ANALYTIC TORSION OF SPACE FORMS OF CERTAIN COMPACT SYMMETRIC SPACES

HAJIME URAKAWA

Introduction

Let M be a compact, oriented Riemannian manifold of dimension d, and let Γ be the fundamental group of M. For a finite dimensional representation ρ of Γ on a vector space F, Ray and Singer [10] have defined the analytic torsion $T(M, \rho)$ as follows: We denote by E the vector bundle over M with typical fibre F defined by the representation ρ. Let $A^{p}(E)$ be the space of E-valued p forms on M. Let Δ^{p} be the Laplacian (cf. §1) on $A^{p}(E)$, and let $H^{p}(E)$ be the space of harmonic forms in $A^{p}(E)$. Then

$$
\zeta_{p}(s)=\frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-1}\left\{\operatorname{tr} \mathrm{e}^{-t \Delta^{p}}-\operatorname{dim} H^{p}(E)\right\} d t
$$

is (cf. [10]) an analytic function of s for large $\operatorname{Re}(s)$ and it extends (cf. [10]) to a meromorphic function in the s-plane which is analytic at $s=0$. The analytic torsion $T(M, \rho)$ is defined (cf. [10]) as the positive root of

$$
\log T(M, \rho)=\frac{1}{2} \sum_{p=0}^{d}(-1)^{p} p \zeta_{p}^{\prime}(0)
$$

They have showed (cf. [10]) that if $H^{p}(E)=(0)(0 \leq p \leq d)$, then the analytic torsion $T(M, \rho)$ does not depend on the Riemannian metrics on M. Ray [9] has calculated the analytic torsion $T(M, \rho)$ for lens spaces, and also obtained that $T(M, \rho)$ coincides the Reidemeister torsion (cf. [10]) for lens spaces.

The purpose of this paper is to compute the analytic torsion $T(M, \rho)$. for space forms of certain compact symmetric spaces.

Let G be a compact simply connected Lie group, and let $\tilde{M}=G / K$ be a simply connected compact globally symmetric space (cf. [5]). Let.
Γ be a discrete subgroup of G acting fixed point freely on \tilde{M}. Then the fundamental group of the orbit space $M=\Gamma \backslash \tilde{M}$ (called a space form of \tilde{M} [16]) of Γ in \tilde{M} is isomorphic to Γ. Let ρ_{Γ} be the representation restricted to Γ of a finite dimensional unitary representation ρ of G. Then our main result (cf. Corollary 3.1 in §3) can be stated that

$$
\text { if } \operatorname{rank} G-\operatorname{rank} K \neq 1, \text { then } T\left(M, \rho_{\Gamma}\right)=1
$$

which is proved in § 3 using the explicit formula (cf. Theorem 2.2 in $\S 2)$ of the fundamental solution of the heat equation. To obtain this formula we devote in §1 and a part of §2 to review the harmonic theory in [7] for $A^{p}(E)$ in case of a compact symmetric space \tilde{M}.

The author wishes to thank Professor S. Murakami and Professor H. Ozeki for their encouragements and helpful advices.

§ 1. Preliminary

1.1. Analytic torsion

Let M be a compact orientable Riemannian manifold of dimension d, and Γ the fundamental group of M. We denote by \tilde{M} the universal covering manifold of M, and by $\widetilde{\infty}$ the projection of \tilde{M} onto M. The fundamental group Γ of M operates on \tilde{M}, and we denote by τ_{r} the operation on \tilde{M} of an element $\gamma \in \Gamma$. Let ρ be a representation of Γ in a vector space F. $\quad \Gamma$ operates on $\tilde{M} \times F$ by

$$
\gamma(x, u)=\left(\tau_{r} x, \rho(\gamma) u\right), \quad x \in \tilde{M}, u \in F, \quad \gamma \in \Gamma .
$$

The quotient manifold $E==\Gamma \backslash(\tilde{M} \times F)$ has a vector bundle structure over M with typical fibre F. Let $A^{p}(E)$ be the space of all E-valued p-forms on M. Since the vector bundle E is locally constant i.e. it is given by a system of locally constant transition functions, a coboundary operator d of degree 1 on the graded module $A(E)=\sum_{p=0}^{d} A^{p}(E)$ can be defined in a natural way. Let E^{*} be the dual vector bundle of E. Then for $\theta \in A^{p}(E)$ and $\omega \in A^{q}\left(E^{*}\right)$, a differentiable real valued $(p+q)$ form ${ }^{t} \theta \wedge \omega$ on M is defined as usual (cf. Part I §2, [7]). We assume that an inner product is given on each fibre of E which depends differentiably on the base manifold M (cf. [7]). The Riemannian metric of M and the inner product of the fibre bundle E give (cf. [7]) the linear isomorphism

$$
\#: A^{p}(E) \longrightarrow A^{p}\left(E^{*}\right) .
$$

The Riemannian metric of M defines the operator * on real valued forms on M as usual, and we extend (cf. [7]) this operator * linearly to $A^{p}(E)$. For $\theta, \omega \in A^{p}(E)$, we can define

$$
(\theta, \omega)=\int_{M}{ }^{t} \theta \wedge * \# \omega
$$

We define the operator ∂ of degree 1 on the graded module $A(E)=\sum_{p=0}^{d} A^{p}(E)$ so that $\#(\partial \theta)=d(\# \theta)$ holds for all $\theta \in A(E)$. Put

$$
\delta \theta=(-1)^{a p+a+1} * \partial * \theta
$$

for all $\theta \in A^{p}(E)$. Then δ is an operator of degree -1 on $A(E)$ and

$$
(\delta \theta, \omega)=(\theta, d \omega)
$$

holds for all $\theta, \omega \in A^{p}(E)$. We define the Laplacian Δ^{p} on $A^{p}(E)$ by putting

$$
\Delta^{p}=d \delta+\delta d
$$

Let $L_{2}^{p}(E)$ be the completion of $A^{p}(E)$ with respect to the inner product (,) and let

$$
A_{\lambda}^{p}(E)=\left\{\theta \in A^{p}(E): \Delta^{p} \theta=\lambda \theta\right\}
$$

for $\lambda \in \boldsymbol{R}$. Put $H^{p}(E)=A_{0}^{p}(E)$. Then it is known (cf. [1]) that each $A_{\lambda}^{p}(E)$ is finite dimensional $(\lambda \in R), A_{\lambda}^{p}(E)=0$ except for a discrete set of non-negative λ 's and this countable sequence of subspaces $A_{\lambda}^{p}(E)$ gives an orthogonal direct sum decomposition of $L_{2}^{p}(E)$:

$$
L_{2}^{p}(E)=\sum_{\lambda} A_{\lambda}^{p}(E) .
$$

Moreover the series

$$
\begin{equation*}
Z^{p}(t)=\sum_{\lambda} e^{-\lambda t} \operatorname{dim}\left(A_{\lambda}^{p}(E)\right) \tag{1.1}
\end{equation*}
$$

converges (cf. [10]) for every $t>0$ and

$$
\begin{aligned}
\zeta_{p}(s) & =\frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-1}\left(Z^{p}(t)-\operatorname{dim} H^{p}(E)\right) d t \\
& =\sum_{\lambda>0} \lambda^{-s} \operatorname{dim} A_{\lambda}^{p}(E)
\end{aligned}
$$

is (cf. [10]) an analytic function of s for large $\operatorname{Re}(s)$ and it can be extended (cf. [10]) to a meromorphic function of s-plane, which is analytic at $s=0$.

Definition. The analytic torsion $T(M, \rho)$ of the Riemannian manifold M is defined (cf. [10]) as the positive real root of

$$
\begin{equation*}
\log T(M, \rho)=\frac{1}{2} \sum_{p=0}^{d}(-1)^{p} p \zeta_{p}^{\prime}(0) . \tag{1.2}
\end{equation*}
$$

1.2. The space form of Riemannian symetric space

Let G be a compact simply connected (necessarily semisimple) Lie group of dimension n. Let θ be a C^{∞} involutive automorphism of G. Let K be the subgroup of G consisting of all fixed points of θ. Then K is connected and the coset space $\tilde{M}=G / K$ is a simple connected, compact, globally symmetric space (cf. [5] Theorem 7.2 Ch. VII). Let Γ be a discrete subgroup of G acting fixed point freely on \tilde{M}. Then \tilde{M} is the universal covering manifold of the quotient manifold $M=\Gamma \backslash \tilde{M}$ which is called a space form of a symmetric space \tilde{M} (cf. [16]). The fundamental group of M is isomorphic to Γ. Let ρ be a finite dimensional unitary representation of G on a complex vector space F. Let $E=E_{\rho}$ be the vector bundle over M with typical fibre F associated to the representation restricted to Γ of ρ. The projections of \tilde{M} onto M, of G onto $\Gamma \backslash G$ are denoted respectively by $\widetilde{\infty}$ and $\widetilde{\varpi}_{0}$ and the projections of $\Gamma \backslash G$ onto M, of G onto \tilde{M} are denoted respectively by π and π_{0}. Then $\Gamma \backslash G$ has a principal fibre bundle of a group K with a projection π. Let ρ_{K} be the restriction of ρ to K. Then the vector bundle E is (cf. [7] Prop. 3.1) associated to the principal fibre bundle $\Gamma \backslash G$ by the representation ρ_{K} of the group K. Let $(,)_{F}$ be the inner product in the space F invariant under $\rho(g), g \in G$. Since (, $)_{F}$ is invariant under $\rho(K)$, it may define canonically a metric in the fibres of E.

Let g be the Lie algebra of G and let \mathfrak{f} be the subalgebra of g corresponding to K. Let $\mathfrak{p}=\{X \in \mathfrak{g} ; \theta X=-X\}$. In this paper we use the same letter for a differential mapping and its differential. Let B be the Killing form of \mathfrak{g}. Then $\mathfrak{g}=\mathfrak{f}+\mathfrak{p}$ (the direct sum) and $B(X, Y)=0$ $(X \in \mathfrak{f}, Y \in \mathfrak{p})$. We may identify \mathfrak{p} with the tangent space $T_{0} \tilde{M}$ at the origin $0=\{K\} \in \tilde{M}$ in a natural way. Then the Killing form B which is negative definite and invariant under the $\operatorname{Ad}(K)$ action on \mathfrak{p} allows us to define a Riemannian metric \tilde{g} on \tilde{M} such that $\tilde{g}_{0}=-B$ on $T_{0} \tilde{M}$ $\times T_{0} \tilde{M} . \quad \Gamma$ preserves this metric \tilde{g} on \tilde{M} and, so, there is a Riemannian metric g on M so that $\varpi^{*} g=\tilde{g}$.

Let $\left\{X_{1}, \cdots, X_{d}, X_{d+1}, \cdots, X_{n}\right\}$ be a basis of g such that i) $B\left(X_{i}, X_{j}\right)$
$=-\delta_{i j}$ ii) $\left\{X_{1}, \cdots, X_{d}\right\}$ spans \mathfrak{p} and iii) $\left\{X_{d+1}, \cdots, X_{n}\right\}$ spans \mathfrak{f}. Since the element X of \mathfrak{g} can be considered as a left invariant vector field on G, the vector field X is projectable to a vector field $\widetilde{\omega}_{0}(X)$ on $\Gamma \backslash G$. Since this mapping $X \mapsto \widetilde{\sigma}_{0}(X)$ is an injective homomorphism of g into the Lie algebra of all vector fields on $\Gamma \backslash G$, we shall identify X with $\widetilde{\varpi}_{0}(X)$.

