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1. Introduction. In the theory of the asymptotic solution or stability of 
ordinary differential equations most attention has been given to linear or 
nearly-linear cases. Investigations in this field, starting primarily with those of 
Kneser (7) on the equation y" + f(x)y = 0, have by now mostly been summed 
up in results on the vector-matrix system dy/dx = Ay + f (y, x), where y and 
f denote ^-vectors of functions, and A an n-by-n matrix, frequently assumed 
constant. In the strictly linear case (4; 8; 9), where f (y, x) — B(x)y, it is 
shown that with restrictions on B(x) as x —» oo all the solutions behave for 
large x as solutions of dy/dx = Ay. In the nearly-linear case however (6; 10; 
12), where we have restrictions on the magnitude of ||f (y, x) | | / | |y | | in some 
bounded y-region, we may expect more than one type of solution; those for 
which ||y(0)|| is sufficiently small may be expected to behave asymptotically 
as solutions of dy/dx = Ay, while l'larger" solutions may perhaps exhibit an 
entirely different behaviour. 

In this paper I compare, in a special case, the single differential equations 

1.1 y" + ^ - i = 0, 

1.2 y" + y2n-x + h(x,y) = 0, 

where the perturbing function h(x, y) is in some sense small, and n is a positive 
integer. The cases in which h{x, y) is, as a function of y, of the same or higher 
degree than y2n~l are analogous to the above-mentioned linear and nearly-
linear cases, respectively, and we may expect that all, or possibly only the 
"smaller," solutions of 1.2 will behave asymptotically as solutions of 1.1. In 
the non-linear case, n > 1, the possibility naturally presents itself that h(x, y) 
might be of lower degree than y2n~1

1 and here the situation may be expected 
to be just the opposite of that in the nearly-linear case, in that the ''larger" 
solutions of 1.2 should behave as solutions of the unperturbed equation, while 
there may be (though there need not be) "smaller" solutions behaving differ
ently. 

My aim here is to make the latter considerations rigorous for the equation 

1.3 y" + y2n~1 + g(x)y = 0 

where n > 2 and g(x) is suitably smooth and is small for large x. Roughly 
speaking, the situation may be summarised by saying that 1.3 has under fairly 
general conditions solutions behaving as solutions of 1.1 in respect of magni-
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tude and oscillatory behaviour. It may in addition have non-oscillatory solu
tions which are 0(1) for large x, particularly it seems if g(x) is negative and 
small, but not too small, for large x. I conclude by establishing some conditions 
under which solutions of 1.3 can be actually approximated to in terms of solu
tions of 1.1; this presents slightly greater difficulties than in the linear case, 
since in the non-linear case the amplitude of the oscillations affects their 
frequency. 

The equation 1.3 has an additional interest in that it may be regarded as a 
canonical form by transformation of y" + f(x)y2n~1 = 0. Equations of both 
forms have interest in astrophysics, and special cases have been studied by 
Fowler (5); oscillation criteria for the latter form have recently been given by 
me (3). 

2. Classification of solutions. This, like most of the subsequent working, is 
based on an adaptation of the polar-coordinate method. I define the amplitude-
variable r of a solution y of 1.3, not identically zero, by 

2.1 r2n = y2n + n(y')\ r > 0, 

so that for 1.1 r would be constant. The phase-variable 0 will be defined later. 
I show, in §3, that r(x) tends under fairly wide conditions to a constant value 

as x —•> 00. Solutions for which r(oo) exists and is positive I term of type I, 
those for which r(x) —» 0 of type II ; these are respectively the oscillatory and 
the 0(1) solutions referred to in §1. 

While the type I solutions are all of the same character, the type II solutions, 
if they exist at all, need not form a homogeneous set. A possible subdivision 
would be according to the relative magnitude of the three terms on the left 
of 1.3, into type 11(a) for which the first and third terms predominate, type 
11(b) for which the second and third terms predominate, and type 11(c) for 
which all three terms are of the same order of magnitude. In this paper however 
I consider only type II solutions as a whole, irrespective of any subclassifica
tion. 

These classifications may be illustrated in the case of 

2.2 y" + yz - ay/x2 = 0, 

where a is a real constant. For any a there is a two-parameter family of type I 
solutions, while type II solutions exist only for a > 2. If a > 2 we have pre
cisely two solutions of type 11(c), given by 

y = ± \ / a — 2 x_1, 

and in addition a one-parameter family of solutions of type II (a) of the asymp
totic form y ~ cxb, where c is any non-zero constant and 

b = i - VTTâ. 
There are no solutions of a lower order of magnitude. 
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3. Restriction of solutions to types I and II. Before establishing properties 
of type I and type II solutions I give conditions under which the classification 
is exhaustive. 

