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Abstract
Computers hold the potential to draw legislative districts in a neutral way. Existing approaches to automated

redistrictingmay introduce bias and encounter difficultieswhendrawing districts of large and evenmedium-

sized jurisdictions. We present a new algorithm that can neutrally generate legislative districts without

indications of bias that are contiguous, balanced and relatively compact. The algorithm does not show

the kinds of bias found in prior algorithms and is an advance over previously published algorithms for

redistricting because it is computationally more efficient. We use the new algorithm to draw 10,000 maps

of congressional districts in Mississippi, Virginia, and Texas. We find that it is unlikely that the number of

majority-minority districts we observe in the Mississippi, Virginia, and Texas congressional maps of these

states would happen through a neutral redistricting process.

Keywords: geographic information systems, graphs, simulation methods, Monte Carlo simulation, data

analysis algorithms

1 Introduction
Geographically defined legislative districts present a temptation for politically motivated

mapmakers. It has long been understood that those responsible for drawing districts may

pervert mechanisms of representation by drawing the boundaries of districts in ways that

advantage (or disadvantage) certain groups. A recent example illustrates this point. In 2010,

Scott Walker won election as governor of Wisconsin. In addition to Walker’s victory, Republicans

running for seats in Wisconsin’s State Senate and Assembly benefited from a wave of discontent

with Democrats and established majorities in both chambers of Wisconsin’s state legislature.

The victory was well timed because following the census in 2010, Walker and legislative

Republicans had the opportunity to redraw the state’s state-legislative and congressional districts

in advance of the 2012 election without meaningful Democratic opposition. The result was a set

of legislative districts that ensured significant Republican majorities in Wisconsin’s legislature

and congressional delegation. When a group of Democratic voters challenged the map of

state-legislative districts in federal court, an expert testifying on behalf of the Democrats argued

that the Republican drawn districts potentially undermined a core principal of representative

democracy, majority rule. The expert argued that it would take a “political earthquake” for

Democrats to win a majority of seats in the legislature even though Wisconsin Democrats

frequently won a majority of votes cast in legislative elections and in state-wide races (Johnson

2016a). Wisconsin Republicans countered that their advantage grew out of the concentration of

Democrats in urban areas, and themap they drew simply reflected themore efficient distribution

of Republicans in suburban and rural areas (Johnson 2016b). The question left for the panel of

federal judges hearing the case was whether the Republicans had pushed their advantage too far.

In this article, we advocate for a method for evaluating just how perverse a set of legislative

districts are. The method relies on the development of a counterfactual—a null distribution of

possible redistricting outcomes. To have confidence that an observed map is extreme enough
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to warrant remedy, it is necessary to characterize a representative distribution of possible

redistricting outcomes. In practice, this requires using a computer to draw a large number of

alternative maps according to a set of neutral criteria.1 In comparing an observed outcome to a

large set of neutral alternatives,wemaydetermine thedegree towhich observedmapsdiffer from

what we would expect a neutral process to yield.2

Weare not the first to propose theprincipal uponwhich themethod is basednor arewe the first

to propose an automated process for drawing legislative districts. In 1961, economist and future

Nobel laureate William Vickrey posited that it was possible to eliminate “chicanery” from the way

legislative districts are drawn. He suggested that a neutral algorithm could solve the redistricting

problem, the process of dividing a set of geographic units into a smaller number of districts, in an

“automatic and impersonal” way (110). In the years and decades that followed, computers made

it possible for scholars to implement methods for developing optimal, neutral maps of legislative

districts (see Weaver and Hess 1963, Nagel 1965, Garfinkel and Nemhauser 1970, Browdy 1990,

Bozkaya, Erkut, and Laporte 2003, Chou and Li 2006 and Fryer Jr and Holden 2011). At the same

time, analysts recognized that retrieving an unbiased counterfactual of a jurisdiction’s legislative

districts is useful in a variety of applications (see Engstrom and Wildgen 1977, O’Loughlin and

Taylor 1982, Cirincione, Darling, and O’Rourke 2000, McCarty, Poole and Rosenthal 2009, Chen

and Rodden 2013, Chen and Cottrell 2016, Fifield et al. 2015a, Tam Cho and Liu 2016). In spite of

Vickrey’s assertion that developing a neutral process to draw legislative districts would be “not at

all difficult” (1961, 110), computer-automated redistricting turned out to be at best a challenging

problem and at worst an intractable one in complex redistricting scenarios. There are at least

two difficulties automated processes encounter; first, an algorithm designed to generate maps of

districtsmay take a biased sample of all possible legislativemaps (Altman et al. 2015); and second,

manyof themost interestingand important redistrictingproblemsare so complex that automated

methods may fail to efficiently produce a meaningful distribution of possible alternative maps.3

In this article, we present an algorithm that avoids many of the issues related to bias and

efficiency exhibited by alternative approaches to automated redistricting. To demonstrate the

advantages of our approach, first, we subject the algorithm to tests designed to reveal bias

and find no evidence of bias in the way the algorithm draws districts. In one test, we apply

the algorithm to a redistricting scenario designed to reveal whether the algorithm we propose

produces districts of one variety more often than districts of another variety. We find that it does

not. As another test for bias, we compare the sample of maps drawn by the algorithm to a known

distribution of possible districts. We find that the algorithm retrieves an accurate approximation

of the knowndistribution. Second,we show that the algorithmwepropose is remarkably efficient.

Using asymptotic analysis, a technique used by computer scientists to evaluate the complexity of

algorithms, we compare our proposed algorithm to a commonly used alternative. We show that

our algorithm ismany orders ofmagnitudemore efficient than the alternative approach. In short,

our contribution is to present an algorithm that retrieves an approximation of the null distribution

with no indication of bias in a fraction of the time it takes alternative approaches to producemaps

of similar jurisdictions.

To address the redistricting problem, our approach relies on graph partitioning methods

developed in computer science. The class of graph partitioning algorithms upon which we base

our method are well understood by computer scientists (Kernighan and Lin 1970, Hendrickson

1 By neutral, we mean to say that the process of generating the counterfactual only considers constitutionally relevant

characteristics of the geography it divides into legislative districts: contiguity and population parity. In comparing an

observed outcome to a large set of neutral alternatives, wemay determine the degree towhich observedmaps differ from

what we would expect a neutral process to yield.

2 In practice, state-level maps of legislative districts are drawn by state legislatures or redistricting commissions.

3 One possible solution is to implement alternative algorithms that are less efficient onmore powerful computers; however,

to generate a meaningful number of maps some scholars have resorted to using supercomputers (Remmert 2016).

Inefficient algorithms put automated redistricting out of reach for scholars with access to more typical computing

resources.
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and Leland 1995, Karypis and Kumar 1995, 1998); however, applying these processes to the

political problem of redistricting is new. In computer science applications, graph partitioning

algorithms are used by programmers to divide related computational tasks between a computer’s

processor. In our application to politics, we use the algorithm to assign adjacent geographic units

to legislative districts.

