end points x and y (for x < y as well as
y<x). \A\ will denote the Lebesgue measure of the set Ac(0,1).

Definition 1. We say that (c,a)e*(n) if an = c and D/"|(c>a)#0. Let (c,/3) be a
maximal interval with (c, a) <= (c, /?) and Df" \(cJ}) ^ 0. We call /? associated with a.

In the sequel we make the following

General assumption. There exist K > 0 and A > 1 such that for every n if (c, a) e * (n)
and )8 is associated with a then

>K** and
|
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380 T. Nowicki and F. Przytycki

This assumption is satisfied for example by mappings studied in [CE1, CE2, M, C].
From [N2, N3] it follows that (G.A.) holds if Collet-Eckmann's condition

liminf-loglDf (Ci)|>0
H-.00 n

is satisfied.

Definition 2. Let g:<0, l)-*<0,1) and g(x) = P/2-p\x-\\. We call such a map a
/3-tent map and denote it by gp.

It is known ([G] Theorem 4.5, [CE]) that if a m a p / satisfies (a)-(d) and has no
restrictive central point for n> 1 (the definition will be recalled in § 1) then there
exists p € (V2, 2) such that/|(C2C|) is topologically equivalent to gp|(g

2(|),g(|)), i.e. there
exists a homeomorphism h = hf such that h ° f = gp ° h.

The main result of this paper is the following.

THEOREM. Suppose thatf satisfies (a)-(d) and (G.A.) andf has no restrictive central
point for n > 1. Let h = hf be the homeomorphism conjugating f with a /3-tent map.
Then h and h~l are Holder continuous.

The nontrivial part of this Theorem relies on the following.

MAIN LEMMA. For fas in Theorem there exists a constant K>0 such that for every
interval J<= (0,1) there exists m<K- log (1/|/|) +1 which satisfies

/m(/)3(c2,c,).

The number 1 is added to K • log l/\j\ above to avoid nonsense for J long (of
order 1). In the sequel we shall understand that | j | in that kind of estimates is small.

1. Preliminaries
We quote some useful properties of maps satisfying (a)-(d) and (G.A.).

PI. ([N2, Lemma 7].) If D/" | ( a b )#0 then for every t,xs(a, b)

\xn-
\x
xn-tn\ . (xn-an\ \xn-bn\\i |->minl -j r,-j -pi .
\x-t\ \ \x-a\ \x-b\ I

In particular if t = x

\n-an\ \xn-bn\ D f { x ) ^ m

Definition 3. For x e (0,1) define x by: c = c and if x * c then x * x and f(x) =f{x).

LEMMA 1. If (c, a)e* (n) with associated fi, then (c,d)e*(n) and /3 is associated
with a.

Proof. We have f"(a) =/"(a) = c so it is enough to prove that Df(x) = 0 if and
only if Df"(x) = 0.

Df"(x) = nV(x.) = "Uf(xs) -fix).
s=0 s = l
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As f(x)=f(x) for 5>1 we see that all factors but the last are equal in Df(x)
and Df"(x). But f'(x) = 0 or f(x) = 0 implies x - c = x.

P2. ([CE1, Lemma 2.2].) There are two positive numbers m, M such that m|x-c |<
| / ' (x) |<M|x-c | (which follows from (a) and (b)).

P3. ([Nl, Lemma 3.4].) If x#c , then \x-c\/\x-c\<VM/y/m.

From (G.A.) it follows immediately

LEMMA 2. There exists Xt > 1 arbitrarily close to A (from (G.A.)) and an integer N
such that for every n> N and every (a, c) € *(n) we have

A recollection promised in the introduction.

Definition 4. ([G, CE].) We call p a central point of/" if />„=/> and £>/" | (p_c) >0.
We say that /? is restrictive if/"((c,/>))<= (/>, p).

P4. ([Nl, Proposition 4.2].) / has only a finite number of iterates with a restrictive
central point.

