ON THE RADICAL OF A RING WITH MINIMUM CONDITION

D. W. BARNES
(received 18 September 1964)

The purpose of this note is to establish the following characterisation of the radical:

Theorem. Let R be a ring with the minimum condition for left ideals. Then the radical of R is the intersection of the maximal nilpotent subrings of R.

We prove first the following lemmas, assuming throughout that R is a ring with minimum condition:

Lemma 1. Suppose R is the direct sum $R_{1} \oplus \cdots \oplus R_{k}$ of the ideals $R_{i}, i=1,2, \cdots, k$. Let N_{i} be a maximal nilpotent subring of $R_{i}(i=1$, $2, \cdots, k$), and let $N=N_{1} \oplus \cdots \oplus N_{k}$. Then N is a maximal nilpotent subring of R. Conversely, if N is a maximal nilpotent subring of R, then the R_{i}-component

$$
N_{i}=\left\{x \mid x=n-y \in R_{i} \text { for some } n \in N, y \in \sum_{j \neq i} R_{j}\right\}
$$

of N is a maximal nilpotent subring of R_{i}, and

$$
N=N_{1} \oplus \cdots \oplus N_{k}
$$

Proof. Consider the product $a_{1} a_{2} \cdots a_{t}$ of elements $a_{i} \in R$. Each a_{i} is uniquely expressible in the form

Then

$$
a_{i}=b_{i 1}+b_{i 2}+\cdots+b_{i k}, \quad b_{i j} \in R_{j}
$$

$$
a_{1} a_{2} \cdots a_{t}=b_{11} b_{21} \cdots b_{t 1}+b_{12} b_{22} \cdots b_{t 2}+\cdots+b_{1 k} b_{2 k} \cdots b_{t k}
$$

since R is the direct sum of the ideals $R_{i}, i=1,2, \cdots, k$. Thus $a_{1} a_{2} \cdots a_{t}=0$ if and only if $b_{1 i} b_{2 i} \cdots b_{t i}=0$ for all $i=1,2, \cdots, k$. Thus a subring S of R is nilpotent if and only if for all i, the R_{i}-component

$$
S_{i}=\left\{x \mid x=s-y \in R_{i} \text { for some } s \in S, y \in \sum_{j \neq i} R_{j}\right\}
$$

of S is nilpotent.
(i) Let N_{i} be a maximal nilpotent subring of $R_{i}(i=1,2, \cdots, k)$, and let $N=N_{1} \oplus \cdots \oplus N_{k}$. Then N is a nilpotent subring of R. Suppose S
is a nilpotent subring of R and $S \geqq N$. Then the component $S_{i} \geqq N_{i}$ and is nilpotent. Since N_{i} is maximal nilpotent in R_{i}, we must have $S_{i}=N_{i}$. But

$$
S \leqq \sum_{i=1}^{k} S_{i}=\sum_{i=1}^{k} N_{i}=N
$$

Therefore $S=N$ and N is maximal nilpotent in R.
(ii) Let N be a maximal nilpotent subring of R. Then the components N_{i} of N are nilpotent. Suppose $R_{i} \geqq S_{i} \geqq N_{i}$ and S_{i} is nilpotent, $i=1,2, \cdots, k$. Then $S=S_{1} \oplus \cdots \oplus S_{k}$ is a nilpotent subring of R and $S \geqq N$. Therefore $S=N$ which implies $S_{i}=N_{i}$. Thus N_{i} is a maximal nilpotent subring of R_{i} and $N=N_{1} \oplus \cdots \oplus N_{k}$.

Lemma 2. Suppose R is simple, non-null. Then there exist maximal nilpotent subrings U, L of R such that $U \cap L=0$.

Proof. R is isomorphic to the ring of endomorphisms of some finitedimensional left vector space over some division ring D. From any basis of V, we obtain a faithful representation of R by matrices ($d_{i j}$) with elements $d_{i j}$ in D. If N is any nilpotent subring of R, we can choose the basis of V such that every element of N is represented by an upper triangular matrix $\left(d_{i j}\right), d_{i j}=0$ for $i \geqq j$. Clearly the subring U of all elements of R which are represented (for some given basis of V) by upper triangular matrices is a maximal nilpotent subring of R. The subring L of elements represented by lower triangular matrices $\left(d_{i j}\right), d_{i j}=0$ for $i \leqq j$, is also a maximal nilpotent subring of R and $U \cap L=0$.

Lemma 3. Suppose R is semi-simple. Then the intersection of the maximal nilpotent subrings of R is 0 .

Proof. R is the direct sum $S_{1} \oplus \cdots \oplus S_{k}$ of simple non-null ideals S_{i}. For each i, there exist maximal nilpotent subrings U_{i}, L_{i} of S_{i} such that $U_{i} \cap L_{i}=0$. Put $U=U_{1} \oplus \cdots \oplus U_{k}$ and $L=L_{1} \oplus \cdots \oplus L_{k}$. Then U, L are maximal nilpotent subrings of R and $U \cap L=0$.

Lemma 4. Let N be the radical of R and let K be a subring of R. Then K is a maximal nilpotent subring of R if and only if $K \geqq N$ and K / N is a maximal nilpotent subring of R / N.

Proof. If K is nilpotent, then so is $(K+N) / N$. But $(K+N) / N$ and N both nilpotent implies that $K+N$ is nilpotent. Thus if K is maximal nilpotent, then $K=K+N$ and therefore $K \geqq N$. Suppose $K \geqq N$. Then K is nilpotent if and only if K / N is nilpotent. Thus $K(\geqq N)$ is maximal nilpotent in R if and only if K / N is maximal nilpotent in R / N.

Proof of Theorem. Let N be the radical of R, and let M_{α} be the maximal nilpotent subrings of R. Then $M_{\alpha} \geqq N$ for all α, and

$$
\left(\bigcap_{\alpha} M_{\alpha}\right) / N=\bigcap_{\alpha}\left(M_{\alpha} / N\right) .
$$

But the M_{a} / N are all the maximal nilpotent subrings of the semi-simple ring R / N. Therefore

$$
\bigcap_{\alpha}\left(M_{\alpha} / N\right)=0
$$

and therefore

$$
\bigcap_{\alpha} M_{\alpha}=N .
$$

Reference

[1] Artin, E., Nesbitt, C. J. and Thrall, R. M., Rings with minimum condition (University of Michigan Press, Ann Arbor, 1944).

The University of Sydney

