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CLASSIFICATION THEOREMS FOR THE C'-ALGEBRAS
OF GRAPHS WITH SINKS

IAIN RAEBURN, MARK TOMFORDE AND DANA P. WILLIAMS

We consider graphs E which have been obtained by adding one or more sinks to a fixed
directed graph G. We classify the C*-algebra of E up to a very strong equivalence
relation, which insists, loosely speaking, that C*(G) is kept fixed. The main invariants
are vectors WE : G° —> N which describe how the sinks are attached to G; more
precisely, the invariants are the classes of the WE in the cokernel of the map A — I,
where A is the adjacency matrix of the graph G.

The Cuntz-Krieger algebras OA are generated by families of partial isometries satis-
fying relations determined by a finite matrix A with entries in {0,1} and no zero rows [2].
One can view OA as the C*-algebra of the finite directed graph E with vertex adjacency
matrix A [12]; note that E has no sinks because A has no zero rows. In recent years
there has been a flurry of interest in analogues of these algebras for infinite graphs and
matrices (see [5] and [3], for example).

It was shown in [10] that the graph algebras of [5] and the Exel-Laca algebras of
[3] can be realised as direct limits of C*-algebras of finite graphs with sinks. Since sinks
were specifically excluded in the original papers, it is now of some interest to investigate
the effect of sinks on the structure of the graph algebra and its if-theory. The results
of [1] and [10] show that this effect can be substantial, depending on how the sink is
attached to the rest of the graph. Here we shall prove some classification theorems for
graphs with sinks which describe the effect of adding sinks to a given graph.

Suppose E is a row-finite graph with one sink v. The set {v} is hereditary, and
therefore gives rise to an ideal I(v) in the C*-algebra C*(E) of E. According to general
theory, the quotient C*(E)/I(v) can be identified with the graph algebra C*(G) of the
graph G obtained, loosely speaking, by deleting v and all edges which head only into
v (see [1, Theorem 4.1]). We consider primarily graphs E with one sink for which this
quotient is a fixed row-finite graph G; we call such graphs 1-sink extensions of G (see
Definition 1.1). The results in [10] suggest that the appropriate invariant should be the
Wojciech vector of the extension, which is the element WE of I l c 0 ^ whose tuth entry is
the number of paths in E1 \ Gl from w to the sink.
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144 I. Raeburn, M. Tomforde and D.P. Williams [2]

We now state our main theorem as it applies to the finite graphs which give simple
Cuntz-Krieger algebras. We denote by AQ the vertex matrix of a graph G, in which
Ac{uii,W2) is the number of edges in G from w\ to w2- For any row-finite graph G, Ac

is a well-defined map on the direct product Y[Go% and Al
G is well-defined on ® G 0 Z.

THEOREM Suppose that Ei and E2 are 1-sink extensions of a finite transitive graph

G.

1. IfWEl — WE2 € im(Ac — / ) , then there exist a 1-sink extension F ofG and
embeddings fa : C*(F) -¥ C*(£j) onto full corners ofC*{Ei) such that the
following diagram commutes

C*{F) - -

C*(G).

2. If there exist F and fa as above, and if ke^A^ -I) = {0}, then WEl - WE2

€im(AG-I).

While the invariants we are dealing with are /('-theoretic in nature, and the proof
of part (2) uses K-theory, we give constructive proofs of part (1) and of the other main
theorems. Thus we can actually find the graph F. For example, if G is given by

and Ei and E2 are the 1-sink extensions

then we can take for F the graph

W2 ->~- W3

The concrete nature of these constructions is very helpful when we want to apply them to
graphs with more than one sink, as we do in Section 4. It also means that our classification
is quite different in nature from the if-theoretic classifications of the algebras of finite
graphs without sinks [11, 4]. It would be an interesting and possibly very hard problem
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[3] C"-algebras of graphs with sinks 145

to combine our theorems with those of [11, 4] to say something about 1-sink extensions
of different graphs.

We begin in Section 1 by establishing conventions and notation. We give careful
definitions of 1-sink and n-sink extensions, and describe the basic constructions which
we use throughout. In Section 2, we consider a class of extensions which we call essen-
tial; these are the 1-sink extensions E for which the ideal I(v) is an essential ideal in
C*{E). For essential 1-sink extensions of row-finite graphs we have a very satisfactory
classification (Theorem 2.3), which includes part (1) of the above theorem. We show by
example that we cannot completely discard the essentiality, but in Section 3 we extend
the analysis to cover non-essential extensions E\ and E2 for which the primitive ideal
spaces PrimC*(E\) and Prim C*(E2) are appropriately homeomorphic. This extra gen-
erality is crucial in Section 4, where we use our earlier results to prove a classification
theorem for extensions with n sinks (Theorem 4.1). In our last section, we investigate
the necessity of our hypothesis on the Wojciech vectors. In particular, part (2) of the
above theorem follows from Corollary 5.4.

1. SINK EXTENSIONS AND T H E BASIC CONSTRUCTIONS

A directed graph G = (G0^1^^) consists of a countable set G° of vertices, a
countable set Gl of edges, and maps r, s : Gl —»• G° which identify the range and source
of an edge. A vertex v G G° is a sink if s - 1 (u) = 0, or a source if r " 1 ^ ) = 0; G is
row-finite if each vertex emits at most finitely many edges. All graphs in this paper are
row-finite and directed, and unless we say otherwise, G will stand for a generic row-finite
graph. In general, our notation should be consistent with that of [1] and [5].

If G is a row-finite graph, a Cuntz-Krieger G-family in a C*-algebra consists of
mutually orthogonal projections {pv : v e G0} and partial isometries {se : e € G1} which
satisfy the Cuntz-Krieger relations

s*ese — pr(e) for e 6 G1 and pv — ^ ses*e whenever v € G° is not a sink.