P5. ([N2, Lemma 10].) Suppose that for some n> 1, *(n) is nonempty. Then
(a') / " has a central point p.
(b') (a, a) <= (p, p) c (/3, y3); where (a, c) e *(/i) and )3 is associated with a.

At the end of the next section we shall use the following facts:

LEMMA 3. Suppose (a, c)e* (n), /2 is associated with a and p is a central point off.
Ifp is not restrictive then there is a positive integer s such thatfs((a, c)) fl {/3, /3} ^ 0 .

Proof. Without loss of generality we may assume that Df"\(^c) > 0. We have (p,p)CL

f2"(a, c) as p is not restrictive . We have (p, c)<= (/3, c) and if/2"(a, c)£fi, c2n e
(13,p). Let xe(f},p) then by PI and by the facts that graph (/"|[Ac]) intersects the
diagonal only at the point p and that Df"(p)> 1 (both implied by (d) § 0) we have

\x-p\

Hence as long as c(s_i)n € (/3, p) we have
C - P l ' l ^ - P | / " P ( M ) L

which proves the Lemma.

COROLLARY 1. Suppose that f has no restrictive central point for n>\. Then there
exists m = m(N) such that if (a, c)e*(«) for n^N thenfm((a, c)) = (c2, c,).

Proof. For fi associated with a we have (c, /3)e*(nt) for some n^<n. Find ^3,
associated with /3, then /32 associated with )3, etc. The sets fk(a, c) with growing k
swallow successively £, /?,, y32 This procedure will be described in more detail
in the next section.
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Let us end this section with

P6. ([N3, Corollary 21].) There exists A2> 1 such that the length of each interval
of monotonicity off is smaller than A "̂-

This is a deep fact which follows from (a)-(d) and (G.A.), see § 4 for further
discussion.

2. Estimates
LEMMA 4. Suppose I = (z, y) be an interval such that for some (a, c)e*(n) with n> N
we have (a, c) c / c (y3, /?), where fl is associated to a. Then.
(a") |/"(/)|/ |/ |>A?.and
(b") either (a, c) <=/"(/) or (a, c) <=/"(/).

Proof. Suppose first that Df\Uy) ^ 0. So we assume / = (c, y) and a el. We estimate
|/"(c, a)|/|(c, a)\ with Lemma 2, and \f"(a, y)\/\(a, y)\ with PI, where we put a = c,
b = )8; z = a; f = j>, and Lemma 2. We obtain

If c e (z, ̂ ), we call (v, c) that one of two intervals (z, c) and (c, >») for which the
length of the image under / " is bigger, say v = y. We have by P3.

and

Now we use the estimates in the case Df"\(cv)^0 and obtain

c)|. \f(v,c)\ .
ID, cl

(b) Follows from the lack of sinks (d). •

LEMMA 5. There exists a constant Kx>0 such that for every n if (a, c)e*(n) then
\{a,c)\>Kxk"xL-2n where L = supxe<0,1> \f{x)\.

Proof. It is enough to prove the Lemma for n > N. By lemma 2 and PI we have

J a

We compute (/")":

(/")"(*) = (D/"(x))'=( "ff/(*,))' = "l "flf'M -fix,) • Df(x).

Thus

sup |
xe<0,l)

'^K-'L2" for some X>0.
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Therefore

which proves the assertion. •

Remark. In fact we need not use (G.A.). We could replace a by a periodic point
q € (a, a), q = qn, and use the assumption that it is a source. Then we would lose
A" in the estimate. Cf, [Nl, proposition 6.1].

PROPOSITION 1. There exists KX > 1 with the property that for every n >: 1 there exists
m = m(n)< K,M such that if (a, c)e *(«), then

for some (a1, c) e *(N'), N'< N (N from Lemma 2 and Corollary 1 § 1.) With large
N, Kj can be taken arbitrarily close to (2 log L/log A) - 1 .

