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Thermal field and linear response theory

Thermal field theory, or finite temperature quantum field theory, deals with
quantum systems in equilibrium. This is likely a familiar subject to the read-
ers. Given the huge literature on this subject (see e.g. [LaLiPi80b, LeB91,
LeB96, Kap89, Par88, AbGoDz75, Mil69, LanWer87, Ber74, DolJac74, Wei74,
KuToHa91]), we will not attempt to give a full treatment of it per se, but rather
emphasize how the CTP approach actually unifies the study of equilibrium and
nonequilibrium systems. We will discuss thermal perturbation theory from a
CTP perspective, including a discussion of screening and damping in quantum
fields at finite temperature. In Chapter 11 we shall consider quantum kinetic field
theory, including a derivation of its centerpiece, the Kadanoff–Baym equations,
and in Chapter 12 the issue of thermalization, namely the processes which bring
about equilibrium to systems out-of-equilibrium.

10.1 The thermal generating functional

A thermal state is a mixed state described by the density matrix

ρ = eβF e−βH (10.1)

where H is the Hamiltonian and F the free energy, defined in terms of the
partition function

e−βF ≡ Z = Tr e−βH (10.2)

We shall assume the trace exists. Hence we are treating systems in equilib-
rium in a canonical ensemble; the generalization to grand canonical ensemble is
straightforward. Observe that the equilibrium state is stationary but not Lorentz
invariant, since the form (10.1) of the density matrix holds only in a preferred
frame, the so-called rest frame of the field.

To investigate the matrix elements of the thermal density matrix, it is natural
to proceed by analogy with the evolution operator U = e−itH/� introduced in
Chapter 4. In general, we may consider an evolution operator in complex time
U (z) = e−izH/�. Given two field eigenvectors the matrix element is〈

ψ
∣∣∣e−izH/�

∣∣∣ϕ〉 =
∑
n

e−izEn/� 〈ψ |n〉 〈n |ϕ〉 (10.3)
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292 Thermal field and linear response theory

Since energies are positive, the sum will converge when Im z ≤ 0 (we are mostly
concerned with z’s of the form −iβ, of course). Also we have the semigroup
property

U (z + z′) = U (z)U (z′) (10.4)

provided all terms exist, namely, that Im z, z′ ≤ 0. In general, given a complex
path γ (u) connecting 0 to z, if the imaginary part of γ (u) is nonincreasing
throughout we may decompose U (z) as a product of infinitesimal evolution oper-
ators, and obtain the path integral representation〈

ψ
∣∣∣e−izH/�

∣∣∣ϕ〉 =
∫
ϕ(0)=ϕ,ϕ(z)=ψ

Dϕ e(i/�)S[ϕ] (10.5)

where the integration is carried over field configurations defined on the complex
path. The fundamental property of the representation (10.5) is path indepen-
dence: the path integral is independent of the choice of γ, as long as the differ-
ence between the endpoints is z, and the imaginary part is nonincreasing [Mil69,
McL72a, McL72b].

In order to obtain the partition function, we set ψ = ϕ and integrate over
all choices. Thus Z is given by a path integral over periodic (for Bose–Einstein
statistics) or antiperiodic (for Fermi–Dirac statistics) [Ber66, NegOrl98]) field
configurations defined on a complex time path going from an arbitrary point z

to z − iβ� with nonincreasing imaginary parts.
In practice, different choices of time path lead to different formulations. If the

main object is the computation of the partition function itself, then possibly
the simplest choice is the so-called Matsubara contour, which goes straight down
from 0 to −iβ� [LaLiPi80b, KuToHa91]. If the goal is to compute real time
correlations, then it is convenient to include (patches of) the real time axis into
the contour. For example, if we choose a time path going along the real axis
from −T to T ′, then down to T ′ − iβ�/2, back on a reverse time line to −T −
iβ�/2, and finally down again to the endpoint −T − iβ�, we get a functional
representation of Umezawa’s thermo field dynamics [UmMaTa82, NieSem84a,
NieSem84b]. Although these different formulations are of course equivalent from
the physical point of view, one or the other could be more adept to particular
perturbative calculations.

From the point of view of making contact with the CTP approach to nonequi-
librium dynamics, the natural choice of contour is from −T to T ′, then immedi-
ately back to −T and straight down to −T − iβ� [CSHY85, LanWer87]. Compar-
ing with the CTP generating functional, we see that this procedure is equivalent
to replacing the density matrix by its path integral representation. The thermal
CTP generating functional is given by

e(i/�)Wβ [J] = eβF
∫

DϕA exp
{
(i/�)

[
S
[
ϕA
]
+ JAϕ

A
]}

(10.6)
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with the branch index a = 1, 2, 3, with the new value 3 corresponding to the
downward imaginary branch, and we adopt the convention J3 = 0. Observe that
the thermal generating functional shares with the vacuum one the property that
the choice of quantum state has been encoded into the time path. The formal
manipulations leading from the generating functional to the effective action, as
well as the perturbative set-up for the evaluation of this latter object, are the
same as in the zero-temperature theory.

10.2 Linear response theory

A profound property of the thermal state is that the dynamic response of a
system in thermal equilibrium to small external perturbations can be described
rigorously in terms of equilibrium expectation values, by means of the so-called
linear response theory (LRT) [KuToHa91]. We shall describe very briefly the
basics of LRT, and then show how it can be trivially derived from the CTP
generating functional just introduced.

The basic set-up for LRT is a system which at time t = 0 is in equilibrium
(namely, its density matrix is given by equation (10.1)) and is subsequently per-
turbed by an addition of a time-dependent term −σ (t)P (t) to the Hamiltonian,
where σ is a c-number external source, and P some Heisenberg operator acting
on the system. We wish to follow the nonequilibrium, driven evolution of the
field, through the time-dependent expectation value of some other observable
Q (t).

