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1. Introduction and preliminaries

It is well known that Wald's Fundamental Identity (F.I.) in sequential analysis
can be used to derive approximate (and, sometimes exact) results in most situations
wherein we have essentially a random walk phenomenon. Bartlett [2] used it for
the gambler's ruin problem and also for a simple renewal problem. Phatarfod [18]
used it for a problem in dam theory. It is the purpose of this paper to show how a
generalization of the Fundamental Identity to Markovian variables, (Phatarfod
[19]) can be used to derive approximate results in some problems in dam and
renewal theories where the random variables involved have Markovian dependence.
The reason for considering both the theories together is that the models usually
proposed for both the theories - input distribution for dam theory, and life-
distribution for renewal theory - are similar, and only a slight modification (to
account for the 'release rules' in dam theory, plus the fact that we have two barriers)
is necessary to derive results in dam theory from those of renewal theory.

The generalization of the F.I. is as follows: Let Xo, X^, X2, • • • be a Markov
chain (discrete or continuous state space). Let SN denote the cumulative sum
X0 + X1+X2+ • • • XN, and let n be the least positive integer such that SN does not
lie in the open interval (b, a), (b ^ 0, a > 0). If the m.g.f. (for real 9 in an interval
(9t, 92) around zero) of SN can be written for large TV as

(1.1) MN(9) ~ C(0)tf(0),

with
Ax(0) = 1, A'/(0) > A',(0)2,

then

(1.2) E[exp(9Sn)Xr(0)d(0\Xn)-] = C{9)

for all real 9 in (9t, 92) such that ^(0) ^ 1. (The functions C(9) and d(9) have the
relation E[d(9\X0)] = C(9)).

From (1.2) one can derive results such as the probability of absorption at
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either barrier, probability distribution of V etc. in a manner similar to the case
when {Xt} is a sequence of independent and identically distributed random vari-
ables.

A considerable amount of work has been done to establish conditions under
which (1.1) holds. The problem is essentially of generalizing results of Perron and
Frobenius for non-negative matrices. The earliest such generalization seems to be
due to Jentzsch [9] for integral operators with a positive kernel. More recently
results have been given by Krein and Rutman [11], Birkhoff [3], Karlin [10],
Chung [4], Harris [8], and Vere-Jones [21]. For applications, the main problem
is the determination of At(0), the 'largest eigen value', and it seems, to the present
author, that this can be determined only by ad hoc methods.

We consider two important examples of Markov chains for which the quantity
A1(0) is easily determinable, and which serve as useful models for life-distribution
in renewal theory and as input-distribution in dam theory. The cases considered a
are:

(i) Gamma Markov Sequence. The conditional probability density of Xr+1

given Xr = y is given by

(1.3) f(x\y) = fie-"'" E W- l - ^ - — (0 < x, y < oo)

y-o j\ r(p+j)

where p > 0, 0 < a < /?.

(ii) Negative Binomial Markov chain. The transition probability

PiJ = Pi[Xr+1=j\Xr = i]
is given by

(1.4) Pij = (E+l+tm • P\- (0 < i,j < oo)

where 0 < p ^ 1, and/> is a positive integer.

An extensive investigation of the processes i) and ii) has been carried out by
Lampard [12] and Lee [13], who obtained them as output processes of a counter
system. Among other results they show that the stationary distributions of the two
processes are given by,

(i) the Gamma density:

(1.5) Kx)=(^-Vv<'->* {x>0)
HP)

and,

(ii) the negative binomial distribution:

(1.6) p, = ( - ^ - ^ (1 - p ) V , (i = 0,1, 2, 3,
i!(p-l)!

respectively.
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In § 2 it is shown that for the cases considered above the m.g.f. of SN is essen-
tially of the form

where /*i(0), fi2(Q) are particular solutions of a homogeneous linear second-order
difference equation. In an interval around zero, one of the solutions dominates the
other, and hence as N -* oo, the m.g.f. has the required asymptotic expression
(1.1). §§3 and 4 deal with applications to renewal and dam theories respectively.

2. Derivation of moment generating functions

(i) Gamma Markov Sequence: Consider the Markov chain Xo, Ar
1, X2, • ' '

where the conditional probability density of Xr+1 given Xr = y is given by (1.3).
We have,

£[exp (9Xr+ 0|xr] = e-»' % ( ^ - f fi—l L dx

! h W+P)

p(
p-ef \p-e

Assuming that Xo has the stationary distribution given by (1.5), and writing
Mr(0) = £[exp (0Sr)], we obtain,

(2.2) Mo(0) =

where the operator ^ is defined by Kt0 = 0 + x0/(p-9). Now, because of the
Markovian property,

£[exp (0*r+ 0|x0, Xl, • • •, xr] = £[exp (0Xr+ OlxJ.

