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§ 1. Introduction. In the previous paper [6], we have considered flows

on the measure space (β, J%y P), which was the projective limit of a certain

subspace (Qn, JBn, Pn) of the measure space (Sn, ^(Sn)f Pn), where Sn is the

(w- 1)-sphere with radius \IΊt and Pn is the uniform probability distribution

over Sn. In particular, we have discussed how to construct a canonical flow

{Tt) by a consistent system of flows {TΓ*}*-^..., where each {T{

t

n)} is derived

from a one-parameter subgroup of rotations of the sphere 5». In Cβ, Theorem

2.2 and Proposition 2.2], we have proved that every canonical flow {Tt) is

characterized by the sequence A - {λu Λ2, . . .} which is obtained by eigenvalues

of finite dimensional rotations T(

t

n) by which the flow {77} is formed. Also,

in [6], we have pointed out that the sequence A, called the spectral set of {Tt}y

is a part of the spectrum of the flow {Tt}. The purpose of this paper is to

determine not only the spectral type but also the ergodic property of canonical

flows.

In Section 2, it will turn out that any canonical flow has a discrete spectrum

which forms a subgroup of the additive group of real numbers which is

generated by its spectral set. In Sections 3 and 4, we shall consider the

decomposition of a canonical flow into its ergodic parts. Although the ergodic

parts of the basic spaces, in general, are determined depending on the flows

under consideration, we can, in our case, find the universal decomposition C of

the basic space Ω such that

(i) C is the invariant partion for any canonical flow {Tt},

(ii) if {Tt} has linearly independent spectral set, then ζ gives the decomposition

of {Tt} into its ergodic components every one of which is isomorphic to the flow on
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the infinite dimensional torus.

In [8], G.—C. Rota has presented several questions in ergodic theory.

For the canonical flows, above partion C enables us to give a partial answer

to his problem (2) which asks the structure of the invariant <;-subalgebras of

a given flow [cf. Theorem 3],

§ 2. Spectrum of canonical (lows. Before discussing our problems on flows,

we shall summarize some results obtained in [6] as preliminaries. In order

to avoid complicated discriptions, we will consider only the flow {Tt) which is

formed by the consistent system of flows {Γilw)}n-i.2...,. The other type of

canonical flows can be treated in a simlar way.

Let (SΛ, J ^ ( 5 « ) , P«)+) be the probability space defined in Section 1. Let

x(n) = (χ[n\ . . . , Xn

n)) be a point of Sn and let Ωn denote an open subset of

Sn defined by

Sin— \X > X €= o/ι> X\ "Γ Xi ^ U / .

Then, we have a subspace (J2n, «^«, Pn) of the measure space Sn where

^n- ^{Sn) ΠJ2W. For any m<nt we shall define a point transformation fm,n

from Ωn onto Ωm as follows

(0 Λ r γ\
\Δ. l; Λ^> — Vχ(n)2 -L. . . . _i_ v ί W ) 2 l 1 / 2 * *

Then, the system [((?«, ^ n , P*)'* fm.nl and its subsystem C(i22«, J"2«, P2«);

determine the projective limit spaces (J2, JBt P) and (Ω9J&9 P) respectively.

Let (S», _^») be the direct product measurable spaces of {Sn,

5 . = ΠS2« (weak product), Ji»

Then, by putting P»(A) = P(i i Π 5) for A e J , , we have an extension

(S , ^ » , Poo) of ( S , ^ , P) .

Let {Tί2n)} be a canonical flow on S2« such that

(2.2)
I cos /ĵ ί - sm Aki i

sin Λ̂ ^ cos λkt

Λn(t) J

*> We denote by JgliX) the topological Borel field of the topological space X.
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where λk*Q are all reals. Since {τ(

t

2n) n>l) is consistent, we can form a

measurable flow {Tt) on S*> with the spectral set Λ~ {λk &>1} as follows

(2. 3) Ttx= {T{tn)x{2n) Λ > 1 ) , * = (#(2'\ # U ) , . . . ) e S » (cf. [6, Section 2]).

Now, we shall consider the spectral type of the above flow. Denote by

{Ut) the unitary group which is determined by the flow {Tt) : Utf(x) -fKTtx).