Let $\left\{\omega^{1}, \cdots, \omega^{n}\right\}$ be the dual basis of the dual space g^{*} of g with respect to $\left\{X_{1}, \cdots, X_{n}\right\}$. Then they can be considered as left invariant forms on G and so are Γ invariant; then there is a form on $\Gamma \backslash G$ which induces ω^{i} through $\widetilde{\varpi}_{0}$. We shall denote also this form by ω^{i}. Let h be a Riemannian metric on $\Gamma \backslash G$ such that $\varpi_{0}^{*} h=g$. The volume element $d v$ associated to this metric h is given by $d v=\omega^{1} \wedge \cdots \wedge \omega^{n}$. Since K is connected, we can define a G invariant orientation on \tilde{M} so that $\left\{X_{1}, \cdots, X_{d}\right\}$ is positively oriented. Since Γ preserves this orientation, we can define an orientation of M such that the projection σ is orientation preserving. Let $d m$ be the volume element on M defined by g. Moreover we denote by $d k^{\#}$ the invariant volume element $\omega^{d+1} \wedge \cdots \wedge \omega^{n}$ on K, where $\omega^{d+1}, \cdots, \omega^{n}$ are considered as left invariant 1 forms on K. Then for every continuous function f on $\Gamma \backslash G$, we have (cf. [7] Lemma 5.2)

$$
\begin{equation*}
\int_{\Gamma \backslash G} f(y) d v=\int_{M} d m\left(\int_{K} f\left(R_{k} y\right) d k^{\sharp}\right) \tag{1.3}
\end{equation*}
$$

where R_{k} is the action of $k \in K$ on $\Gamma \backslash G$ and $\int_{K} f\left(R_{k} y\right) d k^{\sharp}$ is regarded as a function on M. In particular, if f^{\prime} is a continuous function on M, then we have (cf. [7] Lemma 5.3)

$$
\begin{equation*}
\int_{M} f^{\prime} d m=\frac{1}{\operatorname{vol}(K)} \int_{\Gamma / G}\left(f^{\prime} \circ \pi\right) d v . \tag{1.4}
\end{equation*}
$$

1.3. The inner product of $A^{p}(E)$

Let $A^{p}(\Gamma, \tilde{M}, \rho)$ be the space of all F valued p forms on \tilde{M} such that

$$
\tau_{r}^{*} \eta=\rho(\gamma) \eta, \quad \gamma \in \Gamma
$$

We denote also by d the exterior differentiation on $A^{p}(\Gamma, \tilde{M}, \rho)$ which defines a coboundary operator of degree 1 on the graded module $A(\Gamma, \tilde{M}, \rho)$ $=\sum_{p=0}^{d} A^{p}(\Gamma, \tilde{M}, \rho)$. For $\eta \in A^{p}(\Gamma, \tilde{M}, \rho)$, define θ in $A^{p}(E)$ by

$$
\theta_{\varpi(x)}\left(\varpi\left(L_{1}\right), \cdots, \widetilde{\varpi}\left(L^{p}\right)\right)=\varpi_{x}\left(\eta_{x}\left(L_{1}, \cdots, L^{p}\right)\right)
$$

for $x \in \tilde{M}$ and $L_{1}, \cdots, L^{p} \in T_{x}(\tilde{M})$ where $\widetilde{\varpi}_{x}$ is the linear isomorphism of F onto the fibre $E_{\sigma(x)}$ of E over $\widetilde{\sigma}(x)$ defined by $\varpi_{x}(u)=\varpi(x, u), u \in F$. Here σ is the natural projection of $\tilde{M} \times F$ onto E. Then the mapping $\eta \rightarrow \theta$ defines (cf. [7] p. 369) an isomorphism of the complex $A(\Gamma, \tilde{M}, \rho)$ onto the complex $A(E)$.

Let $A^{p}(\Gamma \backslash G, K, \rho)$ be the space of all F valued p forms on $\Gamma \backslash G$ such that (i) $\theta(X) \eta^{0}=-\rho(X) \eta^{0}, X \in \mathscr{E}$ (ii) $i(X) \eta^{0}=0, X \in \mathscr{E}$ where $\theta(X)$ is the Lie derivation by X and $i(X)$ is the interior product by X.

For $\eta \in A^{p}(\Gamma, \tilde{M}, \rho)$, define $\tilde{\eta}$ by

$$
\tilde{\eta}_{g}=\rho\left(g^{-1}\right)\left(\pi_{0}^{*} \eta\right)_{g}, \quad g \in G .
$$

Then there exists uniquely an element $\eta^{0} \in A^{p}(\Gamma \backslash G, K, \rho)$ such that $\tilde{\eta}$ $=\widetilde{w}_{0}^{*} \eta^{0}$. The mapping $\eta \mapsto \eta^{0}$ defines (cf. [7] p. 376) a linear isomorphism of $A^{p}(\Gamma, \tilde{M}, \rho)$ onto $A^{p}(\Gamma \backslash G, K, \rho)$. Define a coboundary operator d^{0} on the graded module $A(\Gamma \backslash G, K, \rho)=\sum_{p=0}^{d} A^{p}(\Gamma \backslash G, K, \rho)$ such a way that $d^{0} \eta^{0}=(d \eta)^{0}$ for $\eta \in A^{p}(\Gamma, \tilde{M}, \rho)$.

For an F valued p form η^{0} on $\Gamma \backslash G$, we define a system of F valued functions $\left\{\tilde{\eta}_{i_{1} \ldots i_{p}} ; 1 \leq i_{1}<\ldots<i^{p} \leq d\right\}$ on $\Gamma \backslash G$ by

$$
\tilde{\eta}_{i_{1} \cdots i_{p}}=\eta^{0}\left(X_{i_{1}}, \cdots, X_{i_{p}}\right)
$$

For $\eta^{0} \in A^{p}(\Gamma \backslash G, K, \rho), \tilde{\eta}_{i_{1} \ldots i_{p}}=0$ if there exists some $i_{\nu}>d$.
There corresponds to each form $\theta \in A^{p}(E)$ a form $\eta \in A^{p}(\Gamma, \tilde{M}, \rho)$ and to each form $\eta \in A^{p}(\Gamma, \tilde{M}, \rho)$ corresponds a form $\eta^{0} \in A^{p}(\Gamma \backslash G, K, \rho)$. Moreover the form η^{0} is determined by the system $\left\{\tilde{\eta}_{i_{1} \ldots i_{p}}\right\}$. Then the inner product (,) in $A^{p}(E)$ is given as follows: For $\theta, \omega \in A^{p}(E)$, then

$$
\begin{equation*}
(\theta, \omega)=\frac{1}{\operatorname{vol}(K) p!} \sum_{i_{1}, \cdots, i_{p}=1}^{d} \int_{\Gamma \backslash G}\left(\tilde{\eta}_{i_{1} \ldots, p}, \tilde{\zeta}_{i_{1} \ldots i_{p}}\right)_{F} d v \tag{1.5}
\end{equation*}
$$

where $\left\{\tilde{\eta}_{i_{1} \ldots i_{p}}\right\}$ (resp. $\left\{\tilde{\zeta}_{i_{1} \ldots i_{p}}\right\}$) is the system of F valued functions on $\Gamma \backslash G$ corresponding to θ (resp. ω) (cf. [7] Prop. 5.1),

Let the inner product (,) in $A^{p}(\Gamma, \tilde{M}, \rho)$ by $(\eta, \zeta)=(\theta, \omega)$ where $\eta(\operatorname{resp} . \zeta) \in A^{p}(\Gamma, \tilde{M}, \rho)$ corresponds to $\theta($ resp. $\omega) \in A^{p}(E)$. Let $L_{2}^{p}(\Gamma, \tilde{M}, \rho)$ be the completion of $A^{p}(\Gamma, \tilde{M}, \rho)$ with respect to this inner product.
1.4. The Laplacian on $A^{p}(\Gamma, \tilde{M}, \rho)$

We shall use the following convection for the ranges of indices: $1 \leqq \lambda, \mu, \cdots \leq n ; 1 \leq i, j, \cdots \leq d$ and $d+1 \leq a, b, \cdots \leq n$. Let $\left[X_{\lambda}, X_{\mu}\right]$ $=\sum c_{\lambda_{\mu}}^{\nu} X_{\nu}$. Then in case of G compact, we have the following relation:

$$
\left\{\begin{array}{l}
c_{i j}^{k}=c_{k a}^{b}=c_{a b}^{k}=0 \\
c_{\imath j}^{a}=-c_{a j}^{i}=c_{j a}^{i}=-c_{i a}^{j} .
\end{array}\right.
$$

Lemma 1.1. For $\eta \in A^{p}(\Gamma, \tilde{M}, \rho)$, we have

$$
(d \eta)_{\tilde{i}_{1} \cdots i_{p+1}}=\sum_{u=1}^{p+1}(-1)^{u-1}\left(X_{i_{u}}+\rho\left(X_{i_{u}}\right)\right) \tilde{\eta}_{i_{1} \cdots \hat{i}_{u} \cdots i_{p+1}} .
$$

For a proof, see [7] Prop. 4.1.
Lemma 1.2. There exists an operator δ of degree -1 on the complex $A(\Gamma, \tilde{M}, \rho)$ such that

$$
(\partial \eta, \zeta)=(\eta, d \zeta), \quad \text { for } \eta, \zeta \in A(\Gamma, \tilde{M}, \rho) .
$$

Moreover for $A^{p}(\Gamma, \tilde{M}, \rho)$, we have

$$
\begin{array}{ll}
(\delta \eta) \tilde{i}_{1} \cdots i_{p-1} \\
& -\sum_{k=1}^{d}\left(X_{k}+\rho\left(X_{k}\right)\right) \tilde{\eta}_{k i_{1} \cdots i_{p-1}} \\
\delta \eta=0 & (p=0),
\end{array}
$$