To further demonstrate the algorithm’s capabilities, we apply it to the substantive problem of

congressional districts in a medium (Mississippi), large (Virginia), and very large (Texas) states.

These states each have significant minority populations and a history of using the redistricting

process to discriminate against thoseminority groups. We use the algorithm to draw 10,000maps

using census block-level geographic and demographic data. The simulated maps allow us to

retrieve a null distribution of the number of majority-minority districts we would expect from a

neutral redistricting process within each state. We find that each state’s 2012 congressional map

has more majority-minority districts than we would expect from a neutral redistricting process.

The finding is significant because, since its decision in Shaw v. Reno,4 the SupremeCourt has been

skeptical of redistricting plans that go to extreme lengths to generate majority-minority districts.

Our findings suggest that absent proactive steps on the part ofmapmakers, aminority population

would be denied the ability to elect “theminority’s preferred candidate”5 in the stateswe analyze.

The article proceeds as follows. In Section 2, we present a method for generating a neutral

counterfactual against which existing maps may be evaluated. In Section 3, we evaluate the

algorithm for bias and consider the algorithm’s efficiency. Section 4 applies the method to

three cases: Mississippi, Virginia, and Texas. In Section 5, we describe how the algorithm

could be adapted to account for constraints beyond constitutional requirements of contiguity

and population parity. We summarize our conclusions in Section 6 and suggest some further

applications of our proposedmethod of neutral redistricting.6

2 A Graph Partitioning Approach to Redistricting
In this section, we propose a method for estimating the distribution of possible maps using a

graph partitioning approach. We propose a new algorithm for sampling possible redistricting

plans. Finally, we demonstrate how the algorithm would work on a simple redistricting problem

consisting of nineteen geographic units and two legislative districts.

2.1 Graph partitioning as a solution to the redistricting problem
Framing redistricting as a graph partitioning problem allows us to simplify the process of drawing

maps. As a result, we can generate a set of neutral maps of legislative districts under the

constitutional constraints thatdistrictsbecontiguousandcontainequalpopulations.Weconceive

of a map as a undirected vertex-weighted graph in which vertices are weighted according to

population, but edges are assigned nomeaningful weight.7

Our approach can be summed up as follows: First, we convert the geographic data into a graph

where every geographic unit becomes a vertex weighted by the population of the geographic

unit. The graph’s edges represent shared borders between geographic units.We thenpartition the

graph (a simpler version of the graph derived from themap) into the required number of districts

4 509 U.S. 630 (1993).

5 Thornburg v. Gingles, 478 U.S. 30 (1986).

6 Data for replication of all analyses described and summarized in this article are available through the Harvard Dataverse

(Magleby and Mosesson 2017). An implementation of the algorithm we propose for developing neutral redistricting plans

is available from the editors of Political Analysis as an executable binary for the purposes of replication of the analyses

described in this article. Likewise, an implementation of the algorithm is available from the authors for purposes of

replication and other scholarly applications.

7 We focus our discussion on vertex-weighted graphs, but the class of graph partitioning algorithms that we apply to

the problem of redistricting can account for weights applied to edges between vertices. By incorporating additional

information about the relationship between vertices (geographic units), we may be able to address the additional

constraints that states place on the types of legislative maps they produce.
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thatmeet the legal requirementsof beingboth contiguousandcontaining equal population. Since

it is often infeasible tohavedistricts that are exactly balanced, the algorithm is satisfiedbydistricts

with populations that neither exceed nor fall below certain bounds.

2.2 An algorithm for drawing neutral districts
The algorithm we propose for achieving a contiguous and balanced partition has four steps.8

First, the algorithm coarsens the graph, grouping together connected vertices of the graph into

contiguousmultinodes. Second, the algorithm partitions the multinodes of this simplified graph

into the desired number of contiguous districts using a breadth first search. Third, it uncoarsens

the graph, so that the graph is again made up of the original vertices, but all vertices are now

associated with a particular district from the previous step. Finally, it refines the graph bymoving

vertices into and out of districts until the populations of the districts are balanced. Refinement

continues until either the established tolerances are met, or the graph ceases to become more

balanced.9 We consider aweighted graphG0(A0, E0,w ) wherew is a function thatmapsA0 onto a

set of weights. We limit our discussion to the intuition behind the algorithm and provide a formal

description of our proposed process in appendix A.

Step 1 (“Coarsening”)
We transform G0 into a series of smaller graphs G1,G2,G3, . . . ,Gm where vertices in Gt are

consolidated intomultinodes inGt+1. These multinodes are an intermediate construct that allow

the algorithm to perform a more efficient partition, but they do not represent a politically

meaningful unit. The number of multinodes is not particularly important, and neither do they

have to be particularly balanced. The important thing is that they are internally contiguous, and

that they are not too uneven.10

In our case, since the graph has unweighted edges, the algorithm randomly selects an initial

vertex.11 The algorithm then selects vertices from among the neighbors of that vertex and joins

those vertices into a multinode. The algorithm repeats this process until all vertices are assigned

to one of several multinodes. The intention is to simplify the graph in order to simplify the

problem of partitioning the graph. Critically, all the information of a multinode’s constituent

nodes, their connection toother vertices and theirweight, is preservedwhenvertices are collected

into multinodes. Thus one multinode is adjacent to another multinode if at least one constituent

vertex in each are adjacent to one other. Likewise, the weight of a multinode is the sum of the

weights of its constituent nodes.

Step 2 (“Partitioning”)
Once the graph has been simplified, the algorithm generates partition Pm . It randomly selects

a multinode with which to start. It then selects a neighboring multinode to add to the district

and continues to add randomly selected neighbors until roughly 1/k of the available weight is

in the district where k is the number of districts into which the vertices (multinodes) should be

divided.12 The algorithm discards discontiguous graphs that result when the process yields a set

of multinodes that cannot be joined because they are separated by contiguous districts.

8 Weweight vertices by population. If the districts produced by the algorithm are balanced (of equal weight), they also have

equal population in this application of the algorithm.

9 In practice, the algorithm may produce imbalanced districts if the refinement process fails to produce a more balanced

graph. In those instances, the algorithm fails to converge, andwe simply discard that simulatedmap and start the process

with a new random seed.

10 The algorithm will behave correctly if the multinodes are very uneven, but it will take longer to converge on a balanced

graph in the last step of the algorithm, so this is a performance concern, but not a correctness issue.

11 It is possible to assign weight to the connections (edges) between nodes. For the purpose of drawing neutral maps of

contiguous, equipopulous districts in this article, we do not take this information into account.

12 This means that the algorithm begins by randomly adding multinodes that are contiguous to the multinode initially

selected by the algorithm. If it exhausts all options among the vertices that are contiguous with the first nodes, it only

adds multinodes that are contiguous to multinodes that are contiguous to the first multinodes, and so on.
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Step 3 (“Uncoarsening”)
In series of steps, the algorithm reverses the aggregatingprocess that yieldedGm . At thebeginning

of each step t , the constituent elements of multinodes in Gt−1 preserve their assignment to a
particular district in Pt−1.