To this end, it is most efficient to adopt an interaction picture approach. The
density matrix at time t then is given by

ρ (t) = T
[
e(i/�)

∫ t
0 dt′σP

]
ρ (0)T

[
e−(i/�)

∫ t
0 dt′σP

]
(10.7)

The desired expectation value is 〈Q〉J (t) = Tr Q (t) ρ (t). For small sources, we
may linearize

〈Q〉 (t) = 〈Q〉0 (t) +
∫ t

0

dt′ R (t, t′)σ (t′) (10.8)

where 〈Q〉0 (t) is the expectation value for Q (t) in equilibrium, and R is the
response function

R (t, t′) =
(
i

�

)
〈[Q (t) , P (t′)]〉0 θ (t− t′) (10.9)

The general relationship between the retarded and Jordan propagators intro-
duced before is but a particular case of this general identity. Furthermore, cer-
tain transport coefficients may be written in terms of time integrals of response
functions, by means of the Kubo formulae, to be discussed in Chapter 12. Then
equation (10.9) may be used to link those transport coefficients to equilibrium
expectation values of Heisenberg operators.
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To obtain equations (10.8) and (10.9) in a CTP framework, we first introduce
a generating functional for 〈Q〉 (t)

e(i/�)WQ[J] = eβF
∫

DϕA exp
{
(i/�)

[
Sσ

[
ϕA
]
+ JAQ

A
]}

(10.10)

so that the desired expectation value is

〈Q〉 (t) =
δWQ [J ]
δJ1 (t)

∣∣∣∣
J=0

(10.11)

(observe that we doubled the degrees of freedom). In this equation, the action Sσ

contains the σ-dependent term
∫
dt σ (t)

(
P 1 − P 2

)
(t) ; it is unnecessary to add

CTP indices to σ, since this is a physical source, and in any case we would obtain
σ1 = σ2 = σ. Since σ turns on for t > 0 only, the free energy is independent of
it. We may therefore expand

WQ [J ] = WQ [J ]|σ=0 +

∫
DϕA e{(i/�)[S0[ϕA]+JAQA]} ∫ dt′ (P 1 − P 2

)
σ (t′)∫

DϕA e{(i/�)[S0[ϕA]+JAQA]}

(10.12)

The path integral in the numerator of the second term vanishes at J = 0. Per-
forming the J derivative in equation (10.11), we see that equations (10.8) and
(10.9) are a simple consequence of the time ordering properties of the path
integral.

10.3 The Kubo–Martin–Schwinger theorem

Since we have succeeded in incorporating the information about the state in the
time path, we may adopt verbatim the perturbative approaches already discussed
in Chapter 6. In particular, any expectation value may be developed as a sum
of Feynman graphs, carrying in internal legs the thermal propagators

G11
β (x, x′) ≡ GβF (x, x′) = eβFTr

{
e−βHT [Φ (x) Φ (x′)]

}
(10.13)

etc. Since the thermal time path has three branches, it may seem that now
we need nine different propagators to carry out perturbation theory. How-
ever, the path independence of the path integral may be invoked to push the
third branch arbitrarily into the distant past, whereby it decouples from the
other branches, and the usual set-up, based on four propagators, is sufficient.
Nevertheless, the third branch is essential in enforcing the fundamental prop-
erty of the thermal propagators, namely, that they can be analytically con-
tinued to complex time, and when so continued, they obey certain periodicity
conditions, embodied in the so-called Kubo–Martin–Schwinger (KMS) theorem
[Kub57, KuYoNa57, MarSch59]. The KMS theorem plays such a central role in
thermal perturbation theory that it is often adopted as the definition of the
thermal propagators.
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To state the KMS theorem, let us consider the thermal positive frequency
propagator

G21
β (x, x′) ≡ G+

β (x, x′) = eβFTr
{
e−βHΦ (x) Φ (x′)

}
(10.14)

and insert energy–momentum eigenstates

G+
β (x, x′)=eβF

∑
n,m

ei(Pm−Pn)(x−x′)/�e−βEne−i(Em−En)(t−t′)/� |〈n |Φ (0)|m〉|2

(10.15)

Given suitable conditions on the matrix elements of the field operators, we
may regard the sum in equation (10.15) as converging when the integrand is
exponentially suppressed, namely for 0 ≥ Im (t− t′) ≥ −β. In this strip, equa-
tion (10.15) defines a complex variable function, which is the definition of the
thermal propagator for complex time. G+

β may be analytically continued beyond
the strip, of course, but this constitutes its fundamental domain of definition.

If we apply the same reasoning to the “negative frequency” propagator we
obtain

G−
β (x, x′) = eβF

∑
n,m

ei(Pm−Pn)(x−x′)/�e−βEme−i(Em−En)(t−t′)/� |〈n |Φ (0)|m〉|2

(10.16)
Comparing equations (10.15) and (10.16), it is immediate that

G+
β ((t,x) , x′) = G−

β ((t + i�β,x) , x′) (10.17)

This is the KMS theorem for Bose–Einstein fields. The KMS theorem for Fermi–
Dirac fields will be discussed in a later section.

A shorter argument may serve as a mnemotechnic device, and also underscores
the generality of this result. Let us define the complex time Heisenberg operators

Φ (z) = eizH/�Φ (0) e−izH/� (10.18)

and observe the identity

e−βHΦ (t) = Φ (t + i�β) e−βH (10.19)

Then a simple cyclic permutation under the trace yields

G+
β (t, t′) = eβFTr

{
e−βHΦ (t) Φ (t′)

}
= eβFTr

{
e−βHΦ (t′) Φ (t + i�β)

}
= G−

β (t + i�β, t′) (10.20)

QED

Given the importance of the KMS theorem for this subject, we shall show a
third proof of it, now based on the properties of the path integral representation.
The propagator G+

β (t, t′) = G21
β (t, t′) may be computed by inserting the product

ϕ2 (t)ϕ1 (t′) inside the path integral (10.6); namely, the field at t is put on the
second branch, and at t′ on the first branch. Given the path independence,
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we may choose a time contour beginning at t′ and ending at t′ − iβ�. Because
field configurations are periodic, we obtain ϕ2 (t)ϕ1 (t′) = ϕ3 (t′ − iβ�)ϕ2 (t).
Since the path integral automatically sets field operators on the third branch
to the left of field operators in the second branch, when we integrate we obtain
the negative frequency propagator G−

β (t, t′ − iβ�) . Thermal propagators being
translation invariant, this is again the KMS theorem.

The KMS theorem implies a new relationship among the Fourier transforms
of the thermal propagators, namely

G+
β (ω) = eβ�ωG−

β (ω) (10.21)

Together with the universal relationship G+
β −G−

β = Gβ , the latter being the
thermal Jordan propagator, we obtain

G+
β (ω) =

eβ�ω

eβ�ω − 1
Gβ (ω) ; G−

β (ω) =
1

eβ�ω − 1
Gβ (ω) (10.22)

The two formulae can be combined into

G±
β (ω) = 2π� [θ (±ω) + f0 (ω)]D (ω) (10.23)

where

2π�D (ω) = sign (ω)Gβ (ω) = Gβ (|ω|) (10.24)

and f0 is the Bose–Einstein distribution

f0 (ω) =
1

eβ�|ω| − 1
(10.25)

These formulae generalize the vacuum Lehmann representation. As in the vac-
uum case, they allow us to find all the propagators, once the Jordan propagator
is known. For example, the Hadamard propagator becomes

Gβ1 (ω) = 2π� [1 + 2f0 (ω)]D (ω) (10.26)

For a free field the commutator of two field operators is a c-number, and there-
fore its expectation value is independent of the state. In this case the zero-
temperature Jordan propagator remains valid at all temperatures.