Proof. Since the case $p=0$ is trivial, we may assume $p \geqq 1$. Let $\zeta \in A^{p-1}(\Gamma, \tilde{M}, \rho) . \quad$ By (1.5) and Lemma 1.2,

$$
\begin{aligned}
(\eta, d \zeta)= & \frac{1}{\operatorname{vol}(K) p!} \\
& \times \sum_{i_{1}, \ldots, i_{p}=1}^{d} \int_{\Gamma \backslash G}\left(\tilde{\eta}_{i_{1} \ldots i_{p}}, \sum_{u=1}^{p}(-1)^{u-1}\left(X_{i_{u}}+\rho\left(X_{i_{u}}\right)\right) \tilde{\zeta}_{i_{1} \ldots i_{u} \cdots i_{p}}\right)_{F} d v \\
= & \frac{1}{\operatorname{vol}(K) p!} \\
& \times \sum_{i_{1}, \ldots, i_{p}=1}^{d} \sum_{u=1}^{p} \int_{\Gamma \backslash G}\left(\eta_{i_{u} i_{1} \ldots i_{p}},\left(X_{i_{u}}+\rho\left(X_{i_{u}}\right)\right) \tilde{\zeta}_{i_{1} \ldots \hat{i}_{u} \cdots i_{p}}\right)_{F} d v \\
= & \frac{1}{\operatorname{vol}(K)(p-1)!} \\
& \times \sum_{j_{1}, \ldots, j_{p-1}=1}^{d} \sum_{k=1}^{d} \int_{\Gamma \backslash G}\left(\tilde{\eta}_{k j_{1} \ldots j_{p-1}},\left(X_{k}+\rho\left(X_{k}\right)\right) \tilde{\zeta}_{j_{1} \ldots j_{p-1}}\right)_{F} d v \\
= & \frac{1}{\operatorname{vol}(K)(p-1)!} \\
& \times \sum_{j_{1}, \ldots, j_{p}}^{d} \int_{\Gamma \backslash 1}^{d}\left(-\sum_{k=1}^{d}\left(X_{k}+\rho\left(X_{k}\right)\right) \tilde{\eta}_{k j_{1} \ldots j_{p-1}}, \tilde{\zeta}_{j_{1} \cdots j_{p-1}}\right)_{F} d v
\end{aligned}
$$

since the last equality follows from that $(\rho(X) u, v)_{F}=-(u, \rho(X) v)_{F} X \in \mathfrak{g}$, $u, v \in F$ and that $\int_{\Gamma \backslash G}\left(X f_{1}, f_{2}\right)_{F} d v=-\int_{\Gamma \backslash G}\left(f_{1}, X f_{2}\right)_{F} d v$ for $X \in \mathfrak{g}, F$ valued C^{∞} functions f_{1}, f_{2} on $\Gamma \backslash G$ (cf. [7] Lem. 5.1).

Put

$$
\tilde{\theta}_{j_{1} \cdots j_{p-1}}=-\sum_{k=1}^{d}\left(X_{k}+\rho\left(X_{k}\right)\right) \tilde{\eta}_{k j_{1} \cdots j_{p-1}}
$$

and define an F valued ($p-1$) form θ^{0} on $\Gamma \backslash G$ by

$$
\theta^{0}=\frac{1}{(p-1)!} \sum_{j_{1}, \ldots, j_{p-1}=1}^{d} \omega^{j_{1}} \wedge \cdots \wedge \omega^{j_{p-1}}
$$

Then $\theta^{0}\left(X_{j_{1}}, \cdots, X_{j_{p-1}}\right)=\tilde{\theta}_{j_{1} \cdots j_{p-1}}$ and $\theta^{0} \in A^{p-1}(\Gamma \backslash G, K, \rho)$. Let $\theta \in A^{p-1}(\Gamma, \tilde{M}, \rho)$ which corresponds to θ^{0}, and define the operator δ by $\delta \eta=\theta$. Then we have $(\delta \eta)_{j_{1} \cdots j_{p-1}}=\tilde{\theta}_{j_{1} \cdots j_{p-1}}$ and $(\delta \eta, \zeta)=(\eta, d \zeta)$.
Q.E.D.

We define the Laplacian operator Δ^{p} by $\Delta^{p}=d \delta+\delta d$ on $A^{p}(\Gamma, \tilde{M}, \rho)$. Then the isomorphism $A^{p}(E) \ni \theta \mapsto \eta \in A^{p}(\Gamma, \tilde{M}, \rho)$ transforms the operators δ, Δ^{p} in $A^{p}(E)$ to the operators δ, Δ^{p} in $A^{p}(\Gamma, \tilde{M}, \rho)$. For $\lambda \in \boldsymbol{R}$, let $A_{\lambda}^{p}(\Gamma, \tilde{M}, \rho)=\left\{\eta \in A^{p}(\Gamma, \tilde{M}, \rho): \Delta^{p} \eta=\lambda \eta\right\}$. Then this isomorphism induces the isomorphism of $A_{\lambda}^{p}(E)$ onto $A_{\lambda}^{p}(\Gamma, \tilde{M}, \rho)$.

Proposition 1.1. For $\eta \in A^{p}(\Gamma, \tilde{M}, \rho)$, we have

$$
\left(\Delta^{p} \eta_{i_{1} \cdots i_{p}}\right) \sim=-\sum_{\nu=1}^{n}\left(X_{\nu}+\rho\left(X_{\nu}\right)\right)^{2} \tilde{\eta}_{i_{1} \cdots i_{p}} .
$$

Proof. Let $p \geqq 1$. For $\eta \in A^{p}(\Gamma, \tilde{M}, \rho)$, we have

$$
\begin{align*}
\left(\Delta^{p} \eta\right)_{i_{1} \cdots i_{p}}= & -\sum_{k=1}^{d}\left(X_{k}+\rho\left(X_{k}\right)\right)^{2} \tilde{\eta}_{i_{1} \cdots i_{p}} \tag{1.6}\\
& +\sum_{k=1}^{d} \sum_{u=1}^{p}(-1)^{u-1}\left\{\left[X_{k}, X_{i_{u}}\right]+\rho\left(\left[X_{k}, X_{i_{u}}\right]\right)\right\} \tilde{\eta}_{k i_{1} \cdots \hat{i}_{u} \cdots i_{p}}
\end{align*}
$$

from Lemma 1.2 and Lemma 1.2. Since η^{0} satisfies $\theta(X) \eta^{0}=-\rho(X) \eta^{0}$, $X \in \mathscr{E}$ and $c_{a i_{u}}^{k}=-c_{k i i_{u}}^{a}$, we have

$$
\begin{equation*}
\left(X_{a}+\rho\left(X_{a}\right)\right) \tilde{\eta}_{i_{1} \cdots i_{p}}=-\sum_{u=1}^{p} \sum_{k=1}^{d} c_{k i_{u}}^{a} \tilde{\eta}_{i_{1} \cdots(k) u \cdots i_{p}} \tag{1.7}
\end{equation*}
$$

where $(k)_{u}$ denotes that the index i_{u} is replaced by the index k. Then by (1.7), the second term of (1.6) coincides with

$$
\begin{gathered}
\sum_{a=d+1}^{n}\left(X_{a}+\rho\left(X_{a}\right)\right)\left(\sum_{k=1}^{d} \sum_{u=1}^{p} c_{k i_{u}}^{a} \tilde{\eta}_{i_{1} \cdots(k) u \cdots i_{p}}\right) \\
=-\sum_{a=d+1}^{n}\left(X_{a}+\rho\left(X_{a}\right)\right)^{2} \tilde{\eta}_{i_{1} \cdots i_{p}} .
\end{gathered}
$$

For $p=0$, if $\eta \in A^{0}(\Gamma, \tilde{M}, \rho) \eta^{0}$ satisfies

$$
\left(X_{a}+\rho\left(X_{a}\right)\right) \eta^{0}=0 .
$$

Then $\left(\Delta^{p} \eta\right)^{0}=-\sum_{\nu=1}^{n}\left(X_{\nu}+\rho\left(X_{\nu}\right)\right)^{2} \eta^{0}$.
Q.E.D.

§ 2. Fundamental solution of the heat equation

2.1. Space $C^{\infty}\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)^{0}$

To calculate the series $Z^{p}(t)$ (1.1), we have to estimate the fundamental solution (cf. [6]) of the heat equation

$$
\frac{\partial u_{t}}{\partial t}=-\Delta^{p} u_{t} \quad(t>0), u_{t} \in A^{p}(E)
$$

But we shall transform this equation to the equation on the space $C^{\infty}\left(G, F \otimes \bigwedge^{p} \mathfrak{p}^{*}\right)^{0}$ which is isometrically isomorphic to $A^{p}(E)$, and construct (cf. Theorem 2.1) the fundamental solution of this transformed equation on $C^{\infty}\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)^{0}$ which will be used to calculate the series $Z^{p}(t)$.

Let \mathfrak{p}^{*} be the dual space of \mathfrak{p}. The adjoint action of K on \mathfrak{p} induces the action of K on the exterior tensor product $\wedge^{p} \mathfrak{p}^{*}$ of \mathfrak{p}^{*} such that for $1 \leq i_{1}<\cdots<i^{p} \leq d$,

$$
\operatorname{Ad}_{p}^{*}(k)\left(\omega^{i_{1}} \wedge \cdots \wedge \omega^{i_{p}}\right)=\operatorname{Ad}^{*}(k)_{p} \omega^{i_{1}} \wedge \cdots \wedge \operatorname{Ad}^{*}(k)_{p} \omega^{i_{p}}
$$

where $\operatorname{Ad}^{*}(k)_{p} \omega={ }^{t} \operatorname{Ad}\left(k^{-1}\right)_{p} \omega, \omega \in \mathfrak{p}^{*}, k \in K$. Here ${ }^{t} \operatorname{Ad}(k)^{p}$ is the transposed action of the adjoint action $\operatorname{Ad}(k)_{\mathfrak{p}}$ of K on \mathfrak{p}. The product group $\Gamma \times K$ acts on $F \otimes \wedge^{p} \mathfrak{p}^{*}$ by

$$
(\gamma, k)(u \otimes \eta)=\left(\rho(\gamma) \otimes \operatorname{Ad}_{p}^{*}(k)\right)(u \otimes \eta)=\rho(\gamma) u \otimes \operatorname{Ad}_{p}^{*}(k) \eta
$$

for $(\gamma, k) \in \Gamma \times K, u \in F$ and $\eta \in \wedge^{p} \mathfrak{p}^{*}$.
Definition 2.1. Let $C\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)$ denote the set of all $F \otimes \wedge^{p} \mathfrak{p}^{*}$ valued continuous functions on G and let $C^{\infty}\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)$ be the set of all $F \otimes \wedge^{p} \mathfrak{p}^{*}$ valued C^{∞} function on G. Define

$$
\begin{array}{r}
C\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)^{0}=\left\{\varphi \in C\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right) ; \varphi(\gamma g k)=\left(\gamma, k^{-1}\right) \varphi(g)\right. \\
\text { for all } \gamma \in \Gamma, k \in K\} . \\
C^{\infty}\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)^{0}=\left\{\varphi \in C^{\infty}\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right) ; \varphi(\gamma g k)=\left(\gamma, k^{-1}\right) \varphi(g)\right. \\
\text { for all } \gamma \in \Gamma, k \in K\} .
\end{array}
$$

Now we define an injective mapping

$$
\varepsilon: A^{p}(\Gamma, \tilde{M}, \rho) \longrightarrow C^{\infty}\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)
$$

by

$$
\varepsilon(\eta)(g)=\sum_{1 \leq i_{1}<\cdots<i_{p} \leq i} \eta_{i_{1} \cdots i_{p}}(g) \otimes \omega_{i_{1}} \wedge \cdots \wedge \omega_{i_{p}} \quad(g \in G)
$$

Here $\eta_{i_{1} \cdots i_{p}}(g)=\eta\left(\tau_{g} X_{i_{1}}, \cdots, \tau_{g} X_{i_{p}}\right)$ and the tangent vector $\tau_{g} X_{i}$ of \tilde{M} at $\pi_{0}(g)$ is the image of $X_{i} \in T_{0} \tilde{M}=\mathfrak{p}$ under the differential of the translation τ_{g} at 0 .