Hence, we have from (2.1), (2.2), and (2.3),

where

MM = (J-)'(-LJ)'( P-' Y, {K2e < ,_„),
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Continuing this way, we obtain the m.g.f. of SN as

for all 9 such that Maxr Kr9 < /? —a, and where

(2.5) Kr+16 = 9 + ^ ^ - , (r = 0,l,2,--;N-l);(K09 = 9).
p-Kr6

Writing P/(fi-Kr9) = Ar/Ar+1, (r = 0, 1, 2, • • •, N-1), reduces (2.5) to a second-
order linear difference equation

(2.6) pAr+2 + (8-«-P)Ar+1 + xAr = 0.

Since, for r = 0, Ao/A1 = p/(fi — 9), we have the boundary conditions for the dif-
ference equation as Ao = /?, Ay — P~9; from this we obtain

(2.7) Ar = —^— {Ml(l

and hence, from (2.4),

where A<I(0), /i2(^) are the solution of Px2 + (9 — <x-p)x + x = 0; we take,

M i ^ . M2

It can be easily seen that for 9 < a+/?-2\/ajS, Hi(9) > fi2(9) > 0, and/x2(0) < 1.
We also note that for such values of 9, the condition Kr9 < p—a is satisfied for
r = 0, 1, 2, • • •, Af. Hence, as N -» oo,

(2.9)

where

c ( f l ) „

(ii) Negative Binomial Markov chain: Consider the Markov chain X0,Xt,
X2, • • • where the conditional probability of Xr+i = j given Xr = i (i = 0, 1, 2,
2, • • •), is given by (1.4). It is convenient, in this case, to work with probability
generating functions (p.g.f.). Writing Pr(z) = E(zSr), we have, in a manner similar
to that in the previous case,
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where

(2.11) Xr + 1 z = Z , (r = 0, 1, 2, • • •, JV-1), (Koz = z).
l + ( l K z )

Writing {1+/>(1-Arz)}"1 = y4r/^r+1, we obtain the difference equation,

Ar+2-(l+p)Ar+l+zpAr = 0, with <40 = 1, Ax = l + p ( l - z ) .

We finally obtain,

a \t\ M (it\ - f
(2.12) MN(9) = —

U*i(l-A
U*i(l-Ata) A«i

where

In this case, we have, that for 6 < log (1+p)2/4p, ^i(^) > /^(0) > °>
fi2(0) < 1, and hence as N -> 00,

(2.13) MJV(0) 7

where

Lee [13] has obtained results similar to (2.8) and (2.12) by using different methods.

3. Applications to renewal theory

One of the obvious generalizations of the standard renewal process is to assume
that the lifetimes {Xr} of articles to be renewed are not independent, but have a
Markovian dependence. Wold, [22], [23] considered in some details the case where
the conditional probability density of Xr+1 given Xr = y is given by/(*|.y) =
k(y)e~K(y)x where X{y) = Xy~*. Cox [5] and Cox and Lewis [6] considered the
case where k(y) above, is replaced by ^0(1+^!^). Here, we will consider the case
where the dependence is given by (i) and (ii) of § 1. The Gamma Markov sequence
is particularly useful because in the stationary case the first-order serial correlation
is given by a//?, (Lampard [12]), and consequently can be controlled by varying
both a and j8 in such a way that the stationary distribution given by (1.5) is not
affected. By taking the particular case of p = 1, we obtain a sequence whose
stationary distribution is a negative exponential.
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We will be mainly interested in deriving the asymptotic c.f. CT(<j)) of the
number NT of renewals occurring in (0, T). For simplicity, we consider an ordinary
renewal process, i.e. at time t = 0, a new item is installed. The number NT is then
the least positive integer n such that Sn ^ T, and its c.f. can be obtained by applying
thr results in§l.

Putting At(0) = e~i4> in (1.2), and neglecting the overshooting over the barrier
Tas well as the terms involving the initial and final states we obtain for the case (i)

log i

from which, we obtain,

E(NT) ~ v - ^ ^ T, V(NT) ~ K ^ T.
P P

For the case (ii), similarly.

giving

PP P P

4. Applications to dam theory

A similar generalization to the theory of dams can be made, and in this case,
the generalization is much more relevant. The theory of dams as formulated by
Moran [17] and extended by Gani, Prabhu and others (for a review and references
see Gani [7], Prabhu [20]) essentially dealt with the case of independent inputs to
the dam. Recently, however, the case of Markov dependent inputs had received
some attention. Lloyd [14], and Lloyd and Odoom [15], [16], considered the case
when the sequence of inputs in a dam of finite capacity during consecutive time in-
tervals form a Markov chain with a finite number of states. By considering the
dam content Zt at times t — 0, 1, 2, • • • just after release of, the lesser of M > 0
or the total content, together with the inputs X, in (t, t +1) as a bivariate Markov
chain, they derive the stationary probabilities of the dam content. Ali Kan and
Gani [1] derive the time-dependent solutions of the same model for an infinite
capacity dam. We will consider here the problem of emptiness of dam of a finite
capacity dam fed by inputs forming a Markov chain as given in (I) and (ii) of § 1.

