ON THE RADICAL OF A RING WITH MINIMUM CONDITION

D. W. BARNES

(received 18 September 1964)

The purpose of this note is to establish the following characterisation of the radical:

THEOREM. Let R be a ring with the minimum condition for left ideals. Then the radical of R is the intersection of the maximal nilpotent subrings of R.

We prove first the following lemmas, assuming throughout that R is a ring with minimum condition:

LEMMA 1. Suppose R is the direct sum $R_1 \oplus \cdots \oplus R_k$ of the ideals R_i , $i = 1, 2, \cdots, k$. Let N_i be a maximal nilpotent subring of R_i $(i = 1, 2, \cdots, k)$, and let $N = N_1 \oplus \cdots \oplus N_k$. Then N is a maximal nilpotent subring of R. Conversely, if N is a maximal nilpotent subring of R, then the R_i -component

$$N_i = \{x \mid x = n - y \in R_i \text{ for some } n \in N, y \in \sum_{j \neq i} R_j\}$$

of N is a maximal nilpotent subring of R_i , and

$$N=N_1\oplus\cdots\oplus N_k.$$

PROOF. Consider the product $a_1 a_2 \cdots a_t$ of elements $a_i \in R$. Each a_i is uniquely expressible in the form

 $a_i = b_{i1} + b_{i2} + \cdots + b_{ik}, \quad b_{ij} \in R_j.$

Then

$$a_1 a_2 \cdots a_t = b_{11} b_{21} \cdots b_{t1} + b_{12} b_{22} \cdots b_{t2} + \cdots + b_{1k} b_{2k} \cdots b_{tk}$$

since R is the direct sum of the ideals R_i , $i = 1, 2, \dots, k$. Thus $a_1 a_2 \cdots a_i = 0$ if and only if $b_{1i} b_{2i} \cdots b_{ii} = 0$ for all $i = 1, 2, \dots, k$. Thus a subring S of R is nilpotent if and only if for all i, the R_i -component

$$S_i = \{x \mid x = s - y \in R_i \text{ for some } s \in S, y \in \sum_{j \neq i} R_j\}$$

of S is nilpotent.

(i) Let N_i be a maximal nilpotent subring of R_i $(i = 1, 2, \dots, k)$, and let $N = N_1 \oplus \dots \oplus N_k$. Then N is a nilpotent subring of R. Suppose S

234

is a nilpotent subring of R and $S \ge N$. Then the component $S_i \ge N_i$ and is nilpotent. Since N_i is maximal nilpotent in R_i , we must have $S_i = N_i$. But

$$S \leq \sum_{i=1}^{k} S_i = \sum_{i=1}^{k} N_i = N.$$

Therefore S = N and N is maximal nilpotent in R.

(ii) Let N be a maximal nilpotent subring of R. Then the components N_i of N are nilpotent. Suppose $R_i \ge S_i \ge N_i$ and S_i is nilpotent, $i = 1, 2, \dots, k$. Then $S = S_1 \oplus \dots \oplus S_k$ is a nilpotent subring of R and $S \ge N$. Therefore S = N which implies $S_i = N_i$. Thus N_i is a maximal nilpotent subring of R_i and $N = N_1 \oplus \dots \oplus N_k$.

LEMMA 2. Suppose R is simple, non-null. Then there exist maximal nilpotent subrings U, L of R such that $U \cap L = 0$.

PROOF. R is isomorphic to the ring of endomorphisms of some finitedimensional left vector space over some division ring D. From any basis of V, we obtain a faithful representation of R by matrices (d_{ij}) with elements d_{ij} in D. If N is any nilpotent subring of R, we can choose the basis of Vsuch that every element of N is represented by an upper triangular matrix $(d_{ij}), d_{ij} = 0$ for $i \ge j$. Clearly the subring U of all elements of R which are represented (for some given basis of V) by upper triangular matrices is a maximal nilpotent subring of R. The subring L of elements represented by lower triangular matrices $(d_{ij}), d_{ij} = 0$ for $i \le j$, is also a maximal nilpotent subring of R and $U \cap L = 0$.

LEMMA 3. Suppose R is semi-simple. Then the intersection of the maximal nilpotent subrings of R is 0.

PROOF. R is the direct sum $S_1 \oplus \cdots \oplus S_k$ of simple non-null ideals S_i . For each *i*, there exist maximal nilpotent subrings U_i , L_i of S_i such that $U_i \cap L_i = 0$. Put $U = U_1 \oplus \cdots \oplus U_k$ and $L = L_1 \oplus \cdots \oplus L_k$. Then U, L are maximal nilpotent subrings of R and $U \cap L = 0$.

LEMMA 4. Let N be the radical of R and let K be a subring of R. Then K is a maximal nilpotent subring of R if and only if $K \ge N$ and K/N is a maximal nilpotent subring of R/N.

PROOF. If K is nilpotent, then so is (K+N)/N. But (K+N)/N and N both nilpotent implies that K+N is nilpotent. Thus if K is maximal nilpotent, then K = K+N and therefore $K \ge N$. Suppose $K \ge N$. Then K is nilpotent if and only if K/N is nilpotent. Thus $K(\ge N)$ is maximal nilpotent in R if and only if K/N is maximal nilpotent in R/N.

PROOF OF THEOREM. Let N be the radical of R, and let M_{α} be the maximal nilpotent subrings of R. Then $M_{\alpha} \geq N$ for all α , and

D. W. Barnes

$$(\bigcap_{\alpha} M_{\alpha})/N = \bigcap_{\alpha} (M_{\alpha}/N).$$

But the M_{α}/N are all the maximal nilpotent subrings of the semi-simple ring R/N. Therefore

$$\bigcap_{\alpha} (M_{\alpha}/N) = 0$$
$$\bigcap_{\alpha} M_{\alpha} = N.$$

and therefore

Reference

[1] Artin, E., Nesbitt, C. J. and Thrall, R. M., Rings with minimum condition (University of Michigan Press, Ann Arbor, 1944).

The University of Sydney

 $\mathbf{236}$