THEOREM 1. Let g{x) be expressible as the sum of gi(x) and g2(x)y where gi(x) 
is continuous for x > 0 and g2{x) continuously differentiable for x > 0, and 

J'oo /»oo 

| « l | < * * < « > , \g2'\dx<co, g 2 ( o o ) = 0 . 
0 «/ 0 

Then 1.3 has solutions of type I and II at most. Those of type I will certainly 
exist, and will include all solutions with an initial lower bound of the form 
\y(fy\ + | y (0)| > const. > 0. In particular, all solutions are bounded. 

It should be remarked that in the linear case the same conditions ensure the 
validity of certain asymptotic integration formulae (1; 9; 11). 

I prove first that r is bounded, which will prove the last statement of the 
theorem, and will also preclude the eventuality of a solution becoming infinité 
for a finite x-value. If r were not bounded for some solution, we could for any 
sufficiently large A > 0 find Xi, x2 > 0 with 

3.2 r(x{) = A, r{x2) = 2A, A < r(x) < 2A for Xi < x < x2. 

Now from 1.3 we have 

3.3 (r2n + ng2y
2Y = -2nyyfg1 + né y2 

= 0(An+1\g1\+A2\g>2\), 

in (xi, x2) and hence, taking A so large that A2n~2 > 2n max |g2|, we have 

(d/dx) log (rin + ng2y
2) = 0{A1~n\g1\ + A^\g',\), 

in (xi, x2). We integrate this over (xi, x2), getting 

[log (r2n + ng2y
2)fx\ = O(A1^ f''\gl\ dx + A2~in £\g',\ dx) . 

We now make A increase without limit, and therewith Xi, x2 if necessary. Since 
g2 —> 0, the left-hand side tends to 2n log 2. The right, however, tends to zero 
as A —> oo, by 3.1. This contradiction shows the boundedness of r, and y, y' 
also. 

To deduce that r tends to a finite limit, we remark that it now follows from 
3.1 that the right of 3.3 is absolutely integrable over (0, °°). This shows that 
(r2n + ng2 y

2) tends to a limit a s x - ^ œ , and hence r also, since g2 —* 0. 
The solutions are therefore of types I and II at most. 

To complete the proof of the theorem, it will be sufficient to show that if 
r (0) is sufficiently large, then r ( oo ) ^ 0. Suppose then that r ( oo ) = 0, and write 
r(0) = B; we show that this gives a contradiction if B is sufficiently large. We 
must be able to find x3, x4 such that 

r(x3) = B, r(xi) = \B, \B < r(x) < B for x3 < x < x4. 
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If further we take B so large that (%B)2n~2 > 2n max |g2|, we have, by the above 
reasoning, 

[log (rin + ngrfm = 0 (B1^ £\gl\ dx + B1^ £\g',\ dx) . 

If now we make B increase without limit, the left-hand side will tend to 
— (2wlog2), and the right-hand side to zero, which constitutes the required 
contradiction. 

In the rest of this paper I consider cases of 1.3 in which g(x) is either mono-
tonic and tending to zero, or else absolutely integrable over (0, °°). In both of 
these cases Theorem I shows that the solutions are at most of types I and II, 
and possibly of type I only. 

4. Restriction of solutions to type I. I now give some simple sufficient 
conditions for the solutions to be of type I only. I prove first 

THEOREM 2. Let g(x) be positive and continuously differentiable for x > 0, 
and tend monotonically to zero as x •—» oo. Then all solutions of 1.3 are of type I. 

Supposing if possible that for a certain solution of 1.3 we have r —•» 0, we use 
the result that, by 1.3, 
4.1 (r2n g-1 + ny2Y = -g'r2n g~\ 

which shows here that the function (r2n g~l + ny2) is non-decreasing. Since 
this function is positive for y ^ 0, it follows that there is a positive constant C 
such that (r2n g~l + ny2) > C for all x > 0. Since y —> 0 we have, for all 
sufficiently large x, r2n g_1 > JC, so that 

4.2 r-1 = 0{g~llm). 

