
SOME OPTIMAL DIVIDENDS PROBLEMS

BY

DAVID C.M. DICKSON AND HOWARD R. WATERS

ABSTRACT

We consider a situation originally discussed by De Finetti (1957) in which a
surplus process is modified by the introduction of a constant dividend barrier.
We extend some known results relating to the distribution of the present value
of dividend payments until ruin in the classical risk model and show how a
discrete time risk model can be used to provide approximations when analytic
results are unavailable. We extend the analysis by allowing the process to con-
tinue after ruin.

1. INTRODUCTION

In this paper we study optimal dividend strategies, a problem first discussed
by De Finetti (1957). De Finetti considered a discrete time risk model and
produced some results in the situation when the aggregate gain of an insurer
per unit time is either 1 or –1. A summary of De Finetti’s work can be found
in Bühlmann (1970, Section 6.4.5), or for a more recent reference see Gerber
and Shiu (2004, Appendix B).

The problem of optimal dividend strategies has also been considered in
continuous time. The textbooks by Bühlmann (1970) and Gerber (1979) dis-
cuss the problem in the context of the classical risk model. See also Gerber and
Shiu (1998, Section 7).

An optimal dividend strategy is almost always taken to be a strategy which
maximises the expected discounted future dividends. Such strategies have been
considered in relation to a variety of models for the insurance surplus process.
These range from De Finetti’s (1957) very simple model, through the classical
continuous time compound Poisson model to more sophisticated models, e.g.
Paulsen and Gjessing (1997), who consider a claims process which includes a
Brownian motion element and stochastic interest on reserves driven by an inde-
pendent Brownian motion, and Højgaard (2002), who considers a process with
dynamic control of the premium income. Some authors have considered the
problem of determining the optimal form of the barrier, e.g. De Finetti (1957)
and Asmussen and Taksar (1997); others have assumed that the barrier is
constant and considered the problem of finding the optimal level for the barrier.
Gerber and Shiu (2004, Section 1) is a rich source of references for the literature
on this subject.
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In this paper we consider both a discrete time risk model and the classical
continuous time risk model. We show how our discrete time risk model can
be used to tackle problems for which analytical solutions do not exist in the
classical continuous time model. In the classical continuous time model, we
generalise a result given in Bühlmann (1970) and Gerber (1979). Our result has
a counterpart in the Brownian motion risk model considered by Gerber and
Shiu (2004). In each of the references mentioned so far, the risk process conti-
nues until ruin occurs, an event which is certain as each study is in the frame-
work of a dividend barrier whose level is constant. We consider the notion
that the risk process can continue after ruin as a result of a suitable injection
of surplus. Siegl and Tichy (1999) also consider the expected present value of
dividends for a surplus model which continues after ruin. However, their model
is different to ours in several important aspects.

We define the classical surplus process {U (t)}t ≥ 0 as

i( )U t u ct X
( )

i

N t

1
= + -

=

!

where u is the insurer’s initial surplus, c is the rate of premium income per
unit time, N(t) is the number of claims up to time t, and Xi is the amount of
the i th claim. {N(t)}t ≥ 0 is a Poisson process, with parameter l, and {Xi}

∞
i =1 is

a sequence of independent and identically distributed random variables, inde-
pendent of {N(t)}t ≥ 0. We denote by mk the kth moment of X1. Let F and f
denote the distribution function and density function respectively of X1, with
F(0) = 0, and let c = (1 + q)lm1, where q > 0 is the premium loading factor. The
ultimate ruin probability from initial surplus u is denoted c(u) and defined by

c(u) = Pr(U(t) < 0 for some t > 0).

We consider the above surplus process modified by the introduction of a divi-
dend barrier, b. When the surplus reaches the level b, premium income no
longer goes into the surplus process but is paid out as dividends to sharehol-
ders. Thus, when the modified surplus process attains the level b, it remains
there until the next claim occurs. We say that ruin occurs when the modified
surplus process falls below 0, and ruin is certain as we are effectively conside-
ring a surplus process in the presence of a reflecting upper barrier. We use the
notation Tu to denote the time of ruin.

Let the random variable Du denote the present value at force of interest d
per unit time of dividends payable to shareholders until ruin occurs (given initial
surplus u), with Vn (u,b) = E [Dn

u ]. An integro-differential equation for V1 (u,b)
can be found in Bühlmann (1970) and Gerber (1979), together with a solution
in the case when the individual claim amount distribution is exponential. A solu-
tion for Vn (u,b) in the case of the Brownian motion risk model (as defined in
Klugman et al (1998)) is given in Gerber and Shiu (2004). In Section 2 we
derive an integro-differential equation for Vn(u,b), and solve this equation when
the individual claim amount distribution is exponential. In Section 3 we con-
sider the distribution of Du when d = 0.
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In Section 4 we consider both the time of ruin and the deficit at ruin and
derive results which we then apply in Section 6 where we allow the process to
continue after ruin. In Section 5 we consider a discrete time model. Notation
for this model is introduced in that section.

