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Jetting of collapsing bubbles is a key aspect in cavitation-driven fluid–solid interactions as
it shapes the bubble dynamics and additionally due to its direct interaction with the wall.
We study experimentally and numerically the near-wall collapse and jetting of a single
bubble seeded into the stagnation flow of a wall jet, i.e. a jet that impinges perpendicular
onto a solid wall. High-speed imaging shows rich and rather distinct bubble dynamics for
different wall jet flow velocities and bubble-to-wall stand-off distances. The simulations
use a volume-of-fluid method that allows us to numerically determine the microscopic
and transient pressures and shear stresses on the wall. It is shown that a wall jet at
moderate flow velocities of a few metres per second already shapes the bubble ellipsoidally
inducing a planar and convergent jet flow. The distinct bubble dynamics allow us to
tailor the wall interaction. In particular, the shear stresses can be increased by orders
of magnitude without increasing impact pressures the same way. Interestingly, at small
seeding stand-offs, the bubble during the final collapse stage can lift off the wall and
migrate against the flow direction of the wall jet such that the violent collapse occurs away
from the wall.
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1. Introduction

In the vicinity of a solid boundary, cavitation bubbles in stagnant liquids collapse
non-spherically. They result in jetting and shockwave emissions and expose the boundary
to significant wall shear stresses and pressures. The dynamics of the simple case of a
bubble collapsing near a rigid planar surface has been the subject of many studies in the
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last decades; see, for example, (Plesset & Chapman 1971; Lauterborn & Bolle 1975; Zhang,
Duncan & Chahine 1993; Supponen et al. 2016). Jets pierce the bubble and are typically
directed toward the rigid boundary. They can reach velocities of 50–100 m s−1 (Benjamin
& Ellis 1966; Blake & Gibson 1987; Lauterborn & Kurz 2010) for millimetre-sized bubbles
at atmospheric pressure, known as regular jetting. The most important parameter that
determines the bubble dynamics in a stagnant liquid and in the absence of gravity is the
non-dimensional stand-off distance γ = d/Rmax, where d is the initial distance of bubble
nucleation from the wall and Rmax is the radius of the bubble at its maximum expansion.
For the smallest bubble-to-wall stand-off distances, even velocities of more than one order
of magnitude larger are possible, known as needle jetting (Lechner et al. 2019; Reuter &
Ohl 2021; Bußmann et al. 2023). Most violent collapses, i.e. erosive cavitation, occur when
a bubble during its collapse focuses the self-emitted shockwaves onto itself to produce a
shockwave self-intensified collapse. This was observed for bubbles of very small stand-off
distances, i.e. γ � 0.2 by Reuter, Deiter & Ohl (2022a).

A particularly interesting case is when the bubble takes the shape of a slender spherical
cap during maximum expansion, which leads to a liquid jet that is directed away from
the boundary. This kind of jet has been predicted for mildly ellipsoidal capped bubbles
by Lauer et al. (2012) and Aganin, Kosolapova & Malakhov (2019), and was later
shown to occur for axisymmetric cap-shaped bubbles in simulations and experiments
by Saini et al. (2022). Here, a high-pressure region below the bubble forms that
accelerates a liquid jet flow away from the surface. Other configurations involving elastic
boundaries (Gibson & Blake 1982; Brujan et al. 2001) or a narrow gap (Chahine 1982;
Gonzalez-Avila et al. 2011b; Zeng, Gonzalez-Avila & Ohl 2020) result in hourglass-shaped
bubbles that pinch-off and give rise to two fast and rather thin jets in opposite
directions.

The broad range of bubble dynamics allows for a wide field of useful applications, such
as surface cleaning (Ohl et al. 2006a; Kim et al. 2009; Gonzalez-Avila et al. 2011a;
Reuter & Mettin 2016; Reuter et al. 2017; Ando et al. 2021, 2023) or drug delivery
via sonoporation (Prentice et al. 2005; Ohl et al. 2006b; Gac et al. 2007). For these
applications, large wall shear stresses are beneficial, especially if they can be generated
without exposing the wall to an excessively large pressure that may cause damage to even
the hardest materials (Tomita & Shima 1986; Philipp & Lauterborn 1998; Reuter et al.
2022a). Wall shear stresses from a single bubble collapse have been measured (Dijkink &
Ohl 2008; Reuter & Mettin 2018) and simulated (Koukouvinis et al. 2018; Zeng, An & Ohl
2022) to reach peak values of 100 kPa. Experimental data yield peak values that are one
order of magnitude smaller, which is still compatible, as sampling periods were one order
of magnitude larger than the shear spike durations.

While these observations are valid for bubbles in an initially stagnant liquid, the
presence of a flow can change the bubble dynamics and, thus, the wall shear stress and
pressure generated at the wall drastically. One interesting case is hydrodynamic cavitation
in a stagnation flow, as it was shown by Knapp (1955) that the strongest erosion for a model
in a water tunnel can be found in the area around stagnation points. So far, research on the
effect of a flow on the dynamics of a single bubble was conducted through simulations by
Blake, Taib & Doherty (1986), Robinson & Blake (1994) and Blake, Leppinen & Wang
(2015).

They utilised a boundary element method to study the influence of an ideal stagnation
point flow on the gross bubble dynamics and, in particular, on the bubble’s jetting
behaviour. They found hourglass-shaped bubbles that pinch-off, resulting in much faster
and thinner jets. Experimental research on the dynamics of bubbles in flows near a
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stagnation point is rather scarce. Starrett (1982) reported in his thesis of a striking contrast
between the bubble dynamics in a quiescent liquid and in a stagnation flow. He observed
that during expansion the bubble deforms into an ellipsoid with the major axis aligned
parallel to the wall, then the bubble forms a waist at its equator that divides the bubble
into two parts just prior to collapse. Starret studied the dynamics of rather large bubbles
created with an electric discharge in stagnation flows with free-stream velocities between
about 6–18 m s−1 and concentrated on larger distances rather than on small stand-offs,
which are more relevant for the bubble–wall interaction.