Then the mapping ε defines an isomorphism of $A^{p}(\Gamma, \tilde{M}, \rho)$ into $C^{\infty}\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)^{0}$. Let Δ_{0}^{p} be an operator of $C^{\infty}\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)^{0}$ defined by

$$
\begin{equation*}
\Delta_{0}^{p} \varepsilon(\eta)=\varepsilon\left(\Delta^{p} \eta\right) \tag{2.1}
\end{equation*}
$$

for $\eta \in A^{p}(\Gamma, \tilde{M}, \rho)$. For $\lambda \in \boldsymbol{R}$, let

$$
C_{\lambda}^{\infty}\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)^{0}=\left\{\varphi \in C^{\infty}\left(G, F \otimes \bigwedge^{p} \mathfrak{p}^{*}\right)^{0} ; \Delta_{0}^{p} \varphi=\lambda \varphi\right\}
$$

Then for every $\lambda \in \boldsymbol{R}$, the mapping ε induces an isomorphism of $A_{\lambda}^{p}(\Gamma, \tilde{M}, \rho)$, onto $C_{\lambda}^{\infty}\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)^{0}$.

Moreover we define the metric (,) in $C\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)$ by

$$
\left(\varphi, \varphi^{\prime}\right)=C \sum_{1 \leq i_{1}<\cdots<i_{p} \leq d} C \int_{G}\left(\varphi_{i_{1} \ldots i_{p}}(g), \varphi_{i_{1} \ldots i_{p}}^{\prime}(g)\right)_{F} d g
$$

where $d g$ is the Haar measure on G with total volume 1 , the constant $C=\operatorname{vol}(G) / \operatorname{vol}(K)$ and

$$
\begin{aligned}
& \varphi(g)=\sum_{1 \leq i_{1}<\cdots<i_{p} \leq d} \varphi_{i_{1} \ldots i_{p}}(g) \otimes \omega_{i_{1} \wedge \ldots \wedge} \omega_{i_{p}}, \\
& \varphi^{\prime}(g)=\sum_{1 \leq i_{1}<\cdots<i_{p} \leq d} \varphi_{i_{1} \ldots i_{p}}^{\prime}(g) \otimes \omega_{i_{1} \wedge \ldots \wedge} \omega_{i_{p}} .
\end{aligned}
$$

Let $L_{2}\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)$ be the completion of $C\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)$ with respect to this inner product and let $L_{2}\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)^{0}$ be the completion of $C\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)^{0}$ be the completion of $C\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)^{0}$ in $L_{2}\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)$.

Notice that for $\eta \in A^{p}(\Gamma, \tilde{M}, \rho)$,

$$
\begin{equation*}
\eta_{i_{1} \ldots i_{p}}(g)=\rho(g) \tilde{\eta}_{i_{1} \ldots i_{p}}\left(\tilde{\omega}_{0}(g)\right), \quad g \in G \tag{2.2}
\end{equation*}
$$

For

$$
\begin{aligned}
\tilde{\eta}_{i_{1} \ldots i_{p}}\left(\widetilde{\sigma}_{0}(g)\right) & =\eta_{\tilde{o}_{0}(g)}^{0}\left(X_{i_{1}}, \cdots, X_{i_{p}}\right) \\
& =\left(\tilde{0}_{0}^{*} \eta^{0}\right)_{g}\left(X_{i_{1}}, \cdots, X_{i_{p}}\right) \\
& =\rho\left(g^{-1}\right)\left(\pi_{0}^{*} \eta\right)_{g}\left(X_{i_{1}}, \cdots, X_{i_{p}}\right) \\
& =\rho\left(g^{-1}\right) \eta_{\pi_{0}(q)}\left(\tau_{g} X_{i_{1}}, \cdots, \tau_{g} X_{i_{p}}\right) \\
& =\rho\left(g^{-1}\right) \eta_{i_{1} \cdots i_{v}}(g)
\end{aligned}
$$

where for each $X \in \mathfrak{p}$, the image of the tangent vector X_{g} of G at g under the projection π_{0} coincides with the image of the tangent vector X_{0} of M at 0 under the translation τ_{g}.

Then from (1.5), (2.2), the definition of the inner product in $A^{p}(\Gamma, \tilde{M}, \rho)$ and the invariantness of $(,)_{F}$ under the action ρ of G, the mapping ε induces the isometry of $L_{2}^{p}(\Gamma, \tilde{M}, \rho)$ onto $L_{2}\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)^{0}$. Hence we have the decomposition

$$
L_{2}\left(G, F \otimes \bigwedge^{p} \mathfrak{p}^{*}\right)^{0}=\sum_{\lambda} C_{\lambda}^{\infty}\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)^{0}
$$

Therefore we have

$$
\begin{equation*}
Z^{p}(t)=\sum_{\lambda} \mathrm{e}^{-\lambda t} \operatorname{dim} C_{\lambda}^{\infty}\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)^{0} \tag{2.3}
\end{equation*}
$$

2.2. The Laplacian in $C^{\infty}\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)^{0}$

Now let r be the right regular representation of G on $L_{2}\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)$; i.e.

$$
\left(r_{g} \varphi\right)(x)=\varphi(x g) \quad(x \in G)
$$

for any $g \in G, \varphi \in L_{2}\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)$. For any $X \in \mathfrak{g}$, we define $r(X)$ by

$$
r(X) \varphi=X \varphi \quad \varphi \in C^{\infty}\left(G, F \otimes \bigwedge^{p} \mathfrak{p}^{*}\right)
$$

where $X \varphi(g)=[(d / d t) \varphi(g \exp t X)]_{t=0}, g \in G$. Then $X \mapsto r(X)(X \in \mathfrak{g})$ is a representation of \mathfrak{g} on $C^{\infty}\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)$. Let $U\left(g^{c}\right)$ be the universal enveloping algebra of g^{c}. Then this representation extends uniquely to a representation of $U\left(g^{C}\right)$ which is denoted again by r. Let $\Omega=\sum_{\nu=1}^{n} X_{v}^{2}$ $\in U\left(g^{C}\right)$. Then the operator $r(\Omega)$ on $C^{\infty}\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)$ commutes with the right and left translations of G on $C^{\infty}\left(G, \otimes \wedge^{p} \mathfrak{p}^{*}\right)$. Hence we have

$$
r(\Omega) C^{\infty}\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)^{0} \subset C^{\infty}\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)^{0}
$$

Moreover we have
Proposition 2.1. For $\eta \in A^{p}(\Gamma, \tilde{M}, \rho)$, we have

$$
\left(\Delta^{p} \eta\right)_{i_{1} \cdots i_{p}}=-\sum_{\nu=1}^{n} X_{\nu}^{2} \eta_{i_{1} \cdots i_{p}}
$$

that is,

$$
\Delta_{0}^{p} \varepsilon(\eta)=-r(\Omega) \varepsilon(\eta) .
$$

Proof. By (2.2), we have for $X \in \mathfrak{g}, \eta \in A^{p}(\Gamma, \tilde{M}, \rho)$,

$$
\begin{aligned}
(X+\rho(X))\left(\tilde{\eta}_{i_{1} \ldots i_{p}} \circ \widetilde{\sigma}_{0}\right)(g) & =(X+\rho(X))\left(\rho^{-1} \circ \eta_{i_{1} \ldots i_{p}}\right)(g) \\
& =\left(X \tilde{\eta}_{i_{1} \ldots i_{p}}\right) \circ \widetilde{\sigma}_{0}(g) .
\end{aligned}
$$

Proposition 2.1 follows from Proposition 1.1.
Q.E.D.

Let $H_{0}^{p}\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)=C_{0}^{\infty}\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)^{0}=\left\{\varphi \in C^{\infty}\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)^{0} ; \Delta_{0}^{p} \varphi\right.$ $=0\}$. From Proposition 2.1, for $\varphi=\sum_{1 \leq i_{1}<\cdots<i_{p} \leq d} \varphi_{i_{1} \cdots i_{p}} \otimes \omega_{i_{1} \wedge \ldots \wedge} \omega_{i_{p}}$ $\in C^{\infty}\left(G, F \otimes \bigwedge^{p} \mathfrak{p}^{*}\right)^{0}$, we have

$$
\Delta_{0}^{p} \varphi=r(\Omega) \varphi=\sum_{1 \leq i<\cdots<i_{p} \leq d} \Omega \varphi_{i_{1} \cdots i_{p}} \otimes \omega_{i_{1} \wedge \cdots \wedge} \omega_{i_{p}} .
$$

Then

$$
\begin{aligned}
\Delta_{0}^{p} \varphi=0 & \Longleftrightarrow \Omega \varphi_{i_{1} \ldots i_{p}}=0 \quad\left(1 \leq i_{1}<\ldots<i_{p} \leq d\right) \\
& \Longleftrightarrow \text { every } \varphi_{i_{1} \ldots i_{p}} \text { is a constant mapping of } G \text { into } F .
\end{aligned}
$$

Hence $H_{0}^{p}\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right) \cong\left\{\eta \in F \otimes \wedge^{p} \mathfrak{p}^{*}:(\gamma, k) \eta=\eta\right.$ for all $\left.(\gamma, k) \in \Gamma \times K\right\}$.
Therefore we have the following theorem.
ThEOREM 2.1. Under the assumption in §1, for $0 \leq p \leq d$, we have

$$
\operatorname{dim} H^{p}(E)=\left[\rho_{\Gamma}: \boldsymbol{l}_{\Gamma}\right]\left[\operatorname{Ad}_{p}^{*}: \boldsymbol{l}_{K}\right]
$$

Here ρ_{Γ} is the representation of ρ restricted to $\Gamma,\left[\rho_{\Gamma}: \boldsymbol{l}_{\Gamma}\right]$ (resp. $\left[\mathrm{Ad}_{p}^{*}: \boldsymbol{l}_{K}\right]$) is the multiplicity with which the trivial representation \boldsymbol{l}_{Γ} (resp. \boldsymbol{l}_{K}) of Γ (resp. K) occurs in ρ_{Γ} (resp. Ad_{p}^{*}).

COROLLARY 2.1. We preserve the notation and the assumption in §1. Then

$$
\begin{equation*}
\sum_{p=0}^{d}(-1)^{p} p \operatorname{dim} H^{p}(E)=\left[\rho_{\Gamma}: l_{\Gamma}\right] \int_{K} \chi(k) d k \tag{2.4}
\end{equation*}
$$

where $\chi(k)=\sum_{p=0}^{d}(-1)^{p} p \chi_{p}^{*}(k), \chi_{p}^{*}(k)$ is the trace of $\operatorname{Ad}_{p}^{*}(k)$ on $\wedge^{p} \mathfrak{p}^{*}$ and $d k$ is the Haar measure on K with total volume 1.