2. THE MOMENTS OF Du

In this section we derive an integro-differential equation for Vn (u,b), and find
a boundary condition. We then use this equation to calculate some moments
in the case when the individual claim amount distribution is exponential. We
start, however, with a lemma which we apply in Theorem 2.1.

Lemma 2.1. For any positive d and m and any positive integer m, define:

( , ) .I m e e dtm m d
1t

t m
m

d

0
= -3

-
-

# c m

Then

( , ) ! ( ) .I m m km m d
k

m
1

1

= + -

=

%

Proof. Integrating by parts, it can be seen that

( , ) ( , ).I m m I mm m d m d1=
+

- +

Hence

( , ) ( ) ( ) ... ( ( )
( ) ...

( , ( ) ).)I m m
m m

I mm m d m d m d m d
2 1

1 2
1 1=

+ + + -
-

+ -

It can be checked that

( , ( ) ) ( )I m mm d m d1 1 1+ - = + -

and the result follows. ¬

Remark 2.1. We remark that the above result holds when d = 0, provided we
interpret (1 – e – dt) /d as t in this case.

Theorem 2.1. For n = 1,2,3,..., Vn(u,b) satisfies the integro-differential equation

n n n( , ) ( , ) ( ) ( , )du
d V u b c

n V u b c f x V u x b dxl d l u

0
= + - -# (2.1)
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with boundary condition

n ( , ) ( , ).du
d V u b nV b b

u b
n 1=

=
- (2.2)

Proof. Let 0 ≤ u < b, and let t denote the time at which the surplus would
reach b if there were no claims, so that u + ct = b. By considering whether or
not a claim occurs before time t, we have

n

( , ) ( , )

( ) ( , ) ,

V u b e V b b

e f x V u ct x b dx dtl

( )

( )

n
n
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n t
u ct
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l d
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- +
+

# # (2.3)

and substituting s = u + ct we get

n
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( )( ) /

( )( ) /

n
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Differentiating with respect to u, we obtain

n n( , ) ( , ) ( ) ( , ) ,du
d V u b c

n V u b c f x V u x b dxl d l
n

u

0
= + - -#

which is equation (2.1).
To obtain the boundary condition (2.2), we first consider Vn(b,b). By condi-
tioning on the time and the amount of the first claim we have

j
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where, in standard actuarial notation, s t = (e dt – 1) / d.
Applying Lemma 2.1 we have
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Also, by rearranging (2.1) we have

n n n( , ) ( , ) ( ) ( , ) .V b b n
c
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Hence, by equating the above two expressions for Vn(b,b) we obtain
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(2.4)

We can now prove (2.2) by induction. We note that V0(b,b) = E [D0
u ] = 1. Equa-

tion (2.2) is already known to be true for n = 1. See, for example, Gerber and
Shiu (1998, Section 7). Now let us assume that it is true for n = 1,2, …, m. Then
by (2.1) and (2.2)

m m( , ) ( , ) ( ) ( , )V b b m
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Next, by (2.4),
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which completes the proof. ¬

We remark that Gerber and Shiu (2004, formula (4.11)) have shown that (2.2)
also holds for the Brownian motion risk model.

Example 2.1. Let F (x) = 1 – exp{–�x}, x ≥ 0, with � > 0. Then by a standard
technique (see, for example, Gerber (1979, p. 116)) we get

n n( , ) ( , ) ( , ) .� �
du
d V u b c

n
du
d V u b c

n V u bl d d 0n2

2

+ - + - =b l

For this individual claim amount distribution, Lundberg’s fundamental equation
with force of interest nd (see Gerber and Shiu (1998, Section 2)) is

� �s c
n s c

nl d d 02 + - + - =b l (2.5)

which gives

n ( , ) exp expV u b k r u k r u, , , ,n n n n1 1 2 2= +# #- - (2.6) 

where r1,n and r2,n are the roots of (2.5). To solve for k1,n and k2,n (which are both
functions of d), we use equation (2.1) and insert the functional form for Vn given
by (2.6) and the form of the density f. Integrating out we find that
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and
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Equation (2.7) is well known when n = 1. See, for example, Bühlmann (1970).
Table 2.1 shows some values of the mean, standard deviation and coefficient of
skewness of D20 when � = 1, d = 0.1, l = 100 and c = 110, with b varying. We
comment on these values in the next section.