We denote by C*(G) = C'(se,pv) the C*-algebra of the graph G, which is generated by
a universal Cuntz-Krieger G-family {se,pv} (see [5, Theorem 1.2]).

DEFINITION 1.1: An n-sink extension of G is a row-finite graph E which contains
G as a subgraph and satisfies:

(1) H := E°\ G° is finite, contains no sources, and contains exactly n sinks.

(2) There are no loops in E whose vertices lie in H.

(3) lle£El\G\ thenr(e)e#.

(4) If w is a sink in G, then w is a sink in E.
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When we say (E, Vi) is an n-sink extension of G, we mean that V\,... vn are the n sinks
outside G°. We consistently write H for E° \ G° and 5 for the set of sinks {vi,...,vn}

lying in H.

If w G H, then there are at most finitely many paths from w to a given sink Vi. If
there is one sink Vi and exactly one path from every w € H to V\, we call (E, Vi) a 1-sink

tree extension of G. Equivalently, (H, s~x{H)) is a tree.

If we start with a graph E with n sinks, these ideas should apply as follows. Let
H be the saturation of the set S of sinks in the sense of [1], and take G := E \H
:— (E° \ H, E1 \ r~1(ff)). Then E satisfies all the above properties with respect to G
except possibly (1); if, however, E is finite and has no sources, this is automatic too. So
the situation of Definition 1.1 is quite general. Property (4) ensures that the saturation of
S does not extend into G; it also implies that an m-sink extension of an n-sink extension
of G is an (m 4- n)-sink extension of G, which is important for an induction argument in
Section 4.

LEMMA 1.2 . Let {E, v{) be an n-sink extension ofG. Then H := E° \ G° is a
saturated hereditary subset of E°. Indeed, H is the saturation S of S := {v\,..., vn}.

PROOF: Property (3) of Definition 1.1 implies that H is hereditary, and property
(4) that H is saturated. Because 5 is the smallest saturated set containing 5, it now
suffices to prove that H c S. Suppose that w £ S. Then either there is a path 7 from
w to a sink r(j) $ S, or there is an infinite path which begins at w. In the first case, w
cannot be in H because r(j) £ H and H is hereditary. In the second case, w cannot be
in H because otherwise we would have an infinite path going round the finite set H, and
there would have to be a loop in H. Either way, therefore, w £ H, and we have proved
H CS. D

COROLLARY 1 . 3 . Suppose that (E,Vi) is an n-sink extension ofG, and I(S)
is the ideal in C*{E) — C*(se,pv) generated by the projections pVi associated to the
sinks Vi G S. Then there is a surjection TTB ofC*(E) onto C'(G) = C*{tf,qw) such that
"•fi(se) = te for e e G1 and 7rE{pv) = <Z« for v e G°, and ker7rB = I{S).

PROOF: From Lemma 1.2 and [1, Lemma 4.3], we see that I(S) — I(H), and the
result follows from [1, Theorem 4.1]. D

DEFINITION 1.4: An n-sink extension (E, vt) ofG is simple ifE°\G° = {v{,..., vn}.
We want to associate to each n-sink extension (E, Vi) a simple extension by collapsing

paths which end at one of the w,-. For the precise definition, we need some notation. An
edge e with r(e) G H and s(e) G G° is called a boundary edge; the sources of these edges
are called boundary vertices. We write B\ and B% for the sets of boundary edges and
vertices. If w G G° and 1 ^ i ^ n, we denote by Z(w, Vi) the set of paths a from w to
Vi which leave G immediately in the sense that r{ct\) G H. The Wojciech vector of the
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sink Vi is the element W(E}vi) of YIG° ^ given by

)(w) := #Z(vi,Vi) for w € G°;

notice that W^E.Vi)(w) = 0 unless w is a boundary vertex. If E has just one sink, we
denote its only Wojciech vector by WE.

The simplification of (E, vt) is the graph SE with (SE)° := G° U {vu..., vn},

(SE)1 := G1 U {e(u)'a) : w 6 Bg and a £ Z(tu, v{) for some i},

s | G i=s B ) s(e^) = w, r | G i = r B l and / - ( e ^ ) = r(a).

The simplification of (£, v^ is a simple n-sink extension of G with the same Wojciech
vectors as E. We now describe how the graph algebras are related:

PROPOSITION 1 .5 . Let (E,Vi) be an n-sink extension of G, and let {se,pv},
{tf, qw} denote the canonical Cuntz-Krieger families in C*(SE) and C*(E). Then there is
an embedding <pSE ofC*(SE) onto the full corner in C*(E) determined by the projection

5Z Qvi +YKQw '• w € G0}, which satisfies 4>SE(pv) = qv for all v € G°U{vi}, and for which
i=l
we have a commutative diagram involving the maps ITE of Corollary 1.3:

C'(SE) >- C*{E) .

C'iG)

PROOF: The elements

jte if
Pv := qv and Se := <

form a Cuntz-Krieger (5£')-family in C*(E), so there is a homomorphism <j>SE := ws,p :
C'{SE) -4 C'(E) with 4>SE(pv) = Pv and <j>SE{se) = Se. We trivially have <j>SE(pv) = qv

for v 6 G° U 5.
To see that 0 5 £ is injective, we use the universal property of C*(E) to build an

action 0 : T -»• AutG'(£;) such that

and / . ( , ) (
otherwise,

note that <^S£ converts the gauge action on C* {SE) to 0, and apply the gauge-invariant
uniqueness theorem [l, Theorem 2.1].
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It follows from [1, Lemma 1.1] that ^(fo + Yjiiw '• w e ^°} converges strictly to a
projection q € M(C*(E)) such that l=1

. ' „ „ . . G°US
qtatg —

jtat'p ifs(a)6G

10 otherwise.

