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ON A GENERALIZED FUNDAMENTAL EQUATION OF 
INFORMATION 

PL. KANNAPPAN AND C. T. NG 

1. Introduction. The object of this paper is to determine the general 
solution of the functional equation 

(FE) f(x) + a(\ - x)g(^J—} = h(y) + a(\ - y)k 

(for all x, y e [0, 1[ with x + y e [0, 1] ), 

where a is multiplicative. It turns out that non-trivial embeddings of the 
reals in the complex generate some interesting solutions. 

In many applications, various special cases of (FE) have occurred ( [1,3, 
4, 6, 10, 11, 14] ). The special case whe re / = g = h = k and a = the 
identity map is known as the fundamental equation of information, and 
has been extensively investigated by many authors ( [5] ). The case where 
f = g = h = k and a is multiplicative was treated in [13, 14]. The general 
solution of (FE) when a(\ — x) = (1 — x)@ has been obtained in [9], 
except when ft = 2. The gap has been covered in [1, 2, 11, 12]. With these 
in mind it is desirable to know the general solution of (FE). Due to some 
technical difficulty, the case where a is multiplicative but not a power 
remained open. In this paper we resolve this by using embeddings of the 
reals in the complex, giving rise to new solutions. The method employed 
also fills a gap left in [7]. 

2. General solution of the equation (FE). 

THEOREM 2.1. Letf h: [0, 1 [ -> R, g, k: [0, 1] -> R and a: [0, 1] -> R be 
junctions satisfying 

(FE) f{x) + «(1 - x)g(j^-^ = h{y) + a(l - y)k(j±—} 

[for all x, y e [0, 1[ with x + y e [0. 1] ), 
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FUNDAMENTAL EQUATION OF INFORMATION 863 

where a satisfies 

K } \a(0) = 0 and a(\) = 
for all x, y e ]0, l[ 

1. 

Then they are given by 

f(x) = 0 (1 - x) + axa(x) + bxa{\ - JC) + c\ on [0, 1[ 
g(x) = 0 ( x ) + a2a(x) + Z?2a(l - JC) - bh on [0, 11 
/?(;c) - 0 ( JC) + a2«(*) + h3a(\ - x) + c, o« [0. 1] 
/c(x) = 0(1 - JC) H- ^ « ( J C ) + 62a(l ~ * ) ~ *>3« on [0, 1] 

(2.1) 

where 

(2.2) 

e/7/zer a (x) = x~ and <$>(x) — Z)(x), 
or a(x) = \<j>(x) |2 and 0 ( x ) = a im <f>(x), 
or a(x) = x and $(x) = JCL(JC) + (1 - JC)L(1 - JC), 

or a is an arbitrary map satisfying (M) and O = 0 

with constants a, ar b^ c and functions 2):R —> R, <£: R —> C (complex 
numbers), and L: ]0, oo[ —> R satisfying 

D(x + v) - Z)(JC) + / ) ( v ) , D(xy) = xD(y) + vZ)(\) 

— a derivation [16]. 

(2.3) <£(x + 7 ) = <M*) + <j>(y), <l>(xy) = <M* )*(>')* <> injective 
— #/7 embedding, 

L(xy) = L(JC) + L( y) — logarithmic. 

The converse is also true. 

Proof Suppose/ , g, /z. A: and a satisfy (FE) and (M). By putting x = 0 in 
(FE) we get 

(2.4) h(y) = g ( v ) - A(0)a(l - y) + / ( 0 ) on [0. ][. 

Similarly by specializing y = 0, v = 1 — x respectively in (FE) and 
using (2.4), we get 

(2.5) f(x) = g(\ - x) + [k(\) - * (0 ) ]a (x ) - g ( l )« ( l - A ) 
1 / ( 0 ) on ]0. 1[. 

(2.6) A(JC) = g(\ - x) + [*(1) - A-(O)Kx-) 
- [g(l) - g (0) ]a ( l - x ) -f [/(0) -- /;(())] on ]0, l[. 

These functional dependence and (FE) imply 

(2.7) g(l - .x) + «(1 - x)g\-^—J = g(y) 
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+ «V - y)g(i - T^) 

- [ g ( l ) - g ( 0 ) ] a ( l - x - y ) 

+ g(l)«(l - x)- g(0)a(l - y) 

(x G [0, Il y e [0, 1[, 0 < x + y < 1). 

