AXIOMATIC PROOF OF
 J. LAMBEK'S HOMOLOGICAL THEOREM

J. B. Leicht
(received May 22, 1964)

Abstract

DEFINITION 1: A category \mathcal{L} with zero-maps is called "quasi-exact" in the sense of D. Puppe (see [4], page 8, 2.4), if it satisfies the following axioms:

$\left(Q_{1}\right)$: Every may f is a product $f=\mu \varepsilon$ of an epimorphism ε followed by a monomorphism μ.
$\left(Q_{2}\right)$: a) Every epimorphism ε has a kernel $\mathcal{K}=\operatorname{Ker} \varepsilon$.
b) Every monomorphism μ has a cokernel $\gamma=$ Coker μ, where Ker and Coker are characterized by the familiar universality properties (see [3], page 252, (1.10) and (1.11)).

$$
\begin{aligned}
\left(Q_{3}\right): \text { a) For epic } \varepsilon, \varepsilon & =\operatorname{Coker}(\operatorname{Ker} \varepsilon) . \\
& \text { b) For monic } \mu, \mu=\operatorname{Ker}(\operatorname{Coker} \mu) .
\end{aligned}
$$

These axioms alone suffice to develop essential parts of the elementary homological algebra (see [4], page 8, 2.4 and also [2]). This was shown essentially by P.J. Hilton and W. Ledermann in their theory of ringoids (see [1]), where basic theorems are proved without really using the additivity assumptions.

PROPOSITION 2: Suppose α and \mathcal{F} are cofinal monomorphisms such that $\beta=\alpha \omega$ for some (unique and monic) ω. Then for $\alpha^{\prime}=$ Coker $\alpha, \beta^{\prime}=$ Coker β there exists (a unique and epic) ω^{\prime} such that $\alpha^{\prime}=\omega^{\prime} \beta^{\prime}$ and an object Q which is simultaneously the range of Coker ω (denoted by α / β) and the domain of Ker ω^{\prime} (denoted by $f^{\prime} \backslash \alpha^{\prime}$).

Canad. Math. Bull. vol. 7, no. 4, October 1964

Proof: ω^{\prime} is given by $\alpha^{\prime} \beta=\alpha^{\prime} \alpha \omega=0$ and $\beta^{\prime}=$ Coker β. Put $\gamma=$ Coker $\omega: A \rightarrow Q$; then by $\left(\beta^{\prime} \alpha\right)_{\omega}=\beta^{\prime} \beta=0$ one obtains \mathcal{K} such that $\beta^{\prime} \alpha=K \gamma$. Moreover $\omega^{\prime} K=0$, since $\omega^{\prime} \mathcal{K} \gamma=\alpha^{\prime} \alpha=0$ and γ is epic. Suppose $(\kappa \gamma) \eta=0$ for some η; then $\beta^{\prime}(\alpha \eta)=0$, hence α_{η} factorizes over $\beta=\operatorname{Ker} \beta^{\prime}=\alpha \omega$ and thus also η over ω, α being monic. Hence $\gamma \eta=0$, which shows $\operatorname{Ker}(K \gamma)=\operatorname{Ker} \gamma$. Since γ is epic, it follows from axioms $\left(Q_{1}\right)$ and $\left(Q_{3}\right)$ a) that K is a monomorphism. Suppose $\zeta K=0$ for some ζ, then $\zeta \kappa \gamma=\left(\zeta \beta^{\prime}\right) \alpha=0$, hence $\zeta \beta^{\prime}$ factorizes over $\alpha^{\prime}=$ Coker $\alpha=\omega^{\prime} \beta^{\prime}$, and thus also ζ over $\omega^{\prime}, \beta^{\prime}$ being epic. This proves $\omega^{\prime}=$ Coker \mathcal{K}, hence $K=\operatorname{Ker} \omega^{\prime}$ by (Q_{3})b).

THEOREM 3: Suppose both rows of the commutative diagram are exact. Then there exists an object Q which represents simultaneously $Q=\operatorname{Ker} \varepsilon /(\operatorname{Ker} \beta \cup \operatorname{Ker} \psi)$ $=\left(\operatorname{Im} \beta \curvearrowleft \operatorname{Im} \varphi^{\prime}\right) / \operatorname{Im} \delta$.