Thus qC*{E)q is spanned by the elements tatp with s(a) — s{/3) € G° U S, and by
applying the Cuntz-Krieger relations we may assume r(a) = r(fi) € G° U 5 also, so that
the range of <j> is the corner qC(E)q. To see that this corner is full, suppose / is an ideal
containing qC*{E)q. Then [1, Lemma 4.2] implies that K := {v : qv € /} is a saturated
hereditary subset of E°; since K certainly contains G° US, we deduce that K = E°. But
then / = C*(E) by [1, Theorem 4.1]. Finally, to see that the diagram commutes, we just
need to check that TTSE and TTE ° <j>SB agree on generators. D

It is convenient to have a name for the situation described in this proposition:

DEFINITION 1.6: Suppose (E,V{) and (F,Wi) are n-sink extensions of G. We
say that C*(F) is C*(G)-embeddable in C*(E) if there is an isomorphism <j> of C*(F)
— C*(se,pv) onto a full corner in C*(E) = C*(tf,qw) such that <j>{pWi) = qVi for all i and
•KE o 4> = nF : C*(F) -¥ C*(G). If <j> is an isomorphism onto C*(E), we say that C*(F)
is C*(G)-isomorphic to C'(E).

Notice that if C(F) is C*(G)-embeddable in C*{E), then C*(F) is Morita equivalent
to C*{E) in a way which respects the common quotient C*(G).

We now describe the basic construction by which we manipulate the Wojciech vectors
of graphs.

DEFINITION 1.7: Let (E, Vi) be an n-sink extension of G, and let e be a boundary
edge such that s(e) is not a source of G. The outsplitting of E by e is the graph E(e)
denned by

£(e)° := E° U {</}; S(e)1 := (E1 \ {e}) U {e'} U { / ' : / € E1 and r(f) = s(e)}

(r, S ) | E . U e } := (rB, sE); r(e') := rB(e), s(e') := «';

In general, we call .E(e) a boundary outsplitting of E.

The following example might help fix the ideas:

If (£•, Vi) is an n-sink extension of G, then every boundary outsplitting {E(e), v^ is
also an n-sink extension of G; if (E, v0) is a 1-sink tree extension, so is (E(e), v0). We need
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to assume that s(e) is not a source of G to ensure that E(e) is an n-sink extension, and
we make this assumption implicitly whenever we talk about boundary outsplittings. As
the name suggests, boundary outsplittings are special cases of the outsplittings discussed
in [7, Section 2.4].

PROPOSITION 1 . 8 . Suppose (E(e), Vi) is a boundary outsplitting of an n-sink
extension {E,Vi) ofG. Then C*(E(e)) is C*(G)-isomorphic to C*(E). If E is a 1-sink
tree extension, then the Wojciech vector of E(e) is given in terms of the vertex matrix
AG ofG by

(1.1)

PROOF: Let C*{E) = C*{th,qw). Then

S,:=

qv if v ± s(e) and v ^ v'

tefe iiv = v'

Qs(e) ~ tet'e Hv = s(e)

te H 9 = e'

tgiisie) - tet*e) if 9 ± e' and r(g) = s(e)

tftet*e if g = / ' for some / e f i 1 with r(/) = s(e)

to otherwise

is a Cuntz-Krieger i?(e)-family which generates C*(E). The universal property of
C'(E{e)) = C*{sg,pv) gives a homomorphism <j> - 7rs,p : C*{E(e)) -> C*(E) such
that <j>{sg) = Sg and (j>{pv) — Pv, which is an isomorphism by the gauge-invariant unique-
ness theorem [1, Theorem 2.1]. It is easy to check on generators that <j> is a C*(G)-
isomorphism.

When H is a tree with one sink v0, there is precisely one path 7 in E from r(e) to Vo,

and hence all the new paths from a vertex v to v0 have the form f'j. Thus if v ^ s(e),

WE{e){v) = WE(v) + # { / ' e £(e)x : s(f') = v and / ' I E1}

= WE(v) + # { / G G° : s(f) = v and r(f) = s(e)}

= WE(v) + AG{v,s(e)).

On the other hand, if v — s(e), then

WE{e){s(e)) = WE(s(e)) + # { / ' G E{ef : «(/') = s(e) and f $ E1} - 1

= WE(s(e)) + # { / G G° : s(/) = s(e) = r(/)} - 1

= WE(v) + AG{s(e),s(e))-l.

Together these calculations give (1.1).
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Suppose that a = aia-i • • • a n is a path in G and there is a boundary edge e with
s{e) = r(a). Then E(e) will have a boundary edge a'n at r (a n _ i ) , and therefore we can
outsplit again to get E(e)(a'n). This graph has a boundary edge a^^ at r(an_2), and
we can outsplit again. Continuing this process gives an extension E(e, a) in which s(a)
is a boundary vertex. We shall refer to this process as performing outsplittings along the
path a. From Proposition 1.8 we can calculate the Wojciech vector of E(e, a):

COROLLARY 1 . 9 . Suppose E is a 1-sink tree extension ofG and a is a path in

G for which r(a) is a boundary vertex. Then for any boundary edge e with s(e) — r(a),

we have
M

WE{e,Q) = WE + ^2(AG - I)5r(ai).
«=i

2. A CLASSIFICATION FOR ESSENTIAL 1-SINK EXTENSIONS

We now ask to what extent the Wojciech vector determines a 1-sink extension.
Suppose that Ei and E2 are 1-sink extensions of G. Our main results say, loosely speaking,
that if the Wojciech vectors WEi determine the same class in c o k e r ^ e — / ) , then there
will be a simple extension F such that C*(F) is C*(G)-embeddable in both C*(Ei) and
C*(i?2)- However, we shall need some hypotheses on the way the sinks are attached to G;
the hypotheses in this section are satisfied if, for example, G is one of the finite transitive
graphs for which C*{G) is a simple Cuntz-Krieger algebra. We begin by describing the
class of extensions which we consider in this section.