In the present work we study the dynamics of a single cavitation bubble in a wall jet in
particular at rather low flow velocities and small stand-off distances, i.e. where viscosity
plays an important role. This regime is relevant for many applications. In experiments,
we record the bubble dynamics with a suitable high-speed camera to resolve the details
of the collapse, whereas the simulations, which include the effects of compressibility and
viscosity, allow for determining the wall shear stresses and pressure acting on the wall
as a consequence of the bubble collapse. The results reveal that a bubble collapse with
beneficial high wall shear stresses can be realised while avoiding potentially damaging
behaviour.

2. Methods

2.1. Experimental methods
A single, laser-induced cavitation bubble is produced in a wall jet flow at a well-controlled
distance to a wall. The submerged wall jet (Glauert 1956) is issued from a conical
nozzle and provides a laminar water stream perpendicular to the wall that spreads radially
outwards, see figure 1, i.e. providing a stagnation point flow. The cavitation bubble is laser
seeded on the central axis of the wall jet at a variable distance from the wall.

For convenience, the water is collected in a transparent water tank and recirculated.
About 1.2 litres of water are used and pumped with a rotary vane pump (aquastream XT,
Aqua Computer GmbH, Germany) through the nozzle. The nozzle is fully submerged
in the water of the tank to ease observation of the bubble dynamics within the wall jet.
The back part of the nozzle assembly is open to air; see figure 1(a). Inside the nozzle,
the water passes through a honeycomb filter (stacked cylinders with 2 mm diameter and
30 mm length) to straighten the flow. The volumetric flow rate Q is measured with a turbine
flow meter (FCH-midi-POM, B.I.O-TECH e.K.) located between the pump and the nozzle
inlet. The average wall jet velocity is given by vjet = Q/Anozzle, where Anozzle = πr2

nozzle is
the cross-sectional area of the circular nozzle with an inner radius of rnozzle = 1.5 mm. In
our set-up, vjet can be controlled between 0 and 5 m s−1 using the software provided with
the pump.

To generate single cavitation bubbles, one pulse from a frequency-doubled Nd:YAG
laser (wavelength of 532 nm) is first collimated and guided through a hollow tube from
the back end of the nozzle assembly. Then the laser is focused, and a bubble explosively
grows as a result of the optic breakdown. Focusing is achieved using a planoconvex lens
of focal length f = 10 mm (in air) with a diameter of 6 mm (Thorlabs, LA1116). The lens
is bonded into the wall-facing end of a tube. The planar side of the lens is in contact with
water, while the curved side is in contact with air on the hollow tube side. The distance of
the lens to the nozzle exit is 11 mm. When the laser is fired, a cavitation bubble is created
at a distance of 4.4 mm from the nozzle exit. Due to the strong deformation of the bubbles,
in experiments and simulations, the volume-equivalent bubble radius was measured. The
geometry of the three-dimensionally printed nozzle (PLA plastic) went through a number
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Figure 1. (a) Sketch of the experimental set-up. The cavitation bubble is generated by focusing the laser pulse
through a lens into the wall jet. The wall jet flow is submerged to ease optical access using a high-speed camera.
The liquid flow is driven with a pump and controlled with a flow rate sensor feedback loop. A honeycomb filter
straightens the flow, resulting in a laminar wall jet flow. The distance of the bubble to the wall is adjusted by
moving the glass plate, while the nozzle assembly remains fixed. (b) Schematic illustration of the bubble in the
wall jet and the axisymmetric simulation set-up (not to scale).

of iterations to achieve a smooth water flow along the lens such that no air gets entrapped
at the lens output aperture. A linear convergent nozzle together with a honeycomb flow
rectifier accomplishes this requirement. In addition, there is no significant recirculation or
disturbance of the stagnation flow since the bubble size is much smaller than the outer
nozzle diameter (7 mm) and the solid sample. To confirm the laminar flow profile, we
have used micrometre-sized particles as flow tracers together with high-speed imaging;
see Appendix A.

The wall is provided by a square-shaped coverslip with side length 24 mm and a
thickness of 0.16 mm. It is mounted onto a plastic frame such that a central ‘window’
of 14 mm × 14 mm remains for observation through the wall. The size of the glass
sample is much larger than the nozzle diameter such that edge effects of the sample
do not influence the flow in the gap between nozzle and sample surface. The distance
between the laser plasma, i.e. bubble generation, and the glass wall is adjusted with a
translation stage. The bubble dynamics is recorded with a high-speed camera (Shimadzu
HPV-X2) imaging through the water-filled tank and the discharged wall jet flow from
the nozzle. As a light source, we used an intense, pulsed light emitting diode (LED-P40,
SMETec).

2.2. Simulation methods
Numerical simulations complement the experimental recordings. The primary aim of these
simulations is to investigate the differences in wall shear stress and pressure generated by
a collapsing bubble in a wall jet flow, as compared with in an initially stagnant body of
liquid. Experimentally, these quantities are inaccessible due to the required temporal and
spatial resolutions.
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Single cavitation bubble dynamics in a stagnation flow

The considered compressible two-phase flow is governed by the continuity equation

∂ρ

∂t
+ ∇·(ρu) = 0 (2.1)

and the momentum equation

∂ρu
∂t

+ ∇·(ρu ⊗ u) = −∇p + ∇·
[
μ(∇u + ∇uT) − 2

3
μ(∇·u)I

]
, (2.2)

where t represents time, ρ is the mass density of the fluid, μ is the dynamic viscosity
of the fluid, u is the velocity of the flow, p is the pressure and I is the identity tensor.
An algebraic volume-of-fluid method (Denner, Xiao & van Wachem 2018) is adopted
to model the gas–liquid interface and distinguish the gas and the liquid. The governing
conservation laws are closed using the Noble–Abel stiffened gas (NASG) equation of
state (Le Métayer & Saurel 2016) in polytropic form, with the density and speed of sound
defined as

ρ = K( p + Π)1/κ

1 + bK( p + Π)1/κ
, (2.3)

c =
√

κ
p + Π

ρ(1 − bρ)
, (2.4)

respectively, where κ is the polytropic exponent, Π is a pressure constant and
K = ρ0/[( p0 + Π)1/κ(1 − bρ0)] defines a constant reference state based on a reference
pressure p0 and density ρ0.