By defining 

(2.8) fi{x) = g(x) - [ g ( l ) - g(0) ]a(x) - g(0) on [0, 1] 

it reduces to 

(2.9) 0(1 - x) + a(l - x ) i g ( r ^ - ) = 0(>O 

+ a(l - J , )JB(I - Y ^ - ) (* e ]0, 1[, >> e [0, 1[, 

0 < x + >> < 1). 

Interchanging x and _y in (2.9) and combining the result with (2.9) we 
obtain 

(2.10) m(x) + m(y) = a{\ ~ x)ml y__ ) + a(\ - ywi—^-—) 

(2.11) n(x) + a(\ - x ) f i ( y ^ ) = /i(^) + a(l - > 0 " ( y - ^ — ) 

(x,.y, x + y e ]0, 1[) 

where 

(2.12) m(x) = I f l x ) - ^8(1 - x) and /i(x) = \li(x) + ^ ( 1 - x) 

are the skew-symmetric and symmetric parts of /?. 
The general (skew-symmetric) solution of (2.10) on ]0, 1[ will be derived 

in the next section as 

!

a(x) = x2 and m(x) = D(x), 
or a(x) = \4>(x) |2 and m(x) = a Im <j>(x), 
or a is arbitrary and m = 0, 

where D and <J> are described in (2.3), and a is a constant. The general 
(symmetric) solution of (2.11) on ]0, 1[ is given by ( [5, 13, 14] ), 
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n }d\ I a ^ = x anc^ n(x) = xL(x) + (1 — x)L(\ — x) or 
• - is arbitrary and n(x) = A[a(x) + a(l — x) — 1], 

where A is a constant and L is described in (2.3). This in turn gives the 
form ft on ]0, 1[, and so, from (2.8), 

g(x) = D(x) -f a2a(x) + b2a(\ — x) 
— b\ while a(x) = x2, or 

g(x) = a Im cj>(x) + a2a(x) + b2a{\ ~~ •*) ~~ ^l 
(2.15) while a(x) = \<j>(x) |2 or 

g(x) = -xL(x) + (1 - x)L(\ - x) + 02a(*) + M O ~ *) 
— />! while a(x) = x or 

g(jc) = tf2a00 + ^2 a0 ~~ x) ~ °\ while a is arbitrary 

on ]0, 1[, where a, a2, b\, b2 are constants. These general forms of g on ]0, 1[ 
indeed satisfy (2.7) if, and only if, g(0) = b2 — b\ and g(l) = a2 — b\\ we 
can thus claim that (2.15) indeed represents g on [0, 1] as asserted in the 
theorem with the convention 0L(0) = 0. 

From the form of g given by (2.15) and (2.4), (2.5) and (2.6) we obtain 
the forms of/, h, and k on ]0, 1[ as asserted in (2.1). These functions indeed 
satisfy (FE) if, and only if, their boundary values are also given by (2.1). 

The converse is straightforward, and this proves the theorem. 

3. General skew-symmetric solution of the equation (2.10). We present 
the general non-trivial skew-symmetric solution of (2.10) through the 
following proposition. 

PROPOSITION 3.1. Let m{^ 0), a: ]0, 1[ —» R be mappings satisfying 

(3.1) m(x) + m(y) = a(l - x)ml y_ J + a(l - y)mi * j , 

(3.2) m(x) + m(\ - x) = 0, 

and 

(3.3) a(uv) = a(u)a(v), 

for all x,y,uv e ]0, 1[ with x + j e ]0, 1[. Lef 

(3.4) £(*): = X-(a(x) - a(l - x) + 1) on ]0, 1[. 

Then for some constant c the following equations also hold: 

(3.5) a(l - * ) ™ ( Y 3 - J = £ 0 - x)m(y) - P(y)m(l - x) 
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(3.6) m(x + y) = m(x) + m(y) 

(3.7) P(x + y) = P(x) + p(y) 

(3.8) m(uv) = p(u)m(v) + p(v)m(u) 

(3.9) 0(wv) - P(u)P(v) 4- cm(u)m(y), 

in particular 

P(u2) = p\u) + cm2(w) 

(3.10) a(M) = yS2(w) - cm2(w) 

/or A// x, j , w, v G ]0, 1[ w/7/2 x + y e ]0, 1[. 