Step 4 (“Refinement”)
Generally speaking, the purpose of this step is to make each component of a partition Pt as

balancedaspossible. At eachstepofuncoarsening thealgorithmreassignselementsofonedistrict

into an adjacent district if reassignment would bring the districts closer to weight parity. This

requires the implementation of an additional balancing algorithm to determine which elements

of a partition should be (or should not be) reassigned. In practice, there exist several algorithms

that can refine the graph into a more balanced partition in the way we describe. We apply one of

these, the Kernighan–Lin algorithm (KL) (Hendrickson and Leland 1995, Kernighan and Lin 1970),

to refine thegraphat each stepof uncoarsening. KL is awidelyusedalgorithm forbalancinggraphs

in computer science since it accounts for the weights of vertices and edges as it seeks to produce

a more balancedmap.13

Step 5 (“Repeat”)
This step is the easiest of all, as it is just a check to see if the partition meets the required balance

(population equality) conditions. If the resulting partition is a set of contiguous and balanced

districts, we record the partition for later analysis. If not, the flawed partition is discarded and

the algorithm restarts.

2.3 An example
Consider a simple application of our method of drawing legislative districts to a set of nineteen

contiguous geographic units represented in Figure 1(a). The goal is to partition this map into a

plan with two contiguous districts in which the population of both districts is balanced. The set of

geographic units represented in Figure 1(a) is globally contiguous—that is, every unit in the map

couldpotentially be included in a contiguousdistrictwith anyother unit in themap. Thealgorithm

proceeds by, first, simplifying the map into a connected graph with nineteen vertices and thirty-

nine edges; second, collecting vertices into an even simpler graph; third, partitioning the simpler

graph; and finally, refining the graph to ensure that the resulting districts have balanced (equal)

populations. In this example, the result of this process is a single “partition” of the map into a set

of two districts with equal populations.

First, the algorithm begins by simplifying the map into a connected graph. Using the map

in Figure 1(a), we may determine which geographic units share any portion of its border with

any other geographic unit.14 We represent the simplified graph of the map in Figure 1(b). Each

geographic unit is represented as a circular node. An edge (line) connects the vertex representing

aunit to the vertex representingother unitswithwhich it is contiguous. In this simplified versionof

the original map, there are nineteen vertices connected by thirty-nine edges. This representation

of the map preserves all of the information necessary for generating contiguous districts.

Second, the algorithm randomly collects vertices into multinodes creating a simpler graph. In

the example, the algorithm assigns groups of four or five vertices to one of four multinodes. We

represent this process in Figure 1(c). Each of the vertices assigned to a multinode shares an edge

with at least one vertex in the multinode making eachmultinode internally contiguous. We index

13 We assume the edges between vertices have no weight; however, application of the algorithm on graphs with weighted

edges is a possible extension of the analysis we present in Section 4.

14 This variety of contiguity is sometimes called “queen contiguity” in reference to thedirectionsplayersmaymove thequeen

in a game of chess. Queen contiguity contrasts with “rook contiguity” in that units need only share a point of contiguity in

order to be considered contiguous.
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Figure 1. An example of how the algorithm partitions a map consisting of nineteen contiguous geographic

units.

these multinodes as A, B , C , and D . The process of collecting these vertices into multinodes

is random, so in any iteration of the algorithm, we can expect that two neighboring vertices

will end up in different multinodes with positive probability. Observe that if two multinodes

have constituent vertices that were contiguous in Figure 1(b), those multinodes are contiguous

in Figure 1(c). That is, the multinodes preserve the contiguity of their constituent nodes.

Third, the algorithm partitions the simpler graph. It assigns each multinode (and the

multinode’s constituent nodes) to a district. This process is represented in Figure 1(d). Here,

the algorithm generates the partition {A,B}, {C ,D}. Note that not all combinations of these

multinodes would be valid. While A, B , and C are all contiguous, the vertices in D are only

contiguous with verticesC .
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Finally, the algorithm refines the graph in order to ensure that the resulting districts have

balanced (equal) population. The graph partitioning problem represented in Figure 1(d) is

significantly simpler than the problem of finding a valid partition of the graph in Figure 1(b)

with nineteen nodes, but this comes at the cost of balance. Since the multinodes were generated

randomly, the partition represented in Figure 1(d) is not likely to be balanced. We represent the

process of refining the partitioned graph in figures 1(e) and 1(f). Kernighan–Lin swaps randomly

selected vertices across the border generating an alternative partition. If the alternative partition

is closer to balanced than the initial partition, it keeps the alternative and throws out the initial

partition. It stops once switching vertices does not generate a more balanced graph.

We limit our example to the generation of a single partition of the map in Figure 1(a); however,

analysis of observedmaps requires thatwecompare thosemaps toaneutral counterfactual. Since

the process of creatingmultinodes beganwith the random selection of a vertex to which adjacent

vertices were added, each time we repeat the algorithm in a large enough graph, we arrive at an

alternative, balanced partition with positive probability. Since the algorithm only considers the

contiguity and weight (population) of each node, the result is a distribution of neutrally drawn

districts.15 We can then compare the actual set of legislative districts to the distribution of districts

weobserve and characterize the probability that the actual partition createdwould have emerged

from a neutral process.

3 Bias and Efficiency
The algorithmwe describe in the previous section avoidsmany of the shortcomings of alternative

algorithms. Specifically, we find no evidence of bias in the way the algorithm draws districts. We

subject our proposed algorithm to two tests for bias. The first test is designed to reveal if the

algorithmweproposeproducesdistricts of onevarietymoreoften thandistricts of another variety.

We find that it does not. The second test is designed to evaluate the algorithm’s ability to retrieve

an approximation of the underlying distribution of possible districts. We compare a large sample

of maps drawn by the algorithm to a known distribution of possible districts. We find that the

distribution of maps the algorithm retrieves is very similar to the known distribution.

In this section, we also demonstrate that our proposed algorithm is remarkably efficient.

Using asymptotic analysis, a technique used by computer scientists to evaluate the complexity of

algorithms, we compare our algorithm to a commonly used alternative proposed by Cirincione,

Darling, and O’Rourke (2000). We show that the algorithm we propose is many orders of

magnitude more efficient than the alternative approach.

3.1 Bias
In order to evaluate the possibility that our proposed algorithm draws maps in a biased way, we

apply the algorithmwe propose for drawing districts to a problem for whichwe know the solution

(Altman, Gill, and McDonald 2004). First, to show that our proposed algorithm does not produce

districts of one variety more often than districts of another variety, we apply our algorithm to a

square (100 × 100) geographic space with 10,000 units all of which contain the same number of

people and evaluate the resultingmaps to see if one type of district is more likely than others. We

find that one type of district is not more likely than another. Second, to evaluate the algorithm’s

ability to approximate the underlying distribution of possible districts, we apply the algorithm to

a much simpler space for which we know the true distribution of possible districts. We find that

the algorithm approximates the true distribution.