Proof. Obviously for n < N we can set m = 0, so we assume n = no> N.
Let / = (a, c)e * (n). We take the image under/" of / , / " ( / ) , / " ( / ) , . . . , as long

as fkn(I) <= (/3, ji), $ associated with a. Let s0 be such that /(l°~"1)n( J) <= (/?, /?) and
/"s°(/)\(/8, /3)?*0. By lemma 4 such s0 exists. Now we find an interval (c, a ' ) e* (nj)
for some nt<n, such that (c, a1)c/nso(/)c: (/?',^g1), where /81 is associated with
a1. Such a1 exists as at least one of two intervals (c, /?) or (c, 0) is contained in
PHI)- We also use the fact that D/"(j3) = 0 as n >2.

We repeat the whole operation and find sl t a
2, n2, {I2, s2, • • •, until for some j we

have Mj < N. Such _/ exists as the sequence nt is strictly decreasing. We have
(aJ,c)e*(nj), and hence by Lemma 5 \{a}, c)\> K^Xn

x'L~2n'> Kx\^ L'2N. On the
other hand if we set m =2J

0~' H,S, we have by the construction (a1, c ) c / m ( / ) , and
to finish the proof we have to estimate m. We set /0 = /, /j+i =/"'Sl/, and have

\ri\Jn1 inuAJrl V l/"(/"'r/-)l
Irl H Irl 11 11 i r y r i

By construction for all i = 0 , . . . ,j -1 and r = 0 , . . . , s,, — l/"'r(/j) satisfies the assump-
tions of Lemma 4.

Thus
I/•"•/I ; - i s / - '

i r ^ n n A =̂Af̂ =Ar.
\1\ (=0 r=0

We use again Lemma 5 and find that

|/| = |(o, c)\ > K^L-2", as (a, c) € * (n).

Hence

i>\fm(i)\> \T\i\> K^T^IL-2"

and

In log L-n log Aj-log Kx
m< •

logA,
which ends the proof. D
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PROPOSITION 2. There exists K2 such that for every interval Jc(0,1) there is m =
m(J, N) < K2log (1/|/|) which satisfies

for some (a',c)e* (N1), N's N.
With large N, K2 can be arbitrarily close to

21ogL-logA
log A log A2

(\2from P6, § 1).

Proof. By P6 for s = [log (2/|j|)/log A2] +1 there exists an interval of monotonicity
of/s contained in /, say (a, /3), with afc = /3, = c and k<l<s. We have (c, jSfc) =
fk(a,fi)<^fk{J) and (c, /3fc)e* (l-k). By Proposition 1 there is m, such that
fn'(fk(J))=>(a',c)e*(N) and m, <«, ( / - i t ) . Thus we can take

m(J, N) = k + ml<Kll< K,S < K2 log (1/|J|). D

Proof of the Main Lemma. In view of Proposition 2 and Corollary 1, § 1 it is sufficient
to take

m = m(J,N) + m(N)<K2log(l/\j\) + m(N).

Additionally we conclude that if the J's under consideration are sufficiently small,
K can be taken arbitrarily close to K2 i.e.

21ogI-logA
log A log A2

3. On the conjugacy
We shall prove in this section the theorem stated in the introduction. We note that
the assumption / " has no restrictive central point for n > 1 is not significant as there
exists «o — 1 such that f"° has a restrictive central point p and / " for n > n0 has no
restrictive central point, see P4, § 1. We can set F = L °/"° ° L~l where L is a linear
transformation of (p, p) onto (0,1). Then F satisfies the assumptions of the Theorem.

Recall from the introduction that given/ satisfying the assumptions of the theorem
there exists a conjugacy h = hf with a /3-tent map gp, V5 < /? < 2.

PROPOSITION 3. There exists f >0 suc/i that for every interval J<=(0,1) (here is an
which satisfies

If the J's under consideration are small enough, then £ can be found arbitrarily close
to I/log )3.