Proof: The canonical factorization of a map $f: A \rightarrow B$ given by $\left(Q_{1}\right)$ is essentially unique and will be described by $f=f_{m}^{f} f: A \rightarrow B$, so that $f_{e}=\operatorname{Coim} f, f_{m}=\operatorname{Im} f$. Factorize in this way $\varphi, \delta, \varepsilon, \psi^{\prime}$, then $\varphi_{\mathrm{m}}=\operatorname{Ker} \psi$ and $\psi^{\prime}{ }_{\mathrm{e}}=\operatorname{Coker} \varphi^{\prime}$ $=$ Coker ($\varphi^{\prime}{ }_{\mathrm{m}}$). By uniqueness one obtains the monomorphism $\xi=\left(\beta_{e^{\varphi}}\right)_{m}$ and the epimorphism $\eta=\left(\psi^{\prime} e^{\beta} m^{\prime} e^{\prime} e^{\prime}\right.$, so that $\xi^{\prime}=\operatorname{Coker}\left(\beta_{e^{\varphi}}\right)=\operatorname{Coker} \xi$ and $\eta^{\prime}=\operatorname{Ker}\left(\psi_{e}^{\prime} \beta_{m}\right)=\operatorname{Ker} \eta$. To construct the sum $\sigma=\operatorname{Ker} \beta \smile \operatorname{Ker} \psi$ form $\sigma^{\prime}=\xi^{\prime} \beta_{e}$, then $\sigma=\operatorname{Ker} \sigma^{\prime}$. Dually the intersection $\tau=\operatorname{Im} \beta \frown \operatorname{Im} \varphi^{\prime}=\beta_{m} \eta^{\prime}$ (see [1], pp. 2, 3, Props. 2.2 and 2.6). Since $\varepsilon_{m}{ }^{\eta \xi \delta} e^{=\varepsilon \varphi}$ $=\gamma \psi_{\varphi}=0$, one has $\eta \xi=0$, hence there exists π and \downarrow such that $\eta=\pi \xi^{\prime}$ and $\xi=\eta^{\prime} \iota$, thus also $\varepsilon_{e}=\eta \beta_{e}=\pi \xi^{\prime} \beta_{e}=\pi \sigma^{\prime}$ and $\delta_{m}=\beta_{m} \xi=\beta_{m} \eta^{\prime} \iota=\tau \iota$. Since $\varepsilon e^{\sigma=\pi \sigma^{\prime} \sigma=0, ~} \sigma$ factorizes over Ker ε (similarly $\tau^{\prime}=$ Coker τ factorizes over Coker 8). Repeated application of Prop. 2) gives an object $Q=\operatorname{Ker} \varepsilon / \sigma=\sigma^{\prime} \backslash \varepsilon_{\mathrm{e}}=\xi^{\prime} \backslash \eta=\eta^{\prime} / \xi=\tau / \delta_{\mathrm{m}}\left(=\right.$ Coker $\left.\delta \backslash \tau^{\prime}\right)$.

Remark: In the category of groups (or rings) axiom $\left(Q_{3}\right) b$) no longer holds, and thus a distinction must be made between "normal" monomorphisms $\mu=\operatorname{Ker}(\operatorname{Coker} \mu$) and nonnormal ones. Still valid however is axiom
(G): If μ is a normal monomorphism and ε an epimorphism such that $\varepsilon \mu$ is defined, then also $(\varepsilon \mu)_{m}$ (the image of μ under ε) is normal.

The latter suffices to prove Prop. 2 for normal α and β, because then \mathcal{K} is also normal. Thm. 3 remains valid without restriction: Its premises imply the normality of ξ, so the same proof applies.

REFERENCES

1. P.J. Hilton, W. Lederman, Homology and Ringoids III, Proceedings of the Cambridge Philosophical Society Vol. 56 (1960), 1-12.
2. J.B. Leicht, Über die elementaren Lemmata der homologischen Algebra in quasi-exacten Kategorien, Monatshefte der Mathematik. Forthcoming.
3. S. MacLane, Homology, Grundlehren der Mathematischen Wissenschaften Bd. 114, Springer-Verlag (1963).
4. D. Puppe, Korrespondenzen über abelschen Kategorien, Mathematische Annalen Bd. 148 (1963), Seite 1-30.

University of Toronto