Also from 1.3, or from 4.1, we have 

(d/dx) log (r2n + ngy2) = ngy2{r2n + ngy2)~l 

= 0(g'y2r~2n) 
= 0(grr2-2n) 

= 0{g'rw/n) 

using the fact that g > 0 and also 2.1, 4.2. Here the right-hand side is absolutely 
integrable over (0, <»), since g tends monotonically to zero. This proves that 
the function log (r2n + ngy2) tends to a finite limit as x —> » , thus contradict
ing the hypothesis that r —* 0. 

The result just proved suggests that type II solutions may be expected 
when g is negative and small at <». That g must not be too small is shown by 

THEOREM 3. Let g(x) be continuous for x > 0 and such that 

4.3 J x\g(x)\dx <oo. 

Then 1.3 has type I solutions only. 
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We re-write 1.3 in the form 

4.4 y" + gi(x)y = 0, 

where gi = g + y2n~2. We show first that if y is a type II solution of 1.3, and 
4.3 holds, then 

4.5 I x|gi(x)| dx < oo. 
Jo 

In view of 4.3 it will be sufficient to prove that 

4.6 Vxy^dx < oo, 
Jo 

or again 

4.7 J xr2n~2dx < oo. 

Now by 1.3 we have (r2n)' = —2ngyyf, and so, using 2.1, 

4.8 r'rn~2 = 0(g). 

Integrating 4.8 over (x, oo) we have, assuming that r(oo) = 0, 

4.9 rn_1 = o( (œ\g\dx) , 

a result which will later be improved to 7.1. We have then 

xr*"-2 = 0 { x ( £\g\ dx)} = 0 ( J j g | <**) , 

using 4.3, so that 4.7 will be true if we have 

dx \g(t)\dt < oo. 
Jo J x 

This however is easily seen to follow from 4.3. We have therefore proved that a 
type II solution of 1.3 is also a solution of 4.4, where g\ satisfies 4.5. 

However 4.4 has, subject to 4.5, no solutions which are 0(1) as x —> oo, 
having in fact, as is well known, two fundamental solutions of the asymptotic 
forms yi —» 1, y2 ~ x, as x —» oo. The existence of such a yi may be shown, for 
example, by transforming 4.4 to an integral equation and using successive 
approximation ; we may then take y2 — y\ Jx yi~2 dx. This completes the proof 
of Theorem 3. 

That the criterion 4.3 is fairly precise is shown by the example 
y» + yn- i _ ayx-b = o, 

for which it shows that there are no type II solutions for b > 2; in the case 
b = 2 they exist, as noted in §2, for n = 2 and a > 2. 

5. The non-oscillation of type II solutions. Having considered the existence 
and magnitude (see 4.9) of type II solutions, I now give a simple sufficient 
criterion for their non-oscillatory character. 
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THEOREM 4. Let g{x) be negative and continuously differentiable for x > 0, 
and let it tend monotonically to zero as x—> oo. Then type II solutions of 1.3, if 
any, have no zeros. 

The result {r2n + ngy2)' = ng'y2 here shows that the function (r2n + ngy2) 
is non-decreasing. At a zero of y this function would be positive, assuming 
y j£ 0, and so could only tend to a positive limit. On the other hand for a type 
II solution we should have to have (r2n + ngy2) —-> 0. This proves the theorem. 

We can also deduce that for a type II solution we must have r2n + ngy2 < 0, 
showing that type II solutions satisfy in this case the bound r2n~2 < n\g\. 
While this result gives the correct order of magnitude of type II solutions in 
some cases, for 2.2 for example, a later result gives a precise numerical 
coefficient. 

6. The phase-variable. In order to obtain sharper results, including 
asymptotic formulae for type I solutions, I introduce the phase-variable. I 
define by \f/(6) the solution of 

6.1 dhp/dO2 + n^2n~l = 0, 

with the initial conditions 

lK0) = 1, dxP(d)/dd\e=o = 0. 

In the case n — 1 this reduces to the cosine function, for n = 2 to the lemniscate 
function. In the general case it is a periodic function of period 4i£, where 

6.2 K = f (1 - yp2nTh df. 
Jo 

Using the abbreviation \pe for d\f/(d)/dd we have also 

6.3 fa2 + Vn = 1. 

I now form the first-order differential equation satisfied by 6, the phase-
variable defined for a solution y of 1.3 by 

6.4 y = r rp(d), y' = rn tr* \pe(d), r > 0, 

in agreement with 2.1. This definition leaves 6 uncertain to the extent of an 
arbitrary multiple of 4i£, which need only be chosen so that 0 is a continuous 
function of x. 