We are choosing the polytropic form of the NASG equation of state because we are not
focusing on the details of the decay of the emitted pressure pulses that may (or may not)
form shock fronts as they propagate away from the bubble, and since the Péclet number
associated with the liquid jet that pierces the bubble during collapse is high, Re > 103, we
do not consider heat transfer to be an important factor for our simulations. Using such
a polytropic fluid model has been demonstrated to be suitable even for the prediction
of complex bubble behaviour, such as wall-bounded cavitation (Koch et al. 2016; Zeng
et al. 2018). Following previous work we are neglecting surface tension and justify this
simplification by (i) the relatively large bubble size with a volume-equivalent diameter
>1 mm at maximum expansion, and (ii) the high Weber number, We > 103, of the liquid
jet that pierces the bubble during collapse.

The liquid is assumed to be water, with κl = 1.186, Πl = 7.028 × 108 Pa, bl = 6.61 ×
10−4 m3 kg−1, ρ0,l = 957.74 kg m−3, c0,l = 1540.2 m s−1 and p0,l = 105 Pa, as previously
proposed by Le Métayer & Saurel (2016), and μl = 10−3 Pa s. The bubble content is taken
to be non-condensable air, modelled as an ideal gas (Πg = 0, bg = 0), with κg = 1.4,
ρ0,g = 1.2 kg m−3, p0,g = 105 Pa and μg = 1.82 × 10−5 Pa s. The governing equations are
discretised using a second-order finite-volume method and solved using a fully coupled
implicit pressure-based algorithm (Denner et al. 2018; Denner, Evrard & van Wachem
2020a).

The computational set-up is illustrated schematically in figure 1(b). The axisymmetric
simulations are carried out in a 0.25 m × 0.25 m computational domain, which is
sufficiently large such that the boundary conditions do not influence the bubble dynamics
or the flow field in the vicinity of the bubble in the considered time frame. The bubble
is initialised at a distance d from the wall with initial gas pressure pg,0 = 54.5 MPa and
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Figure 2. Schematic illustration of the computational domain with the three primary mesh regions (sketched
on a logarithmic scale), with a close up of the computational mesh near the wall on the left and the complete
computational mesh on the right.

initial radius R0 = 84 μm, tuned to achieve a desired maximum radius Rmax. Based on
the experimental set-up, the wall jet flow is represented by a uniform flow with velocity
magnitude vjet and radius rjet = 1500 μm.

The mesh resolution required to resolve the considered cases adequately is primarily
governed by the diameter of the liquid jet penetrating the bubble, � 10 μm, and the
velocity gradient normal to the wall, O(107)–O(109) s−1, associated with the generated
wall shear stresses. The computational mesh is static (i.e. does not adapt) and separated
into three primary regions, as illustrated in figure 2: the boundary layer close to the rigid
wall, the core region with the bubble and stagnation flow, and the periphery that mainly
exists to avoid pressure waves reaching the domain boundaries. Note that, due to the large
range of length scales, the computational domain is sketched on a logarithmic scale in
figure 2. In line with previous studies on wall-bounded bubble collapse (Zeng et al. 2018;
Lechner et al. 2020; Gonzalez-Avila, Denner & Ohl 2021; Mifsud et al. 2021), the core
region of the domain (r ≤ 1000 and z ≤ 2000 μm) is resolved with a mesh spacing of
Δx0 = 1 μm and the mesh near the wall (z < 5 μm) is gradually refined, such that the
centres of the layer of cells closest to the wall are located at a distance of only 12.5 nm from
the wall. In the periphery region of the domain (r > 1000 and z > 2000 μm), the mesh
is gradually coarsened. Similar to our previous work (Gonzalez-Avila et al. 2021), the
adaptively chosen time step is Δt = Co Δx/|u|, where Co = 0.7 is the applied convective
Courant number.

The employed numerical methods and case set-up were validated successfully against
experiments of laser-induced bubble expansion and collapse near walls in our previous
work, regarding the bubble evolution and shape as well as the acoustic emissions of the
bubble collapse (Gonzalez-Avila et al. 2021), and regarding the minimum thickness of
the thin liquid film remaining between bubble and wall (Reuter & Kaiser 2019; Denner,
Evrard & van Wachem 2020b). Furthermore, the numerical methods have been compared
favourably to experimental measurements and numerical predictions of shock-driven
bubble collapse (Denner et al. 2018) and to the Gilmore model for a Rayleigh collapse
(Denner & Schenke 2023). The specific resolution requirements of the simulated bubble
dynamics are discussed alongside the simulation results in § 3 and representative results
obtained with different mesh resolutions are reviewed in § 4.
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Single cavitation bubble dynamics in a stagnation flow

2.3. Scaling with bubble size
Here, we consider bubbles with maximum radii ranging between Rmax = 480 and 716 μm.
To ease the discussion, we show that for a bubble in the considered wall jet, the same
scaling as for a Rayleigh bubble holds.

The potential energy of a laser-induced cavitation bubble with negligible vapour
pressure (pvap � p∞) is customarily approximated as (Liang et al. 2022)

Epot = 4
3πR3

maxp∞ ∝ R3
maxp∞. (2.5)

We estimate the kinetic energy imparted on the bubble by the wall jet as the product of the
dynamic pressure of the wall jet and a suitably defined reference volume,

Ejet = ρ0,l

2
v2

jetVref . (2.6)

We further assume that the wall jet acts on the upper hemisphere of the bubble, with a
projected area of A = πR2

max. Since the distance over which the bubble is advected by
the wall jet during the bubble lifetime is negligible (Rmax � vjetTC), Rmax is the reference
length scale of the problem. Thus, the reference volume is then defined as

Vref = ARmax, (2.7)

such that Ejet ∝ ρ0,lv
2
jetR

3
max. For simplicity, we do not take surface tension and viscosity

into account, since a collapsing cavitation bubble is an inertia-driven process; see, for
example, Reuter, Zeng & Ohl (2022b). Taking the ratio of Ejet and Epot yields

Ejet

Epot
∝

ρ0,lv
2
jet

p∞
. (2.8)

Consequently, neglecting surface tension and viscous dissipation, the influence of the wall
jet can be assumed to be independent of the bubble size. Therefore, the presented results
are, in first approximation, independent of the bubble size.