Recall that if v, w are vertices in G, then v ^ w means there is a finite path 7 with
s(-y) = v and r(j) — w. For K,L C G°, K ^ L means that for each v € K there exists
w 6 L such that v ^ w. If 7 is a loop, we write 7 Jj L when {r(7j)} ^ L.

D E F I N I T I O N 2.1: A 1-sink extension (E, v0) of a graph G is an essential extension

if G° > v0.

We can see immediately that simplifications of essential extensions are essential, and
consideration of a few cases shows that boundary outsplittings of essential extensions are
essential. To see why we chose the name, recall that an ideal / in a C*-algebra A is
essential if IDJ ^ 0 for all nonzero ideals J in A, or equivalently, if al = 0 implies a — 0.

Then we have:

LEMMA 2 . 2 . Let (E, v0) be a 1-sink extension ofG. Then {E, v0) is an essential

extension of G if and only if the ideal I{VQ) generated by pvo is an essential ideal in

C*(E) = C*(se,Pv).

PROOF: Suppose that there exists w € G° such that w ~£ v0. Then since

I(v0) — span{sQs£ : a,/3 e E* and r(a) — r(/3) — v0}

(see [1, Lemma 4.3]), we have pwl(vo) — 0, and I(v0) is not essential.
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Conversely, suppose tha t G° ^ VQ. TO show tha t I(VQ) is an essential ideal it suffices

to prove that if TT : C*(E) —» B(H) is a representation with ker?r D I(vo) = {0}, then

•K is faithful. So suppose ker?r n I(v0) = {0}. In particular, we have n{pvo) ^ 0. For

every v 6 G° there is a path a in E such tha t s(a) = v and r ( a ) = v0. Then 7r(s*sa)

— ^(Puo) T^ 0, and hence 7r(pu) ^ 7r(s as ' ) ^ 0. Since every loop in a 1-sink extension E

must lie entirely in G, every loop in G has an exit in E; thus we can apply [1, Theorem

3.1] to deduce tha t n is faithful, as required. D

We can now state our classification theorem for essential extensions.

THEOREM 2 . 3 . Let G be a row-finite graph with no sources, and suppose that

(E\,vi) and (E2,v2) are essential 1-sink extensions of G with finitely many boundary

vertices. If there exists n € © G o Z such that the Wojciech vectors satisfy WEl - WEi

= {AQ — I)n, then there is a simple 1-sink extension FofG such that C*(F) is C*(G)-

embeddable in both C*(E{) and C*(E2).

We begin by observing tha t , since a full corner in a full corner of a C*-algebra A is a

full corner in A, the composition of two C* (G)-embeddings is another C*(G)-embedding.

Thus it suffices by Proposition 1.5 to prove the theorem for the simplifications SEi and

5^2- However, since we are going to perform boundary outsplittings and these do not

preserve simplicity, we assume merely tha t Ei and E2 are 1-sink tree extensions. The

following lemma is the key to many of our constructions:

LEMMA 2 . 4 . Let (Ei, vi) and (E2, v2) be 1-sink tree extensions ofG with finitely

many boundary vertices, and suppose that B%1 ^ B%2 ^ BQ
Ei. If 7 is a loop in G such that

7 ^ B°Ei, then for any a € Z there are 1-sink tree extensions E[ and E'2 which are formed

by performing a finite number of boundary outsplittings to Ei and E2, respectively, and

for which

We. - WE.2 = WBl - W
( W \

of ^2(AG - I)5r{ru) .

PROOF: Since the statement is symmetric in E\ and E2, it suffices to prove this

for a > 0. Choose a path a in G such that s(a) = r(j) and r(a) 6 B°El. Since BEi

is finite, going along paths from r(a) to BBj and then to and fro between B°E2 and BEi

must eventually give either (a) a loop fi which visits both BEl and BEl, and a path (5

with s{0) = r(a) and r(/3) = s(fi) e B°El, or (b) a vertex v e B°Ein B°El and a path P

with s(P) = r(a) and r(/3) = v.

We deal with case (a) first. Since there are boundary edges e\ e BEl and e2 € BE2

with s(e{) on n, we can perform outsplittings along fj, to get new tree extensions Eifa, /x'),

where fxl is the loop \i relabelled so that it ends at s(ej). Because /x1 and n2 have the
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same vertices as fi in a different order, Corollary 1.9 gives

M
E i M = WEi +

so we have WEl(eulli) - WE^e2tll2) = WEl - WE2. Since r((l\p\) = s(/i), and in forming
both Ei(ei,n*) we have performed an outsplitting at S(^J), S(/?|0|) is a boundary vertex
in both EiieufS); say /< 6 BE. has s(/,) = s{0w). Write 0 = 0'0W, 7 ° for the path
obtained by going a times around 7, and define

E[:=E1(eutxl)(fi,yaap') and E'2 := E2(e2,(J,
2)(f2,ap').

We now compute the Wojciech vectors using Corollary 1.9: for example,

1-1 N hi

The formula for WE>2 is the same except for the last term, so

WE[ -

E2

hi

IT)

as required.

In case (b), we can dispense with the first step in the preceding argument: we choose
boundary edges fi G BE. with s(/j) = v, and then

E[ := EMu-faP) and E'2 := E2(f2,ap)

have the required properties. D

P R O O F OF T H E O R E M 2.3: As we indicated earlier, it suffices to prove the theorem
when Ei and E2 are tree extensions. It also suffices to prove that we can perform boundary
outsplittings on E\ and E2 to achieve extensions Fi and F2 with the same Wojciech vector;
Propositions 1.5 and 1.8 then imply that we can take for F the common simplification

m
of Fi and F2. We can write n — ^ ak6Wk for some finite set {u>i, tu2, • • •, wm} c G°. We
shall prove by induction on m that we can perform the required outsplittings. If m = 0,
then WEl = WEi, and there is nothing to prove. So we suppose that we can perform

m m+1
the outsplittings whenever n has the form £ a,k5Wk, and that n — J2 Ok6Wlc. Let D be

the subgraph of G with vertices D° := {wi,w2,... ,wm+i} and edges D1 := {e € G1 :
s(e),r(e) G D0}. Since D is a finite graph it contains either a sink or a loop.
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If D contains a sink, then by relabelling we can assume the sink is wm+i- Since
AG(wm+i, Wj) = 0 for all j , we have

WEl(wm+l) = WBl(wm+i) - am+l.