We define random variables ψ(

k

2n) and ψkn) by

(2.4) { {2n) _ {tm

where # = (*(I\ * ί 4 ) , . . .) ε S . and * ( 2 n ) = (^i2?Z), . . . , C ) e S 2 r t . Then, in

view of (2.2), (2.3) and (2. 4), it is easy to show that every ψkn} (2n>k),

and vk= \imφ%n} (k>:l) (Gaussiam random variable with E ( ^ ) = 0 and

Eiffel2 = 2, [3]) are eigenfunctions of {Ut} all of which belong to the same

eigenvalue λk. This proves that λk has infinite multiplicity, since {ψk n);2n>k, n>l)

is linearly independent

Let G(A) be the additive subgroup of R1 which is generated by Λ = Ui, Λ2, . . .}

and let HχUeG(Λ)) denote the eigenspace which belongs to λ. As is well

known, any function in L\Szn) can be developed into a series of homogeneous

polynomials of x'kn)is (1<&<2 n), so that, by considering L2(S >«) as a subspace

of ZΛSJ, it is not hard to show that

U L\Sin) c Σ ΘH λ (direct sum)
a λ

since J7< is multiplicative. On the other hand, J% = U/2"«(^ff)*iίί) implies that

\J U(Szn) is dense in Z,2(S«>), therefore we have

(2.5) L 2 ( S J = Σ θ H λ (direct sum).

Thus we have the following theorem.

THEOREM 1. If{Tt)isa canonical flow on S*> with the spectral set A = {λk \ k> 1}

then its spectrum forms a subgroup of Rx which is generated by Λ.

§3. Decomposition of the basic space Ω. Let Qn and Qn be the subsets

of (tf —1) -sphere defined by

**) fin is the projection from Ω to Ω
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respectively. We shall define a mapping qn from S2 n onto Qn as follows

where

(3.

n, and

We denote by CM the partion of S2« which is obtained from the mapping

q,f i.e. C = {<£ V } ) c{n)^Qn). If c ( M ) eζ)ί , then every point * ( 2 w ) e β ϊ ' ί c ^ )

can be expressed uniquely in the following form

f i ί A - c Γ c o β f Γ
V I ^ V ^ c Γ s i n ^ Γ

Thus we may write x{2n) = (c(M), ^ ( W ) ), where ψ{n) = (fίn), . . . , $Γ}) is a

point of ^-dimensional torus TM = [0, 2 7r)M. Let Pζu be the factor measure

over the factor space 52«/Crt. Then, by definition, Pζn can be considered as

a measure on the space Qn which is expressed in the following form

(3. 3) dPζn(c{n)) =2n~1Γ(w)| Π c o s ^ s i n 2 * " ^ * \dΰi* -d&n-u

where ??fe's are the polar coordinates of the point V n > e Qn, that is,

n - 1

^n) = y/2 n cos <?*-, Πsin Λ, 2<k<n - 1,

/r, 0<

On the other hand, we shall consider a measure on J@(Ύn) defined by

(3. 4) dMn(ψ{n)) =

Then, the measure dP2n(x{2n)) can be decomposed in the following way:
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(3. 5) dP2n(x{2n)) = P(dψ(n) c(n))dPζn(c{n)), x{2n) = (c{n\ ψ{n)), cm^Qΐt,

where-the family of measures LP(dψ{n) c{n)), dPζn(c<n))l in (3. 5) is the canonical

system of measures corresponding to the partition ζn [7]. It is easy to show

that the measure P{dψ{n) c{n)) is independent of the parameter c{n)

(3. 6) P(dφ{n) c{n)) = dμn(φ{n)) for almost all c{m(PζH).

Let xl2n)=(c(n\ ψ{t1)) and x{2m) = (c{m\ ψ{m)) be points in &„ and Ώ2m

respectively. If x{Zm) =/ 2 m,2 Λ U ( 2 " ) ) , then, in view of (2. 1), (3. l) and (3.2),

the relations

(o π\ rί.m) - ^J?*_
Lt'i "T -r Cm Δ

and

(3.8) ? Γ = f Γ ,

hold. This means that, via the projection / 2 W ( 2 n from Ωin to J22m, we have

two projections such as

(3.7)' fm.n : Qn-^Qm

and

(3.8)' πmtn - Ύn-»Ύm

defined by (3. 7) and (3.8) respectively. Moreover, on account of (3. 3) and

(3. 4), it is not hard to show that the systems of measure spaces with indicated

projection mappings

UQί, JB(QΪ), Pζn) 7m.nl

and

C(Tn, J^(T n), μn) πm,nl

determine projective limit spaces

(3.9) (Q\ Jg*(Qf), P+)

and

(3. 10) (T, JB(Ί), μ)

respectively.