15 We do not constrain the algorithm to generatemapswith compact districts although the Court has expressed a preference

for maps with this feature (See Shaw v. Reno, 509 U.S. 630 (1993); Miller v. Johnson, 515 U.S. 900 (1995)). As it turns out,

districts generated by the process we present in this article seem to avoid the most extreme varieties of noncompactness

in empirical applications.
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3.1.1 Bisecting a symmetrical space
Demonstrating bias in a sample from a distribution as large and complex as the set of possible

electoral maps is a complicated proposition. In practice, the geographic units that constitute

the basis of jurisdictions’ electoral maps have irregular populations and have varying numbers

of neighbors to which they are adjacent. One way to approach the problem is to consider a

case for which we know the characteristics of an unbiased sample. In this instance, we partition

a hypothetical symmetrical set of geographic units with equal population. Since it is identical

vertically and horizontally, we should observe that the number of maps that bisect the space

horizontally should be close to equal to the number of maps that bisect the space vertically.

Altmanetal. (2015) proposea similar test usinga smaller grid, and they find that several commonly

used redistricting algorithms are more likely to produce one type of map than another. We

implement the test on a large grid containing roughly the number of units in a medium-sized

state’s map of electoral precincts.16

Consider a square geographic space with 10,000 units that each contain the same number of

residents. For simplicity, suppose that there are two possible outcomes of the process: districts

that bisect the space horizontally and districts that bisect the space vertically. Observe that

such a space is symmetrical vertically and horizontally. If the goal is to divide such a space into

two districts with equal population, an unbiased process should be as likely to bisect the space

horizontally as it is to bisect the space vertically. We apply our proposed algorithm to this simple

problem.First,wepartitionagridof100×100 (10,000)units 1million times (MaglebyandMosesson
2017). Next, we determine howmany districts bisect the space horizontally, howmany bisect the

grid vertically.

In Figure 2 we plot the centroid of one district from 1,000 two district maps produced by the

algorithm from the hypothetical grid. Examples A, B , C , and D in Figure 2 represent the types

of bisections the algorithm produces. Each bisection has a darker and lighter “district”, and we

include arrows that point to the location of the darker district’s centroid on the example grid.

Above the plot, we include a histogram representing the density of observed centroids on the

x -axis. To the right of the plot, we include a histogram of the density of observations on the

y -axis. While not identical, these distributions are very similar for the 1,000 observations by visual

examination.

Observe that all centroids fall between the 24th and 76th units on the x -axis and y -axis.

To identify horizontally and vertically oriented plans, we divide the range of centroids on each

dimension into three regions. We consider districts with centroids between the 37th and the 63rd

unit on the x -axis tobehorizontal. In likemanner,we consider districtswith centroidsbetween the

37th and the 63rd unit on the y -axis to be vertical. If the algorithm producesmaps in an unbiased

way, then half the maps should have districts with centroids in the vertical region and half the

maps should have districts with centroids in the horizontal region.

In 1million trials, we find that 500,644maps have a vertical orientation (a centroid in the region

between the 37th and the 63rd unit on the y -axis) and 499,356 have a horizontal orientation

(centroid in the region between the 37th and the 63rd unit on the x -axis). The resulting proportion

of maps with vertically oriented districts (0.500644) is not statistically different from 0.5, our

expected result fromanunbiasedprocess (χ2 = 1.659,p = 0.1977). Thus,we fail to find statistically

significant evidence of bias in the orientation of the 1 million maps created by the algorithm. In

addition,weonlyobservea small substantivedifference (0.0006) fromwhatwewouldexpect from

an unbiasedmapmaking process.

16 Such a test has substantive implications. For example, consider jurisdictions with geographically segregated racial

populations like Detroit, Michigan. Historically, neighborhoods north of a particular street (8Mile Road) are predominantly

white. For decades, neighborhoods to the south 8 Mile Road have been predominantly black. A sample taken by an

algorithm that is more likely to partition Detroit and its suburbs vertically (north to south) or horizontally (east to west)

is going to misrepresent the number of majority black districts in the underlying set of possible districts.

Daniel B. Magleby and Daniel B. Mosesson � Political Analysis 154

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

01
7.

37
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2017.37


Figure 2. Plot of centroids for 10,000 two-way partitions of a 100 × 100 grid of geographic units with
equal population. If the algorithm draws uniformly from the distribution of all possible districts, horizontally

orienteddistricts (like examplesA. andC .) shouldbeas likely as vertically orienteddistricts (like examplesB .
andD .). We indicate the location of the darker district’s centroid in the plot with a lighter colored + symbol.

3.1.2 Sampling from a known distribution
We apply our algorithm to a small jurisdiction consisting of twenty-five geographic units made

availablebyFifieldetal. (2015b).Weset thealgorithmtopartition thespace into threedistrictswith

populations that deviate by no more than 10% from population parity (Magleby and Mosesson

2017). We then compare the distribution of maps produced by the algorithm we propose to the

distributionofall possiblemapsof the jurisdictionprovidedbyFifieldetal. (2015b). AKolmogorov–

Smirnov (KS) test indicates that the two distributions are not exactly the same;17 however, we

find that the distribution of maps retrieved by our process approximates the true distribution

enumerated by Fifield et al. formaps balanced to 10%population parity. On the other hand, when

we constrain our analysis to maps that meet more standard levels of population parity (±1.5%),

17 We note that the KS statistic may not be an appropriate measure for the comparisons between these distributions. For

example,KSdoesnotdealwith ties, sowecannotbesure that theestimatedp-valuesareexact. Similarly, the testpresumes
that the underlying distributions of possible maps are continuous. Given that Fifield et al. enumerate all of the possible

maps, and the number of possible maps is relatively small (extremely small in the case of the more balanced maps), we

know that the distributions do not satisfy the test’s assumption of continuity.
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Table 1. We summarize a comparison of the mean, median, standard deviation, and kurtosis of the true

distribution of partisan skew of all possible maps containing districts that deviate by no more than 10%

(N = 927) to thedistributionofmapsdrawnby thealgorithmwepropose that inwhich thedistrict population
deviates by no more than 10% (N = 40, 000). Below, we summarize the comparison between the mean,
median, standard deviation, and kurtosis of all possible maps containing districts that deviate by no more

than 1.5% (N = 6) to the distribution of maps drawn by the algorithm we propose in which the district

population deviates by nomore than 1.5% (N = 1691).

Maps balanced to±10% True distribution Proposed algorithm

Mean 0.003 0.009

Median 0.009 0.011

Standard deviation 0.020 0.016

Kurtosis 3.665 3.598

N 927 40,000

Kolmogorov–Smirnov comparison of distributions D = 0.1587 p < 0.001

Subset of maps balanced to±1.5% True distribution Proposed algorithm

Mean −0.004 0.006

Median −0.010 0.009

Standard deviation 0.015 0.007

Kurtosis 1.727 6.378

N 6 1691

Kolmogorov–Smirnov comparison of distributions D = 0.5454, p = 0.057

a KS test does not permit us reject the null hypothesis of equivalence between the distribution

of possible balanced maps and the distribution of balanced maps drawn by the algorithm we

propose.