3. THE DISTRIBUTION OF Du WHEN d = 0

In this section we consider the special case when d = 0. Gerber and Shiu (2004)
consider this case for the Brownian motion risk model and show that the dis-
tribution of Du is a mixture of a degenerate distribution at 0 and an exponen-
tial distribution. As shown below, this is also the case for the classical risk model.

Consider first the case when 0 ≤ u < b. Then the probability that there is a
first dividend stream is the probability that the surplus reaches b without ruin
occurring first, the probability of which is x (u,b) where

( , ) ( )
( )

.u b b
u

x c
c

1
1

=
-
-
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TABLE 2.1

MEAN, STANDARD DEVIATION AND COEFFICIENT OF SKEWNESS OF D20.

b Mean St. Dev. Skewness

20 46.496 35.705 0.8737
30 65.011 43.875 0.1472
40 72.355 42.811 –0.2733
50 71.324 39.706 –0.4133
60 66.896 36.866 –0.3978
70 61.620 34.386 –0.3246
80 56.404 32.129 –0.2361
90 51.520 30.023 –0.1464

100 47.025 28.042 –0.0596
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See Dickson and Gray (1984). Given that there is a first dividend stream, the
probability that there is a second stream of dividend payments is p(b) where

( ) ( ) ( , ) ( )p b f x b x b dx q bx 1def
b

0
= - -#

since a second stream can occur only if the amount of the claim that takes the
surplus process away from the dividend barrier is no more than b. Hence, if N
denotes the number of streams of dividend payments, N has a zero-modified
geometric distribution with Pr(N = 0) = 1 – x (u,b) and for r = 1, 2, 3, ...,

( ) ( , ) ( ) ( ).Pr N r u b p b q bx r 1= = -

Thus

N ( ) ( , ) ( )
( , ) ( )

.M t u b p b e
u b q b e

x
x

1
1 t

t

= - +
-

Now let Di denote the amount of the ith dividend stream, so that Du = Dii

N

1=
! .

Clearly {Di}
∞
i = 1 is a sequence of independent and identically distributed ran-

dom variables. We note that the time until a claim from the time the surplus
process reaches b is exponentially distributed with mean 1/l due to the mem-
oryless property of the exponential distribution. Hence, the distribution of D1
is exponential with mean c /l, and so

( ) expM t E t ctl
lD1= =
-

6 @" ,

giving

D ( ) ( ) ( , ) ( ) ( )
( , ) ( ) ( )

( , ) ( , ) ( )
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u b q b M t

u b u b q b ct
q b

x
x

x x l
l

1
1

1

Nu
= = - +

-

= - +
-

6 @

Thus, the distribution of Du is a mixture of a degenerate distribution at 0 and
an exponential distribution with mean c / (lq (b)).

Applying the above argument when u = b, we see that the distribution of
Db is exponential with mean c / (lq (b)).

We remark that when d = 0, the coefficient of skewness of Du is always
positive. However, it can be seen from Table 2.1 that this is not the case when
d > 0.

4. TIME AND SEVERITY OF RUIN

In this section we derive results relating to the time and severity of ruin that we
will apply in Section 6. Let Yu denote the deficit at ruin given initial surplus u.
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We will consider E [e – dTuY n
u ], of which E [e– dTu] is an important special case.

To do this, we adopt the approach of Gerber and Shiu (1998) and consider
a function �n(u,b) defined by �n(u,b) = E [e – dTuY n

u ]. This is just the function �
defined in equation (2.10) of Gerber and Shiu (1998), modified to our model.
In particular, P (Tu < ∞) = 1 in our model. Properties of a more general ver-
sion of the function �n(u,b) are discussed in detail by Lin et al (2003).

Let t be as previously defined. Then by conditioning on the time and the
amount of the first claim,

( , ) ( ) ( )

( ) ( )

( ) ( , )

( ) ( , )

( ) ( )

( ) ( )

( ) ( , )

( ) ( , )

�

�

�

�

�

u b e y u ct f y dydt

e y b f y dydt

e f y u ct y b dydt

e f y b y b dydt

c e y s f y dyds

c e y b f y dyds

c e f y s y b dyds

c e f y b y b dyds

l

l

l

l

l

l

l

l

1

1

1

1

( )

( )

( )

( )

( )( ) /

( )( ) /

( )( ) /

( )( ) /

n
t n

u ct

t n

b

t
n

u ct

t
n

b

s u c

u

b
n

s

s u c

b

n

b

s u c

u

b

n

s

s u c

b n

b

l d
t

l d

t

l d
t

l d

t

l d

l d

l d

l d

0

0 0

0

0

0

= - -

+ -

+ + -

+ -

= -

+ -

+ -

+ -

3

3 3

3

3

3 3

3

- +

+

- +

- +
+

- +

- + -

- + -

- + -

- + -

# #

# #

# #

# #

# #

# #

# #

# #

giving

( , ) ( ) ( )

( ) ( )

( ) ( , )

( ) ( , ) .