Thus either E\ or E2 has at least |am + i | boundary edges leaving wm+\: we may as well
assume that am+\ > 0, so that WEi(wm+i) ^ am+\. We can then perform am+1 boundary
outsplittings on E2 at wm+\ to get a new extension E2. From Proposition 1.8, we have
WE>2 = WEi + am+i(AG - I)6Wm+1, and therefore

Wp = WF> + (A,— J

jt=i

Since E2 is formed by performing boundary outsplittings to the essential tree extension
E2, it is also an essential tree extension, and the inductive hypothesis implies that we
can perform boundary outsplittings on Ex and E2 to arrive at extensions with the same
Wojciech vector.

If D does not have a sink, it must contain a loop 7. If necessary, we can shrink 7
so that its vertices are distinct, and by relabelling, we may assume that tum+i lies on
7. Because the extensions are essential, we have G° ^ BEl and G° ^ B°Ei, so we can
apply Lemma 2.4. Thus there are 1-sink tree extensions E[ and E2 formed by performing
boundary outsplittings to E\ and E2, and for which

|7|

WE[ - WE,2 = WEl - WEi - am+l J2(AG - I)5rhi).

But because WEl — WE2 + (AG — I)n this implies that

WB; = WE2 + (AG - j

where bj — a.j - am+x if Wj lies on 7, and bj = a.j otherwise. We can now invoke the

inductive hypothesis to see that we can perform boundary outsplittings to E[ and E2 to

arrive at extensions with the same Wojciech vector.

This completes the proof of the inductive step, and the result follows. D

REMARK 2.5. The graph F in Theorem 2.3 has actually been constructed in a very
specific way, and it will be important in Section 4 that we can keep track of the procedures
used. We shall say that one simple extension F has been obtained from another E by

a standard construction if it is the simplification of a graph obtained by performing a
sequence of boundary outsplittings to E. The graph F in Theorem 2.3 has been obtained
from both SE\ and SE2 by a standard construction.
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The next example shows that the hypothesis of essentiality in Theorem 2.3 cannot
be completely dropped.

E X A M P L E 2.6. Consider the following graph G

o o
ll>l-»—W2

o o
and its extensions E\ and E2;

0 0 p o o
-Wi-*—w2 E2 •" Wi-»—W2-

Note that E2 is essential but Ei is not. On one hand, we have AQ = I I, WEj — I I,

and W£j I J

WEl - WE2 =

On the other hand, we claim that C*(Ei) is not Morita equivalent to C*(E2), so that
they cannot have a common full corner. To see this, recall from [1, Theorem 4.4] that the
ideals in C*(Ei) are in one-to-one correspondence with the saturated hereditary subsets
of E°. The saturated hereditary subsets of E° are {vi}, {vi,w2}, {vi,wi,w2} and {w2},
and those of E2 are {^2}, {v2,w2} and {^ .Wj ,^} . Thus C*(E\) has more ideals than
C*(E2)- But if they were Morita equivalent, the Rieffel correspondence would set up a
bijection between their ideal spaces.

This example shows that the way the sinks v, are attached to G can affect how
the ideal I(VQ) lies in the ideal space of C*(E). In the next section, we give a simple
condition on the way Vi are attached which ensures that the primitive ideal spaces of
C*{Ei) are homeomorphic, and show that under this condition there is a good analogue
of Theorem 2.3. However, there is one situation in which essentiality is not needed: when
C*(G) is an AF-algebi&.

COROLLARY 2 . 7 . Let G be a graph with no sources for which C*(G) is an AF-

algebra, and let (Ei,vi) and (E2, v2) be 1-sink extensions ofG. If there exists n € ® G 0 Z
such that WEl = WE2 + (Ac - I)n, then then there is a simple 1-sink extension FofG

such that C*(F) is C(G)-embeddable in both C*(Ei) and C*{E2).

P R O O F : We first recall from [5, Theorem 2.4] that C*{G) is AF if and only if G

has no loops. Now we proceed as in the proof of Theorem 2.3. Everything goes the same
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until we come to consider the finite subgraph D associated to the support of the vector
n.. Since there are no loops in G, D must have a sink, and the argument in the second
paragraph of the proof of Theorem 2.3 suffices; this does not use essentiality. D

3. A CLASSIFICATION FOR NON-ESSENTIAL 1-SINK EXTENSIONS

Recall from [1, Section 6] that a maximal tail in a graph E is a nonempty subset of
E° which is cofinal under ^ , is backwards hereditary (v ^ w and w G 7 imply v S 7),
and contains no sinks (for each w € 7, there exists e £ E1 with s(e) = w and r(e) 6 7).

DEFINITION 3.1: Let (E,v0) be a 1-sink extension of G. The closure of the sink
v0 is the set

VQ := L){7 : 7 is a maximal tail in G and 7 ^ VQ}.

To motivate this definition, we notice first that the extension is essential if and only
if vfj = G°. More generally (although it is not logically necessary for our results), we
explain how this notion of closure is related to the closure of sets in Prim C*(i£), as
described in [1, Section 6]. For each sink v, let Xv := {w € E° : w ^ v}, and let

AE := {maximal tails in E} U {\v : v is a sink in E}.