To summarize the maps’ characteristics, we focus on the level of partisan skew in each map,

specifically the skew in the distribution of Democratic votes across districts in a map.18 We

consider partisan skew in the set of possible maps, as reported by Fifield et al. (2015b), balanced

to ±10% to a set of maps drawn using our proposed algorithm also balanced to ±10% we

then repeat the comparison for the more realistic level of partisan parity, ±1.5%. In Table 1,
we compare four characteristics of the true distribution of partisan skew along to the same

four characteristics of the distribution of partisan skew of the maps drawn by the algorithm we

propose.While characteristics of the distribution ofmaps producedby the algorithmapproximate

the characteristics of the distribution possible maps, the distributions are not exactly equivalent.

In Table 1, we include the Kolmogorov–Smirnov (KS) statistic for the comparison between the

distribution recovered by the algorithm we propose and the true distribution as reported by

Fifield et al. (2015b). The KS test yields a test statistic of 0.1587. Thus, we can reject the null

hypothesis that the distribution of maps produced by the algorithm is exactly the same as the

distribution enumerated by Fifield et al. (2015b).

Important caveats apply to the comparisons summarized in Table 1. First, the KS test indicates

that the twodistributions are not identical; however, this finding should not be construed tomean

that the sample of maps created by the algorithm does not approximate the distribution of all

possiblemaps.The twodistributionsarevery similar, butwecannotclaimthat theyareequivalent.

Second, the set of maps enumerated by Fifield et al. (2015b) is not particularly balanced, that is,

18 To find amap’s skew,we calculate theproportionof votes cast for Democrats in eachof the threedistricts.We then subtract

themap’smeandistrict-levelDemocratic voteproportion fromthemap’smediandistrict-levelDemocratic voteproportion.

If the difference is negative (positive), Democratic (Republican) votes were overconcentrated in one or two districts in the

map. If the difference is 0, the Democrats are neither advantaged or disadvantaged by the lines drawn by the algorithm.

This is the measure proposed by McDonald and Best (2015) for detecting packing gerrymanders. Determining the level of

partisan skew in a map is also one element of Wang’s three pronged test for evaluating partisan gerrymandering (2016).
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the population deviation between the largest and smallest districts in the set of possible maps is

relatively large (±10%).19 In the bottompanel of Table 1 we present the characteristics of the set of

maps inFifieldetal.’s data that arebalance toamore typical level of populationdeviation (±1.5%).
We likewise present summary statistics from the subset of maps produced by the algorithm that

conforms to themore typical population constraint (1691/40,000). The comparison is informative

in that it shows how few of the possible maps in Fifield et al.’s data achieve standard levels of

population parity (6/927). As with the larger sets of maps, the distributions of maps approximate

one another. In contrast to the comparison between the larger sets of maps, the KS test does not

show a significant difference between the set of possible maps with population parity and the set

of subsetofmapsproducedby thealgorithmwithpopulationparity (p = 0.057). In sum, theKS test

does not permit us reject the null hypothesis of equivalence between the distribution of possible

balancedmaps and the distribution of balancedmaps drawn by the algorithmwe propose.

3.2 Efficiency
In addition to showing no indication of bias, the algorithm we propose is extremely efficient.

We demonstrate the algorithm’s efficiency by considering its algorithmic complexity and show

how that complexity scales with the complexity of the redistricting problem. Oncewe understand

the algorithmic complexity of our process, it is possible to contrast the algorithm to the process

proposed by Cirincione, Darling, and O’Rourke (2000), a commonly used alternative. While other

automated redistricting processes exist, Cirincione, Darling, and O’Rourke’s process is a useful

comparison because it is acknowledged to be the “representative” redistricting algorithm (see

Altman et al. 2015, Fifield et al. 2015a).20 We show that, for practically all redistricting problems,

the algorithmwe propose should outperform the commonly used alternative.

An asymptotic analysis of the algorithm we propose characterizes its algorithmic complexity

anddemonstrateshow that complexity scaleswith the complexity of the redistrictingproblem.We

may conceive of the algorithm we describe as a function that maps some number of geographic

units, n , into some number, D , of contiguous electoral districts. By analyzing the asymptotic

behavior of the function that describes the algorithm, we determine the way that processing

time will increase as the redistricting problem becomes more complex holding computational

resources constant. The redistricting problem becomes more complex as either n or D or both

increase. In Appendix B we show that the algorithmwe propose scales according to the following

function.

f (n,D ) = n2 log nD logD . (1)

The contour plot in Figure 3(a) represents the way that (1) scales for different values n (x -axis)

and D (y -axis). Each line represents the log10 of constant runtime. For example, we show in

the graph that the algorithm should take the same amount of time to divide 100,000 units into

120 districts as it would take to divide 600,000 units into ten districts. The absolute value of

the numbers associated with each contour line is less important than the relative increase. The

graph indicates that, holding D constant, the algorithm’s runtime increases in n . The same is

true in reverse: holding n constant, themarginal impact on expected runtime increases with each

additional district. Take the case of a state legislature with 100 members of its lower house. Our

asymptotic analysis suggests that if it took0.01 seconds todrawamapof 100districts fromroughly

100,000 geographic units, it would take about 0.1 second to draw a map of 100 districts from

19 This level of imbalance is close to violating constitutional constraints on population parity.

20 In their widely used BARD package for R , Altman and McDonald (2011) implemented Cirincione, Darling, and O’Rourke
(2000) making it one of the most widely used algorithms for the purposes of automated redistricting.
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Figure 3. (a) The manner in which the algorithm we propose scales with the number of districts (D ) and the
number of geographic units (n), and (b) a comparison of algorithmic complexity of our proposed algorithm to

the algorithmproposedbyCirincione, Darling, andO’Rourke (2000). The x -axis in both graphs represents the
number of geographic units (n) that the algorithm takes as an input, and the y -axis represents the number of
districts (D ) that the algorithm creates from those geographic units. The lines represent orders ofmagnitude

in difference in asymptotic runtime at corresponding values ofD and n .

roughly 300,000 geographic units, and it would take 1.0 seconds to draw a map of 100 districts

from 850,000 geographic units.

The computational efficiency of the algorithm we propose becomes particularly important

when compared to other algorithms devised to address the same redistricting problem. For

example, take a commonly used alternative redistricting algorithm proposed by Cirincione,

Darling, and O’Rourke (2000). In Appendix B we show that their algorithm scales according to the

following function.

h(n,D ) =
n

∏D−1
1 p(n, i )

, (2)

where p(n, i ) is the probability that the next iterationwill successfully yield a contiguous district.21

The differences between (1) and (2) may not be immediately apparent, so we represent ratio

of expected runtimes for values of n and D in Figure 3(b). Here, the contour lines represent

the difference in runtime (in orders of magnitude) between our proposed algorithm and this

commonly used alternative.22 The contour line labeled 0 are the values of n and D for which we

expect no difference in runtime between the two algorithms. From Figure 3(b), it is clear that our

proposed algorithm outperforms the alternative algorithm for all redistricting problems except

those for which the n orD is very small.