The linear response equation (10.9) allows us to connect the Jordan and
retarded propagators

Gβret (x, x′) =
(
i

�

)
Gβ (x, x′) θ (t− t′) (10.27)

which is the same relationship as at zero temperature. Fourier transforming, we
obtain as in Chapter 3

Gβ (p) = 2�ImGβret (p) (10.28)

and therefore equation (10.26) may be regarded as a statement of the fluctuation–
dissipation theorem.
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10.4 Thermal self-energy: Screening

As remarked earlier, the CTP perturbation theory at finite temperature is for-
mally identical to its zero-temperature counterpart, only now propagators must
be consistent with the KMS theorem. In particular, the 2PIEA is formally the
same, but it is now evaluated at a different set of propagators. We may even
give a direct proof of this statement, by noting that thermal field theory is the
usual field theory on a three-branched path. We may push the third branch
to the remote past, and at the same time switch interactions off adiabatically,
so that the action in the third branch corresponds to a free theory. Then the
path integral over Euclidean configurations will be Gaussian, and the net effect
will be to add a two-point source KβAB (concentrated at the initial time), as
we did when we formally constructed the 2PIEA. The construction will then
go as in Chapter 6, only that the final equation for the thermal propagators
becomes

δΓ2

δGAB
β

= −1
2
KβAB (10.29)

Because the right-hand side turns on only at the initial time, in practice we may
ignore it; its only role is to enforce the KMS initial conditions. We may therefore
write down the thermal 2PI Schwinger–Dyson equation: it is just the same as
the vacuum equation we discussed in Chapter 6.

Because Lorentz invariance is lost for thermal fields, we cannot define the mass
of the field from the location of the pole of the propagators. Luckily, this problem
only appears at the three-loop level in the 2PIEA, so we may still make progress
by analyzing the one-loop gap equation.

The analysis is in fact the same as in Chapter 6, only now the tadpole is com-
puted with a thermal Feynman propagator or, what is the same at the coincidence
limit, a thermal Hadamard propagator. Since the free Jordan propagator is inde-
pendent of temperature, this means that there is a new term, corresponding to
the integration over the thermal correction demanded by the KMS theorem. So
the gap equation becomes

M2 = m2
b + m2

V +
λb�

2
M2

T (10.30)

where

M2
T =

∫
d4p

(2π)3
δ (Ω0) f0 (p) =

1
π2

∫ ∞

M

dω

√
ω2 −M2

eβω − 1
(10.31)

and Ω0 = p2 + M2. The second term m2
V is a vacuum tadpole.

Although strictly speaking the gap equation must be renormalized before it
makes sense, we may learn some of its implications from the following simple
arguments. First, observe that there exists a critical temperature Tc (maybe
imaginary) such as to make M2 vanish. If we use dimensional regularization,
the massless tadpole vanishes as well, and the massless thermal contribution gives
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298 Thermal field and linear response theory

the usual value of M2
T c ∼ (1/6) (kBTc/�)2 , so we get m2

b = (−λb/12�) (kBTc)
2
.

If we adopt Tc rather than mb as the fundamental object, then M2 ∼ O
(
λT 2
)
�

T 2, which justifies neglecting the tadpole term and computing the thermal mass
as for a massless theory. We then get the simple gap equation

M2 =
λk2

B

12�

[
T 2 − T 2

c

]
(10.32)

The first and obvious consequence of the thermal gap equation is that a field the-
ory which is massless at some temperature (T = Tc = 0, say) will not be massless
at other temperatures. If we associate a massless field (such as the photon) with
a long-range interaction, then at finite temperature the same interaction will
be short range (of course, Maxwell’s theory is a gauge theory, and we must be
careful [LeB96]).This phenomenon is called screening, and because it fixes the
screening length M−1, M2 is sometimes called the Debye mass M2

D.
If Tc is real, the gap equation admits negative solutions at low temperature

(meaning that the symmetric point φ = 0 corresponds to an unstable configura-
tion of the field, and we should not be doing perturbation theory around it) and
regular solutions above Tc. This is the phenomenon of symmetry restoration, and
Tc is the critical temperature which marks the destabilization of the symmetric
point [DolJac74, Wei74].

In theories with multiple fields the thermal mass matrix may not be positive
definite. In this case, there may be inverse symmetry restoration (namely, a
symmetry is broken at high temperature) or else symmetry nonrestoration (a
symmetry is never restored) [Wei74, PinRam06].

The generation of the Debye mass and the corresponding screening length
means that the behavior of thermal propagators is totally different from their
zero temperature counterparts, at least for soft momenta p ≤ MD. In this range,
to assume that one can develop a meaningful perturbation theory without a
careful consideration of screening is simply wrong. At the very least, one should
use the physical mass throughout. Since a mass shift in the inverse propagator is
equivalent to resumming an infinite number of graphs in the perturbative expan-
sion of the propagator itself, and the shift may be seen as coming mostly from
the high momentum sector where all masses can be neglected, the techniques
necessary to implement a consistent perturbation theory are generally known as
hard thermal loops resummation.

10.5 Landau damping

In addition to screening, at finite temperature a collective excitation will be
damped by scattering off quanta in the heat bath. Therefore, there are decay
channels unavailable at zero temperature. The most important of these decay
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processes is the so-called Landau damping, originally discussed by Landau in
the context of collisionless plasma theory [LifPit81].

In this section, we shall discuss Landau damping through a concrete example,
namely, the damping of a Maxwell field interacting with a Dirac quantum field
at finite temperature. To stress the physics involved, we shall begin with a brief
review of Landau damping in its original plasma physics context.

10.5.1 Landau damping in a relativistic collisionless plasma

Before we consider the issue of damping in the equation for a Maxwell background
field coupled to quantum fluctuations in a Dirac spinor field, let us discuss the
same issue in the simpler context of a classical relativistic collisionless plasma.