This allows us to normalize the times on the bubble lifetime TL, i.e. the time between
bubble nucleation and first collapse (minimum volume) as TL ∝ Rmax, to facilitate the
comparison of similarly sized bubbles.

3. Results

The results are organised by reporting the effect of the flow velocity of the wall jet, vjet,
on the bubble dynamics for three different stand-off distances γ . (1) The first stand-off is
far from the wall at a large distance of γ ≈ 1.7. Here, the bubble shows a pinch-off, as
shown in previous studies for cavitation bubbles in a stagnation flow (Starrett 1982; Blake
et al. 1986; Robinson & Blake 1994; Blake et al. 2015). (2) The second stand-off is at an
intermediate distance of γ ≈ 0.7, which shows a needle-like high-speed jet, as observed in
stagnant liquid for smaller stand-off distances, γ � 0.2 (Lechner et al. 2019; Reuter & Ohl
2021; Bußmann et al. 2023). (3) Last, a cavitation bubble representing the small stand-off
distance dynamics (γ ≈ 0.4) is presented. Here, the bubble pinches off directly above
the wall, resulting in a lift-off of the bubble before it collapses. This is probably the most
interesting case regarding the bubble–wall interaction, since a potentially harmful collapse
in direct contact with the wall can be avoided. For each stand-off distance, high-speed
imaging and numerical results of the bubble dynamics are shown and analysed, and the
spatio-temporal wall shear stress and wall pressure distributions are discussed. Note that
the given values may be considered as lower bounds of these quantities, which is discussed
in more detail in § 4.
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Figure 3. High-speed imaging of bubble dynamics for four different wall jet velocities vjet at large stand-off
distances (γ = 1.73, 1.78, 1.56, 1.88, from left to right). For sufficiently large wall jet velocities, the bubble
pinches off and two axial jets develop in opposite directions. Times indicated in each tile are normalized to the
bubble lifetime. The respective lifetimes are TL = 135, 124, 127, 118 μs. The bottom of each frame coincides
with the wall, as sketched in the first tile. The rightmost column shows the bubble splitting and collapse for the
last case in more detail. A video of the dynamics at vjet = 5 m s−1 can be found in the supplementary material
as movie 1 available at https://doi.org/10.1017/jfm.2023.1048.

3.1. Large stand-off distance
Figure 3 depicts the typical bubble dynamics for large stand-off distances. In the selected
series, γ is between 1.56 and 1.88 and the glass wall is located at the bottom of each frame.
Each column shows five snapshots from one experiment, showing the bubble at maximum
expansion, the bubble just before and just after the collapse (from top to bottom), as well
as the instance when the bubble makes contact with the wall and the second collapse. Each
column in figure 3 shows one experiment with a specific wall jet velocity vjet. Four wall
jet velocities are shown, increasing from left to right.
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Single cavitation bubble dynamics in a stagnation flow

The first column without jet flow (vjet = 0 m s−1) depicts the well-known jetting
behaviour of a bubble nucleated at a large stand-off distance (here γ = 1.73) from the
wall, as previously reported, for instance, by Philipp & Lauterborn (1998). At maximum
expansion, t = 0.467 TL, the bubble is rather spherical but with some small bubbles at
the wall-near pole. Here, the usage of a small lens with a rather small opening angle
to focus the laser results in some aberration and multiple breakdowns. During collapse,
the presence of the wall impedes the radial inflow from below, and a pressure gradient
forms, with a higher pressure at the top. As a result, the bubble’s centroid moves towards
the wall (Benjamin & Ellis 1966) and the bubble develops a jet that passes through the
bubble interior toward the wall. The specific illumination applied in the experiments
does not reveal this jet flow, but it is visible by the small axial indentation of the upper
pole just before the collapse. At time t = 1.193 TL the main bubble reaches the wall
while re-expanding. Later, it collapses a second time, now in proximity to the wall at
t = 1.741 TL.

The simulated dynamics of the corresponding bubble is shown in figure 4(a–c). Here the
jet formation is clear and jet velocities reach up to 100 m s−1, which is in close agreement
with previous studies (Zeng et al. 2018; Gonzalez-Avila et al. 2021). Stresses on the wall
are given in figure 5(a). The peak wall pressure is reached at t = 1.003 TL and associated
with the bubble collapse, rather than the jet impact pressure at t = 1.101 TL, in agreement
with our previous work (Gonzalez-Avila et al. 2021). However, as the jet impacts the wall,
it generates significant wall shear stresses, with a maximum of 94 kPa.

Let us now look at how the wall jet flow modifies the bubble dynamics, considering
the case of the largest wall jet flow velocity vjet = 5 m s−1 first. In comparison to the
stagnant case, the bubble takes an ellipsoidal shape with the major axis aligned parallel to
the wall, i.e. it is flattened at the bottom, see the first row. A video of the corresponding
bubble is available as movie 1 of the supplementary material. As the bubble collapses,
instead of an indentation in the axial direction from the regular axial jet flow, a planar
convergent jet indents the bubble from the sides and results in the horizontal kink in the
second row. As this flow converges towards the axis of symmetry, two oppositely directed
jets are ejected axially, see third row. More insights into this process are gained from the
flow and pressure fields of figure 4(d–f ) and the snapshot series at smaller time intervals
showing the jet formation and piercing process in figure 4(g–i) as well as the rightmost
column of figure 3. The convergent planar flow results in an axial needle-like jet with a
radius of the order of 6 μm, indicated by an arrow in figure 4(h). The jet directed toward
the wall reaches a maximum velocity of ≈300 m s−1, a threefold increase compared with
the liquid jet generated in the corresponding case with no wall jet flow (vjet = 0 m s−1).
Upon impact on the wall, the jet generates a maximum wall shear stress of 306 kPa, see
figure 5(b), which is roughly three times higher than in the stationary case. Due to the
formation of a stagnation point around the region where the axis of symmetry intersects
the wall, the shear stresses are smaller there Reuter & Mettin (2018). Also, some negative
shear rates are seen from splashing and recirculations of the complex flow after the jet
impacts on the wall. The maximum pressures at the wall reach about pmax = 9.3 MPa (a
fourfold increase compared with vjet = 0 m s−1) and coincide with the jet impact. They
are not generated from the shockwaves emitted during the collapse. The impact velocity
of the jet can be approximated as u = 135 m s−1 as the maximum pressure on the wall
corresponds to the stagnation pressure of the jet, pmax = 0.5ρ0,lu2 (Gonzalez-Avila et al.
2021).