Proof. Consider the following computations: 

my ——— ) — ra(x) = — [my 1 — ——-— ) + m(x) ] (by 3.2) 

= - [ a (r^) m (x / ( i
X -v ) ) 

+ a(l - x) my \~^~x / ^ 

(by (3.1), noting that 1 - , xA \ - * J + x <= ]0, 1[ ) 
1 — y V \ — y / 

- -ai- )m(l - y) - a(l - x)m\- — - ) 
VI - y J V(l - x)(\ - y ) / 

= a(-^-)m(y) - a(l - x)m( * ~ * ~ ^ ) (by 3.2). 
M - v/ V(l - x)(l - y)/ 

We multiply both sides by a(l — y) while using (3.3) and rearranging 
terms to get 

a(\ — y)m\-— J — a(l — y)m(x) — a(x)m(y) 
VI ~ y ' 

= - a( (1 - x)(l - y) )m( l ~ * " J ) . 
V(l - x)(l - y)f 

The symmetry of the right hand side in x and y implies that of the left, 
which can be arranged in the form 
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(3.11) [a(l - y) - a(y)]m(x) + [a(x) - a(\ - x)\m{y) 

= a(\ - y)m[ _ J ~ a{\ - x)m\———J. 

The significance of this relation is that it allows us to compute the 
difference of the two terms on the right side of (3.1), and therefore it leads 
to a separation of the two terms. To carry this out we subtract (3.11) from 
(3.1) and use (3.2) to obtain (3.5). Equation (3.5) is more informative than 
(3.1), since with (3.2) we can indeed simplify the right side of (3.1) to that 
of its left side. 

From (3.5) we get 

a(x -f- y)m(x/x + y) = fi(x + y)m(x) — fi(x)m(x + y) and 

a(x + y)m(y/x ~f y) = &(x + y)m(y) — /3(y)m(x + y). 

On the other hand, because of (3.2), 

a(x -h y)m(x/x + y) + a(x + y)m(y/x + y) = 0; 

hence we obtain 

(3.12) p(x + y)[m(x) + m(y)] - [fi(x) + P(y)]m(x -f y) = 0. 

Noting from its definition (3.4) that /3 has the property 

(3.13) P(u) + p(l - u) = \ for all u G ]0, 1[. 

We replace in (3.12) first x by 1 — x — y, then y by 1 — x ~ y\ and add 
the two resulting equations to (3.12) while using (3.2) to obtain (3.6). 

To each x0 with m(\ — x0) ¥= 0, the additivity of m in (3.5) implies that 
y —» /?(>) is additive on ]0, 1 — XQ[. Since we assume the additive m is 
non-trivial, we can choose such 1 — XQ as close to 1 as we wish. This 
proves the additivity (3.7) of fi on ]0, 1[. 

Setting u = yl\ — x and v = 1 — x, we rewrite (3.5) as 

(3.14) a(v)m(u) = p(v)m(uv) - fi(uv)m(v). 

We replace v by 1 — v and substract the resulting equation from it while 
using (3.4), (3.6), (3.7) and (3.13). This leads to (3.8). 

Applying (3.8) twice to m(uvw) which is first conceived as m(u(vw) ) 
and then as m( (wv)w), we get 

m(uvw) = fi(u)ft(v)m(w) + ft(u)fi(w)rn(v) + fi(vw)m(u) 

and also 

m(uvw) = /3(uv)m(w) + /3(v)fi(w)m(u) + /3(u)fi(w)m(v). 
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Comparison leads to 

[P(u)p(v) - P(uv)]m(w) = [P(v)P(w) - P(vw)]m(u), 

and by fixing w = w0 with m(w0) ^ O w e get 

(3.15) P(uv) = P(u)P(v) - y(v)m(u), 

where 

y(v): = m(w0r
l[P(v)P(w0) - j8(vw0) ]. 

Using the same idea we can compute p(uvw) in two ways using (3.15) 
along with (3.8) and compare the results to obtain 

m(u)[y(v)P(w) + y(w)P(v) - y(vw) ] = 0. 

Since m ¥^ 0, we have 

(3.16) y(vw) = y(v)P(w) + y(w)j8(v). 