Under the collisionless approximation, particles evolve independently under
the electromagnetic field, which in turn is sourced by the average charge density
and current. The dynamics of each particle is determined by the Hamiltonian
(we set the speed of light c = 1)

p0 =
[
(p − eA)2 + m2

]1/2
+ eA0 (10.33)

Therefore we have the velocity

v = ∇pp
0 =

(p − eA)
(p0 − eA0)

(10.34)

and the Lorentz force (in a somewhat unusual notation)

[pi]
. = −∂ip

0 = e
[
vjAj,i − ∂iA

0
]

(10.35)

The charge and current densities are given by

j0 = e

∫
d3p

(2π)3
f (x,p, t) (10.36)

j = e

∫
d3p

(2π)3
v f (x,p, t) (10.37)

Charge is conserved as a consequence of Hamilton’s equations, provided f satis-
fies the Vlasov equation

∂f

∂t
+ v · ∇xf + ṗ · ∇pf = 0 (10.38)

Explicitly

(p− eA)μ
∂f

∂xμ
+ e [(p− eA)ν Aν,j ]

∂f

∂pj
= 0 (10.39)

We are interested in linearized Maxwell fields, so we may expand f = f0 +
f1 + . . . in powers of A. Assume f0 = f0(p). The first-order terms read

pμ
∂f1

∂xμ
+ e [pνAν,j ]

∂f0

∂pj
= 0 (10.40)
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If the Maxwell background corresponds to a plane wave

Aμ = Akμe
ikx (10.41)

we may seek a solution

f1 = f1
ke

ikx (10.42)

where, adopting Landau’s causal boundary conditions,

f1
k = e

[
pνAkν

−pλ (k + iε)λ

]
kj

∂f0

∂pj
(10.43)

We may now write the charge density (10.36). Using our perturbative solution
and discarding the zeroth-order term this becomes

j0 = j0
ke

ikx (10.44)

j0
k = e2

∫
d3p

(2π)3

[
pνAkν

−pλ (k + iε)λ

]
ki

∂f0

∂pi
(10.45)

Observe that the induced current is gauge invariant. Essentially, what we have
done is to compute the conductivity of the plasma. The important point is that
equation (10.45) develops an imaginary part when there are particles whose
momenta satisfy pλkλ = 0. The imaginary part reads

Im
[
j0
k

]
=

−πe2

(k0)2
[
k0Aj

k − kjAk0

]
ki
∫

d3p

(2π�)3
δ

[
p0 − k.p

k0

]
pj

∂f0

∂pi
(10.46)

If we use this as a source for the Maxwell equations, the imaginary part in the
charge density will engender the so-called Landau damping of the background
plane wave. As can be seen from equation (10.46), Landau damping occurs when
there are charged particles moving at the phase speed of the wave. These par-
ticles see the wave as a time-independent field, and may extract energy from
it. Actually, the expression for Im

[
j0
k

]
does not have a definite sign; however,

damping obtains generally for isotropic distributions [LifPit81].

10.5.2 A nonequilibrium problem with fermions: The case of QED

As a simple example of fermionic nonequilibrium field theory, we wish to consider
the linearized equations of motion for a Maxwell background field coupled to a
Dirac spinor (representing the electron field). The action is given by

S = SM + SD + Sint (10.47)

where SM is the free Maxwell action

SM =
(−1

4

)∫
d4x FμνFμν (10.48)

Fμν = ∂μAν − ∂νAμ (10.49)
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is the Maxwell field tensor, and Aμ the photon field. SD is the free Dirac action

SD =
∫

d4x ψ (iγμ∂μ −m)ψ (10.50)

where ψ is a four-component Dirac spinor, the γμ are the Dirac matrices obeying

{γμ, γν} = −2gμν (10.51)

and ψ is the Dirac adjoint spinor

ψ = ψ†γ0 (10.52)

The interaction term is

Sint =
∫

d4x eAμψγ
μψ (10.53)

We wish to compute the lowest order (O
(
e2
)
) linearized equation of motion for

the Maxwell background field. To this order, photon quantum fluctuations are
decoupled, so we need not consider them further. The CTPEA for the Maxwell
field reads

Γ
[
Aa

μ

]
= SM

[
Aa

μ

]
+ Γ1

[
Aa

μ

]
(10.54)

SM

[
Aa

μ

]
= SM

[
A1

μ

]
− SM

[
A2

μ

]
(10.55)

Γ1

[
Aa

μ

]
= −i� ln

∫
DψaDψ

b
e(i/�){SD+Sint} (10.56)

where the path integral is over Grassmann fields [Ber66, NegOrl98] defined on
the closed time path, and the actions in the integrand also are CTP actions.

To quadratic order in the external field,

Γ1

[
Aa

μ

]
=

ie2

2�
cacdcbef

∫
d4xd4x′ Aa

μ (x)Ab
ν (x′)〈[

ψ
c
(x) γμψd (x)

] [
ψ
e
(x′) γνψf (x′)

]〉
0

(10.57)

where

〈O〉0 =
∫

DψaDψ
b
eiSD O (10.58)

and we have used the fact that〈[
ψ (x) γμψ (x)

]〉
0

= 0 (10.59)

(see below). Since the integration measure is Gaussian, Wick’s theorem holds
and 〈[

ψ
c
(x) γμψd (x)

] [
ψ
e
(x′) γνψf (x′)

]〉
0

= −γμGde (x, x′) γνGfc (x′, x)

(10.60)
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where

Gde (x, x′) =
〈
ψd (x)ψ

e
(x′)
〉

0
(10.61)

and we have used the fact that in this problem〈
ψd (x)ψe (x′)

〉
0

= 0 (10.62)

which follows directly from the Gaussian integration.
The Gde are the CTP free Dirac propagators. From the ordering properties of

the CTP path integral

G21 (x, x′) =
〈
ψ̂ (x) ψ̂ (x′)

〉
(10.63)

G12 (x, x′) = −
〈
ψ̂ (x′) ψ̂ (x)

〉
(10.64)

where ψ̂ is the Heisenberg picture field operator, and the brackets denote vacuum
expectation value. We also have

G11 (x, x′) = G21 (x, x′) θ (t− t′) + G12 (x, x′) θ (t′ − t) (10.65)

G22 (x, x′) = G21 (x, x′) θ (t′ − t) + G12 (x, x′) θ (t− t′) (10.66)

The Heisenberg equation for the free field operator is the Dirac equation,
whereby

(iγμ∂μ −m)G21 (x, x′) = 0 (10.67)

and similarly for G12 (x, x′), while

(iγμ∂μ −m)G11 (x, x′) = i�δ (x− x′) (10.68)

(iγμ∂μ −m)G22 (x, x′) = −i�δ (x− x′) (10.69)

The solution to these equations with the proper CTP boundary conditions is

Gab (x, x′) = (iγμ∂μ + m) Δab (x, x′) (10.70)

where Δab are the Klein–Gordon CTP propagators. With the representation
(10.70) it is immediate to obtain equation (10.59).

The new term in the CTPEA induces a new term in the wave equation for the
photon field

e2

�

∫
d4x′ Πμν (x, x′)Aν (x′) (10.71)

Πμν (x, x′) = (−i) γμ
{
G11 (x, x′) γνG11 (x′, x) −G12 (x, x′) γνG21 (x′, x)

}
(10.72)

As in the case of the scalar field, the first term is what we would have found
from the “in-out” EA, and the second term enforces reality and causality.