The pressure distribution in figure 4(e) reveals a larger pressure at the wall distal side
around the bubble, which explains why, after pinch-off, the upper bubble collapses before
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Figure 4. Bubble shape, pressure (left half) and velocity field (right half) at different time instances during
the collapse of the bubble initially located at d = 1200 μm (γ = 1.53 and 1.75, respectively). The arrows in
the right half of each figure indicate the direction of the flow. (a–c) In quiescent water (vjet = 0 m s−1). The
lifetime of this bubble is TL = 164.4 μs. (d–i) Subject to a wall jet with vjet = 5 m s−1. The lifetime of this
bubble is TL = 143.4 μs. The scale bar corresponds to 250 μm.

the lower bubble. For increasing wall jet velocity, the bubble becomes more ellipsoidal;
see figure 3 first row. Furthermore, while at vjet = 5 m s−1 the pinch-off occurs about the
equatorial, which results in the bubble splitting into two about equally sized volumes, for
lower wall jet velocities the pinch-off occurs closer to the upper bubble pole, which, in
turn, results in an uneven splitting of the bubble. A smaller bubble is produced above
and a larger bubble below the pinch-off region, as observed by comparing the second and
fourth row in figure 3.

3.2. Intermediate stand-off distance
Figure 6 shows the evolution of the bubble dynamics for increasing wall jet flow velocities
at intermediate stand-off distances of γ ≈ 0.75. For each velocity the bubble is shown in
four phases: (1) the moment of maximum expansion, (2) in the collapse phase when being
increasingly deformed by the inflow, (3) the shape before, and (4) after the bubble collapse.
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Figure 5. Space–time plots of the wall shear stress τw and the wall pressure pw, and profile of the radial
velocity u of the liquid at the location of the highest wall shear rate, of the bubble initially located at
d = 1200 μm. In the space–time plots, the black line shows the volume-equivalent bubble radius R(t) and,
with respect to τw, red (blue) areas indicate a radially outward (inward) going flow. The location of maximum
wall shear stress is indicated with a bold cross in the space–time plots. In the plots of the velocity profiles,
the red line represents the velocity gradient associated with τw,max, and the black dots show the locations
of the cell centres of the applied computational mesh. Results are shown for (a) vjet = 0 m s−1, γ = 1.53;
(b) vjet = 5 m s−1, γ = 1.75.

Again, in the first column, a collapsing bubble in quiescent liquid is shown.
At t = 0.484 TL, the bubble has reached approximately its maximum expansion. At t =
0.916 TL the bubble is pierced by a rather wide jet, which is easily visible in the simulation
result shown in figure 7(b). The velocity of this jet is ≈65 m s−1 and results in a toroidal
collapse of the bubble in figure 6 at t = 1.000 TL. Upon impact at t ≈ 0.938 TL on the wall,
the jet generates a wall shear stress of up to 62 kPa; see figure 8(a). The torus collapse close
to the wall generates even larger shear stresses of up to 157 kPa at r ≈ 450 μm, further
away from the location of the jet impact. Again, recirculations result in negative shear
stresses. The shockwaves emitted at the collapse result in the vertically extended green
region at t = 1.000 TL in figure 8(a).

When adding a wall jet flow of vjet = 5 m s−1 (fourth column), similarly to the large
γ case, the bubble assumes an ellipsoidal shape. The maximum extension in the axial
direction is already reached at t = 0.398 TL and the bubble is visibly pushed downward by
the wall jet. As a result, the wall-near bottom of the bubble still extends along the wall,
while the more distal parts already collapse (see movie 2 of the supplementary material).
Again, a planar inflow shapes a kink into the bubble, which can be observed clearly in
the simulations in figure 7(d–f ). This bubble shape is very similar to a bubble in the
stagnant liquid case without a wall jet flow but at a much smaller stand-off when forming a
needle-like high-speed jet (Lechner et al. 2019; Reuter & Ohl 2021; Bußmann et al. 2023).
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Figure 6. Bubble dynamics with increasing wall jet velocity at intermediate stand-offs
(γ = 0.74, 0.72, 0.78, 0.78, from left to right). The wall extends along the bottom of the frames. For
the fastest wall jet flow, a high-speed needle-like jet occurs. Times indicated in each tile are normalized to the
bubble lifetime. The respective lifetimes are TL = 155, 140, 136, 128 μs (from left to right). The collapse for
the case vjet = max is studied in further detail in the rightmost column. The corresponding video of the bubble
at vjet = 5 m s−1 can be found in the supplementary material as movie 2.

Figure 7(d–i) confirms the formation of a thin needle-like jet, with peak velocities of
300–400 m s−1. This needle jet yields a maximum wall shear stress of 2764 kPa as shown
in figure 8(b) at t ≈ 0.97 TL, which is 44 times higher compared with the conventional
jetting case (vjet = 0 m s−1). Despite this very large wall shear stress, the associated
velocity gradients are resolved adequately by the employed computational mesh, as evident
by the velocity profile that coincides with the maximum wall shear stress on the right-hand
side of figure 8(b). The maximum wall pressure of 49 MPa (a sixfold increase compared
with the stationary case) is generated by the impact of this needle jet, see figure 8(b), from
which the impact velocity of the needle jet on the wall can be estimated as ≈310 m s−1.
In contrast to the large γ case, now only an insignificant flow in the upward direction is
generated.