2.3. The fundamental solution of the heat equation on $C^{\infty}\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)^{0}$

Now let T be a maximal torus of G and let t be the subalgebra of \mathfrak{g} corresponding to T. Let $\Gamma_{0}=\{H \in t: \exp H=1\}$ be the kernel of the homomorphism exp: $t \rightarrow T$. Let I be the set of all G-integral forms on t:

$$
I=\left\{\lambda \in t: \lambda(H) \in 2 \pi Z \quad \text { for all } H \in \Gamma_{0}\right\} .
$$

Let (,) be an $\operatorname{Ad}(G)$ invariant positive definite inner product on g
defined by $(X, Y)=-B(X, Y), X, Y \in \mathfrak{g}$. Let Φ be the set of all nonzero roots of the complexification \mathfrak{g}^{c} of \mathfrak{g} with respect to the complexification t^{c} of t. We choose an arbitrary lexicographic order in t. Let Φ^{+}be the positive root of Φ with respect to this order. Let D be the set of all dominant G-integral forms on t :

$$
D=\left\{\lambda \in I:(\lambda, \alpha) \geqq 0 \quad \text { for all } \alpha \in \Phi^{+}\right\} .
$$

Since an irreducible representation of G is uniquely determined, up to equivalence, by its highest weight, there exists a bijection of D onto the set of equivalence classes of irreducible representations of G. For $\lambda \in D$, let χ_{2} (resp. d_{λ}) be the trace (resp. degree) of the irreducible representation with the highest weight λ.

Define (cf. [14]) an absolutely convergent series $Z_{t}(g)$ by

$$
\begin{equation*}
Z_{t}(g)=\sum_{\lambda \in D} d_{\lambda} \mathrm{e}^{-(\lambda+20, \lambda) t} \chi_{\lambda}(g), \quad t>0 \tag{2.5}
\end{equation*}
$$

where $\delta=\frac{1}{2} \sum_{\alpha \in \mathscr{Q}^{+}} \alpha$.
Proposition 2.2. For $\varphi \in C\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)$, the unique solution of the equation

$$
\left\{\begin{array}{l}
\frac{\partial \varphi_{t}}{\partial t}=r(\Omega) \varphi_{t}, \quad \varphi_{t} \in C^{\infty}\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right) \tag{2.6}\\
\lim _{t \leqslant 0} \varphi_{t}=\varphi \quad(\text { pointwise convergence })
\end{array}\right.
$$

is given by

$$
\begin{equation*}
\varphi_{t}(g)=\int_{G} Z_{t}\left(x^{-1} g\right) \varphi(x) d x \tag{2.7}
\end{equation*}
$$

where $Z_{t}(g)$ is the function (2.5) and $d x$ is the Haar measure on G with total volume 1. Moreover we denote by K_{t} the mapping (2.7) $\varphi \mapsto \varphi_{t}$. Then we have

$$
\begin{equation*}
K_{t} C\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)^{0} \subset C^{\infty}\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)^{0} \tag{2.8}
\end{equation*}
$$

Proof. Since $\Omega \chi_{\lambda}=-(\lambda+2 \delta, \lambda) \chi_{2}, \lambda \in D$ (cf. [13]), we have $(\partial / \partial t) Z_{t}$ $=\Omega Z_{t}$. Then for $\varphi \in C\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)$, we have $\varphi_{t} \in C^{\infty}\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)$ and

$$
\begin{aligned}
r(\Omega) \varphi_{t}(g) & =\int_{G}\left(\Omega Z_{t}\right)\left(x^{-1} g\right) \varphi(x) d x \\
& =\int_{G} \frac{\partial}{\partial t} Z_{t}\left(x^{-1} g\right) \varphi(x) d x=\frac{\partial}{\partial t} \varphi_{t}(g) .
\end{aligned}
$$

By Peter-Weyl's theorem, for every complex continuous function f on G, we have

$$
\lim _{t \downarrow 0} \int_{G} Z_{t}\left(x^{-1} g\right) f(x) d x=f(g) .
$$

Then for every $F \otimes \wedge^{p} \mathfrak{p}^{*}$ valued function φ, we have also

$$
\lim _{t \downarrow 0} \int_{G} Z_{t}\left(x^{-1} g\right) \varphi(x) d x=\varphi(x)
$$

The last statement follows from that for $\varphi \in C\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)$, and $g_{1}, g_{2}, g \in G$,

$$
\varphi_{t}\left(g_{1} g g_{2}\right)=\int_{G} Z_{t}\left(x^{-1} g\right) \varphi\left(g_{1} x g_{2}\right) d x
$$

Q.E.D.

Define the operator P on $C\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)$ by

$$
P \varphi(g)=\sum_{\gamma \in \Gamma} \int_{K} \rho(\gamma) \otimes \operatorname{Ad}_{p}^{*}(k)\left(\varphi\left(\gamma^{-1} g k\right)\right) d k
$$

for $\varphi \in C\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)$. Then the operator P satisfies the following conditions:
(i) P maps $C\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)$ onto $C\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)^{0}$.
(ii) $P^{2}=P$.

Moreover for $\varphi \in C\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)$, by means of Propositions 2.1 and 2.2, $K_{t} P_{\varphi}(t>0)$ has the following properties:
(i) $K_{t} P \varphi \in C^{\infty}\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)^{0}$,
(ii) $\frac{\partial}{\partial t}\left(K_{t} P \varphi\right)=r(\Omega)\left(K_{t} P \varphi\right)=-\Delta_{0}^{p}\left(K_{t} P \varphi\right)$ and
(iii) $\lim _{t \downarrow 0} K_{t} P \varphi=P \varphi$.

On the other hand, for $\varphi \in C\left(G, F \otimes \bigwedge^{p} \mathfrak{p}^{*}\right)$,

$$
\begin{align*}
K_{t} P \varphi(x) & =\int_{G} Z_{t}\left(y^{-1} x\right) P \varphi(y) d y \\
& =\sum_{\gamma \in \Gamma} \int_{G \times K} Z_{t}\left(y^{-1} x\right) \rho(\gamma) \otimes \operatorname{Ad}_{p}^{*}(k) \varphi\left(\gamma^{-1} y k\right) d k d y \tag{2.9}\\
& =\int_{G}\left(\sum_{r \in \Gamma} \int_{K} Z_{t}\left(k y^{-1} r^{-1} x\right) \rho(\gamma) \otimes \operatorname{Ad}_{p}^{*}(k) d k\right) \varphi(y) d y
\end{align*}
$$

Put

$$
\begin{equation*}
Z_{t}^{p}(x, y)=\sum_{\gamma \in \Gamma} \int_{K} Z_{t}\left(k y^{-1} \gamma^{-1} x\right) \rho(\gamma) \otimes \operatorname{Ad}_{p}^{*}(k) d k \tag{2.10}
\end{equation*}
$$

Therefore we obtain the following theorem.
ThEOREM 2.2. For $t>0$, let $Z_{t}^{p}: G \times G \rightarrow \operatorname{End}\left(F \otimes \wedge^{p} \mathfrak{p}^{*}\right)$ be the smooth map defined by (2.10). Then Z_{t}^{p} is the fundamental solution of the heat equation $\partial \varphi_{t} / \partial t=-\Delta_{0}^{p} \varphi_{t}(t>0), \varphi_{t} \in C^{\infty}\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)^{0}$, that is, for $\varphi \in C\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)$, put

$$
\varphi_{t}(x)=\int_{G} Z_{t}^{p}(x, y) \varphi(y) d y, \quad x \in G .
$$

Then φ_{t} satisfies the following properties:
(i) $\varphi_{t} \in C^{\infty}\left(G, F \otimes \bigwedge^{p} \mathfrak{p}^{*}\right)^{0}$,
(ii) $\frac{\partial \varphi_{t}}{\partial t}=-\Delta \varphi_{t}$ and
(iii) $\lim _{t \rightarrow 0} \varphi_{t}(x)=\varphi(x)$ for every $x \in G$.

Corollary 2.2. Let $Z^{p}(t)$ be the series (1.1). Then we have

$$
\begin{equation*}
Z^{p}(t)=\sum_{r \in \Gamma} \chi_{\rho}(\gamma) \int_{G \times K} Z_{t}\left(\gamma^{-1} g k g^{-1}\right) \chi_{p}^{*}(k) d k d g \tag{2.11}
\end{equation*}
$$

where $\chi_{\rho}(\gamma)$ is the trace of $\rho(\gamma)$.
Proof. By (2.3) and Theorem 2.2, we have

$$
\begin{aligned}
Z^{p}(t) & =\sum_{\lambda} \mathrm{e}^{-\lambda t} \operatorname{dim} C_{\lambda}^{\infty}\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)^{0} \\
& =\text { trace of the operator } \mathrm{e}^{-t t_{0}^{p}}: C^{\infty}\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)^{0} \\
& =\text { trace of the operator } \mathrm{e}^{-t \Delta_{0}^{p} \circ P: C^{\infty}\left(G, F \otimes C^{\infty}\left(G, F \otimes \wedge^{p} \mathfrak{p}^{*}\right)\right.} \xrightarrow{\longrightarrow C^{\infty}\left(G, F \otimes \mathfrak{p}^{*}\right)^{0}} \\
& =\text { trace of } K_{t} \circ P \\
& =\int_{G} \operatorname{tr} Z_{t}^{p}(g, g) d g
\end{aligned}
$$

where $\operatorname{tr} Z_{t}^{p}(g, g)$ is the trace of the endomorphism $Z_{t}^{p}(g, g)$ of $F \otimes \wedge^{p} \mathfrak{p}^{*}$. The last equality follows from (2.10).
Q.E.D.

Remark. In case of $\Gamma=\{1\}$, we have due to Corollary 2.2,

$$
\begin{equation*}
Z^{p}(t)=\int_{K} Z_{t}(k) \chi_{p}^{*}(k) d k . \tag{2.12}
\end{equation*}
$$

If $p=0$, this formula has been obtained in [2].
The following Corollary is obtained immediately from Corollary 2.2.
Corollary 2.3. We preserve the above notations. Then we have

$$
\begin{equation*}
\sum_{p=0}^{d}(-1)^{p} p Z^{p}(t)=\sum_{\gamma \in \Gamma} \chi_{\rho}(\gamma) \int_{G \times K} Z_{t}\left(\gamma^{-1} g k g^{-1}\right) \chi(k) d k d g \tag{2.13}
\end{equation*}
$$

where $\chi(k)=\sum_{p=0}^{d}(-1)^{p} p \chi_{p}^{*}(k), \chi_{p}^{*}(k)$ is the trace of $\operatorname{Ad}_{p}^{*}(k)$ on $\wedge^{p} \mathfrak{p}^{*}$.

§ 3. Computation of Analytic Torsion

3.1. To calculate analytic torsion, we have to compute $\chi(k)$ $=\sum_{p=0}^{d}(-1)^{p} p \chi_{p}^{*}(k), k \in K$. For this purpose, we prepare a lemma as follows.

