A XIOMATIC PROOF OF J. LAMBEK'S HOMOLOGICAL THEOREM

J.B. Leicht

(received May 22, 1964)

DEFINITION 1: A category \mathcal{L} with zero-maps is called "quasi-exact" in the sense of D. Puppe (see [4], page 8, 2.4), if it satisfies the following axioms:

 (Q_1) : Every may f is a product $f=\mu\epsilon$ of an epimorphism ϵ followed by a monomorphism $\mu.$

 (Q_2) : a) Every epimorphism ε has a kernel κ = Ker ε .

b) Every monomorphism μ has a cokernel γ = Coker μ , where Ker and Coker are characterized by the familiar universality properties (see [3], page 252, (1.10) and (1.11)).

 (Q_3) : a) For epic ε , ε = Coker(Ker ε). b) For monic μ , μ = Ker(Coker μ).

These axioms alone suffice to develop essential parts of the elementary homological algebra (see [4], page 8, 2.4 and also [2]). This was shown essentially by P. J. Hilton and W. Ledermann in their theory of ringoids (see [1]), where basic theorems are proved without really using the additivity assumptions.

PROPOSITION 2: Suppose α and β are cofinal monomorphisms such that $\beta = \alpha \omega$ for some (unique and monic) ω . Then for $\alpha' = \operatorname{Coker} \alpha$, $\beta' = \operatorname{Coker} \beta$ there exists (a unique and epic) ω' such that $\alpha' = \omega'\beta'$ and an object Q which is simultaneously the range of Coker ω (denoted by α/β) and the domain of Ker ω' (denoted by $\beta' \setminus \alpha'$).

Canad. Math. Bull. vol. 7, no. 4, October 1964

<u>Proof:</u> ω' is given by $\alpha'\beta = \alpha'\alpha\omega = 0$ and $\beta' = \operatorname{Coker} \beta$. Put $\gamma = \operatorname{Coker} \omega: A \to Q$; then by $(\beta'\alpha)\omega = \beta'\beta = 0$ one obtains \varkappa such that $\beta'\alpha = \varkappa\gamma$. Moreover $\omega'\varkappa = 0$, since $\omega'\varkappa\gamma = \alpha'\alpha = 0$ and γ is epic. Suppose $(\varkappa\gamma)\eta = 0$ for some η ; then $\beta'(\alpha\eta) = 0$, hence $\alpha\eta$ factorizes over $\beta = \operatorname{Ker} \beta' = \alpha\omega$ and thus also η over ω , α being monic. Hence $\gamma\eta = 0$, which shows $\operatorname{Ker}(\varkappa\gamma) = \operatorname{Ker} \gamma$. Since γ is epic, it follows from axioms (Q_1) and (Q_3) a) that \varkappa is a monomorphism. Suppose $\zeta \varkappa = 0$ for some ζ , then $\zeta \varkappa \gamma = (\zeta\beta')\alpha = 0$, hence $\zeta\beta'$ factorizes over $\alpha' = \operatorname{Coker} \alpha = \omega'\beta'$, and thus also ζ over ω' , β' being epic. This proves $\omega' = \operatorname{Coker} \varkappa$, hence $\varkappa = \operatorname{Ker} \omega'$ by (Q_3) b).

THEOREM 3: Suppose both rows of the commutative diagram are exact. Then there exists an object Q which represents simultaneously $Q = \text{Ker } \epsilon / (\text{Ker } \beta \cup \text{Ker } \psi)$ = $(\text{Im } \beta \frown \text{Im } \varphi') / \text{Im } \delta$.

610

Proof: The canonical factorization of a map $f: A \rightarrow B$ given by (Q_4) is essentially unique and will be described by $f = f_m f_n : A \rightarrow B$, so that $f_n = Coim f_n f_m = Im f_n$. Factorize in this way φ , δ , ε , ψ' , then $\varphi_m = \text{Ker } \psi$ and $\psi'_e = \text{Coker } \varphi'$ = Coker (φ'_{m}). By uniqueness one obtains the monomorphism $\xi = (\beta_{\rho} \phi_{m})_{m}$ and the epimorphism $\eta = (\psi' \beta_{m})_{\rho}$, so that $\xi' = \operatorname{Coker} (\beta_{\varphi} \phi_{m}) = \operatorname{Coker} \xi$ and $\eta' = \operatorname{Ker} (\psi'_{\beta} \beta_{m}) = \operatorname{Ker} \eta$. To construct the sum $\sigma = \operatorname{Ker} \beta \smile \operatorname{Ker} \psi$ form $\sigma' = \xi'\beta_{\rho}$, then $\sigma = \text{Ker } \sigma'$. Dually the intersection $\tau = \text{Im } \beta \frown \text{Im } \varphi' = \beta_{m} \eta'$ (see [1], pp. 2, 3, Props. 2.2 and 2.6). Since $\varepsilon_{n\xi\delta} = \varepsilon \varphi$ = $\gamma\psi\phi$ = 0 , one has $\eta\xi$ = 0, hence there exists π and ι such that $\eta = \pi \xi'$ and $\xi = \eta'\iota$, thus also $\varepsilon = \eta \beta = \pi \xi' \beta = \pi \sigma'$ and $\delta = \beta \xi = \beta \eta' \iota = \tau \iota$. Since $\varepsilon \sigma = \pi \sigma' \sigma = 0$, σ factorizes over Ker ε (similarly τ' = Coker τ factorizes over Coker δ). Repeated application of Prop. 2) gives an object $Q = \operatorname{Ker} \varepsilon / \sigma = \sigma' \backslash \varepsilon_{e} = \xi' \backslash \eta = \eta' / \xi = \tau / \delta_{m} (= \operatorname{Coker} \delta \backslash \tau').$

Remark: In the category of groups (or rings) axiom (Q_3) b) no longer holds, and thus a distinction must be made between "normal" monomorphisms $\mu = \text{Ker}(\text{Coker }\mu)$ and non-normal ones. Still valid however is axiom

(G): If μ is a normal monomorphism and ε an epimorphism such that $\varepsilon \mu$ is defined, then also $(\varepsilon \mu)_m$ (the image of μ under ε) is normal.

The latter suffices to prove Prop. 2 for normal α and β , because then \varkappa is also normal. Thm. 3 remains valid without restriction: Its premises imply the normality of ξ , so the same proof applies.

REFERENCES

- P.J. Hilton, W. Lederman, Homology and Ringoids III, Proceedings of the Cambridge Philosophical Society Vol. 56 (1960), 1-12.
- 2. J.B. Leicht, Über die elementaren Lemmata der homologischen Algebra in quasi-exacten Kategorien, Monatshefte der Mathematik. Forthcoming.
- 3. S. MacLane, Homology, Grundlehren der Mathematischen Wissenschaften Bd. 114, Springer-Verlag (1963).
- D. Puppe, Korrespondenzen über abelschen Kategorien, Mathematische Annalen Bd. 148 (1963), Seite 1-30.

University of Toronto