Using the representation (10.70) the calculation of this term is a standard
exercise in quantum field theory [Ram80, PesSch95] and we will not repeat it. The
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10.5 Landau damping 303

photon retarded propagator acquires an imaginary part for off-shell momenta
−p2 ≥ 4m2. This represents damping of a photon wave from pair creation. We
have seen in Chapter 4 that damping also goes on below threshold, but it is
exponentially suppressed.

10.5.3 KMS and thermal Fermi propagators

The proof of the KMS theorem works as well for Fermi fields, but now we must
take into account the proper relation between the Fermi propagators and their
expression as averages of Heisenberg fields. If we introduce the thermal positive
and negative frequency propagators G+

β ≡ G21
β and G−

β ≡ G12
β the KMS condition

becomes

G+
β (ω) = −eβ�ωG−

β (ω) (10.73)

We may introduce a Fermi Jordan propagator

Gβ = G+ −G− =
〈{

ψ,ψ
}〉

β
(10.74)

(for a free field, Gβ is independent of the temperature) and a density of states

DF (ω) =
1

2π�
sign (ω)Gβ (ω) (10.75)

Then the KMS condition becomes

G±
β (ω) = 2π� {θ (±ω) − fFD (ω)}DF (ω) (10.76)

where fFD is the Fermi–Dirac distribution

fFD (ω) =
[
eβ�|ω| + 1

]−1

(10.77)

All other propagators may be built from these two.

10.5.4 Induced charge density from a finite temperature

Dirac quantum field

We now return to the quantum field problem. A nontrivial Maxwell background
induces a current (cf. equation (10.71))

jμ (x) =
δΓ1

δAμ (x)
=

e2

�

∫
d4x′Πμν (x, x′)Aν (x′) (10.78)

where Πμν (x, x′) is defined in equation (10.72). As in our simple plasma example,
we shall look into the induced charge density only. If the background is a single
plane wave as in equation (10.41), then

j0
k =

e2

�
Π0ν

k Akν (10.79)

Π0ν
k = (−i) γ0

∫
d4p

(2π)4
{
G11 (p) γνG11 (p− k) −G12 (p) γνG21 (p− k)

}
(10.80)
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To continue, let us decompose all propagators into a zero-temperature and a
statistical component

Gab (p) = Gab
0 (p) −Gstat (p) (10.81)

where Gab
0 (p) has the form of the zero-temperature propagators, but maybe with

temperature-dependent coefficients, and

Gstat (p) = 2π� fFD

(
p0
)
[−γμpμ + m] δ

(
−p2 −m2

)
(10.82)

is the same for all basic propagators. Clearly

Π0ν
k = Π0ν

k0 + Π0ν
kstat (10.83)

where the first term is the zero-temperature contribution. As we know, this term
describes, among other things, damping from pair creation out of the vacuum.
Our interest here is the other term

Π0ν
kstat = �γ0

∫
d4p

(2π)4
Jν (10.84)

Jν = Gret

(
p +

k

2

)
γνGstat

(
p− k

2

)
+ Gstat

(
p +

k

2

)
γνGadv

(
p− k

2

)
(10.85)

The exact expression for Π0ν
kstat is involved and shall not be discussed further.

It becomes simpler at high temperature, where we may argue that the leading
contribution to the integral comes from momenta p ≈ T � k,m. The leading
contribution in this limit is

4�
2

∫
d4p

(2π)3
p0pν

p (k + iε)
J (10.86)

J = fFD

(
p− k

2

)
δ

((
p− k

2

)2

+ m2

)
− fFD

(
p +

k

2

)
δ

((
p +

k

2

)2

+ m2

)

(10.87)

If k � p, we may expand inside the brackets. The leading contribution to the
imaginary part comes from a term

4�
2

∫
d4p

(2π)3
2p0δ

(
−p2 −m2

)
θ
(
p0
)

[−p (k + iε)]
pνk0 ∂fFD

∂p0
(10.88)

The momenta which contribute to the imaginary part satisfy p · k = 0, and so

k0 ∂fFD

∂p0
=

k0p0

p0

∂fFD

∂p0
=

k · p
p0

∂fFD

∂p0
= k∇pfFD (10.89)

We see a quantum field theory version of the Vlasov equation, only now we have
a factor of 4 reflecting the presence of electrons and positrons with two spin
states each, and �fFD instead of the classical one-particle distribution function.
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10.6 Hard thermal loops

In this section we show how the above machinery can be applied to one set
of important problems – the dynamics of long-wavelength or “soft” modes of a
nonlinear quantum field, as affected by the short-wavelength or “hard” modes
towering over them. Historically, the techniques of this subject were developed
in an attempt to understand the physics of soft modes in non-abelian gauge
theories, for application to the quark–gluon plasma in relativistic heavy ion col-
lisions (RHICs), and to topology change in electroweak theory. This specific
context imposed a number of constraints, such as the need to deal with gauge
invariance, derivative couplings, ghost fields, etc. We wish to isolate the basic
physical ideas relating to nonequilibrium and statistical behavior from the tech-
nical devices specific to a given application, and therefore we shall not follow the
historical path, but rather present a fictitious toy model which retains sufficient
fundamental physics.

The important lesson to be gleaned from this is that formal questions, such as
which is the best perturbative scheme or to which order should it be pursued,
cannot be separated from physical questions. As illustrated in this example, we
get different answers depending on whether we wish to discuss soft or ultrasoft
modes. In either case, simply counting powers of coupling constants gives the
wrong result. It is necessary to analyze the contents of the theory to make sure
that what looks small is indeed small, and to realize that different scales pertain
to different physics.

In this section we shall use some tools of quantum kinetic field theory which will
be discussed in detail in Chapter 11. The reader unfamiliar with these techniques
may return to this section after getting acquainted with them.

10.6.1 The model

The essential elements we need to keep from the physics of non-abelian gauge
fields are the presence of massless fields and a derivative cubic coupling. For
massless fields radiative corrections are infrared sensitive, and will require special
care to evaluate them. There is a term in the action containing three gauge fields
and one derivative. In momentum space, the derivative becomes one momentum
component. At finite temperature T , typical momenta are of the order of T , and
so the effective coupling strength increases with temperature.

Therefore we postulate as our toy model a massless scalar field theory with
cubic interaction

S =
∫

d4x

{
−1

2
∂μΦ∂μΦ − gT

6
Φ3 + hΦ

}
(10.90)

with the constitutive relation h = gT 3/12. We assume g � 1. The linear term
is necessary to cancel a tadpole term later on; non-abelian gauge theories are
protected against such terms by gauge invariance. Of course, this model is not
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by itself a viable theory, since it has no stable ground state; we shall use it only
as an ersatz for a fully consistent, but necessarily more involved, non-abelian
gauge theory.