Let V be a d dimensional real vector space and let A be an endomorphism of V. For $1 \leq p \leq d, \bigwedge^{p} A$ is a linear operator of $\bigwedge^{p} V$ into itself,

$$
\left(\bigwedge^{p} A\right)\left(v_{1} \wedge \cdots \wedge v_{p}\right)=A v_{1} \wedge \cdots \wedge A v_{p}, \quad v_{i} \in V
$$

We define $\wedge^{0} A$ to be the identity endomorphism of the field of scalars. Let $\operatorname{tr}\left(\bigwedge^{p} A\right)$ be the trace of the endomorphism $\wedge^{p} A$. Then it is known that

$$
\operatorname{det}(x I-A)=\sum_{p=0}^{d}(-1)^{p} \operatorname{tr}\left(\bigwedge^{p} A\right) x^{d-p}
$$

where I is the identity endomorphism of V and x is an indeterminate. So we have

$$
\begin{equation*}
\left[\frac{d}{d x}\left\{x^{d} \operatorname{det}\left(\frac{1}{x} I-A\right)\right\}\right]_{x=1}=\sum_{p=0}^{d}(-1)^{p} p \operatorname{tr}\left(\bigwedge^{p} A\right) \tag{3.1}
\end{equation*}
$$

Hence we obtain
Lemma 3.1. We preserve the notation in §1. For $k \in K$, we have

$$
\chi(k)=\sum_{p=1}^{d}(-1)^{p} p \chi_{p}^{*}(k)=\left[\frac{d}{d x}\left\{x^{d} \operatorname{det}\left(\frac{1}{x} I_{p}-\operatorname{Ad}\left(k^{-1}\right)_{p}\right)\right\}\right]_{x=1}
$$

where $I_{\mathfrak{p}}$ is the identity operator on $\mathfrak{p}, \operatorname{Ad}(k)_{\mathfrak{p}}$ is the adjoint action of K on \mathfrak{p} and $d=\operatorname{dim} G / K=\operatorname{dim} g$.

Proof. By the definition and (3.1), Lemma 3.1 is obtained immediately.

Let t_{f} be a Cartan subalgebra of \mathfrak{f}. Let t be the centralizer of t_{t} in \mathfrak{g}. Then t is (cf. [3] Lemma 32) a θ-stable Cartan subalgebra of \mathfrak{g} and

$$
\begin{equation*}
t=t_{\mathrm{t}}+\mathrm{t}_{\mathrm{p}}, \quad \mathrm{t}_{\mathrm{p}}=\mathrm{t} \cap \mathfrak{p} \tag{3.2}
\end{equation*}
$$

So, $\operatorname{dim} t_{p}=\operatorname{rank} G-\operatorname{rank} K$. Let T_{K} be the analytic subgroup of K corresponding to t_{t}. Then T_{K} is a maximal torus of K since K is connected. We choose once for all a lexicographic order in t_{r}. Let Φ_{r} be the root system of $\left(\mathfrak{f}^{c}, t_{t}\right)$, i.e. the set of non-zero elements β of the dual space t_{t}^{*} of t_{t} such that $\left\{E \in \mathfrak{f}^{c}:[H, E]=\sqrt{-1} \beta(H) E\right.$ for any $\left.H \in t_{t}\right\}$ is not zero. Let Φ_{t}^{+}be the set of all positive roots of Φ_{t} with respect to this order. For every continuous function f on K such that $f\left(k_{1} k k_{1}^{-1}\right)$ $=f(k)$ for every $k_{1}, k \in K$, it follows (cf. [5] Ch X) that (Weyl's integral formula for K)

$$
\int_{K} f(k) d k=\frac{1}{w_{K}} \int_{T_{K}} D_{K}(h) f(h) d h
$$

where w_{K} is the order of the Weyl group of the compact group $K, d h$ is the Haar measure on T_{K} with total volume 1 and

$$
D_{K}(h)=\left|\prod_{\beta \in \phi_{\epsilon}^{+}}\left(\exp \left(\frac{\sqrt{-1}}{2} \beta(H)\right)-\exp \left(-\frac{\sqrt{-1}}{2} \beta(H)\right)\right)^{2}\right|
$$

for $h=\exp H \in T_{K}$.
By means of this formula, Corollaries 2.1 and 2.3, we have

$$
\begin{gather*}
\sum_{p=0}^{d}(-1)^{p} p Z^{p}(t)=\frac{1}{w_{K}} \sum_{r \in \Gamma} \chi_{\rho}(\gamma) \int_{G \times T_{K}} D_{K}(h) Z_{t}\left(\gamma^{-1} y h y^{-1}\right) \chi(h) d h d y \tag{3.3}\\
\sum_{p=0}^{d}(-1)^{p} p \operatorname{dim} H^{p}(E)=\frac{\left[\rho_{\Gamma}: \boldsymbol{l}_{\Gamma}\right]}{w_{K}} \int_{T_{K}} D_{K}(h) \chi(h) d h \tag{3.4}
\end{gather*}
$$

So, using Lemma 3.1, to calculate $\chi(h)$ for $h \in T_{K}$, we have to investigate the action of $\operatorname{ad} H$ on \mathfrak{p} for $H \in \mathrm{t}_{\mathrm{t}}$.
3.2. For $\lambda \in t^{*}$, let λ_{t} (resp. λ_{p}) be the restriction of λ to t_{t} (resp. t_{t}). We choose once for all a lexicographic order on t_{p}^{*}. We define an order on t^{*} in such a way that

$$
\begin{aligned}
\lambda \in t^{*}, \lambda>0 \Longleftrightarrow & \text { (i) } \lambda_{p}>0 \text { or } \\
& \text { (ii) } \lambda_{p}=0 \text { and } \lambda_{t}>0 .
\end{aligned}
$$

Let Φ be the root system of (${ }^{c}$, t), i.e. the set of non-zero elements α of the dual space t^{*} of t such that $g_{\alpha}=\left\{E \in g^{c}:[H, E]=\sqrt{-1} \alpha(H) E\right.$ for any $H \in \ddagger\}$ is not zero. Let Φ^{+}be the set of positive roots of Φ with respect to this order. For $\alpha \in \Phi$, define $\alpha^{\theta} \in \Phi$ by $\alpha^{\theta}(H)=\alpha(\theta H), H \in \mathrm{t}$. Let \mathfrak{g}_{α} be a root subspace of \mathfrak{g}_{c} for $\alpha \in \Phi$. Then we have that

$$
\begin{equation*}
\alpha \in \Phi \Longleftrightarrow \alpha^{\theta} \in \Phi \quad \text { and } \quad \theta\left(\mathfrak{g}_{\alpha}\right)=\mathfrak{g}_{\alpha^{0}} . \tag{3.5}
\end{equation*}
$$

The root α vanishes identically on t_{p} (resp. t_{t}) if and only if $\alpha=\alpha^{\theta}$ (resp. $\alpha=-\alpha^{\theta}$). Let $\Phi_{I}=\left\{\alpha \in \Phi: \alpha^{\theta}=\alpha\right\}$ and let $\Phi_{C}=\left\{\alpha \in \Phi: \alpha^{\theta} \neq \alpha\right.$ and $\left.\alpha \neq-\alpha^{\theta}\right\}$. Then $\Phi=\Phi_{I} \cup \Phi_{C}$ (a disjoint union) since there is no $\alpha \in \Phi$ which vanishes identically on t_{t} (cf. Lemma 33 [3]). Let $\Phi_{I, t}$ $=\left\{\alpha \in \Phi_{I}: \mathfrak{g}_{\alpha} \subset \mathfrak{i}^{c}\right\}$ and let $\Phi_{I, \mathfrak{p}}=\left\{\alpha \in \Phi_{I}: \mathfrak{g}_{\alpha} \subset \mathfrak{p}^{c}\right\}$. We denote the intersection of Φ_{I} (resp. $\Phi_{I, t}, \Phi_{I, p}, \Phi_{C}$) with Φ^{+}, by Φ_{I}^{+}(resp. $\Phi_{I, t}^{+}, \Phi_{I, p}^{+}, \Phi_{C}^{+}$). Let τ be the conjugation of \mathfrak{q}^{c} with respect to g. For every $\alpha \in \Phi$, we choose a root vector E_{α} such that $\tau E_{\alpha}=-E_{-\alpha}$. By (3.5), we can take a nonzero complex number $c_{\alpha}\left(\alpha \in \Phi_{C}\right)$ such that $\theta E_{\alpha}=c_{\alpha} E_{\alpha \theta}$. Then each c_{α} ($\alpha \in \Phi_{C}$) satisfies

$$
\begin{equation*}
c_{\alpha} c_{\alpha \theta}=1, \quad c_{-\alpha}=\overline{c_{\alpha} \theta} . \tag{3.6}
\end{equation*}
$$

For $\alpha \in \Phi_{c}^{+}$, we have

$$
\begin{aligned}
E_{-\alpha} & =\frac{1}{2}\left(\theta E_{-\alpha}+\theta\left(\theta E_{-\alpha}\right)\right)-\frac{1}{2}\left(\theta E_{-\alpha}-\theta\left(\theta E_{-\alpha}\right)\right) \\
& =\frac{1}{2}\left(c_{-\alpha} E_{-\alpha}+c_{-\alpha} E_{-\alpha}\right)-\frac{1}{2}\left(c_{-\alpha} E_{-\alpha \theta}-c_{-\alpha} \theta E_{-\alpha}\right) \\
& =\frac{c_{-\alpha}}{2}\left(E_{-\alpha \theta} \theta+\theta E_{-\alpha} \theta\right)-\frac{c_{-\alpha}}{2}\left(E_{-\alpha \theta}-\theta E_{-\alpha} \theta\right) .
\end{aligned}
$$

By the choice of the order of t^{*},

$$
\begin{equation*}
\alpha \in \Phi_{C}^{+} \Rightarrow-\alpha^{\theta} \in \Phi_{C}^{+} . \tag{3.7}
\end{equation*}
$$

Hence we have

$$
\mathfrak{g}^{C}=\mathfrak{t}^{C}+\sum_{\alpha \in \Phi_{I}} C E_{\alpha}+\sum_{\alpha \in \Phi_{C}^{+}} C\left(E_{\alpha}+\theta E_{\alpha}\right)+\sum_{\alpha \in \Phi_{C}^{+}} C\left(E_{\alpha}-\theta E_{\alpha}\right),
$$

that is

$$
\left\{\begin{array}{l}
\mathfrak{F}^{C}=t_{\mathfrak{t}}^{C}+\sum_{\alpha \in \Phi_{I, t}} C E_{\alpha}+\sum_{\alpha \in \Phi_{C}^{+}} C\left(E_{\alpha}+\theta E_{\alpha}\right), \tag{3.8}\\
\mathfrak{p}^{C}=t_{p}^{C}+\sum_{\alpha \in \Phi_{I, p}} C E_{\alpha}+\sum_{\alpha \in \Phi_{C}^{+}} C\left(E_{\alpha}-\theta E_{\alpha}\right) .
\end{array}\right.
$$