�

�

�

ce u b e y s f y dyds

e y b f y dyds

e f y s y b dyds

e f y b y b dyds

l

l

l

l

( ) / ( ) /

( ) /

( ) /

( ) /

u c
n

s c

u

b
n

s

s c

b

n

b

s c

u

b

n

s

s c

b n

b

l d l d

l d

l d

l d

0

0

= -

+ -

+ -

+ -

3

3 3

3

- + - +

- +

- +

- +

# #

# #

# #

# #

Hence

( )
( , ) ( , )

( ) ( ) ( ) ( , )

� �

�

ce c u b du
d u b

e y u f y dy e f y u y b dy

d l

l l

( ) /

( ) / ( ) /

u c

u c n u c

u

u

l d

l d l d

0

- +
+

= - - - -
3

- +

- + - +

n n

n# #

d n

SOME OPTIMAL DIVIDENDS PROBLEMS 57

https://doi.org/10.2143/AST.34.1.504954 Published online by Cambridge University Press

https://doi.org/10.2143/AST.34.1.504954


or
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which can be written as
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Example 4.1. Let us again consider the case when F(x) = 1 – exp{– �x}, x ≥ 0,
with � > 0. It is straightforward to show that
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d u b c u bd l d 02

2

+ - + - =n n nb l

giving

( , )� u b h e h er u r u
1 2

1 2= +n

where r1 and r2 are what were called r1,1 and r2,1 in Example 2.1. Inserting for �n
and f in (4.1) we find that

! ,
� �

�
�

�n
r

h
r

h
n

1

1

2

2= + + + (4.3)

where hi = hi(d) for i = 1,2. Also

( , )�du
d u b h r e h r e

u b

r b r b
1 1 2 2

1 2= +
=

n
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1
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-

From (4.3) it follows that

u u
! ,

�
E e Y E e E Y E e nn n

n
dT dT dTu= =- - -u u7 7 7 7A A A A

a result we could have anticipated as the distribution of the deficit at ruin is
exponential with mean 1/�, independent of the time of ruin. A little algebra shows
that

( ) ( ) ,
� �

E e c r r e r r e
r e r el

r b r b

r b r u r b r u
dT

1 1 2 2

1 2

1 2

1 2 2 1

=
+ - +

-
-

+ +

u7 A (4.4)

where we have used the fact that (� + r1) (� + r2) = l�/c. An alternative method
of deriving this result is given by Lin et al (2003).

5. DISCRETE TIME MODELLING

In this section we consider the discrete time model described by Dickson and
Waters (1991). In this model, the surplus process is {U(n)}∞

n = 0, where U(0) = u
(an integer) and U(n) = U(n – 1) + 1 – Zn, where {Zn}

∞
n = 1 is a sequence of inde-

pendent and identically distributed random variables. The premium income
per unit time is 1, and Zn denotes the aggregate amount of claims in the nth
time period, with E [Z1] < 1.

The distribution of Z1 is compound Poisson with Poisson parameter 1/[(1 +
q)b ], where we choose b to be a positive integer, and individual claims are dis-
tributed on the non-negative integers, with a mean of b. A consequence of this
is that the premium contains a loading of q. Dickson and Waters (1991, Sec-
tion 1) explain how this model can be used to approximate the classical risk
model of Section 1 using a process of rescaling of both time and monetary
units, and by discretising the individual claim amount distribution F.

Let b again be a dividend barrier, and let b be an integer. A dividend of 1
is payable at time n only if the surplus was at level b at time n – 1 and there
are no claims at time n, for n = 1,2,3, .... With a slight abuse of notation, we
again let Du denote the present value of dividends payable until ruin at force
of interest d ≥ 0 per unit time, and again denote E [Dn

u ] by Vn(u,b). We are thus
generalising De Finetti’s original model by allowing the increment of the
(unmodified) surplus process to be one of 1, 0, –1, –2,..., compared with 1 or –1
in De Finetti’s model. We define ruin to be the event that the surplus goes to
zero or below at some time n > 0, but we allow the surplus at time 0 to be 0.

Conditioning on the aggregate claim amount in the first time period, and
letting gj = Pr(Z1 = j), we find that for u = 0,1,2, ..., b – 1
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n nj( , ) ,V u b e g V u j b1n

j

u
d

0
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=

! ^ h (5.1) 

and

n j nj( , ) ( , ) , .V b b e g n
j V b b g V b j b1n

j

b

j

n
d

0
10

= + + --

==

!!c ^e m ho (5.2)

Thus, we have b + 1 linear equations for the unknowns Vn(u,b), u = 0,1,2,...,b,
and we can solve these by standard methods. Claramunt, Mármol and Alegre
(2002) investigate the expected present value of dividends in a discrete time model
and formulae (5.1) and (5.2) above with n = 1 correspond to their formula (4).