The basic problem, as already stated, is to find the dynamics of the “soft”
modes as modified by the virtual “hard” particles, the so-called “hard thermal
loops” (HTLs). Here a “soft” mode corresponds to wavenumbers k ∼ gT , while
a “hard” mode has a much larger wavenumber k ∼ T. Taking the open systems
approach as introduced in Chapter 5, we partition the scalar field Φ = φ + ϕ,
where φ is the soft field, and ϕ is the hard field. The soft and hard field equations
are, respectively

∂2φ− gT

2
φ2 − gT

2
ϕ2
∣∣
soft

+ h = 0 (10.91)

∂2ϕ− gTφϕ− gT

2
ϕ2
∣∣
hard

= 0 (10.92)

In a naive perturbation expansion, we would argue that since the hard modes
appear in equation (10.91) in a O (g) term, we only need to solve equation (10.92)
up to O (1) accuracy. We would neglect the second and third terms in equation
(10.92), proceeding to treat ϕ as a massless Klein–Gordon field. The treatment
simplifies even further if we actually think of the soft modes as a classical field
(which may be justified on the grounds of the large occupation numbers prevalent
in the soft sector of the theory). Then we may replace ϕ2

∣∣
soft

in equation (10.91)
by the thermal expectation value appropriate for a massless field

〈
ϕ2
〉
∼ T 2/6.

In this approximation the
〈
ϕ2
〉

term is canceled by the h term, by design, and we
find that to leading order in g, the hard modes have no effect on the soft modes.

10.6.2 Hard thermal loops

Braaten and Pisarski [BraPis90a, BraPis90b, BraPis92] and Frenkel and
Taylor [FreTay90] were the first to point out that this argument is not only naive,
but actually wrong. The reason is resonance. Assume for simplicity that the soft
modes undergo a homogeneous oscillation φ = φ0 cosωt. Assume also a pertur-
bative expansion ϕ = ϕ0 + ϕ1 + . . . for the hard modes, where ϕn ∝ gn, and
neglect interactions between hard modes. Then ∂2ϕ0 = 0, and we may expand
(in this section, we use natural units)

ϕ0 =
∫

d3k

(2π)3
eikx

√
2k

ϕ0k; ϕ0k = a0ke
−ikt + a†0−ke

ikt (10.93)

with 〈
a†0ka0p

〉
= nkδ(k − p) (10.94)

where nk is the Bose–Einstein distribution

nk =
[
ek/T − 1

]−1 (10.95)

For not-so-hard modes, nk ∼ T/k.
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Now consider the first-order correction. Assuming a Fourier decomposition

ϕ1 =
∫

d3k

(2π)3
eikx

√
2k

ϕ1k (10.96)

we have
∂2

∂t2
ϕ1k + k2ϕ1k = − [gTφ0 cosωt]ϕ0k (10.97)

Neglecting the homogeneous solution, we get, in the limit of soft ω,

ϕ1k =
gTφ0

2k2ω
sinωt

∂

∂t
ϕ0k (10.98)

Glossing over the details of actually computing the expectation values, we see
that a priori we expect a correction to the soft equation of motion of order
of magnitude gT 〈ϕ0ϕ1〉 ∼ g2 (T/ω)T 2φ0. For ω ∼ gT , this is larger than the
classical term ω2φ0 by a factor of g−1, and it cannot possibly be neglected.

In diagrammatic terms, we may represent
〈
ϕ2
〉

as a tadpole graph (cf. Fig. 6.1
in Chapter 6). By considering a soft field insertion, it turns into a fish graph (Fig.
6.7 in Chapter 6). Explicitly〈

ϕ2
〉

= Δ (x, x) + gT

∫
d4y Δ2 (x, y)φ (y) + . . . (10.99)

where Δ represents a massless scalar propagator. We postpone the question on
exactly which propagator is involved, and work for now with the Feynman prop-
agators (as would be the case in the “in-out” formulation). Fourier transforming,〈

ϕ2
〉

=
∫

d4p

(2π)4
Δ (p) + gT

∫
d4k

(2π)4

∫
d4p

(2π)4
Δ (p) Δ (p− k)φ (k) (10.100)

We are interested in the contribution from the second term. Consider the con-
tribution from the thermal part in Δ (p) . Then p is on-shell. Since p− k cannot
be on-shell, Δ (p− k) ∼ (p− k)−2 ∼ 1/2p0ω. The presence of an inverse power
of ω in the integral invalidates the naive perturbation theory when ω is para-
metrically small. If in particular ω ∼ gT , the “correction” is a priori as large as
the leading term.

Moreover, the problem appears with every soft insertion. Adding a soft inser-
tion to a pre-existing graph adds a power of gTφ but also a power of

(
p0ω
)−1. If

we are considering large field amplitudes φ ∼ T, hard momenta p ∼ T , and soft
frequencies ω ∼ gT, then gTφ ∼ p0ω ∼ gT 2. The overall amplitude of the graph
with the insertion is not smaller than without it, and we must sum over all
soft field insertions at once. The result is called a HTL resummed perturbation
theory.

10.6.3 Hard thermal loops from the 2PI CTP effective action

To derive the HTL resummed theory, we shall use the 2PI CTP formalism.
Since graphs with more than one external field insertion cannot be two-particle
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irreducible, they do not appear explicitly in the 2PI effective action (that is, the
graph with a single insertion represents them all). The CTP technique warrants
causality of the resulting equations of motion.

To simplify things, we shall make the semiclassical approximation for the soft
field (that is, we shall not include soft field propagators) and set the hard back-
ground field to zero (that is, the hard field will be represented only by its prop-
agators). The 2PI CTP effective action Γ2 is thus a functional of a CTP soft
background field φA (as before, the index A comprises a branch index a = 1, 2
and a spacetime location x) and hard propagators GAB , and takes the form

Γ2 = S
[
φA
]
+

1
2
S,AB

[
φA
]
GAB − i

2
Tr lnG + ΓQ (10.101)

where S
[
φA
]

= S
[
φ1
]
− S

[
φ2
]
, and

S,AB

[
φA
]

=
{
cab∂

2
x − cabcgTφ

c (x)
}
δ (x− y) (10.102)

(the tensors cabc... take the value 1 when all their indices are 1, −1 when all the
indices are 2, and vanish otherwise). ΓQ is the sum of all 2PI vacuum bubbles with
a cubic vertex and G propagators. It represents the hard field’s self-interactions,
and we shall disregard it for the time being.