One can use similar arguments as in the proof of Proposition 1, we shall, however,
give a direct simple proof, as gp is a map which is very simple to cope with.

LEMMA 7. For fixed N there is an e = e(N) such that for every J c (0,1) if \g'p(J)\ < e
fori = 0,...,N-l then | e g>^{J) for at most one j e {0 ,1 , . . . , N -1} .
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Proof. gjJG) # | for « = 1,2,..., as /"(c) * c for n = 1,2,... . Otherwise / would
have an attractive periodic orbit which contradicts (4). Let 8 = minnsN|g^(|) -\\ > 0.
We set e=\8fi~N. Suppose \eJ then

min dist (gH
p(J), \) a: min dist ( ( g ^ ) ± j8"|7|, |)

If ^ e gp( J) for some minimal Kj< N we repeat the argument with j £ n < JV.
D

Proof of Proposition 3. Fix TV such /3 N > 2)3 f for some ^ , > 1. Let/oc(0,1). Suppose
that

| g i U ) | < e ( N ) for y = 0 , 1 , . . . , « - 1 .

We write n = k- N + s, s< N.

n

\gk
P

N(J)\ } - \

by Lemma 7. Hence

| | | | and n

Since ĝ  is conjugated with/ we can use the topological properties of/, Corollary
1, § 1, and see that there is some integer nt = n^e) such that if | / ' | > e for an interval
/'<= <0,1) then g"p'(J\) => (g2

p(\), gp(h)). (We could also refer to [CE, Lemma II.7.1]
such that for /3: -Jl < fi s 2, g0 has no restrictive central points for n > 1.)

By (3) there exists n such that (2) is satisfied and [/"(7)|>e. Hence there is an
m such that

g?(/) = ( g ^ ) , &.(!)) and

and the assertion follows. D

Proof of Theorem. We shall prove that there are constants px, p2 > 0 such that for
every x,ye(c2 )c,), x ^ y

| | | h (4)
. (5)

Let m be a minimal number such that fm((x,y)) = (c2, c,).Then m is also minimal
with g%(h(x), h(y)) = (g^G), g^(l)). By the Main Lemma and Proposition 3 we have

(i) m<K-\og(l/\x-y\)

and

(ii) m£€-lo
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On the other hand \fm(x, y)\/\(x, y)\ < Lm, where L = supre<0,i> \f(z)\. Thus

(iii) rn^^-

and similarly

(iv) ^

Now (ii) and (iii) prove (4) with px = 1/f log L' arbitrarily close to log /3/log L
for JC, y sufficiently close to each other. (This is an easy part not making use of (i)
i.e. of the Main Lemma, and is true without our (G.A.).)

The inequalities (i), (iv) prove (5) with p2 = 1/K log /8, for x = y, arbitrarily close
to

logAlogA,
log p(2 log L-log A)

4. Final remarks
PROPOSITION 4. Let (/,) be a continuous family of maps satisfying the conditions
(a)-(c), § 0, and f',(0)> 1. Then, for every parameter t such that for f, the (G.A.), no
sinks and no restrictive central point for f", n>\ conditions hold, we have for the
respective Holder continuity exponent p2j, (see (5), § 3):

ft.,aX(logA,.()
2. (7)

Here K>0 is a constant which depends on the family (/,) but not on t. AM is A given
by (G.A.) forf.

If we put above A2 from P6, § 1, rather than A! this proposition would follow
immediately from the approximation of p2 by (6). To pass from A2 to Ax one can
use the estimates of [N2].

In the case

lim inf- log D/7(c,,) = log Ao,> 0
n-»oo n

we can replace in (7) A,, by Ao,,, all the replacements produce different coefficients
K of course (ch, is a critical value for/,).

By the way we can remark that the second inequality in (G.A.) follows from the
first one (with different A) as does P6 (by [N2]). Putting both of them into (G.A.)
was a matter of taste.