Since $\alpha \neq \alpha^{\theta}\left(\alpha \in \Phi_{C}\right)$, we can define non-zero vectors $X_{\alpha}, Y_{\alpha}\left(\alpha \in \Phi_{C}\right)$ by $X_{\alpha}=E_{\alpha}+\theta E_{\alpha}, Y_{\alpha}=E_{\alpha}-\theta E_{\alpha}$ for $\alpha \in \Phi_{C}$. By means of $\theta \tau=\tau \theta$ and τE_{α}
$=-E_{-\alpha}$, we have $\tau X_{\alpha}=-X_{-\alpha}$ and $\tau Y_{\alpha}=-Y_{-\alpha}$. Then we have

$$
\begin{cases}W_{\alpha}=X_{\alpha}-X_{-\alpha}, & Z_{\alpha}=\sqrt{-1}\left(X_{\alpha}+X_{-\alpha}\right) \in \mathscr{I} \tag{3.9}\\ \tilde{W}_{\alpha}=Y_{\alpha}-Y_{-\alpha}, & \tilde{Z}_{\alpha}=\sqrt{-1}\left(Y_{\alpha}+Y_{-\alpha}\right) \in \mathfrak{p}\end{cases}
$$

for $\alpha \in \Phi_{c}^{+}$. Since $\alpha^{\theta} \neq \alpha,-\alpha\left(\alpha \in \Phi_{C}^{+}\right)$, all $W_{\alpha}, Z_{\alpha}, \tilde{W}_{\alpha}$ and \tilde{Z}_{α} are non-zero for $\alpha \in \Phi_{C}^{+}$. Moreover we have, for $\alpha \in \Phi_{C}^{+}$,

$$
\left\{\begin{array}{l}
W_{-\alpha \theta}=-\frac{1}{2}\left(\frac{1}{c_{\alpha}}+\frac{1}{c_{-\alpha}}\right) W_{\alpha}+\frac{\sqrt{-1}}{2}\left(\frac{1}{c_{\alpha}}-\frac{1}{c_{-\alpha}}\right) Z_{\alpha}, \tag{3.10}\\
Z_{-\alpha \theta}=\frac{\sqrt{-1}}{2}\left(\frac{1}{c_{\alpha}}-\frac{1}{c_{-\alpha}}\right) W_{\alpha}+\frac{1}{2}\left(\frac{1}{c_{\alpha}}+\frac{1}{c_{-\alpha}}\right) Z_{\alpha}, \\
\tilde{W}_{-\alpha \theta}=\frac{1}{2}\left(\frac{1}{c_{\alpha}}+\frac{1}{c_{-\alpha}}\right) \tilde{W}_{\alpha}-\frac{\sqrt{-1}}{2}\left(\frac{1}{c_{\alpha}}-\frac{1}{c_{-\alpha}}\right) \tilde{Z}_{\alpha} \text { and } \\
\tilde{Z}_{-\alpha \theta}=\frac{\sqrt{-1}}{2}\left(\frac{1}{c_{\alpha}}+\frac{1}{c_{-\alpha}}\right) \tilde{W}_{\alpha}-\frac{1}{2}\left(\frac{1}{c_{\alpha}}+\frac{1}{c_{-\alpha}}\right) \tilde{Z}_{\alpha},
\end{array}\right.
$$

where all coefficients $\pm \frac{1}{2}\left(1 / c_{\alpha}+1 / c_{-\alpha}\right), \pm \sqrt{-1} / 2\left(1 / c_{\alpha}-1 / c_{-\alpha}\right)$ are real numbers due to (3.6).

Now we choose any root α_{1} of Φ_{C}^{+}. If $\Phi_{C}^{+} \backslash\left\{\alpha_{1},-\alpha_{1}^{\theta}\right\}$ is non-empty, we choose any root α_{2} belonging to $\Phi_{C}^{+} \backslash\left\{\alpha_{1},-\alpha_{1}^{\theta}\right\}$. Then $-\alpha_{2}^{\theta}$ belongs to $\Phi^{+} \backslash\left\{\alpha_{1},-\alpha_{1}^{\theta}, \alpha_{2}\right\}$. Inductively we may choose a subset $\left\{\alpha_{1}, \cdots, \alpha_{r}\right\}$ of Φ_{C}^{+} such that $\left\{\alpha_{1}, \cdots, \alpha_{r},-\alpha_{1}^{\theta}, \cdots,-\alpha_{r}^{\theta}\right\}=\Phi_{C}^{+}$. Then by (3.9), (3.10) and the choice of $\left\{\alpha_{1}, \cdots, \alpha_{r}\right\}, \sum_{i=1}^{r}\left(\boldsymbol{R} W_{\alpha_{i}}+\boldsymbol{R} \boldsymbol{Z}_{\alpha_{i}}\right)$ (resp. $\sum_{i=1}^{r}\left(\boldsymbol{R} \tilde{W}_{\alpha_{i}}+\boldsymbol{R} \tilde{Z}_{\alpha_{i}}\right)$) is a real form of $\sum_{\alpha \in \oplus_{c}^{+}} \boldsymbol{C}\left(E_{\alpha}+\theta E_{\alpha}\right)$ (resp. $\sum_{\alpha \in \oplus_{c}^{+}} \boldsymbol{C}\left(E_{\alpha}-\theta E_{\alpha}\right)$).

On the other hand, for $\alpha \in \Phi_{I}^{+}$, we put $U_{\alpha}=E_{\alpha}-E_{-\alpha}, V_{\alpha}=\sqrt{-1}\left(E_{\alpha}\right.$ $+E_{-\alpha}$). Then $\sum_{\alpha \in \Phi_{I, \mathfrak{t}}^{+}}\left(R U_{\alpha}+R V_{\alpha}\right)$ (resp. $\sum_{\alpha \in \Phi_{1, \mathfrak{p}}^{ \pm}}\left(R U_{\alpha}+R V_{\alpha}\right)$) is a real form of $\sum_{\alpha \in \Phi_{I, t}^{+}} C E_{\alpha}$ (resp. $\sum_{\alpha \in \Phi_{I, \downarrow}^{+}} C E_{\alpha}$).

Therefore together with (3.8) we obtain the following lemma:
Lemma 3.2. We preserve the above notation. Then we have the following direct sum decomposition:

$$
\begin{aligned}
& \mathfrak{f}=\mathrm{t}_{\mathrm{t}}+\sum_{\alpha \in \Phi_{I, t}}\left(\boldsymbol{R} U_{\alpha}+\boldsymbol{R} V_{\alpha}\right)+\sum_{i=1}^{r}\left(\boldsymbol{R} W_{\alpha_{i}}+\boldsymbol{R} Z_{\alpha_{i}}\right), \\
& \mathfrak{p}=\mathrm{t}_{\mathfrak{p}}+\sum_{\alpha \in \boldsymbol{\Phi}_{\dot{I}, \mathfrak{p}}}\left(\boldsymbol{R} U_{\alpha}+\boldsymbol{R} V_{\alpha}\right)+\sum_{i=1}^{r}\left(\boldsymbol{R} \tilde{W}_{\alpha_{i}}+\boldsymbol{R} \tilde{Z}_{\alpha_{i}}\right) .
\end{aligned}
$$

Lemma 3.3. For each $H \in t_{t}$, we have

$$
\operatorname{det}\left(x I_{\mathfrak{p}}-\operatorname{Ad}(h)_{\mathfrak{p}}\right)=(x-1)^{\ell_{\mathfrak{p}}} \prod_{\alpha \in \Phi_{I, p}^{ \pm} \cup\left\{\alpha_{1}, \cdots, \alpha_{r}\right\}}\left\{(x-\cos \alpha(H))^{2}+\sin ^{2} \alpha(H)\right\}
$$

where $\ell_{p}=\operatorname{dim} t_{p}=\operatorname{rank} G-\operatorname{rank} K$.
Proof. For $\alpha \in \Phi_{I}$, we have by the definition of U_{α}, V_{α},

$$
\left[H, U_{\alpha}\right]=\alpha(H) V_{\alpha}, \quad\left[H, V_{\alpha}\right]=-\alpha(H) U_{\alpha} \quad\left(H \in t_{\ell}\right) .
$$

On the other hand we have for $\alpha \in \Phi_{C}$,

$$
\left[H, X_{\alpha}\right]+\left[H, Y_{\alpha}\right]=\sqrt{-1} \alpha(H) X_{\alpha}+\sqrt{-1} \alpha(H) Y_{\alpha}
$$

by $E_{\alpha}=\left(X_{\alpha}+Y_{\alpha}\right) / 2$. For $H \in \mathfrak{t}_{t}$, we compare the \mathfrak{f}^{c} (resp. \mathfrak{p}^{c}) component of this equality to obtain $\left[H, X_{\alpha}\right]=\sqrt{-1} \alpha(H) X_{\alpha}\left(\operatorname{resp} .\left[H, Y_{\alpha}\right]=\sqrt{-1} \alpha(H) Y_{\alpha}\right)$. Then we have

$$
\begin{array}{lll}
{\left[H, W_{\alpha}\right]=\alpha(H) Z_{\alpha},} & & {\left[H, Z_{\alpha}\right]=-\alpha(H) W_{\alpha}} \\
{\left[H, \tilde{W}_{\alpha}\right]=\alpha(H) \tilde{Z}_{\alpha}} & \text { and } & {\left[H, \tilde{Z}_{\alpha}\right]=-\alpha(H) \tilde{W}_{\alpha}}
\end{array}
$$

by the definition of $W_{\alpha}, Z_{\alpha}, \tilde{W}_{\alpha}$ and \tilde{Z}_{α}. Hence from Lemma 3.2, we have Lemma 3.3.
Q.E.D.

Proposition 3.1. We preserve the above notation. Then for h $=\exp H, H \in \mathrm{t}_{\mathrm{t}}$, we have
(i) $\chi(h)=0 \quad\left(\ell_{\mathfrak{p}}>1\right)$
(ii) $\chi(h)=-\prod_{\alpha \in \Phi_{I, p}} \prod_{\left\{\left(\alpha, \ldots, \alpha_{r}\right\}\right.}(2-2 \cos \alpha(H)) \quad\left(\ell_{p}=1\right) \quad$ and
(iii) $\chi(h)=\prod_{\alpha \in \Phi_{I, \mathfrak{p}}^{+}}(2-2 \cos \alpha(H)) \times \#\left(\Phi_{I, \mathfrak{p}}^{+}\right) \quad\left(\ell_{\mathfrak{p}}=0\right)$.

Proof. From Lemma 3.1 and 3.2, we have, for $h=\exp H\left(H \in t_{t}\right)$,

$$
\begin{aligned}
\chi(h) & =\left[\frac{d}{d x}\left\{x_{d} \operatorname{det}\left(\frac{1}{x} I_{\mathfrak{p}}-\operatorname{Ad}\left(h^{-1}\right)_{p}\right\}\right]_{x=1}\right. \\
& \left.=\left[\frac{d}{d x}\left\{(1-x)^{\ell_{\mathfrak{p}}} \prod_{\alpha \in \oplus_{I, p} \cup\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}}\left(1-2 x \cos \alpha(H)+x^{2}\right)\right)\right\}\right]_{j=1}
\end{aligned}
$$

by means of $d=\operatorname{dim} \mathfrak{p}=\ell_{\mathfrak{p}}+2 \#\left(\Phi_{I, p}^{+}\right)+2 r$ where $\#\left(\Phi_{I, \mathfrak{p}}^{+}\right)+2 r$ where $\#\left(\Phi_{1, \mathfrak{p}}^{+}\right)$is the order of $\Phi_{1, \mathfrak{p}}^{+}$. In case of $\ell_{\mathfrak{p}}=0$, then $\Phi=\Phi_{I}$. Hence Proposition 3.1 is obtained.
Q.E.D.