Variation of Γ2 yields the 2PI Schwinger–Dyson equation for G

{
cab∂

2
x − cabcgTφ

c (x)
}
Gbd (x, y) = iδdaδ (x− y) (10.103)

(where φ1 (x) = φ2 (x) = φ (x)) and the field equation for the soft modes

∂2φ (x) − gT

2
φ2 (x) − gT

2
G11 (x, x) + h = 0 (10.104)

In principle, one is to solve equation (10.103) for G and plug into equation
(10.104) for φ. In practice, solving equation (10.103) is nontrivial, because of
the spacetime dependence in φ (x). One possibility is to take advantage of the
slow variation of the soft field to write the hard propagator in terms of a Wigner
function. Since there are no hard self-interactions, the result is a Vlasov equation
for the hard-field Wigner function.

10.6.4 The Vlasov equation for hard modes

Observe that the soft field only couples to the hard Hadamard propagator, which,
neglecting hard self-interactions, obeys the simple equation

(
∂2
x − gTφ (x)

)
G1 (x, y) = 0 (10.105)

To avoid formal problems particular to the cubic interaction, we shall assume
φ (x) > 0 throughout.
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Following the usual quantum kinetic theory approach, to be discussed further
in Chapter 11, we decompose

G1 (x, y) =
∫

d4p

(2π)4
eipu G1 (X, p) (10.106)

u = x− y; X =
1
2

(x + y) (10.107)

We also expand

φ (x) ∼ φ (X) +
u

2
∂φ (X) + . . . (10.108)

Keeping the first derivatives only (formally, ∂φ ∼ gTφ) we obtain the mass shell
condition [

p2 + gTφ (X)
]
G1 (X, p) = 0 (10.109)

therefore

G1 (X, p) = 2πδ
(
p2 + gTφ (X)

)
[1 + 2f (X, p)] (10.110)

where the distribution function f obeys the Vlasov equation(
p

∂

∂X
− 1

2
gT

∂φ

∂X

∂

∂p

)
f = 0 (10.111)

We solve this equation perturbatively

f = f0 + f1 + . . . (10.112)

off the thermal distribution

f0 = np0 (10.113)

Then

p
∂

∂X
f1 =

1
2
g

∂φ

∂X0
np0

(
1 + np0

)
(10.114)

which admits the particular solution

f1 =
(−i)

2
gnp0

(
1 + np0

) ∫
d4Y

∫
d4Q

(2π)4
eiQ(X−Y )

p (Q + iε)
∂φ

∂Y 0
(10.115)

To find the soft equation of motion we must compute the coincidence limit
G1 (x, x)

G1 (x, x) = G0
1 (x, x) + G1

1 (x, x) + . . . (10.116)

G0
1 (x, x) =

∫
d4p

(2π)3
δ
(
p2 + gTφ (x)

) [
1 + 2np0

]
∼ T 2

6
+ O (g) (10.117)

G1
1 (x, x) = (−i) g

∫
d4Y

∫
d4Q

(2π)4
eiQ(X−Y ) ∂φ

∂Y 0

×
∫

d4p

(2π)3
δ
(
p2 + gTφ (x)

) np0

(
1 + np0

)
p (Q + iε)

(10.118)
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Assume for simplicity that φ is spatially homogeneous, then the integral over the
space components Y is immediate, and we obtain

G0
1 (x, x) = ig

∫
dY

∫
dQ e−iQ(X0−Y )

(2π) (Q + iε)
∂φ

∂Y

∫
d4p

(2π)3

× δ
(
p2 + gTφ (x)

) np0

(
1 + np0

)
p0

(10.119)

Now ∫
d4p

(2π)3
δ
(
p2 + gTφ (x)

) np0

(
1 + np0

)
p0

∼ α

√
T 3

gφ
(10.120)

where α is some numerical constant. In the other integral, we integrate by parts∫
dY

∫
dQ

(2π) (Q + iε)
e−iQ(X0−Y ) ∂φ

∂Y
∼ −iφ (X) (10.121)

Finally, we retrieve the equation for the soft modes

∂2φ (x) − gT

2
φ2 (x) − αgT 2

4

√
gTφ = 0 (10.122)

The correction is actually larger than the classical potential term when (φ/T ) <
g1/3; in any case, the corrections behave like g3/2 rather than the expected g2.
The infrared sensitivity of the theory invalidates naive perturbation theory.

10.6.5 Ultrasoft modes and Boltzmann equation

We now return to address a possible concern about the consistency of neglecting
interactions among hard modes. A moment’s reflection shows that for soft modes
ω ∼ gT Feynman graphs containing hard cubic vertices are indeed of higher
order. For example, if we compare the graph in Fig. 10.1 to the fish graph, we
see that both lead to one power of ω−1, but Fig. 10.1 has four powers of gT

against 2 in the fish. Even the graph in Fig. 10.2 is safe, because although it
scales as ω−2, it also has four powers of gT in the denominator.

Figure 10.2 becomes unsafe, however, if we push the theory to deal with ultra-
soft modes ω ∼ g2T. To include it into the model, we must reconsider the role of
ΓQ. In particular, we obtain Fig. 10.2 if we approximate ΓQ by the setting-sun

Figure 10.1
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Figure 10.2

graph (Fig. 6.4 in Chapter 6). The three loops graph in Fig. 6.10 of Chapter 6
will lead to graphs of higher order even in the ultrasoft regime.

Adding a nontrivial ΓQ has the important effect that the equation for the
hard propagators becomes nonlinear. We may still make use of Wigner function
techniques, but now the transport equation acquires a collision term – for the
cubic self-interaction, the corresponding kinetic equation has been worked out
by Danielewicz in the early days of NEqQFT [Dan84a, Dan84b], and it is not
quite Boltzmann’s. Of course, if we are only interested in small oscillations, we
may linearize the collision term around the equilibrium solution for zero soft
background. Even after linearization, the presence of the collision term affects
the physics in important ways.

To get an idea of the changes brought by the collision term, we may adopt the
simple “collision time approximation” [Lib98], and write the full kinetic equation
as (

p
∂

∂X
− 1

2
gT

∂φ

∂X

∂

∂p

)
f = −T

τ
(f − f0) (10.123)

where τ is the relaxation time. From naive power counting and dimensional
analysis, we see τ ∼

(
g2T
)−1

. The unperturbed solution is still a Bose–Einstein
distribution, but now the first correction is(

p
∂

∂X
+

T

τ

)
f1 =

1
2
g

∂φ

∂X0
np0

(
1 + np0

)
(10.124)

and we may approximate

f1 =
gτ

2T
∂φ

∂X0
np0

(
1 + np0

)
(10.125)

This introduces a dissipative term in the equation for ultrasoft modes

∂2φ (x) − gT

2
φ2 (x) − 2γ

∂φ

∂X0
= 0 (10.126)

γ =
g2τ

8

∫
d4p

(2π)3
δ
(
p2 + gTφ (x)

)
np0

(
1 + np0

)
(10.127)

An explicit calculation yields

γ ∼ α′g2T 2τ ln
[
T

gφ

]
(10.128)

where α′ is (another) numerical constant.
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Once again, the contribution from HTLs is of order g2T 2φ, much larger than
the classical term ∂2φ/∂X02 ∼ g4T 2φ.