We have first 

6.5 = nrityee ^~n - n^*2 ^-n~l) 6f 

= -n+^-^O', 

using 6.1 and 6.3. Also 

https://doi.org/10.4153/CJM-1954-061-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1954-061-8


ON LINEAR PERTURBATION 567 

(y'y~nY = y"y~n — nyny~n~l 

6.6 = -yn~l - g / -» - nyf2y-n~l 

— __ r «- l ^ n - l __ g r i - n ^1-n __ r n - i ^ 2 ^ , -n- l 

using 1.3 and 6.3. Combining 6.5, 6.6 we have 

6.7 0' = r*-1 »-* + grl~n V, 

the required differential equation. 
As regards the amplitude-variable r we have 

(r2n)f = (y2n + nyn)' = -2ngyy' 

= -2n^ grn+1 We, 

and so 
6.8 r' = -rr*r2-n gW9. 

7. A bound for type II solutions. As a final result for type II solutions 
I give the precise form of the bound 4.9 for their magnitude. 

THEOREM 5. Let g(x) be continuous and absolutely integrable over (0, °°). 
Then type II solutions of 1.3, if they exist, satisfy the bound 

7.1 r"-1 < (» - l)(w + l ) " ^ 1 ^ J \ | dx. 

That the constant factor on the right of 7.1 cannot in general be reduced is 
shown by the example 

y" + yz - 3yx~2 = 0, n = 2, y = *f \ r = 3 V 1 , 

for which the equality sign in 7.1 holds. 
From 6.3 it may be deduced that 

\We\ <n*(n+ l)-(n+»'W 

and so, by 6.8, 

(n - l)rn-2\r'\ < (n - 1)(» + l)-(»+D/(2»)|g|. 

Integrating over (x, 0°) and putting r(oo) = 0 , for a type II solution, we have 

rn~l < J^in - 1) rn~y\ dx < (» - 1)(» + l ) - ^ + 1 ) ^ J ° ° | g | J x , 

the result stated. 

8. The oscillations of type I solutions. I now pass to the investigation 
of type I solutions of 1.3, which are comparable to the non-trivial solutions of 
1.1, at least in the respect that they have, by definition, an asymptotically 
constant amplitude. It remains to compare the two sets of solutions in respect 
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of oscillatory properties. In this section I find a rough estimate for the density 
of the zeros of a type I solution of 1.3, in analogy to known results for the 
linear case. 

THEOREM 6. Let g(x) be continuous and tend to zero as x —> °°. Then a type I 
solution of 1.3, if such exist, must be oscillatory as x —> co ; if N(x) denotes the 
number of its zeros in (0, x), then 

8.1 N(x) ~ An~l xn-*(2K)-\ 

where K is given by 6.2, and A — r ( oo ) for the solution in question. 

Before proceeding to the proof I remark that the condition g(x) —> 0 by 
itself may well be insufficient to ensure the existence of type I solutions; this 
certainly applies in the linear case, where the equation y" + y + g(x)y — 0 
with g{x) —» 0 can have solutions of asymptotically large and small ampli
tudes, without any of asymptotically finite positive amplitude. Examples of 
this phenomenon are given by 

y" + y(l + x~a cos 2x) = 0 (0"< a < 1), 
and by 

y" + 3>(1 + x~a cos x) = 0 (0 < a < | ) . 

To prove 8.1 we integrate 6.7 over (0, x), getting 

8.2 6(x) - 0(0) = f rn~l n~h dx + f grx~n ty 
Jo Jo 

8.3 = h + h. 
Since r —» A > 0 we have 

8.4 h — A71'1 x »-*, I2 = o ( { \g\ dx) = o(x). 

Furthermore, since zeros of ^, and so of y} occur when 6 is an odd multiple of 
K, we have 
8.5 N(x) = 6(x)/(2K) + 0 ( 1 ) , 

using also the fact that 6(x) is an increasing function of x in the neighbourhood 
of a zero of yp. The results 8.3-8.5 yield the proof of 8.1 and so prove the 
theorem. 

For similar arguments in the linear case and references to other work on the 
linear case I refer to my paper (2). 