Fix / satisfying the assumptions of the theorem. Let ge be the conjugated tent
map. In the sequel the symbol K will be used to denote various positive constant
depending only on / From the theorem and Lemma 5 (more precisely, Proposition
6.1, [Nl]) we immediately obtain

for every n > l . This implies that for the corresponding kneading sequence written
in the form AA... AB (for A a finite sequence of R's and L's, B an infinite sequence,
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see [CE] for the notation) the number of A's is at most n • K3 + K, with K3 arbitrarily
close to

2 log L - log A
Pi log /?

for \A\ sufficiently large.
This is so because the expansion by the factor /3 implies the trajectory of the

point g"p(l) can follow a trajectory of \ with the same itinerary only for a restricted
time.

We can, however, derive from Proposition 1 a more precise result.

PROPOSITION 5. Letf satisfies (a)-(d) and (G.A.). Then the kneading sequence K(f)
is eventually strictly primary. Namely there exists K 4 > 0 such that if K(f) is written
in the form

(A*B)D

with \A\ finite sufficiently large, it must be \B\< K4.

If/ has no restrictive central point for n > 1, then the above is true for every A
of finite length (K(f) is strictly primary).

Proof. Let n = |A| +1. Let s be the smallest integer such that there exist (a, c) e * (s)
and cn £ (a, a). By Proposition 6.1 [Nl], \cn - c\ > K\"L"2". By (G.A.) \a - c\ < K\~s.
So

^ 2

log A
The factor 2 before the ratio is needed as we can take into account only nonempty
* (s)'s. Fortunately between every m and 2m there is such as s, [Nl].

Let /3 # c be a point closest to c, where Df{fi) = 0. By Proposition 1 there exists
m < KiS such that f"+lN ((a, c)) contains an interval belonging to * (N'), N '< N,
for every non-negative integer /.

So for k = [m/n] + l there exists N"<N' such that fk"+N"((c, cn)) contains an
interval belonging to * (AT). This and Lemma 5 give

\fk"((c,cn))\>K^-2»L-»\

If n is sufficiently large then all the intervals of monotonicity of / " are shorter
than half of the last constant. So there exists P*c,p efkn((c, cn)) with Df" (/3) = 0.
Let k be the smallest positive integer with this property. The end points of fkn ((c, cn))
must then be of the form c/n, crn 2, 1 < /, r < k. As they are separated by fl the blocks
of /(c,n+1) and I(crn+i) on the first n - 1 indices must be different from each other.
So the blocks of I{cx) on the indices In + 1 , . . . , In + n — 1 and rn + \,...,rn + n — l
must be different. The proof is finished. Let us remark that we obtained

we got K4 similar to K3 . •
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Question. Is it true that for/ satisfying (a)-(d) with the kneading sequence eventually
strictly primary, there exist an absolutely continuous, invariant, probability measure?

In [J] there is an example of / with (a)-(d) and no restrictive central point
conditions satisfied but without an a.c.i.p. measure. For this example the kneading
sequence is not strictly primary.

For/satisfying the assumptions of the theorem and a Holder continuous function
<p on (0,1) we can consider a sequence of random variables <p °f on (0,1) with
the measure mmax of maximal entropy. Then with the use of the theorem we obtain
various probability laws such as the Law of the Iterated Logarithm or Almost Sure
Invariance Principle. Indeed mmax is the (/i/1)* image of an absolutely continuous
invariant measure m for the corresponding gp. The above laws for i/> ° gjj, i// Holder,
on the probability space ((0,1), m) were proved in [HK].

Consider a polynomial /xx(l - x ) , 0< /* <4 satisfying (a)-(d) and (G.A.). Extend
it from (0,1) to the Riemann sphere, P^iz) = fiz(l-z).

CONJECTURE. The Riemann map Rfrom the unit disc D to the basin of attraction to
oo for iteration of P^ extends to a Holder continuous map on clD.
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