21 Since the Cirincione, Darling, and O’Rourke (2000) algorithm draws districts iteratively, the function h(n,D ) also includes
a probability function p(n, i ) that the next iteration will successfully yield a contiguous district. That probability decreases
with each district the algorithm draws. For illustrative purposes we assume that the next district drawn by the algorithm

will almost certainly be contiguous (p(n, i ) = 0.99999).
22 We are interested in the asymptotic properties of the algorithm in this type of analysis, constants drop out of the

assessment of complexity. Hence, if the algorithmdiscards 90%of itsmaps or 99% it has the same algorithmic complexity.

By contrast, the rate of failure to find a valid map is proportional to the number of districts or vertices to which we might

apply the Cirincione, Darling, and O’Rourke (2000) algorithm. In other words, the number of maps that we discard is

constant in the algorithm we propose and is independent of the complexity of the redistricting problem, but the number

of maps that would need to be discarded using Cirincione, Darling, and O’Rourke (2000) is a function of the complexity of

the redistricting problem.
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The difference between the two algorithms is stark when either is applied to jurisdictions

with larger n and more D . For example, consider the redistricting problem for New York’s State

Assembly. There are 150 Assembly districts in New York (D = 150).23 If an analyst were to use

census blocks as the geographic unit fromwhich he or she drewdistricts, then n = 350, 169 census

blocks inNewYork in the2010 census. Thus,weexpect that the runtime for our algorithmwouldbe

between 10,000 and 15,000 orders of magnitude faster than the processing time of the Cirincione,

Darling, and O’Rourke (2000) algorithm when using census block data to draw state assembly

districts inNewYork. Perhapsmoreconcretely, supposeourproposedalgorithmcoulddrawamap

of 150 districts fromNew Yorks 350,169 census blocks in 1.0 second. Asymptotic analysis indicates

that Cirincione, Darling, and O’Rourke’s algorithm would take longer than 317 × 109990 years to

draw onemap of New York’s 150 districts from its 350,169 census blocks.

4 Demonstration
Texas, Virginia, and Mississippi provide an excellent context in which to apply the algorithm we

propose. All three states have significant minority populations, and all three states are located in

the South. Prior to the Supreme Court ruling that invalidated Section 5 of the Voting Rights Act, all

three states had to submit their redistricting plans to the Justice Department for preclearance.24

Following theCourt’s decision inThornburg v. Gingles,25 which encouraged the creationof districts

inwhichminority populationmadeupmore thanhalf the population, all three states took steps to

createmajority-minority districts. We consider several types ofmajority-minority districts. For the

purposes of our analysis, we consider majority-minority districts in Mississippi and Virginia to be

districts inwhich theUS Census data categorizes 50%ormore of the residents as “Black or African

American alone”. In Texas, we consider districts in which the census categorizes 50% or more of

the residents as “Hispanic or Latino” to be majority-minority districts.26 Given the large minority

populations in Texas (12.5% Black, 38.6% Hispanic), Virginia (19.7% Black, 8.9% Hispanic), and

Mississippi (37.5% Black, 3% Hispanic) each state is a prime candidate for producing at least one

majority-minority district.

4.1 Summary statistics
The goal of our analysis is to develop an approximate expectation of the distribution of

minority residents between a state’s districts if legislative mapmakers only consider contiguity

and population. In practice, the geographic distribution of minority voters and the political

and legal contexts in which the congressional districts are devised influences the number of

majority-minority districts within a state. Since our proposed algorithm only considers contiguity

of geographical units and the total population of those units, it is neutral with regards to the

politics or race of the individuals living in a given geographical unit. Consequently, the algorithm

is neutral with regards to the output of the process. Since the algorithm generates each map

by a different neutral and random process, the probability that any two maps are exactly alike

is extremely small. The distribution of maps represents the counterfactual against which we

can compare the actual map generated by the states we analyze. The distribution also allows

us to characterize the approximate probability by which the states’ maps could have emerged

from a neutral process. Of course, mapmakers in each state strove to comply with the Court’s

23 In theUnitedStates, state legislaturespose themost complex redistrictingproblembecauseof the largenumberofdistricts

and the large number of geographic units mapmakers could use to draw maps. State legislatures range in size from 40

(Alaska’s lower chamber) to 203 (Pennsylvania’s lower chamber). The number of census blocks, the smallest geographic

unit upon which mapmakers can base districts, ranged from 24,114 in Delaware to 914,231 in Texas in the 2010 census.

24 Shelby County v. Holder, 570 U.S. 2 (2013).

25 478 U.S. 30 (1986).

26 Alternatively, majority-minority districts may be districts in which more than 50% of the population of a district is non-

Anglo, any resident not categorized as “Not Hispanic or Latino: White alone”. The analysis we conduct here yields similar

results regardless of how we define majority-minority districts.
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Figure 4. Three neutral maps of Mississippi exhibit the types of variation typical of our neutral mapping

algorithm.

encouragement to generate majority-minority districts. Whether out of zeal to fulfill the courts

instructions or out of some other motivation, each state in our analysis deviates in significant

ways from a neutral process of drawing districts.

To draw our neutral maps, we use data collected by the United States Census and made

available by theMinnesota Population Center’sNational Historical Geographic Information System

(NHGIS) project. We use census block-level geospatial and demographic data. Census blocks are

the smallest geographic unit for which we have information regarding population and reliable

data regarding residents’ demography. We generated 10,000 maps of four, eleven, and thirty-six

congressional districts for Mississippi, Virginia, and Texas, respectively (Magleby and Mosesson

2017). Representations of the kinds of districts the algorithm produces are visible in Figures 4, 5,

and 6. In Figures 4(a), 5(a), and 6(a), we include the actual map of districts that each state used

for the 2012 congressional elections. As is clear from Figures 4, 5, and 6, the algorithm generated

relatively compact districts. Each was balanced to within 1.5% of the ideal for that state. The

examples of neutral partitions of Mississippi included in Figure 4 show how the maps generated

by the algorithm diverge from the actual map used for the 2012 elections. Just as the actual

plan does, the maps represented in Figures 4(b) and 4(c) divide Jackson, one of the only urban

areas in Mississippi, across two districts. By contrast themap in Figure 4(d) keeps Jackson whole.

Each example is a valid partition of Mississippi into four contiguous districts with roughly equal

population.

The algorithm also generated realistic districts in the larger state Virginia that show

considerable variance in the composition of districts. Just like the actual map, the maps in
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Figure 5. Three neutral maps of Virginia exhibit the types of variation typical of our neutral mapping

algorithm.

Figures 5(b)–(d) showmultiple districts in the densely populated areas aroundWashington, DC in

Northern Virginia, but each of the example maps handled the other densely populated areas in

and around Richmond and Hampton differently. Again, our proposed algorithm only considers

population and contiguity, so these example maps represent realistic, balanced, and neutral

partitions of Virginia into eleven congressional districts.