Let the initial content at time t = 0 be u (0 < u < K), where Kis the capacity
of the dam. The net input in the dam during (0, N), assuming it has neither over-
flowed nor become empty before, is S'N = £f=1 Xt-NM, and we have a random
walk problem with barriers 0 and K. For simplicity, we consider the case M = 1;
this gives the m.g.f. of S'N as
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M'N(6) ~ C(0)A7(0>-™.

For the case (i), the unique non-zero solution of Xt(9)e'e = 1 Is given by 90 —
—p log d where 8 # 1 is the unique solution of

(j3<5-a)(<5-l) =/><5 log 5.

Putting 9 — 90 in (1.2), b = — u, a = T̂— w, we obtain the probability Pu of the
dam becoming empty before overlow as

For case (ii), the results are considerably simplified if we take p = 1, i.e. the sta-
tionary distribution is geometric. Equation A1(6)e~9 = 1 yields a cubic in x = ee

which has only two positive roots, x = 1, and x0 = ( - l + (l+4/p)*)/2, from
which we obtain

This gives,
xo—xo

To find the p.g.f. of V the time the dam becomes empty for the first time before
overflow, we solve the equation Xl{Q)e~e = 1/J where 0 < s < 1. This yields a
cubic in x = ee whose positive roots are given by

Finally, the p.g.f. Gu(s) is obtained by putting 9 = log xx, log x2 in (1.2) and solv-
ing the two resultant equations. This gives,

K-u_ K-u

Acknowledgement

I am grateful to Professor P. D. Finch for indicating to me the use of operators
to derive the moment generating functions in § 2.

References

[1] M. S. AH Khan and J. Gani, 'Infinite dams with inputs forming a Markov chain', / . Appl.
Prob. 5 (1968), 72-83.

https://doi.org/10.1017/S1446788700010284 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700010284


432 R. M. Phatarfod [8]

[2] M. S. Bartlett, An Introduction to Stochastic Processes (Cambridge Univ. Press., 1955).
[3] G. Birkhoff, 'Extensions of Jentzsch's theorem', Trans. Amer. Math. Soc. 85 (1957), 219-

227.
[4] K. L. Chung, Markov chains with stationary transition probabilities (Springer-Verlag, Berlin,

1960).
[5] D. R. Cox, 'Some statistical methods connected with series of events', / . R. Statist. Soc.

B17 (1955), 129-164.
[6] D. R. Cox and P. A. W. Lewis, The statistical Analysis of Series of Events (Methuen, Lon-

don, 1966).
[7] J. Gani, 'Problems in the probability theory of storage systems', / . R. Statist. Soc. B19

(1957), 181-206.
[8] T. E. Harris, The Theory of Branching Processes (Springer-Verlag, Berlin, 1963).
[9] R. Jentzsch, 'Uber Integralgleichungen mit positivem Kern', / . Reine Angew. Math. 141(1912

235-244.
[10] S. Karlin, 'Positive Operators', / . Math. Mech. 8 (1957), 907-938.
[11] M. G. Krein and M. A. Rutman, 'Linear operators leaving invariant a cone in a Banach

space' (Amer. Math. Soc. Translation No. 26., 1950).
[12] D. Lampard, 'A stochastic process whose successive intervals between events form a first

oraer Markov chain — I', / . Appl. Prob. 5 (1968), 648-668.
[13] A. Lee, 'A stochastic process whose successive intervals between events form a first order

Markov chain' — II, Report No. MEE 66-2 Electrical Engineering Department, Monash
University, (1966).

[14] E. H. Lloyd, 'Reservoirs with correlated inflows', Technometrics 5 (1963), 85—93.
[15] E. H. Lloyd and S. Odoom, 'A note on the solution of dam equations', / . R. Statist. Soc.

B26 (1964), 338-344.
[16] E. H. Lloyd and S. Odoom, 'A note on the equilibrium distribution of levels in a semi-

infinite reservoir subject to Markovian inputs and unit withdrawals', / . Appl. Prob., 2
(1965), 215-222.

[17] P. A. P. Moran, 'A probability theory of dams and storage systems', Aust. J. Appl. Sci.
5 (1954), 116-124.

[18] R. M. Phatarfod, 'Application of methods in sequential analysis to dam theory', Ann. Math.
Statist. 34 (1963), 1588-1592.

[19] R. M. Phatarfod, 'Sequential tests for normal Markov Sequence', (to be published).
[20] N. U. Prabhu, 'Time-dependent results in storage theory', / . Appl. Prob. 1 (1964), 1 —46.
[21 ] D. Vere-Jones, 'Ergodic properties of non-negative matrices - I', Pacific. J. Math. 22 (1967),

361-386.
[22] H. Wold, 'On stationary point processes and Markov chains', Skand. Aktuar 31 (1948),

229-240.
[23] H. Wold, 'Sur les processus stationnaires ponctuels', Collogues Internationaux du C.N.R.S.

13 (1948), 75-86.

Monash University
Clayton, Victoria

https://doi.org/10.1017/S1446788700010284 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700010284