The same approach can be applied to finding moments of the discounted
time of ruin and severity of ruin. We again let Tu denote the time of ruin from
initial surplus u, and note that Pr(Tu < ∞) = 1. Defining �0(u,b) = E [e–dTu] and
letting

j( ) ( )k G k gG 1
j k 1

= - =
3

= +

!

we have

j( , ) , ( )� �u b e g u j b uG1
j

u
d

0 0
0

= + - +-

=

! ^e h o (5.3)

for u = 0,1,2, ...,b – 1, and

j( , ) ( , ) , ( ) .� � �b b e g b b g b j b bG1
j

b
d

0 0 0 0
1

= + + - +-

=

! ^e h o (5.4)

Let Yu again denote the deficit at ruin, and let �1(u,b) = E [e–dTuYu ]. Then

j

j
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for u = 0,1,2, ...,b – 1, and

j

j

j

j
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Calculation of the functions �0 and �1 involves solving b + 1 linear equations
in the same number of unknowns. This can be done by standard methods.

Other quantities can similarly be calculated for this model. For example, for
u = 0,1,2,…,b – 1,

( )E T g E T u g E TG1 1u j u j
j

u

j
j

u

u j1
0 0

1= + + = ++ -
= =

+ -! !_ i6 7 7@ A A

and

j

j

( )

.

E T g E T g E T b

g E T g E T

G1 1

1

b b
j

b

b j

b
j

b

b j

0
1

1

0
1

1

= + + + +

= + +

=
+ -

=
+ -

!

!

^ _h i6 6 7

6 7

@ @ A

@ A

Two quantities we will need in Section 6 are z(u,b) def E [Due–dTu] and g(u,b) def

E [Due–dTuYu]. We calculate these as follows.
For u = 0,1,2, ...,b – 1,

j( , ) ,u b e g u j bz z 1
j

u
d

0

= + --

=

! ^ h

noting that no dividends are payable if ruin occurs at time 1, and

( , ) , ( , ) ( , ) .�b b e g b j b g b b b bz z z1j
j

b
d

0 0
1

= + - + +-

=

! ^e h o6 @

Similarly, for u = 0,1,2, ...,b – 1,

( , ) ,u b e g u j bg g 1j
j

u
d

0

= + --

=

! ^ h

and

( , ) , ( , ) ( , ) .�b b e g b j b g b b b bg g g1j
j

b
d

0 1
1

= + - + +-

=

! ^e h o6 @

Example 5.1. In this example we compare approximations with exact values
based on an individual claim amount distribution in the classical risk model
that is exponential with mean 1. To perform calculations in our discrete model,
we discretised this exponential distribution according to the method of De Vylder
and Goovaerts (1988). This discretisation method is mean preserving which facili-
tates calculation of the function �1. In the classical risk model, let us set l = 100,
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d = 0.1 and q = 0.1. In our discrete model, let b = 100. Table 5.1 shows exact
and approximate values of V1(u,100), V2(u,100), E [Tu ] and E [exp{– dTu}] for
a range of values for u. (A formula for E [Tu ] is given by Gerber (1979, p. 150).)
We see from this table that the approximate values are very close to the true values.
We have observed this to be the case for other values of b but we also found that
for a given value of b, accuracy improves as b increases. Also, we note that in Dick-
son and Waters (1991) a smaller value of b was adequate to provide good approxi-
mations – in that case to non-ruin probabilities. We believe that a small value such
as b = 20 will not be particularly appropriate for our current purpose. In all sub-
sequent calculations in this paper, a scaling factor of b = 100 has been used in
our discrete model, and the above mentioned discretisation procedure has been
applied.

We conclude this section by noting that the methodology of Section 3 can be
applied to show that when d = 0, the distribution of Du is a mixture of a degen-
erate distribution at 0 and a geometric distribution on the non-negative inte-
gers for 0 ≤ u < b, and the distribution of Db is geometric.

6. OPTIMAL DIVIDENDS

One approach to selecting the level of the dividend barrier is to set it at b*
where b* is the value of b which maximises V1(u,b). See Bühlmann (1970) or
Gerber (1979). In the case when F is an exponential distribution with mean 1/�,
the optimal level is

log
�

�
b r r r r

r r1*

1 2 1
2

1

2
2

2= - +

+

^

^

h

h
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TABLE 5.1

EXACT AND APPROXIMATE VALUES OF V1(u,100), V2(u,100), E [Tu ] AND E [exp{– dTu}]

V1(u,100) V2(u,100) E [Tu] E [exp{–dTu}]

u Exact Approx. Exact Approx. Exact Approx. Exact Approx.