Figure 6. Three neutralmaps of Texas exhibit the types of variation typical of our neutralmapping algorithm.
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Table 2. A comparison of the actual number of majority-minority districts in Mississippi, Virginia, and

Texas and estimates of the number of majority-minority districts in 10,000 simulated maps of congressional

districts. Data on district and block-level demographics taken from the US Census data provided by NHGIS.

Total districts
No. of majority-minority dists.

in 2012map
Estimated likelihood of 2012

maj-min dists.

Mississippia 4 1 p < 0.3073

Virginiaa 11 2 p < 0.0001

Texasb 36 9 p < 0.1589

a Proportion of residents categorized as “Black or African American alone” greater than 0.5.

b Proportion of residents categorized as “Hispanic or Latino” greater than 0.5.

Finally, the algorithm generated a variety of realistic maps of Texas’s congressional districts.

The actualmap, included here as Figure 6(a), has several districts in the densely populated Dallas,

Houston, and Austin areas. Figures 6(b)–(d), all have a geographically small districts in thesemore

denselypopulatedareas. Just like theactualmap, eachsimulatedmap includedherehasa smaller

district in the far west El Paso area, and geographically expansive districts covering sparsely

populated West Texas and the Texas panhandle regions. One contrast between the simulated

mapsand themap inFigure6(a) is theway the simulatedmapsdealwith thehighlyhispanic region

of South Texas. Texas’s 2012 map divides this heavily Latino area into three districts that run from

the border with Mexico to Austin. The actual districts in this region are heavily hispanic leaving

neighboringdistrictswith fewer latino voters. Thealgorithmdrew the examples in Figures 6(b)–(d)

without reference to race and divide up the heavily hispanic population of South Texas neutrally.

For some of these neutral maps, the result may be a more even distribution of hispanic residents

across more than three districts in South Texas.

4.2 State performance
The algorithm retrieves an approximate null distribution of the number of majority-minority

districts in each of the states we examine. That is, it allows us to create an expectation of the

number of majority-minority districts in each state had mapmakers only considered population

and the contiguity of geographic units that make up the district. Using census data on the racial

composition of each state’s actual congressional districts, we characterize the degree towhich the

racial composition of each state’s actual districts differ from the neutral counterfactual retrieved

by the algorithm. In the most recent round of redistricting following the 2010 census, blacks

constituted amajority of the residents in one out of four congressional districts in Mississippi, two

out of eleven congressional districts in Virginia. Hispanic residents were a majority in nine out of

thirty-six districts in Texas.

The data summarized in Table 2 provide an expectation of the number of majority-minority

seats each state should produce. Those data indicate the probability that the actual number

of majority-minority districts in Mississippi, Virginia, and Texas arose from a neutral process.

In Mississippi, fewer than 1/3 of the simulated maps produced one majority black seat. We

may interpret the frequency of majority-minority seats in our simulated maps of Mississippi,

3,073/10,000 produced one majority black seat, to mean that there is less than an approximately

30.73% chance that the number of majority-minority districts we actually observe in Mississippi

arose from a neutral process. In Virginia, none of the 10,000 neutrally drawn maps produced

a majority black district. Thus we can say that there is less than an approximately 0.001%

chance that the actual map of Virginia’s congressional district arose from a neutral process.

Finally, 1,589/10,000 of our neutrally drawn maps of Texas produced nine or more majority

hispanic districts. Thus, we may say that there is less than an approximately 16% chance that the

actual map of Texas’s congressional districts arose from a neutral process. In short, we cannot
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confidently reject the notion that Mississippi (p < 0.3073) and Texas (p < 0.1589) produced the

number of majority-minority districts using a neutral process. On the other hand, it is extremely

unlikely that Virginia (p < 0.0001) arrived at two majority-minority districts by way of a neutral

process.27

5 Possible Extensions
The algorithm we propose in this article neutrally generates a set of districts without indication

of bias that are contiguous, balanced, and relatively compact; however, analysts may wish to

apply additional constraints to the process of drawing legislative districts. For example, some

jurisdictions seek to keepwhole existing political units likemunicipalities or counties. In addition,

mapmakers may seek to generate a particular number of majority-minority districts. While we

forgo the imposition of additional constraints in this article, it is worth noting briefly that,

with modification, the graph partitioning approach we propose could incorporate additional

constraints.

Applying additional constraints to the sample drawn by the algorithm requires; first, that

we allow for heterogeneity in the relationship between geographic units. Recall, we weighted

geographicunits (vertices) according to thenumberofpeople that reside in theunit. In theanalysis

we present here, all the relationships between units (edges) are weighted equally, but that need

not be so. Our approach could be altered to weigh the relationship between units, and those

weights could vary according to any number of factors of interest. For instance, we might apply

higher weights to edges between vertices that should fall in the same district (e.g. units in the

same municipality). Likewise, we could apply a lower weight to edges between units that need

not fall in the same district (units not in the samemunicipality).

Second, we could alter the algorithm tominimize the weight of edges it cuts to create districts.

Fortunately, there already exist a host of graph partitioning algorithms developed by computer

scientists that minimize the edge cut while maintaining the balance in the weight applied to

vertices acrosspartitions (for example, seeKarypis andKumar 1995, 1998). Thesealgorithmscould

be modified to address the problem of dividing geographic units into legislative districts. Using

this approach, we have begun the process of incorporating additional constraints into studies of

the impact of maintaining communities of interest (the practice of keeping cities and counties

whole in legislative maps) and majority-minority districts on legislative districts and policy

outcomes.

6 Conclusion
In this article, we have proposed a computationally efficient algorithm that generates a set of

districts that are contiguous, balanced, relatively compact, and which do not show the kinds

of biases found in previous algorithms. We base our algorithm on one proposed by computer

scientists to divide tasks weighted by computational complexity evenly between processors. In

our application of the algorithm, geographic units are analogous to tasks and the population of

the geographic units are the weights. The algorithm gains efficiency by first simplifying a map

into amuch simpler graph, partitioning the simpler version of the graph, and then projecting that

partition back into the complex version of the map. In the last step of the process we apply the

Kernighan–Lin algorithm, used by computer scientists to refine assignments of computational

tasks to a computer’s processor, to attain districts that are more balanced in terms of

population.

27 Cirincione, Darling, and O’Rourke (2000) report a similar finding regarding South Carolina’s 1990 congressionalmap. They

use their algorithm to retrieve a null distribution; however, their algorithm partitioned relatively coarse block groups into

six districts making the redistricting problem relatively simpler than any of the redistricting problems we present in the

section.
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As a demonstration of the algorithm’s capabilities, we compare an approximate distribution of

neutral districts to the actual congressional districts in Mississippi, Virginia, and Texas produced

in the round of redistricting following the 2010 census. The algorithm generated 10,000 valid and

distinct maps consisting of balanced and contiguous districts, from computationally intensive

block-level data for each state. The patterns ofminority concentrationwe observe in each of these

states are inconsistent with patterns that might have arisen through a neutral process. In other

words, whatwe observe appears to be a deliberate attempt bymapmakers inMississippi, Virginia,

and Texas to generate majority-minority seats. Absent such an effort, we would expect a set of

districts in each state that would make it challenging for minority voters to select a candidate of

their choosing.