If y happens to be equal to zero, (3.15) already gives (3.9) with c = 0. Else 
(3.16) is just like (3.8) where m ¥= 0, and so just as (3.15) has been 
obtained from (3.8), we get 

(3.17) P(uv) = P(u)p(v) - 8(v)y(n), 

for some appropriate function 8. Now compare (3.15) with (3.17) to get y 
= —cm for some constant c ^ 0 and with it (3.15) can be written 
symmetrically as (3.9). This ends the proof of (3.9). 

In (3.14) we replace m(uv) and fi(uv) by the right sides of (3.8) and (3.9) 
to obtain (3.10). This proves the proposition. 

Extension of functions in Proposition 3.1. The additivity of m and ft, 
given by (3.6) and (3.7) respectively, enables us to extend m and ft 
uniquely to additive in and ft on R. For instance, in is defined by rn(rx) = 
rm(x) for arbitrary rational r and x G ]0, 1[. The extended m and ft satisfy 
(3.2), (3.8) and (3.9) on R. We can also extend a to a multiplicative â on R 
through (3.10). In other words 

a(u): = P2(u) — cm2(u) for u G R. 

Further, m(\) = 0 (by 3.2) ) and /?(1) = 1 (by 3.8) ) which help to show 
that the extended ft and â satisfy (3.4) on R. Now, it is easy to check that 
the remaining two equations (3.5) and (3.1) also hold for the extended 
functions on R. In summary all equations in Proposition 3.1 can be 
conceived to hold for all real arguments. 

THEOREM 3.2. Let m, a: ]0, 1[ —> R be functions satisfying (3.1) [ (2.10) ], 
(3.2) and (3.3). Then they are given by (2.13). The converse also holds. 
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Proof. Suppose m and a satisfy (3.1) to (3.3). 
If m = 0, then a can be arbitrary as claimed in (2.13). 
So let us assume m ^ 0. Then by Proposition 3.1 and the subsequent 

extensions (3.1) to (3.10) hold on R. Without ambiguity, we will omit the 
bars. 

Let us first treat the case when c < 0 say c = —o2 (o ¥= 0). The 
map 

<£:=/} + iom 

from R into C is additive (which follows from that of ft and m) and 
multiplicative (which is equivalent to (3.8) and (3.9) ); that is, <£ is a ring 
homomorphism of the reals into the complex field. Since m ^ 0, <f> is a 
non-trivial embedding of R into C [8]. 

Now (3.10) is translated into a = \<t>\2( = /32 + o2m2) and indeed 

m = - Im (j) 
a 

as claimed in (2.13). 
We now treat the case when c ^ 0. Equation (3.9) implies fi(u2) i= 0 and 

so ft ^ 0 on [0, oo[. Since fi is additive, fi(u) = au. Since /?(1) = 1, fi(u) = 
u. This in turn in (3.9) implies c = 0. Thus (3.10) and (3.8) give a(u) = u2 

and m(uv) = um(v) + vm(u) which proves the first line in (2.13). 
The converse is straightfoward. This completes the proof of Theorem 

3.2. 

4. Remarks on the system of functional equations (3.6) and (3.8). 
Consider the system of equations 

(4.1) m(x -f y) = m(x) + rn(y) 

(4.2) m(xy) = fi(x)m(y) + fi(y)m(x). 

In [7] the domain of m and /? is a commutative integral domain with 
identity 1, and the range is a field of characteristic different from 2. The 
solutions of the system when /?(1) ¥= 1 were obtained, whereas the 
solutions covering the case /?(1) = 1 were not adequately treated. The 
method employed in the previous section sheds some light on how 
solutions can be obtained including the case /?(1) = 1. We illustrate this 
by means of a proposition, accompanied by examples. In [15], (4.2) has 
been solved on abelian groups using the method of determinants. 
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Let S be a set on which two binary operations + and • are defined, and 
let F be a field. Let m and ft be maps from S into F satisfying (4.1 ) and 
(4.2). Since when m = Q, ft can be arbitrary, from now on m ^ 0 is always 
assumed. Our reasonings in the previous section establishing (3.9) from 
(3.8) with m ^ Ois based on the associativity of multiplication (•). Thus if 
(S. •) is a semigroup and m(¥: 0), ft satisfy (4.2) for all x,y e S, then they 
satisfy also 

(4.3) ft(xy) = ft(x)ft(y) + cm(x)m(y) 

for some constant c e F. When multiplication is distributive over 
addition, and m, ft satisfy (4.1) and (4.2). then ft is additive as well. i.e.. 