The set A# has a topology in which the closure of a subset 5 is {A : A ^ Uxes x}> a n d it
is proved in [1, Corollary 6.5] that when E satisfies Condition (K) of [6], A 1-4 I(E® \ A)
is a homeomorphism of A# onto Prim C*(i£). If (E,VQ) is a 1-sink extension of G, then
the only loops in E are those in G, so E satisfies Condition (K) whenever G does. A
subset of G° is a maximal tail in E if and only if it is a maximal tail in G, and because
every sink in G is a sink in E, we deduce that AE — Ag U {Ko}-

LEMMA 3 . 2 . Suppose G satisfies Condition (K), and (E\,v{), (E2, v2) are 1-sink

extensions ofG. Then u[ = vi if and only if there is a homeomorphism h ofPrimC'(Ei)

onto PrimC*(i?2) such that

(3.1) /*(/(£? \ A)) = I(E°2 \ A) for A € AG, and /i(/(£? \ AOI)) = I(E°2 \ XV2).

PROOF: For any 1-sink extension (E, vo), the map J i-> 7r^1( J) is a homeomorphism
of Pr imC(G) onto the closed subset {J € PrimC*(E) : J D I(v0)}. If A € AG C AE,

then TTg1 (/(G° \ A)) = I(E° \ A), and hence h is always a homeomorphism of the closed
set {/(£? \ A) : A e AG} in PrimC*(£i) onto the corresponding subset of PrimC*(£2)-
So the only issue is whether the closures of the sets I{E^ \ XVI) and / ( £ ° \ ^2) m a tch
up. But

I(Ef\\Vi) = {I(E° \\):\>\Vi} = {I(E° \ A) : A £ Vi}.

Since other sets Xv associated to sinks are never JJ Vi, the ideals on the right-hand side
are those associated to the maximal tails lying in vi, and the result follows. D

https://doi.org/10.1017/S0004972700035887 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700035887


156 I. Raeburn, M. Tomforde and D.P. Williams [14]

We now return to the problem of proving analogues of Theorem 2.3 for non-essential
extensions. Notice that the closure is a subset of G° rather than E°: we have defined it
this way because we want to compare the closures in different extensions.

PROPOSITION 3 . 3 . Suppose that (Ei,vi) and (E2, V2) are 1-sink extensions of
G with Gnitely many boundary vertices, and suppose that u[ —v^ — C, say. If WEX — WE2

has the form (AQ — I)n for some n G @c Z, then there is a simple 1-sink extension F of
G such that C*{F) is C*{G)-embeddable in both C*{Ei) and C*{E2).

We aim to follow the proof of Theorem 2.3, so we need to check that the operations
used there will not affect the hypotheses in Proposition 3.3. It is obvious that the closure
is unaffected by simplifications. It is true but not so obvious that it is unaffected by
boundary outsplittings:

LEMMA 3 . 4 . Suppose (E,v0) is a 1-sink extension of a graph G, and e is a
boundary edge in E. Then the closures ofv0 in E and E(e) are the same.

PROOF: Suppose 7 is a maximal tail such that 7 ^ v0 in E(e) and z G 7; we want
to prove z ^ BE. We know z ^ w for some w G BE^. If w G BE, there is no problem.
If w <£ B%, then w = s(f) for some / € G1 with r(/) = s(e), so z ^ w ^ s(e) G B%.

Now suppose •y ^ vQin E and z G 7; we want to prove that 2 ^ B%uy We know that
there is a path a with s(a) — z and r(a) G B%. If r(a) ^ s(e), we have z ^ r(a) € BE.y
If r(a) = s(e) and \a\ ^ 1, we have z > r(a|a|_i) G ^%(ey The one remaining possibility
is that z = s(e) and there is no path of length at least 1 from s(e) to s(e). Because 7 is
a tail, there exists / € G1 such that s(f) = s(e) and r(f) € 7. Now we use 7 ^ v0 to
get a path /? with s(/3) = r(f) and r(/3) G BE0 \ {s(e)}, and we are back in the first case
with a = f/3. D

PROOF OF PROPOSITION 3.3: Since the closures ¥[ and v^ are unaffected by sim-
plification and boundary outsplitting, we can run the argument of Theorem 2.3. In doing

m
so, we never have to leave the common closure C: by hypothesis, n = Y^ ak^wk for some

k=l

wk G C, so all the vertices on the subgraph D used in the inductive step lie in C. When
D has a sink, the argument goes over verbatim. When D has a loop 7, all the vertices
on 7 lie in C, and the hypothesis v{ = C = vi implies that 7 > BEl ^ BEi ^ BEl, so we
can still apply Lemma 2.4. The rest of the argument carries over. D

The catch in Proposition 3.3 is that the vector n is required to have support in
the common closure C. For our applications to n-sink extensions in the next section,
this is just what we need. However, if we are only interested in 1-sink extensions, this
requirement might seem a little unnatural. So it is interesting that we can often remove
it:

LEMMA 3 . 5 . Suppose that (Ei,vi) and (£2,1*2) are 1-sink extensions ofG, and
suppose that v{ = v^ = C, say. Suppose that 1 is not an eigenvalue of the (G° \ C)
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x(G°\C) corner of AG. Then ifWEl-WEl has the form (AG - I)n for some n € ^ Z ,
we have n € 0 C Z.

PROOF: Since the maximal tails comprising C are backwards hereditary, there are
no paths from G° \ C to C. Thus AQ decomposes with respect to the decomposition
G° = (G° \ C) U C as AG = (£ £ ) , and AG - I = ( f l j 7

 D°-i)- Writing n as (4 ) and
noting that WEi — WEi has support in C shows that (B — I)k = 0, which by the hypothesis
on AG implies k = 0. But this says exactly what we want. D

4. A CLASSIFICATION FOR n-SINK EXTENSIONS

We say that an n-sink extension is essential if G° ^ V{ for 1 < i ^ n.

THEOREM 4 . 1 . let (E, Vi) and (F,«;,-) be essential n-sink extensions of G with
finitely many boundary vertices. Suppose that the Wojciech vectors satisfy

(4.1) W(Ew) - W{F;Wi) 6 (AG - J ) ( © G O Z ) for 1 ^ i ^ n.