From the evolution of the bubble shape with decreasing wall jet flow velocities in
figure 6, it can be seen how the bubble becomes less ellipsoidal and the kink less
pronounced. At vjet = 3.1 and vjet = 5.0 m s−1 in the last row, a string-like gas phase is
visible along the axis of symmetry but not for vjet = 1.6 and vjet = 1.6 m s−1. Note that
this string-like gas phase is an indicator that the planar jet has converged onto the axis
of symmetry, as, for instance, visible along the axis of symmetry in figure 4(i). As the
simulations suggest, this is a result of the pinch-off process, i.e. only in the two higher
wall jet velocity cases does the planar jet converge on the axis of symmetry, while for the
cases vjet ≤ 1.6 m s−1 the regular jet passes the axis already before the planar jet can reach
the axis of symmetry.
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Figure 7. Bubble shape, pressure and velocity field at different time instances during the collapse of the bubble
initially located at d = 490 μm (γ = 0.63 and 0.73, respectively). (a–c) In quiescent water (vjet = 0 m s−1).
The lifetime of this bubble is TL = 179.3 μs. (d–i) Subject to a wall jet with vjet = 5 m s−1. The lifetime of this
bubble is TL = 152.0 μs. The scale bar corresponds to 250 μm.

3.3. Small stand-off distance
The bubble dynamics for the smallest stand-offs presented here (γ ≈ 0.45) are depicted in
figure 9 for increasing wall jet velocities. The first row shows the maximum expansion, the
second row the shape during shrinkage, the third and fourth rows depict the bubble just
before and after the collapse, respectively, and the last row shows the bubble at the second
collapse.

The quiescent case (vjet = 0 m s−1) is similar to the quiescent intermediate γ case
shown in figure 6. The simulation results are shown in figure 10(a–c). They reveal a jet
velocity of ≈45 m s−1 and a maximum wall shear stress of 54 kPa in the space–time plots
in figure 11(a) at t = 0.964 TL, due to the jet impact before the bubble reaches its minimum
volume. The maximum pressure peak of 11 MPa, however, is caused by the collapse of the
bubble.

When introducing a wall jet flow with vjet = 5 m s−1, in the fourth column of figure 9,
the bubble during its expansion already moves significantly towards the wall and then
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Figure 8. Space–time plots of the wall shear stress τw and the wall pressure pw, and profile of the radial
velocity u of the liquid at the location of the highest wall shear rate, of the bubble initially located at
d = 490 μm. In the space–time plots, the black line shows the volume-equivalent bubble radius R(t) and, with
respect to τw, red (blue) areas indicate a radially outward (inward) going flow. In the plots of the velocity
profiles, the red line represents the velocity gradient associated with τw,max, and the black dots show the
locations of the cell centres of the applied computational mesh. Results are shown for (a) vjet = 0 m s−1,
γ = 0.63; (b) vjet = 5 m s−1, γ = 0.73.

shows a quite different dynamics. A video of the corresponding bubble is available as
movie 3 of the supplementary material. The bubble extends to a rather flat shape along
the wall and a kink is formed during the collapse stage; see t = 0.835 TL and figure 10(e).
This kink again is related to the planar and converging jet flow that now develops directly
at the wall. This planar jet now converges in very close distance to the wall and proceeds
here even below the bubble, such that it gives the bubble a mushroom-like shape; see
t = 0.992 TL in figure 9 and the magnification in figure 10(h). Upon convergence of the
planar jet, the bubble is lifted off the wall and an axial jet is formed, similar as before
in the case of a larger stand-off, but this time in the reverse direction, i.e. away from the
wall with velocities of ≈160 m s−1; see figure 10(i). As a result, the final collapse occurs
about 120 μm away from the wall; see t = 1.000 TL. Subsequently, the gas phase, now in
the several bubbles arranged along a ring, translates further upward such that the second
collapse occurs at a distance of 500 μm from the wall (t = 1.409 TL).

However, even if it is not possible to see directly in the presented graphs, the space–time
plot in figure 11(b) indicates that also a downwards-directed jet hits the wall shortly after
the bubble reaches its minimum volume, visible through the wall shear stress peak at
t = 1.01 TL. Upon impact, the jet generates a wall shear stress of 1893 kPa, which is 35
times larger compared with the stationary case. At the same time, the maximum wall
pressure reaches 86 MPa, which is about 8 times larger compared with cavitation bubbles
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Figure 9. Bubble dynamics at small stand-off (γ = 0.49, 0.46, 0.44, 0.46, from left to right). For the fastest
wall jet, an upwards-directed jet flow evolves. The normalized time is indicated in each frame, the respective
lifetimes are TL = 151, 138, 140, 127 μs. The rightmost column shows the collapse for vmax in detail. The wall
is located at the bottom of each frame. A video of the bubble at vjet = 5 m s−1 is provided in the supplementary
material as movie 3.

in a quiescent liquid and which corresponds to the stagnation pressure of a jet with a
velocity of ≈410 m s−1.

Comparing the bubble shapes of the two middle columns just prior and after the
collapse in figure 9, suggests that in the case of vjet = 1.6 m s−1 the regular jet that forms
axially pierces the bubble already before the planar boundary-parallel inflow can converge;
see t = 0.992 TL. After impact on the wall, the regular jet collides with and inhibits
further planar inflow towards the axis of symmetry. In contrast, for vjet = 3.1 m s−1, the
wall-parallel flow is sufficiently fast to meet on the axis of symmetry before the regular
jet pierces the bubble, such that the wall-parallel flow can still lift the bubble off upon
convergence. However, the collapse seems to occur closer to the wall than in the case with
vjet = 5.0 m s−1.

3.4. Parameter overview
While in the last section, the effect of the wall jet flow on the bubble shape dynamics
is studied, in figure 12 we compare the stand-off dependence of the bubble shape for
the maximum wall jet velocity of vjet = 5 m s−1. For large stand-offs (γ = 1.88), kink
and pinch-off occur rather symmetric, i.e. close to the bubble equator. As the bubble is
generated closer to the wall, i.e. for decreasing γ , the bubble extends further along the wall.
There, the bubble dynamics is slowed down and the wall distal part above the pinch-off
region collapses faster, resulting in a small cap being shaped; see, for example, γ = 0.89.
Only at the smallest stand-off (γ = 0.46) shown does the planar jet evolve sufficiently fast
and sufficiently close to the wall to result in a bubble lift-off.
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Figure 10. Bubble shape, pressure and velocity field at different time instances during the collapse of
the bubble initially located at d = 290 μm (γ = 0.37 and 0.43, respectively). (a–c) In quiescent water
(vjet = 0 m s−1). The lifetime of this bubble is TL = 181.6 μs. (d–i) Subject to a wall jet with vjet = 5 m s−1.
The lifetime of this bubble is TL = 155.3 μs. The scale bar corresponds to 250 μm.