10.6.6 Langevin dynamics of ultrasoft modes

We have seen in the previous section that the dynamics of ultrasoft modes is
dissipative. From the discussion in Chapter 8, we know that it will be noisy as
well. We shall use this as a model problem, by deriving the fluctuations in three
different ways.

Method 1: fluctuation–dissipation theorem for ultrasoft modes

The simplest approach is to apply to the ultrasoft equation of motion (10.126) the
fluctuation-dissipation theorem as discussed in Chapter 8. We modify equation
(10.126) to read

∂2φ (x) − gT

2
φ2 (x) − 2γ

∂φ

∂X0
= ξ (x) (10.129)

〈ξ (x) ξ (x′)〉 = σ2δ (x− x′) (10.130)

The fluctuation–dissipation theorem yields

σ2 = 4γT (10.131)

Method 2: fluctuations from the CTPEA

Our second approach to the derivation of noise in the dynamics of ultrasoft
modes will be based on the derivation of equation (10.129) from the CTPEA, a
problem we already confronted in Chapter 8. The equation of motion, as derived
from the CTPEA, reads

∂2φ (x) − gT

2
φ2 (x) − gT

2

[〈
ϕ2
〉
φ
−
〈
ϕ2
〉
0

]
(x) =

gT

2
ζ (x) (10.132)

We have shown in Chapter 8 that

〈ζ (x) ζ (x′)〉 =
1
2

[〈{
ϕ2 (x) , ϕ2 (x′)

}〉
φ
− 2
〈
ϕ2
〉
φ

(x)
〈
ϕ2
〉
φ

(x′)
]

(10.133)

To compare these expressions to the explicit derivation above, we recall the linear
response theory result (discussed earlier in this chapter)

〈
ϕ2
〉
φ+δφ

(x) =
〈
ϕ2
〉
φ

(x) − igT

2

∫
d4x′ 〈[ϕ2 (x) , ϕ2 (x′)

]〉
φ
θ
(
x0 − x′0) δφ(x′)

(10.134)
Comparison with equation (10.129) yields

〈[
ϕ2 (x) , ϕ2 (x′)

]〉
φ

=
16iγ
g2T 2

∂

∂x0
δ (x− x′) (10.135)
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On the other hand, commutator and anticommutator are related through the
KMS theorem (also discussed earlier in this chapter). Introducing the Fourier
decomposition

〈[
ϕ2 (x) , ϕ2 (x′)

]〉
φ

=
∫

d4p

(2π)4
eip(x−x′)R (p) (10.136)

〈{
ϕ2 (x) , ϕ2 (x′)

}〉
φ

=
∫

d4p

(2π)4
eip(x−x′)R1 (p) (10.137)

then

R (p) =
16γ
g2T 2

p0 (10.138)

and the fluctuation–dissipation theorem yields

R1 (p) =
16γ
g2T 2

(
1 + 2np0

) ∣∣p0
∣∣ (10.139)

In the high-temperature limit, this leads to the classical result

〈ζ (x) ζ (x′)〉 =
16γ
g2T

δ (x− x′) (10.140)

which agrees with the results from Method 1 after identifying ξ = gTζ/2.

Method 3: fluctuations in the Boltzmann equation

Yet another method to derive the fluctuations in the ultrasoft modes is to keep
to the derivation of the ultrasoft equation of motion in the previous section, but
now using for the hard modes the full Boltzmann equation which, as discussed
in Chapter 2, must contain stochastic terms over and above the usual collision
term, thus becoming a Boltzmann–Langevin equation. This means we replace
equation (10.123) by(

p
∂

∂X
− 1

2
gT

∂φ

∂X

∂

∂p

)
f = −T

τ
(f − f0) + J (X,p) (10.141)

where it is understood that p0 is given as a function of the spatial components
p through the mass shell condition. The noise self-correlation has been derived
in Chapter 2. Under the collision time approximation (10.123) for the collision
integral, we get

〈J (X,p) J (Y,q)〉 = 2 (2π)3 δ (X − Y ) δ (p − q)
T

τ
p0 np0

(
1 + np0

)
(10.142)

For the ultrasoft components of the distribution function, we obtain

f1 = f1det +
τ

T
J (10.143)

where f1det is the deterministic solution given in equation (10.125). The equation
of motion for ultrasoft modes (10.126) is transformed into equation (10.129),
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where now we have a model for the noise

ξ (x) =
gT

2

∫
d4p

(2π)3
δ
(
p2 + gTφ (x)

) [ τ
T
J (x,p)

]
(10.144)

leading to the self-correlation

〈ξ (x) ξ (x′)〉 =
g2Tτ

2
δ (x− x′)

∫
d4p

(2π)3
δ
(
p2 + gTφ (x)

)
np0

(
1 + np0

)
(10.145)

Comparing this to equation (10.127), we recover equation (10.130)

10.6.7 A note on the literature

As already mentioned, Braaten, Pisarsky, Frenkel and Taylor were the first to
point out the need to restructure perturbation theory to account for the physics
at different scales. Their work was motivated by the need to derive a reliable
estimate of the decay constants of various fields in a hot non-abelian plasma. In
this context, there are a number of issues associated with the gauge nature of the
fundamental theory (such as whether the right decay constants are automatically
gauge invariant) which have no analog in our toy model. We have only attempted
to give a flavor of the physical ideas behind the formalism.

The subsequent literature on hard thermal loops is voluminous. Le Bellac’s
book [LeB96] has a nice chapter on this subject. Our presentation here is mostly
a retelling of work by Bödeker [Bod98, Bod99] and by Arnold, Moore, Son and
Yaffe [Son97, ArSoYa99a, ArSoYa99b, ArMoYa00] (of course, any flaw incurred
in our attempt to “simplify” their discussion is our own). Important contributions
from Blaizot and Iancu are summarized in the Physics Reports review article by
these authors [BlaIan02]. The Boltzmann–Langevin equation for Φ4 field was
investigated by the authors in [CalHu00] while for non-abelian plasmas by Litim
and Manuel. We recommend their review article as a good entry point to the
literature [LitMan02].

We shall return to some of these issues in later chapters.
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