9. Asymptotic solutions. Finally I prove an approximation formula for 
type I solutions of 1.3 in terms of solutions of 1.1. To simplify the argument I 
have imposed more severe restrictions than are actually necessary for the 
result. Some essential improvement in the argument would be required how
ever to make the result of similar generality to that of Ascoli (1 ; see also 9 and 
11) for the linear case. 

dx 
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THEOREM 7. Let g(x) be continuously twice differentiable for x > 0 and tend 
with g' (x) monotonically to zero as x —> °o. Let also J0 g2 dx < °o. 77£ew to each 
type I solution of 1.3 //zertf correspond two constants A, B, with A > 0, sz/£& ^a / 
as x —» » , 

9.1 y = A^A^xn^ + cnA
1'n Tgdx + BJ + o(l), 

where cn is a constant dependent only on n, and \p(6) is as defined in §6. A corre
sponding formula for y' may be obtained by formal differentiation. 

The result shows that the influence of the linear perturbation term becomes 
vanishingly small for solutions of large amplitude. 

In 9.1 the constant A denotes r(oo)} and in view of 6.4 it is only necessary 
to prove that 

9.2 d(x) = An-lxn~h + cnA
1~n (*gdx + B + o(l), 

Jo 

as x —» co. By 8.2-3 it will be sufficient to prove that 

9.3 h = ÂT^xrr* + Bi + 0(1), 

9.4 h = CnA1-" j*gdx + B2 + 0(1), 

where Bu B2 are constants for the solution in question. 
In order to approximate to 6 it is first necessary to approximate to r; this 

difficulty does not arise in the linear case (n = 1), since the right of 8.2 is then 
independent of r. For a first approximation we use the result (r2n-\-ngy2)' = ng'y2. 
Integrating over (x, <»), we have 

A»> _ r^ _ ngy* = o ( £ V | dx) = 0(g), 

since g is monotonie. Since \y\ < r we deduce that 

9.5 r = A + 0(g). 

Using now 9.5 to obtain the second approximation we have 

9.6 (r2n + ngy2Y = ng'r2^2 = ng'Aty2 + O(gg'). 

Integrating 9.6 over (x, » ) we get 
/»oo 

9.7 A2n - r2n - ngy2 = nA2 J g'x/,2 dx + 0(g2), 

using the fact that g is monotonie. 
I now write ^2(6) = cn + #(0), where 

cn = (4X)-1 *\e) de, 
Jo 

and 

https://doi.org/10.4153/CJM-1954-061-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1954-061-8


570 F. V. ATKINSON 

$(0) = f d>(d) dS, 

so that $>(0) is a periodic and so bounded function of d. We have then 

ngy* = ngA^ + 0(g2) = w^2c r e + »gi4'0 + 0(g2), 

and also 

J«CD S*CO 

g'yp2 dx = - cng + g'<t>dx. 
x *J x 

Using these in 9.7 we obtain 
9.8 A2n - r2n - ngA2<j> = nA2 f °V* dx + 0(g2). 

To estimate the integral on the right of 9.8 we use the fact that 

1 = 6' Al-nn~-* + 0(g), 

which follows from 6.7 and 9.5. From this we deduce that 

f V <t>dx= f °V 4> d'dx.A *-" n~h + 0 ( f °° \gg' \ dx ) 

= O(g') + 0(g2). 

From 9.8 we therefore have 

A2n - r2n - »g42tf> = O(g') + 0(g2), 

and so, finally, we have the required second approximation 

9.9 r = A - k</> A*-™ + 0(gf) + 0(g2). 

Wefpass to proving 9.3, 9.4 and so completing the proof of Theorem 7. 
As regards 9.3 we have 

h = f V"1 »"* dx 
•/o 

= ("(il-1 - i(n - 1) ^i1"") d* + f W ) rfx + f W ) <**• 
«/o «/ o «/ o 

Here the last two integrals are by hypothesis absolutely convergent taken over 
(0, oo ). The term involving g<j> is treated in the same way as the term involving 
g'<j> in 9.8. We have 

s»x nx nx 

g<t> dx = Al~n n~h gcf>d'dx+ 0(g2) dx 
*/ o Jo Jo 
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and here both the integrals and the integrated term are asymptotic to constants 
a s x - > oo. 

As regards 9.4 we have, using 9.5, 

I% = f gr
l-n tf dx = Al~n f g*2 dx+ ( 0(g2) dx 

*)o t/o Jo 

= A1'" cn fg dx + A1'" Vg<t> dx + f'o(g%) dx. 

Here the last integral on the right tends to a constant by hypothesis, while 
the second integral on the right has just been shown to do so. This justifies 
9.4, and so completes the proof of Theorem 7. 
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