In figure 13 the jetting behaviour as a function of stand-off and wall jet velocity
is presented. In this parameter map we divide the jetting behaviour into four regimes.
First, the regular jet, i.e. the rather broad/thick/wide jet that is directed axially towards
the wall, being a few hundred micrometres in diameter and reaching typical velocities of
50–150 m s−1 (green). Second, the splitting regime, in which the rather symmetric bubble
splits upon the convergence of the planar jet (red) with the generation of two oppositely
directed jets. Third, the needle-jet regime, i.e. the convergence of the planar jet that results
in a much faster jet axially directed toward the wall (blue). And fourth, the detachment
regime, where the planar convergent jet runs at the wall pushing between the bubble
and wall, converging before the regular jet pierces the bubble, resulting in bubble lift-off
(magenta).

Figure 13 shows how certain regimes extend to larger stand-off values with increasing
wall jet velocity. For example, the needle-jet regime, in a quiescent liquid only occurring
for γ � 0.2, extends to larger stand-offs of about γ ≈ 0.8 for vjet = 5 m s−1. Similarly,
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Figure 11. Space–time plots of the wall shear stress τw and the wall pressure pw, and profile of the radial
velocity u of the liquid at the location of the highest wall shear rate, of the bubble initially located at
d = 290 μm. In the space–time plots, the black line shows the volume-equivalent bubble radius R(t) and, with
respect to τw, red (blue) areas indicate a radially outward (inward) going flow. In the plots of the velocity
profiles, the red line represents the velocity gradient associated with τw,max, and the black dots show the
locations of the cell centres of the applied computational mesh. Results are shown for (a) vjet = 0 m s−1,
γ = 0.37; (b) vjet = 5 m s−1, γ = 0.43.

γ = 1.88 γ = 1.53 γ = 1.28 γ = 0.89 γ = 0.78 γ = 0.60 γ = 0.46

Figure 12. Bubble shape in the last instance before the collapse for different stand-off distances γ (indicated
above each frame) with the constant wall jet velocity of vjet = 5 m s−1. The wall coincides with the bottom in
all frames. The scale differs in the frames.

the detachment regime is reported in quiescent conditions for γ ≈ 0.2, but not γ = 0.1
(Abedini, Hanke & Reuter 2023), and occurs here up to γ ≈ 0.6.

Under some conditions both the regular jet and a needle jet or splitting is observed;
see, for example, the vjet = 1.6 m s−1 row, indicated by the stacked symbols. The
corresponding dynamics is shown in Appendix B in more detail.

4. Summary and discussion

Under the assumption of two-dimensional axisymmetry, the maximum wall shear stress
and wall pressure recorded in the conducted simulations may be considered as lower
bounds of these quantities, since full mesh convergence of these quantities could not
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Figure 13. Parameter overview. Splitting regime (red dots), needle-jet regime (blue squares), detachment
regime (magenta diamonds) and regular jetting regime (green triangles) are shown. The arrows on the example
pictures indicate the main jetting direction during the collapse. With needle-jet data for vjet = 0 m s−1 from
Reuter & Ohl (2021).

be achieved with the available computing resources. Taking the case of the bubble
initially located at d = 290 μm and subject to wall jet with a velocity of vjet = 5 m s−1

as an example, the space–time plots of the wall shear stress and wall pressure obtained
on meshes with Δx0 ∈ {1, 2} μm, shown in figure 14, exhibit very little qualitative
differences. The corresponding maximum values for the wall shear stress and wall pressure
obtained on meshes with Δx0 ∈ {1, 2, 4} μm are shown in figure 15. A converging trend
towards higher peak values can be observed as the mesh is refined. Furthermore, the
time at which the peak values occur exhibits a negligible difference between the results
obtained on meshes with Δx0 = 1 and Δx0 = 2 μm. This is consistent with previous
studies regarding the cavitation-generated wall pressure (Mihatsch, Schmidt & Adams
2015; Trummler, Schmidt & Adams 2021), which demonstrated that the maximum wall
pressure is strongly mesh dependent, with increasing peak values for decreasing mesh
spacing. Note that the centres of the mesh cells closest to the wall are located at
a distance of only 12.5 nm (Δx0 = 1 μm) and 25 nm (Δx0 = 2 μm), highlighting the
extreme resolution requirements of these simulations. However, the maximum jet velocity
generated in experimental settings is limited by the symmetry of the needle-jet generation
(Gordillo & Blanco-Rodríguez 2023) and the jet stability (Reuter et al. 2022a). Both
effects cannot be covered in axisymmetric simulations.

In cavitation-solid interactions, jetting is a key aspect as it shapes the bubble dynamics
and is directly interacting with the wall. The pressure gradient of a stagnation point flow
alters the jetting behaviour and the bubble dynamics significantly. The bubble translates
with the flow towards the wall while the pressure gradient caused by the stagnation flow
tends to push the bubble away from the wall (Blake et al. 2015). As a consequence of
the opposing pressure gradients, the bubble takes an oblate shape that is decisive for the
further bubble dynamics. During collapse, the oblate bubble develops a planar converging
jet. This planar jet shapes the initially oblate bubble to an hourglass shape and can
even result in bubble pinch-off. These dynamics were studied by Starrett (1982) and in
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Figure 14. Space–time plots of the wall shear stress τw and the wall pressure pw of the bubble initially located
at d = 290 μm and subject to wall jet with a velocity of vjet = 5 m s−1, obtained on computational meshes
with a mesh spacing of Δx0 = 1 μm and Δx0 = 2 μm. In the space–time plots, the black line shows the
volume-equivalent bubble radius R(t) and, with respect to τw, red (blue) areas indicate a radially outward
(inward) going flow.
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Figure 15. Maximum wall shear stress τ̂w and maximum wall pressure p̂w, normalized by the respective values
on the finest mesh (Δx0 = 1 μm), of the bubble initially located at d = 290 μm and subject to wall jet with
a velocity of vjet = 5 m s−1, as a function of time obtained on computational meshes with a mesh spacing of
Δx0 ∈ {1, 2, 4} μm.

numerical studies by Blake and co-workers (Blake et al. 1986; Robinson & Blake 1994;
Blake et al. 2015) for rather large bubble-to-wall stand-offs and is a general feature of the
collapse of an oblate-spheroidally shaped bubble even without stagnation flow (Chapman
& Plesset 1972; Voinov & Voinov 1975; Shima & Sato 1979).