The concentration ofminority voters almost certainly reverberates through the politics of each

of these states. In particular, by concentrating minority voters, who tend to support Democratic

candidates, intoa fewdistricts,mapmakersalsoconcentrateDemocratic voters intoa fewdistricts.

The consequence is that the remaining districts are almost certainly more Republican than we

would expect if the process of redistricting followed more neutral patterns. We forgo an analysis

of the partisan implications of these patterns of redistricting here, but we acknowledge that the

methodwehavepresentedmaybeusefully applied in the evaluationof potential racial or partisan

gerrymanders.

The purpose of this article is to demonstrate a method for drawing neutral legislative districts

that is an advance over prior published algorithms; however, the analysis we present here allows

us to make substantive conclusions about legislative districts in Mississippi, Virginia, and Texas.

Our conclusions suggest at least two avenues of further research. First, wemay explore the extent

to which the inclusion of majority-minority districts allows for minority representation in other

states. Determining the extent of packing in other jurisdictions would require analyzing more

states than space permits in this article. Since our algorithmhandles even the largest jurisdictions

using themost complex data, analyzing anyother jurisdictionswouldnot beproblematic. Second,

we can use the algorithm to characterize the distribution of partisan voters in a null distribution.

The null distribution retrieved by the algorithm also serves as a counterfactual against which

we can compare patterns of partisanship in enacted maps. We intend to pursue questions

related to the broader practice and implications of racial and partisan gerrymandering in future

work.

Appendix A. Formal Presentation of Algorithm

Step 1 (“Coarsening”)
We transform G0 into a series of smaller graphs G1,G2,G3, . . . ,Gm where �A0� > �A1� > �A2� >

�A3� > · · · > �Am �. The algorithm selects a vertex u ∈ Ai with probability 1/ni where ni = �Ai �. If u

hasnotbeen selectedpreviously, then thealgorithmmatchesu withv ∈V u
i
withprobability1/�V u

i
�

whereV u
i
is the set of unmatched vertices adjacent to u . If � v ∈ V u

i
, then the algorithm collapses

u and v into amultinode aj ∈ Ai+1. InGi+1, the weight of themultinode,w (aj ) = w (u)+w (v ), and

Eaj = Eu ∪Ev . IfV
u
i
= ∅, then u remains unmatched. Unmatched vertices are copied over toGi+1.

Step 2 (“Partitioning”)
We compute a k -way partition Pm of graph Gm that divides Vm into k parts each containing

�Am �/k vertices. The algorithm chooses a multinode Ai ∈ Am with probability 1/�Am �. It then

chooses another blocku ∈V Ai

i
with probability 1/�V Ai

i
� and combines themultinode into a district

Pm [v ]. If w (u) + w (Ai ) ≥ 1/kW (Am ) or w (u) + w (Pm [v ]) ≥ 1/kW (Am ), the algorithm stops

adding multinodes to the district. Ifw (u) +w (Ai ) < 1/2W (Am ) orw (u) +w (Pm [v ]) < 1/2W (Am ),

then the algorithm repeats step 2; however, it chooses u ∈ V
Pm [v ]
i

in every iteration after the

first.
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Step 3 (“Uncoarsening”)
By going through a set of intermediate partitions Pm−1, Pm−2, . . . , P1, P0, the algorithm projects

Pm ofGm back ontoG0. At every step of the uncoarsening process, the algorithm assigns Pi [u] =

Pi+1[v ], � v ∈ V u
i
.

Step 4 (“Refinement”)
Consider a partition that has two parts v and u . For each Pm−1, Pm−1, . . . , P0 in the uncoarsening
step, let v and u be two parts of Pi . The algorithm selects v ′i+1 ⊂ vi+1 and u

′
i+1 ⊂ ui+1 where v

′
i+1 is

contiguouswithui+1 andu
′
i+1 is contiguouswithvi+1. If �w (vi+1)−w (ui+1)� > �w (vi+1 \v ′i+1∪u ′i+1)−

w (ui+1 \u ′i+1∪v ′i+1)� then it setsvi = vi+1 \v ′i+1∪u ′i+1 andui = ui+1 \u ′i+1∪v ′i+1, otherwisevi = vi+1

and ui = ui+1.

Step 5 (“Repeat”)
If the resulting partition is a set of contiguous and balanced districts, we record the partition for

later analysis. If not, the flawed partition is discarded and the algorithm restarts.

Appendix B. Algorithmic Complexity

B.1 Our proposed algorithm

Table B1. Asymptotic cost of our proposed algorithm.

Step Asymptotic cost Assumptions

(inclusive to current step)

1. Coarsening Constant None

2. Partitioning n2 log n The process of assigning a node to a partition
(multinode), is equivalent to sorting a list.
Computer scientists have shown that sorting a list
requires n log n operations. Since all nodes must
be assigned to a partition, this process must
occur n times. Thus, partitioning the graph
requires n2 log n operations.

3. Uncoarsening Constant None

4. Refinement n2 log nD logD In order to achieve a balanced set of districts, the
algorithm trades nodes between districts. For
every node in either district a or district b , we find
the best node with which it may switch with a
neighboring district. This is equivalent to
searching a sorted list, a log n operation. The
algorithm then finds the set of switches that
makes the partition more balanced, anO (n)
operation. The process of actually switching
nodes is anO (n) operation. This process is an
inner operation that has a complexity of
O (n log n + n + n) which reduces toO (n log n).
The whole process repeats as long as the
previous iteration achieves a more balanced set
of partitions, this can happen up to n times. Thus,
the complexity of refining two districts is
O (n2 log n). The algorithm repeats this process
for every pair of adjacent districts in list of pairs
ordered by imbalance, which has complexity
O (D logD ). Thus, the whole process has a
complexity ofO (D logDn2 log n) in the worst
case.
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B.2 Cirincione, Darling, and O’Rourke (2000)

Table B2. Asymptotic Cost of Cirincione, Darling, and O’Rourke (2000).

Step Asymptotic cost Assumptions

(inclusive to current step)

1. From the set of unassigned
geographic units, randomly select
one unit.

Constant

2. Identify all units that are
unassigned and adjacent to the
selected unit.

Constant Maximum degree of a planar
graph is bounded above by six,
which is constant.

3. Randomly select one of the
adjacent unassigned units and
add it to the district.

Constant

4. Repeat Steps 2 and 3 until the
district reaches the
predetermined population
threshold.

n/D n/D units must be added to a
district.

5. Repeat Steps 1–4 until all units
are assigned.

n This must be doneD times.

6. Continue until algorithm draws
D districts or restart if process
cannot draw a contiguous district
with the required population.

n
∏D−1

1 p(n,i )
Every time Steps 1–5 are run,
there is a chance that some
partitions will not be
contiguous. If the algorithm is
just taking a greedy walk
through the graph, there is some
probability function p(n, i ) that
describes the probability that
the i th district will not be
contiguous. This leads the cost
of the algorithm to be a power
function ofD .
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