0 4.6812 4.6810 278.90 278.88 976.07 976.45 0.9009 0.9008
10 33.353 33.352 2,030.8 2,030.6 6,803.9 6,806.5 0.3343 0.3343
20 47.025 47.023 2,997.7 2,997.4 9,151.2 9,154.8 0.1242 0.1242
30 55.423 55.421 3,760.6 3,760.3 10,096 10,100 0.0462 0.0462
40 62.185 62.182 4,533.0 4,532.6 10,477 10,481 0.0173 0.0173
50 68.689 68.686 5,403.6 5,403.2 10,629 10,633 0.0066 0.0066
60 75.482 75.479 6,421.0 6,420.4 10,690 10,694 0.0027 0.0027
70 82.802 82.799 7,622.7 7,622.1 10,714 10,718 0.0012 0.0012
80 90.779 90.775 9,047.0 9,046.3 10,723 10,727 0.0007 0.0007
90 99.505 99.500 10,737 10,736 10,726 10,730 0.0006 0.0006

100 109.06 109.06 12,741 12,740 10,726 10,731 0.0005 0.0005
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FIGURE 1: V1(u,b), Pareto claims

where r1 and r2 are as in Example 4.1. If this quantity is negative, the optimal
level is b* = u. See Gerber and Shiu (1998). Generally, it is difficult to find the
optimal level analytically, but it is not difficult to find it numerically if we can
find an expression for V1 (u,b). In other cases, we can use our discrete time
model to find an approximation to the value of b*. As an example of this,
Figure 1 shows V1(u,b) as a function of b when l = 100, c = 110 and d = 0.1
for u = 10, 30, 50 and 70 when the individual claim amount distribution is
Pareto(4,3). From this we observe the features that are known in the case of
exponential claims, namely that there is an optimal level here for b indepen-
dent of u (51 to the nearest integer), and that if u exceeds this optimal level,
the maximum value of V1(u,b) occurs when b = u.

Under the criterion of maximising the expected present value of dividend
payments until ruin, the optimal strategy is to set a constant dividend barrier.
See, for example, Borch (1990). Asmussen and Taksar (1997) have shown that
this result also holds, under certain conditions, when the surplus is driven by
a Brownian motion. In what follows, we investigate the expected present value
of dividend payments under a constant dividend barrier. We make no claims
about the optimality of a constant dividend barrier, but view our study as a
natural extension of existing work.

6.1. Modification 1

As the shareholders benefit from the dividend income until ruin, it is reason-
able to expect that the shareholders provide the initial surplus u and take care
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of the deficit at ruin. Under this scenario the expected present value of (net)
income to shareholders is

( , ) ( , ) .L u b V u b u E e Ydef T
u

d
1

u- - -
7 A

Consistent with the approach of the previous subsection, a reasonable objective
is now to find the value of b that maximises L (u,b) for a fixed value of u.

Example 6.1. Again let F(x) = 1 – exp{–�x}, x ≥ 0, with � > 0. Then from (2.7)
and (4.4),
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and this partial derivative is zero when
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using r1r2 = – �d /c. For the same numerical inputs as in Example 2.1 we find
that the optimal value of b is 43.049.

Figure 2 shows values of L(u,b) for u = 10,20,...,50 when individual claims are
distributed as Pareto(4,3), c = 110, l = 100 and d = 0.1. These plots are based
on calculated values of L(u,b) for integer values of b using the approach of the
previous section, and they suggest that an optimal barrier level is around 51.

Figure 3 shows the coefficient of variation of the present value of (net)
income to shareholders in the case of exponential claims, as approximated by
the model of the previous section. To calculate this we require E [(Du – e– dTuYu)2]
which can be calculated as

2 u( , ) ( , )V u b u b E e Yg2 Td2 2u- + -
7 A

where the final term can be calculated using the approach in Section 5 to the
calculation of �0 (u,b). We note from Figure 3 that the value of b which mini-
mises the coefficient of variation varies with u, but is around 51, compared with
the value 43.049 being optimal in the sense of maximising L(u,b). As each
curve in Figure 3 is relatively flat around its minimum, we conclude that choosing
b to minimise L(u,b) is a reasonable strategy. We observed similar features in
the case of Pareto(4,3) claims.

An alternative objective is to find the optimal level of investment, assuming
there is no restriction on the amount the shareholders can input. As

1( , ) ( , )du
d L u b du

d V u b du
d E e Y1 T

u
d u= - - -

7 A
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we note from (2.2) and (4.2) that du
d L(u,b) is zero when u = b. However, we are

unable to determine whether the derivative is zero elsewhere, so we cannot say
whether the maximum of L(u,b) occurs when u = b.