On the other hand, the root system Φ_{K} of \mathfrak{f}^{C} with respect to t_{t} is given due to (3.8) by

$$
\Phi_{K}=\left\{\alpha_{t}: \alpha \in \Phi_{C} \cup \Phi_{I, t}\right\}
$$

where α_{t} is the restriction of α to t_{t}. For $\beta \in \Phi_{K}$, let E_{β}^{\prime} be E_{α} if $\beta=\alpha_{t},\left(\alpha \in \Phi_{I, t}\right)$ or X_{α} if $\beta=\alpha_{t},\left(\alpha \in \Phi_{C}\right)$. Then E_{β} is a root vector of
\mathfrak{f}^{c} with respect to t_{t} for β. Let U_{β}^{\prime} be U_{α} if $\beta=\alpha_{t}, \alpha \in \Phi_{I, t}$ or W_{α} if $\beta=\alpha_{\mathrm{t}}, \alpha \in \Phi_{C}$. Put $\mathfrak{m}=\sum_{\beta \in \Phi_{K}} C E_{\beta} \cap \mathfrak{f}$. Then we have

$$
\begin{aligned}
\sum_{\beta \in \Phi_{\dot{K}}^{+}}\left(\boldsymbol{R} U_{\beta}^{\prime}+\boldsymbol{R} V_{\beta}^{\prime}\right) & =\mathfrak{m} \\
& =\left(\sum_{\alpha \in \Phi_{I, t}} \boldsymbol{C} E_{\alpha}+\sum_{\alpha \in \Phi_{C}} \boldsymbol{C} X_{\alpha}\right) \cap \mathfrak{f} \\
& =\sum_{\alpha \in \Phi_{I, t}^{+}}\left(\boldsymbol{R} U_{\alpha}+\boldsymbol{R} V_{\alpha}\right)+\sum_{i=1}^{r}\left(\boldsymbol{R} W_{\alpha_{i}}+\boldsymbol{R} \boldsymbol{Z}_{\alpha_{i}}\right) .
\end{aligned}
$$

Hence for $h=\exp H \in T_{K}$,

$$
\begin{align*}
\operatorname{det}\left(I_{\mathrm{m}}-\operatorname{Ad}(h)_{\mathrm{m}}\right) & =\prod_{\alpha \in \oplus_{I, t}^{+}} \prod_{\left\lfloor\alpha, \ldots, \alpha_{r}\right\}}(2-2 \cos \alpha(H)) \tag{3.11}\\
& =\prod_{\beta \in \Phi_{t}^{+}}(2-2 \cos \beta(H))
\end{align*}
$$

Then we have
Proposition 3.2. For $h=\exp H \in T_{K}$,

$$
\begin{aligned}
D_{K}(h) & =\left|\prod_{\alpha \in \Phi_{t}^{+}}\left(\exp \left(\frac{\sqrt{-1}}{2} \beta(H)\right)-\exp \left(-\frac{\sqrt{-1}}{2} \beta(H)\right)\right)^{2}\right| \\
& \left.=\left.\right|_{\alpha \in \Phi_{I, t}^{+}} \prod_{U\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}}\left(\exp \left(\frac{\sqrt{-1}}{2} \alpha(H)\right)-\exp \left(-\frac{\sqrt{-1}}{2} \alpha(H)\right)\right)^{2} \right\rvert\, .
\end{aligned}
$$

Proof. For $h=\exp H \in T_{K}$, by means of (3.11),

$$
\begin{aligned}
& D_{K}(h)=\left|\prod_{\beta \in \Phi_{t}^{+}}\left(\exp \left(\frac{\sqrt{-1}}{2} \beta(H)\right)-\exp \left(-\frac{\sqrt{-1}}{2} \beta(H)\right)\right)^{2}\right| \\
& =\left|\prod_{\beta \in \Phi_{t}}(2-2 \cos \beta(H))\right| \\
& =\left|\prod_{\alpha \in \Phi_{1, \mathfrak{p}}^{ \pm} \cup\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}}(2-2 \cos \alpha(H))\right| \\
& \left.=\left.\right|_{\alpha \in \oplus_{I, \ominus}^{ \pm}} \prod_{\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}}\left(\exp \left(\frac{\sqrt{-1}}{2} \alpha(H)\right)-\exp \left(-\frac{\sqrt{-1}}{2} \alpha(H)\right)\right)^{2} \right\rvert\, \text {. }
\end{aligned}
$$

Q.E.D.

3.3. Main theorem

ThEOREM 3.1. We preserve the assumption in §1. Then we have that
Case (i) $\quad \operatorname{rank} G-\operatorname{rank} K \neq 1$,

$$
\begin{aligned}
& \sum_{p=1}^{d}(-1)^{p} p Z^{p}(t)=\sum_{p=0}^{d}(-1)^{p} p \operatorname{dim} H^{p}(E) \\
& \quad= \begin{cases}0 & (\operatorname{rank} G-\operatorname{rank} K>1) \\
2^{-1} \operatorname{dim} M & (\operatorname{rank} G-\operatorname{rank} K=0)\end{cases}
\end{aligned}
$$

Case (ii) $\quad \operatorname{rank} G-\operatorname{rank} K=1$,

$$
\begin{equation*}
\sum_{p=0}^{d}(-1)^{p} p Z^{p}(t)=-\frac{1}{w_{K}} \sum_{\gamma \in \Gamma} \chi_{\rho}(\gamma) \int_{G \times T_{K}} Z_{t}\left(\gamma g h g^{-1}\right) D(h) d h d g, \tag{3.12}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{p=0}^{d}(-1)^{p} p \operatorname{dim} H^{p}(E)=\frac{-\left[\rho_{\Gamma}: l_{\Gamma}\right]}{w_{K}} \int_{r_{K}} D(h) d h \tag{3.13}
\end{equation*}
$$

where $D(h)=\left|\prod_{\alpha \in \Phi^{+}}\left(\exp \left(\frac{\sqrt{-1}}{2} \alpha(H)\right)-\exp \left(-\frac{\sqrt{-1}}{2} \alpha(H)\right)\right)^{2}\right|$ for $h=$ $\exp H \in T$.

Proof. If rank $G-\operatorname{rank} K>1$, then by means of (3.3), (3.4) and Proposition 3.1 (i), we obtain the results. If $\operatorname{rank} G-\operatorname{rank} K=1$, by means of (3.3), (3.4), Proposition 3.1 (ii) and Proposition 3.2, we obtain (3.12) and (3.13). Let rank $G-\operatorname{rank} K=0$. Then \mathfrak{f} has a Cartan subalgebra t of g . Let T be a Cartan subgroup of G corresponding to t. Then Γ consists only of the identity of G since every translation τ_{g} ($g \in G$) has a fixed point and Γ is assumed to act on \tilde{M} fixed point freely. In fact, $G=\cup_{g \in G} g K g^{-1}$ since G and K are connected and K has a maximal torus T of G. Then we have

$$
\begin{equation*}
\sum_{p=0}^{d}(-1)^{p} p Z^{p}(t)=\int_{T} Z_{t}(h) D_{K}(h) \chi(h) d h \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{p=0}^{d}(-1)^{p} p \operatorname{dim} H^{p}(E)=\int_{T} D_{K}(h) \chi(h) d h \tag{3.15}
\end{equation*}
$$

From Proposition 3.1 (iii) and Proposition 3.2, we have $D_{K}(h) \chi(h)=D(h)$ $\times \#\left(\Phi_{I, p}^{+}\right)=D(h) 2^{-1} \operatorname{dim}(G / K)$. Therefore applying Weyl's integral formula for G to (3.14), (3.15), we have

$$
\begin{aligned}
& (3.14)=\int_{G} Z_{t}(g) d g=1 \text { and } \\
& (3.15)=\int_{G} d g=1
\end{aligned}
$$

Q.E.D.

Due to Theorem 3.1., we have

Corollary 3.1. Under the assumption in §1, we have

$$
T\left(M, \rho_{\Gamma}\right)=1 \quad \text { if } \operatorname{rank} G-\operatorname{rank} K \neq 1
$$

where ρ_{Γ} is the representation restricted to Γ of an arbitrary finite dimensional unitary representation ρ of G.

Remark. Ray and Singer [10] showed in general that $T(M, \rho)=1$ for every even dimensional Riemannnian manifold. The new fact obtained in this paper is that $T\left(M, \rho_{\Gamma}\right)=1$ in case of $M=\Gamma \backslash \tilde{M}$ where \tilde{M} is an odd dimensional simply connected symmetric space G / K such that G is compact, semisimple and rank $G-\operatorname{rank} K>1$. Such irreducible symmetric spaces \tilde{M} are as follows: all odd dimensional compact simple Lie group except $S U(2) ; S U(n) / S O(n), n=4 m$ or $4 m+3(m \geqq 1)$; $S U(2 n) / S p(n), n=2 m(m \geqq 1)$ (cf. [5] Ch. IX.). In the case $\tilde{M}=S O(2 n)$ /SO $(2 n-1)((2 n-1)$ dimensional sphere $), T(M, \rho)$ has been calculated in Ray [9]. The cases $\tilde{M}=S U(2) ; S U(4) / S O(4) ; S U(3) / S O(3) ; S O(p+q)$ $/ S O(p) \times S O(q)(p, q=$ odd, $p>1, q>1)$ are remained for a further study.

References

[1] M. Atiyah, R. Bott and V. K. Patodi: On the Heat Equation and the Index theorem. Inventiones math., 19 (1973), 279-330.
[2] A. Benabdallah: Noyau de diffusion our les espaces homogènes compacts. Bull. Soc. math. France, 101 (1973), 265-283.
[3] Harish-Chandra: Fourier transforms on a semisimple Lie algebra I. Amer. J. of Math., 79 (1957), 193-257.
[4] -: Discrete series for semisimple Lie groups II. Acta Math., 116 (1966), 1-111.
[5] S. Helgason: Differential geometry and symmetric spaces. Acad. Press (1962).
[6] T. Kotake: The fixed point theorem of Atiyah-Bott via parabolic operators. Comm. Pure Appl. Math., XXII (1969), 789-806.
[7] Y. Matsushima and S. Murakami: On vector bundle valued harmonic forms and automorphic forms on symmetric Riemannian manifolds. Ann. of Math., 78, No. 2 (1963), 365-416.
[8] S. Murakami: On the automorphisms of a real semisimple Lie algebra. J. Math. Soc. Japan, 4 (1952), 103-133.
[9] D. B. Ray: Reidemeister torsion and the Laplacian on lens spaces. Advances in Math., 4 (1970), 109-126.
[10] D. B. Ray and I. M. Singer: R-torsion and the Laplacian on Riemannian manifolds. Advances in Math., 7 (1971), 145-210.
[11] -: Analytic torsion for complex manifolds. Ann. of Math. (2) 98 (1973), 154-177.
[12] N. K. Stanton: Holomorphic R-torsion for Lie groups. Proc. of Symp. in Pure Math., 27 (1975), 343-347.
[13] M. Sugiura: Fourier series of smooth functions on compact Lie groups. Osaka J. Math., 8 (1971), 33-47.
[14] H. Urakawa: The heat equation on compact Lie group. Osaka J. Math., 12 (1975), 285-297.
[15] G. Warner: Harmonic analysis on semisimple Lie groups I. Springer (1972).
[16] J. Wolf: Spaces of constant curvature. 3rd Ed. Publ. or Perish, Inc. (1974).

Nagoya University