(4.4) ft(x + y) = ft(x) + ft(y). 

Thus if (S, + , •) is a ring, we can make use of (4.3) and (4.4) if necessary to 
solve the system (4.1) and (4.2). We summarize it as a proposition. 

PROPOSITION. Let S be a ring and F he afield. Let m ¥= 0 and ft be maps 
from S to F satisfying (4.1) an d (4.2). Then (4.3) and (4.4) also hold for some 

constant c e F. Consider k = V c which may or may not be in F, and the 
jield F(k) which may be F itself or an extension oj F accordingly. Then the 
maps (f> = ft + km and \p = ft — km from S into F\k) are ring 
homomorphisms. When char (F) ¥= 2, we get three sets of solutions 

depending on k = yc as follows: 
Case (i). When k = c = 0, then ft is a ring homomorphism and m is 

conceived as a generalized derivation in the sense that it satisfies (4.1 ) and 
(4.2) along with a ring homomorphism ft. The general construction of such 
generalized derivation requires further investigation. Consider the special 
case when S is a subfield of F; then ft:S -* F is an embedding and m = D o ft 
where D:ft(S) —> F is a nontrivial derivation [16, Chapter II, Section 17]. 

Case (ii). When k ¥= 0. Suppose char (F) ¥= 2. Then we can express ft and 
m in terms of <f> and \p. There are two subcases: 

(ii a) Suppose c = k with k <E F. Then the general solution is given by 

ft = -(<}> + *M and m - —(<f> - ^ ) 
2 2k 

where cj> and \p are distinct ring homomorphisms. 
(ii b) Suppose c = /r , k & F. We can define on the field extension F(k) 

the conjugate operation a + bk = a — bk for a, b ^ F, which is a natural 
automorphism on F(k). Then \p = <f> and the general solutions are given by 
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0 = ~(* + *) and m = wr(<t> - * )> 2 2/c 

where <j> is a ring homomorphism of S into F(k) such that <j> ¥= <j>. 

Example 1. Let S = Zn. If char (F) is not a divisor of «, there will be no 
nontrivial additive map m:S —> F. Else additive maps m, ft are of the 
form 

m{x) = xa and fl(x) = xb (x e Zn), 

where a ¥= 0 and Z? are constants. They satisfy the equation (4.2) if and 
only if lb = 1. In this example, /?(1) = 1 is impossible (else m = 0). 
Similar arguments apply when S = Z. 

Example 2. Let S = Z^ = Zp(t) where t is a root of the irreducible 
polynomial z2 + Xz + JU, over Z^, and let i7 be a field of characteristic/?. 
Additive maps m, fï:S —» F are of the form 

m(r + ts) = rm(\) + .sm(/) = ra + sa' and 

0(r + te) = rft + rà' 

where a, #', b, b ^ F are constants. They satisfy (4.2) if and only if these 
constants satisfy 

— \a! — \xa = la'b', a' = a'b + #// and Û = lab. 

Thus the general solution of the system is 

{ m(r + ts) = ra + sa' y 

jB(r + te) = rfc + *&' r ' *' G
 P 

where the constants fulfill either (a = 0, A' ^ 0, /? = 1, 2b = — X) or (A T̂  
0, a' = 2ÛÔ', 26 = 1, 4ft'2 + 2AZ/ + /x = 0). 

In this example, there is no nontrivial m when /? = 2, and there is a 
nontrivial m along with /?(1) = 1 when/7 ¥= 2. 

From this example, we can find the general solution when the ring S is 
finitely generated under addition, although the determination of the 
conditions on the constants involved could be very tedious. 

Example 3. Let S = F = R. 
Case (i). When k = c = 0, the only nontrivial homomorphism /?:R —> R 

is the identity map, and m is the usual derivation (2.3). In Case (ii a), fi = 

\I where / is the identity map and m = (zb)—/. In case (ii b), 
Ik 
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F(k) = C, m = — (cj> - $), and fi = -($ + *) , 
2k 2 

where <j> is a nontrivial embedding of R into C and k is a purely imaginary 
constant in C. In case (i) and (ii b), yS(l) = 1 (which was not treated in 
[7] ), while in case (ii a), /?(1) = \. 

Let S = F = C in the proposition. If c = 0, the general solution is 
either as given in case (i), or else it is governed by (ii a). 
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