In the case of the numerical illustration in Example 6.1, a numerical search
shows that the optimal investment level is 43.049, with the barrier at the same
level.

As a matter of mathematical interest we note that for the function �n defined
in Section 4,

1 ( , ) ( , ) .�du
d V u b u u b 0n

u b
- - =

=

^ h

6.2. Modification 2

We again assume that the shareholders input u, but now suppose that when ruin
occurs, the shareholders immediately pay the amount of the deficit at ruin, so
that the surplus at the time of ruin is then 0. The insurance operation can then
continue from this surplus level, and the operation from the time of ruin is inde-
pendent of the past, so that each time ruin occurs, the surplus can be restored
to 0 and this time point is a renewal point of the new process. The surplus is
now moving indefinitely between 0 and b. It can remain at b for a period, but
immediately moves away from 0. Now let V(u,b) denote the expected present
value of dividends only. Then

1( , ) ( , ) ( , ).u b V u b E e bV V 0Td u= + -
7 A
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Hence
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Now let W(u,b) denote the expected present value of payments to be made by
the shareholders when the surplus falls below 0. Then
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7 7A A
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Defining M(u,b) to be the expected present value of net income to the share-
holders, our strategy is to find the value of b which maximises
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Figure 4 shows M(u,b) as a function of b for u = 0, 10, 30 and 50 when l = 100,
c = 110, d = 0.1 and the individual claim amount distribution is exponential
with mean 1. From this figure we deduce that for this set of parameters, the
optimal strategy is to set u = b = 0 and in the Appendix we prove that this is
generally the case.

The explanation for this optimal strategy is that we are dealing only with
expected values. When u = b = 0, the shareholders are acting as the insurer: they
receive the premium income and pay each claim in full when it occurs. The posi-
tive loading factor in the premium ensures that the shareholders’ expected
profit is positive. However, the probability that at some future time the share-
holders’ outgo will exceed their income is c(0) = 1/(1 + q).

6.3. Modification 3

The deficiency of the optimal strategy under Modification 2 suggests that the
shareholders should seek a solution under which they make no payments after

SOME OPTIMAL DIVIDENDS PROBLEMS 67

https://doi.org/10.2143/AST.34.1.504954 Published online by Cambridge University Press

https://doi.org/10.2143/AST.34.1.504954


time 0, but can still receive dividend income after ruin occurs. Let us suppose
that the shareholders purchase a reinsurance policy which provides them with
the amount of the deficit each time that ruin occurs. Such a policy is discussed
in the context of the (unrestricted) classical surplus process by Pafumi (1998)
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FIGURE 5: N (u,b), exponential claims

FIGURE 6: N (u,b), Pareto claims
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in his discussion of Gerber and Shiu (1998). In our examples, we assume that
the reinsurance premium is calculated by the expected value principle. Let qR
denote the loading factor used by the reinsurer. Then by previous arguments,
the reinsurance premium is

u .RP E e Y E e
E e

E e Y
q1

1R
T T

T

T
d d

d

d
0u u
0

0
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Our strategy is now to find the value of b that maximises

( , ) ( , ) .N u b u b u RPVdef - -

Let us assume that claims are exponentially distributed with parameter �.
Inserting expressions for V(u,b) and RP into the formula for N (u,b), it can be
shown after some algebra that

( , ) ( ) ( )db
d N u b k u k b1 2=

where k1(u) is a function of u, but not b, and k2(b) is a function of b, but not u.
Further db

d N (u,b) = 0 if and only if

( ) ( ) ( ) ( ) .� �r r e r r e c r r eq l1 ( )r b r b
R

b r r
1 1 2 2 1 2

1 2 1 2+ - + = + - +

Figure 5 shows N(u,b) as a function of b for u = 0,5,10,15 and 20 for the fol-
lowing parameter values: � = 1, l = 100, c = 110, d = 0.1 and qR = 0.25. In this
case, the optimal value of b is 16.195. Further, the optimal strategy in this
case is to invest this amount and set the barrier at this level, giving N (16.195,
16.195) = 82.80. Note that

82.80 > 16.195 + 31.85 = u + RP.

Figure 6 shows N(u,b) for Pareto(4,3) claim sizes, with all other parameters as
in Figure 5. This appears to show the same feature as Figure 5, namely that
the optimal value of b is independent of u, but we have not been able to prove
that this is true. From Figure 6, the optimal value of b is 20 (to the nearest inte-
ger), and N (20,20) = 77.68. Note that in this case RP = 43.96 and

82.80 – 16.195 – 31.85 > 77.68 – 20 – 43.96.