Then there is a simple n-sink extension D of G such that C*(D) is C* (G)-embeddable
in bothC*{E) and C*(F).

We shall prove this theorem by induction on n. At a key point we need to convert
(n - l)-sink extensions to n-sink extensions. If m S YlG0 N and (E, vt) is an (n — l)-sink
extension, we denote by {E*m, Vi) the n-sink extension of G obtained by adding an extra
vertex vn and m(w) edges from each vertex w € G° to vn. Note that E *m has one new
Wojciech vector W^Etm;vn)

 = m> a n d the other Wojciech vectors are unchanged. If E is
a simple extension, then so is E * m. Conversely, if (F, Wi) is a simple n-sink extension,
then F\wn := (F° \ {wn}, Fl \ r~l(wn)) is a simple (n — l)-sink extension for which
(F \ wn) * W(F-iWn) can be naturally identified with F.

We need to know how the operation E \-t E * m interacts with our other construc-
tions:

LEMMA 4 . 2 . If e is a boundary edge for E, then e is a boundary edge for E *
m, and the boundary outsplittings satisfy E(e) * m = (E * m)(e). The simplification
construction E i-* SE satisfies S(E * m) — (SE) * m.

PROOF: The only edges which are affected in forming E{e) are e and the edges /
with r(f) — s(e). Since none of the new edges in E * m have range in E, they are not
affected by the outsplitting. Simplifying collapses paths which end at one of the sinks Vi,
and forming E *m adds only paths of length 1 ending at vn, so there is nothing extra to
collapse in simplifying E * m. D

P R O O F OF THEOREM 4.1: As in the 1-sink case, it suffices by Proposition 1.5
to prove the result when E and F are simple. So we assume this. Our proof is by
induction on n, but we have to be careful to get the right inductive hypothesis. So we
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shall prove that by performing n standard constructions on both E and F, we can arrive
at simple n-sink extensions of G with all their Wojciech vectors equal; these graphs are
then isomorphic, and we can take D to be either of them. Theorem 2.3 says that this is
true for n = 1 (see Remark 2.5).

So we suppose that our inductive hypothesis holds for all simple (n — l)-sink exten-
sions satisfying the hypotheses of Theorem 4.1. Then E\vn and F\wn are simple (n -1 ) -
sink extensions of G with Wojciech vectors W{B\Vn.Vi) = W(Eivi) and W(F\Wn.Wi) — W(F.<Wi)
for i ^ n — 1. So the Wojciech vectors of E \ vn and F\wn satisfy the hypothesis (4.1).
Since G° ^ Vi in E, and we have not deleted any edges except those ending at vn and
wn, we still have G° ^ vt in E \ vn for i < n -1, and similarly G° ^ Wi in F \ wn. By the
inductive hypothesis, therefore, we can perform (n - 1) standard constructions on each
of E and F to arrive at the same simple (n — l)-sink extension (D, Uj) of G.

By Lemma 4.2, D* W(Etvn) and D* W(F.Wn) are obtained from E = (E\vn)* W(E,vn)
and F = (F\ wn) * W(p-,Wn) by (n — 1) standard constructions. We now view (DE, vn)
:= D * W(E\vn) and (DF, wn) :— D * W^F-Wn) as two simple 1-sink extensions of the graph
D. Since the standard constructions have not affected the path structure of G inside D,
and we assumed G° ^ vn in E, we still have G° ^ vn in DE, and similarly G° ^ wn in
DF. Because any sink in G has to be a sink in E, the hypothesis G° ^ vn in E implies
that G has no sinks; thus every vertex in G lies on an infinite path x, and hence in the
maximal tail 7 :— {v : v ^ x}. Thus G° ^ vn says precisely that G° is the closure of vn

in DE. Of course the same is true of wn in DF. We can therefore apply Proposition 3.3
to deduce that we can by one more standard construction on each of DE and DF reach
the same 1-sink extension (C, un) of D; since all the boundary vertices of D lie in G,
this standard construction for extensions of D is a also standard for extensions of G, and
hence C can also be obtained by performing n standard constructions to each of E and
F.

This completes the proof of the inductive hypothesis, and hence of the theorem. D

5. if-THEORY OF 1-SINK EXTENSIONS

PROPOSITION 5 . 1 . Suppose that G is a row-Bnite graph with no sinks, and

(E,v0) is a 1-sink extension of G such that WE -L ker(i4g - / ) . If {F,w0) is a 1-sink

extension of G and <j) : C*{F) ->• C*(E) is a C* (G)-embedding, then there exists k e
n G o Z such that WE - WF = (Ac - I)k.

For the proof, we need to know the if-theory of the C*-algebras of graphs with sinks,

which was was calculated in [10, Section 3]. We summarise some results from [10] in a

convenient form:

LEMMA 5 . 2 . Suppose G has no sinks and (E, v0) is a 1-sink extension ofG with

graph algebra C*(E) = C*(se,pv). Let ipE be the homomorphism of ( ® G 0 Z) © Z into
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K0(C*(E)) which is determined on the standard basis elements by tpE(6v,O) := \pv]

for v € G° and T/>£(0, 1) = \pvo\- Then tpB induces an isomorphism of the cokernel of

((A(
G - / ) 0 Wl

E) : 0 G o Z - > ( 0 G o Z ) © Z onto K0(C*{E)).