When the planar jet converges onto the slender gas volume on the axis of symmetry,
a high-pressure stagnation point occurs, the gas phase collapses and a thin needle jet
is ejected along the axis of symmetry (Gordillo & Blanco-Rodríguez 2023). This type
of jetting has also been shown to occur in stagnant liquid, but only for the smallest
bubble-to-wall stand-offs of about γ � 0.2 (Lechner et al. 2019; Reuter & Ohl 2021;
Bußmann et al. 2023). This regime is extended to larger stand-offs with the stagnation
flow.

The needle jet at larger stand-offs stimulated by the stagnation flow allows achieving
about 40 times higher wall shear at only around 5 times larger wall pressures. The
simulations show that at the wall the jet impact pressures in the stagnation flow case are
larger than the bubble collapse pressures, which stands in contrast to the bubble dynamics
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in stagnant flow, where only regular jetting occurs, and the collapse pressures are larger
than jet impact pressures.

Recently, it has been shown that only the bubble collapse directly at the wall is erosive,
which occurs for γ � 0.2 for a stagnant liquid (Reuter et al. 2022a). It is fascinating to
observe that the bubble in the small γ regime does not collapse at the wall, but lifts off and
collapses ≈120 μm away in the bulk, and indeed, we did not find indications of material
damage on our glass samples here. Consistently, the maximum wall shear stresses, and
wall pressures found here over the entire range of stand-off distances stay mainly below
the yield strength and tensile strength of most metals or metal alloys, such as silver with
55 MPa and 110–340 MPa, respectively, (Smith & Fickett 1995) and stainless steel 316 L
with 440 and 1020 MPa, respectively (Franc 2009).

The adjustment of the wall jet flow velocity and the stand-off distance allows us to
control the behaviour of the bubble precisely and, thus, achieve a tailored interaction with
the wall. Due to the rich bubble dynamics, a wide range of applications is possible. One
example is a cavitation bubble at a small stand-off distance to the wall in a wall jet flow
with sufficient velocity. Here, high wall shear stress can be achieved when the jet hits the
wall, which can be used for precision cleaning. At the same time, the bubble detaches from
the wall and, thus, is not in contact with the wall during the collapse. We anticipate that
this could avoid material damage.

5. Conclusion

We studied the dynamics of a single cavitation bubble close to a wall in the stagnation
flow of a wall jet. Using high-speed imaging together with numerical simulations, which
provide quantitative insight into the produced wall shear stresses and wall pressures, we
found that a wall jet flow of already rather small velocities, i.e. of less than 10 m s, can
shape the bubble and significantly change its dynamics. As a result, wall shear stresses
and pressures exerted onto the nearby wall are altered drastically. For example, the wall
shear stresses, which are crucial in surface cleaning, can be increased by a factor of 44
as compared with the stagnant case and reach values above 2700 kPa here. At the same
time, the wall pressures, which are considered a prime cause for cavitation erosion, are
increased by only a factor of six as compared with the stagnant case and reach values of
49 MPa, i.e. stay below typical material damage thresholds.

As cavitation bubbles in a stagnant liquid have been shown to be erosive only when they
collapse directly at the wall, it is an important finding that a cavitation bubble in the wall
jet, somewhat counterintuitively, can lift off the wall just before its collapse and migrate
against the wall jet flow direction such that its collapse occurs without wall contact.

The mechanisms of how the wall jet alters the bubble dynamics can be understood via
the oblate, ellipsoidal shaping of the bubble by the wall jet. This stimulates the formation
of wall-parallel and convergent planar jets. They are also the origin of needle-jet formation
and, consequently, the needle-jet regime, in stagnant liquid only found for bubbles at
very small stand-offs, extends further into larger stand-off ranges with increasing wall
jet velocities.

As the wall jet is technologically rather easy to implement, our results suggest it can
be exploited to tailor bubble–wall interactions in terms of stresses on the wall and their
distribution, with potential applications, for example, in material peening and hardening,
surface cleaning and erosion prevention.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.1048.
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500 µm

Figure 16. Side view showing the pathlines obtained from microscopic particles seeded into the wall jet flow
and recorded with a high-speed camera. The top lines indicate the nozzle exit and the bottom line the position
of the wall, vjet = 5 m s−1.
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Appendix A. Flow field

To observe the flow profile of the wall jet, we add particles with about 20 μm in diameter to
the liquid and record their motion with a high-speed camera. Eighty images recorded with
a frame rate of 200 000 are summed up to obtain pathlines of the nozzle flow, as shown in
figure 16 for a flow velocity of vjet = 5 m s−1. At the top, the flow leaves the nozzle exit
and it impinges onto the wall at the bottom of figure 16. Then the flow spreads radially
outwards, yet it remains mostly laminar without much of a recirculation or disturbance.

Appendix B. Transition regimes

An example of a bubble that shows pinch-off from the planar jet flow and that gets also
pierced by the regular jet is presented in figure 17 for a bubble at γ = 0.96. Between
t = 0.919 and 0.939, the planar flow meets at the axis of symmetry and results in the
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Figure 17. Bubble shape at γ = 0.96 and vjet = 1.6 m s−1 with both the regular jet and planar jet resulting in
pinch-off. The normalized time is indicated in each frame, the bubble lifetime is TL = 149 μs. A movie of this
series is provided as movie 4 in the supplementary material.

collapsed string-like gas phase along the axis of symmetry. However, probably due to the
limited momentum associated with the planar flow, at later times the regular jet pierces
the bubble and results in the torus collapse geometry known from quiescent liquid.
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