Considering the greater variance associated with Pareto claims, it is somewhat
surprising that a difference of only 3.8 in initial surplus is required compared
with the case of exponential claims.

Figure 7 shows the coefficient of variation in the case of Pareto(4,3) claims.
We observe that this function has an unusual shape. However, the function
does not vary greatly around b = 20.
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We also calculated values of N(u,b) for different values of qR. Our calcu-
lations were for integer values of u and b, and we observed that as qR increased,
the largest value of N(u,b) over all u and b decreased, with this largest value
almost always occurring with u = b. Further, for increasing qR, the value of b
maximising N(b,b) increased.
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APPENDIX

In this Appendix we consider Modification 2, as set out in Section 6.2. We
prove that u = b = 0 is optimal for this model in the sense that this maximises
M(u,b), the expected present value of the net income to the shareholders.

For a given initial surplus u and a dividend barrier at b (≥ u), let D*
t (u,b) be

a random variable denoting the total net income to the shareholders in (0,t].
Then, since the shareholders have to provide the initial surplus, the total net
income to the shareholders in [0, t] is D*

t (u,b) – u. Hence:

s( , ) ( , ) .M u b E e dD u b usd

0
= -

3
-

+

*#; E

For any u and b such that 0 ≤ u ≤ b and any t ≥ 0, let:

( , ) ( , ) ( , ) .C u b D D u b u0 0t t t= - +* * *

Then:

s( , ) ( , ) ( , ) .M M u b E e dC u b0 0 sd

0
- =

3
-

-

*#; E

We will show that this difference is non-negative by showing in the following
Result that the integral is non-negative with probability one.

Result: For any u (≥ 0), b (≥ u), d (≥ 0) and t (≥ 0) we have:

. .( , ) w pC u b 0 1t $* (A1)

and

s . .( , ) w pe dC u b 0 1s
t

d

0
$-

-

*# (A2)

Proof. Let U *
t (u,b) be the level of the modified surplus at time t +, so that:

t ( , ) ( , ).U u b u ct X D u b*
( )

i
i

N t

1

= + - -
=

t
* ! (A3)

By considering the sample paths of the modified surplus processes, it is clear
that for b ≥ u ≥ 0:

t t t( , ) ( , ) ( , )U u b U u u U 0 0 0$ $ /* * *
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and hence from (A3) that:

t t( , ) ( , ) .D D u b u0 0 $ -* *

This proves (A1).
Let t1, t2, … denote the (random) times of the claims for the surplus process.

To prove (A2), note that the income stream contributing to D*
t (u,b) consists

of continuous payments at constant rate c during some time intervals, i.e. when
dividends are being paid, and some negative lump sums at some of the claim
instants, i.e. payments to restore the surplus to zero following a claim which
causes ruin. The income stream contributing to D*

t (0,0) consists of continu-
ous payments at constant rate c in each interval (ti –1, ti) and negative lump
sums at each claim instant equal to the corresponding claim amount. Hence,
the income stream contributing to C *

t (u,b) consists of a non-negative payment
of u at time 0, non-positive discrete cash flows at times t1, t2, … and, in each
time interval (ti –1, ti), at most one interval of continuous cash flow at constant
rate c.

Note that the only cash flows contributing to C *
t (u,b) between ti –1 and ti

are non-negative, so that if:

s ( , )e dC u b 0s
t

d

0

i 1

$-

-

-
*#

then:

s ( , )e dC u b 0s
t

d

0
$-

-

*#

for t ∈ [ti –1, ti). Hence, it is sufficient to prove (A2) for t = t1, t2, …
Consider the interval [0, t1]. Since the only non-positive cash flow in this inter-
val is at time t1, the accumulated amount of the cash flows must exceed C*

t1
(u,b),

so that:

s ( , ) ( , ) .e dC u b C u b 0( )t s
t

t
d

0

1
1

1
$ $-

-

* *#

Hence, (A2) is true for t = t1.
Suppose (A2) holds for t = t1,…,tn for some positive integer n. Then, by hypo-
thesis:

s s( , ) ( , ) .e e dC u b e dC u b 0t s
t

s
t

d d d

0 0

n $ $-

-

-

-

n n
* *# #

Since the accumulated cash flow to time tn is positive, the accumulated cash
flow to any time t in (tn, tn + 1) is also positive (since cash flows are non-nega-
tive in (t, tn + 1)). Further, as C *

tn+1
(u,b) ≥ 0,

s ( , )e e dC u b 0t s
t

d d

0

n
n 1

$-

-

+
*#
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and hence

s ( , ) .e dC u b 0s
t

d

0

n 1

$-

-

+
*#

Formula (A2) then follows by induction. ¬
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