PROOF: We first suppose that (E, v0) is simple. Then ( 0 G o Z) ©Z is the group ZG°
© Z w considered in [10, Section 3], and it suffices to show that tpE is the homomorphism
4> considered there. To do this, we need to check that the map 5 of K$(C*(E) x7 T)
onto K0(C*{E)) in [10, (3.3)] satisfies S(\pv\i]) = \pv). The map 5 is built up from the
homomorphisms induced by the embedding of C*(E) x 7 T in the dual crossed product
(C*{E) x 7 T) x 7 Z , the Takesaki-Takai duality isomorphism (C*(E) x 7 T) x ^ Z S C*(E)
<B> fC(e2{Z)), and the map o i 4 o ® p o f C*(E) into C*(E) ® K.(£2{Z)) determined by
a rank-one projection p. The formulas at the start of the proof of [9, Theorem 6] show
that, because pv is fixed under 7, the duality isomorphism carries pvXi 6 C*(E) x 7 T
C {C*(E) x 7 T) x^ Z into pv <8> M(xi), where M(xi) is the projection onto the subspace
spanned by the basis element e\. Thus 5 has the required property, and the result for
simple extensions now follows from [10, Theorem 3.2].

If (E, vo) is an arbitrary 1-sink extension, we consider its simplification SE and the
embedding <f>SE of C*(SE) in C*(E) provided by Proposition 1.5, which by [8, Propo-
sition 1.2] induces an isomorphism </>f£ in Jf-theory. But now it is easy to check that
^SE o ^SE = ^ a n d t h e r e s u l t follows. D

We now begin the proof of Proposition 5.1. Since the image of 0 is a full corner in
C*(E), it induces an isomorphism 0« of K0(C*(F)) onto K0(C*(E)) (by, for example, [8,
Proposition 1.2]). The properties of the C*(G)-embedding (j> imply that <£»([Pu,0]) = [p«0]
and (TTE)* ° <j>» = (TTF)*- We need to know how <j>, interacts with the descriptions of
/("-theory provided by Lemma 5.2.

LEMMA 5 . 3 . The induced homomorphism <f>, : K0(C*{F)) -» K0(C*(E)) sat-

isfies <t>.(ipF(Q, 1)) = ipB(0,1), and for each z e © G oZ , there exists £ 6 Z such that

PROOF: The first equation is a translation of the condition 0»([Pwol) — \Pvo\
the second, let ip° : 0 G o Z -> K0(C*(G)) be the homomorphism such that ipG(Sv) = \pv],
which induces the usual isomorphism of coker(Al

G -1) onto Ko (C* (G)). If p : (©Go Z) ©
Z -t 0 G o Z is given by p(z, £) := z, then we have (7r£), o ipE = i/>G o p, and similarly for
F. Thus

(5.1) (TTE). o 0 , OTPF = (TTF). oibF = i\Fop.

Now fix z 6 0 G o Z. Since ipE is surjective, there exists (x, y) e ( 0 G O Z) © Z such that
ipE(x,y) = (pt(ip

F{z,O)). From (5.1) we have

O 0, o VF(z, 0) = (TTB). O I/JE(X, y) = T/.G(X),
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and hence there exists u 6 ®Go Z such that x — z + (AQ — I)u. Now because ipE is
constant on the image of (Al

c — I)® WE, we have

4>. (i>F(z, 0)) = iPE(x, y) = 4,E(z + (A'a - I)u, y) = iPE(z, y - WEu),

and £:=y- WEu will do. D

P R O O F OF PROPOSITION 5.1: By Lemma 5.3, for each v £ G° there exists kv £ Z
such that (f>t(ip

F(6v,0)) - ipB(6v,kv). We define k - (kv) £ Yl^Z. A calculation shows
that for any (y, £) € ( 0 G o Z) 0 Z we have

(5.2) 4>. o iJ,F(y, £) = J2 Vvi<t>* o V)(SV, 0) + £{<j>t o ^ F ) ( 0 , 1 )

Now let z e 0 G o Z. On one hand, we have from (5.2) that

(5.3) 4>. o VF(((AG - / ) © W*F){z)) = ^((A'o - I)z, k'iA'a - I)z + Wl
Fz).

On the other hand, since ipF o ((^4G - / ) © Wj,) = 0, its composition with <j>t is also 0.
Thus the class (5.3) must vanish in K0(C*(E)), and there exists x € ® G 0 Z such that

(5.4) ((A'a - I)z, kl (A'c - I)z + Wl
Fz) ={{A\!- I)x, WEx).

Comparing (5.3) and (5.4) shows that x — z 6 ker(.4G — /) and

Jfc*(i4j, - I)z + WFz = WEx = WEz + WE(x - z).

Since we are supposing WE ± ker(ylG — / ) , we deduce that WE(x — z) = 0. We have now
proved that

k'iA'c - I)z = (WE - WF)z for all z e ©G 0Z,

which implies (Ac — I)k = WE — WF, as required. Q

COROLLARY 5 . 4 . Suppose that G is a row-finite graph with no sinks and with

the property that ker(AG — I) — {0}. Let (E\, v\) and (E2t v2) be 1-sink extensions ofG.

If there is a 1-sink extension F such that C'(F) is C*(G)-embeddable in both C'(Ei)

and C*(E2), then there exists k € Ho0 ^ s u c ^ taat ^£i "" WE2 — (AG — I)k.

COROLLARY 5 . 5 . Suppose that G is a finite graph with no sinks or sources

whose vertex matrix Ac satisfies ker(AG — /) = 0. Let (Ei,vi) and (E2,v2) be 1-sink

extensions of G such that ¥[ =v2. Then there is a 1-sink extension F such that C*(F)

is C*(G)-embeddable in both C*(Ei) and C*{E2) if and only if there exists k £ 0 G O Z
such that WEl - WE, = (AG - I)k.
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PROOF: The forward direction follows from the previous corollary. For the con-

verse, we seek to apply Proposition 3.3. To see that n has support in the common closure

C := ¥[ = vi, recall that Ac decomposes as Ac = (c D) W1^ respect to

G° = (G° \ C) U C. Thus 1 is an eigenvalue for the (G° \ C) x (G° \ C) corner B of AG if

and only if it is an eigenvalue for AQ, and hence if and only if it is an eigenvalue for Al
G.

So Lemma 3.5 applies, suppn lies in C, and the result follows from Proposition 3.3. D
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