Next, we shall introduce a partition C of the space S based on the sequence
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of the partitions {C*}. Let # = (x{zn) Λ > 1 ) and y=(/2n) n>ϊ) be points

in 5oo. Then we say that they are equivalent if x(2n) and yi2n) belong to the

same equivalence class with respect to the partition ζn for every n. Thus

we have the partition C of S» and it is clear that an equivalence class D

containning a point M e S J is of the form

where p2n is the projection from S . to S2n and D(2n) e ζ» with pzn(x) &D%n)

qή\c{m). Hereafter, we shall write the set D in (3.11) as

(3.12) D(c) = (D(c<l))t D{c{2)), . . .), c - ( c ( n )

or simply

Here note that, if c{tt) is a point such that CiΛ>>0, then D(c(n)) is contained in

Ωzn, so that the set ZXc) in (3. 12) is contained in Ω.

Now, let Pζ be the factor measure of P* with respect to the partition C.

We wish to obtain the decomposition of P* similar to (3.5). To get the

measures which play the same role as P(dφ{n) c{n)) in (3. 5), we proceed as

follows.

Define a mapping hn from D(c{ft)) = # " V n ) ) to Tn by

(3. 13) hn(x{2n}) = ψ{n\ xl2m = (c{n\ ψ[n)) and c{n) e Qϊ.

Then hn is a homeomorphism between the compact sets D{c{n)) and Ύn.

Furthermore, it is an isomorphic mapping from the measure space (D{cinί),

P(dφ{n) c{n))) to (T", dμn). Summing up the above arguments we obtain the

following diagram;

(3.13) hm\\hm' fiJJhn1 hl]h-1 m<n,

# # . ^ np«» ^ m** ^ ITΠ

in which τr« is the projection from T to T n and h Z)(c) ~̂ T is the homeomorphic

mapping which is defined by an obvious method.

On account of the mapping h, we can define a probability measure on the

measurable space (D{c), JS(D(ώ) similar to P{dψ{n) c{nv) by
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(3. 14) P(dψ I c) =dμ{ψ)

where ψ*= {ψ{n) ; w > l ) ε T , c = (cin) : « > l ) e Q+. Since, by definition, Pζ(Q+) = 1,

so that the measure P(d^ : c) is defined for almost all c (considered as a point

of SJ.Q (mod P<0. Now, denote the point * = U ( 2\ xU], . . .) by x = (c, ψ) if

c = ( c ( Λ J » > i ) and <?=(fίM) * > D with Λ:(2n) = ( c ' ^ y 1 1 - ) . Then

(3. 15) dP(x) = Pidψ c)dPζ(c), x= (c, φ) e Q + x T

is the desired decomposition of the measure P , that is, the family of measures

ίP{dψ c)y dP (c)l is the canonical system of measures corresponding to the

partition C of 5». Thus we have the following theorem.

THEOREM 2. Both the spaces (Ω,JB> P) and (5», JB»> P w ) are isomorphic

(mod 0) to the space (Q+ xT, -J8(Q+ xT), Pζ x /i) by the mapping x^> (c, φ) with

the relation (3. 15).

§4. Decomposition of canonical fiowa. Let {Tt} be the canonical now

defined by (2. 3). Then, observing the decompositions ζ» and C of Sn and S*

respectively, we can prove the following

(a) // c{n)<Ξ Qί, then D(c'n)) =q~\c{n)) is invariant under the flow {T?n)h

and the restriction {Tt{c(n))} of the flow {T?n)} to D(c{n)) is isomorpkic to a flow

{S\n)} determined by

{A. I) S{tnYn)= iψ^ + λxt, . . . , φT + λnt), Γ e f .

This flow {S(

t

n)} turns out to be hn*Tt(c{n)) fc\

(b) For every t, {S{

t

n) n>\) is consistent with {πm,n}> that is,

(4 .2) S{Γi*πm.n = πm.n STi σnΎ\

so that they determine a flow {St} on T .[63.

(c) If c - (c{n) n>l) e Q*f then D(c) {see (3, 12)) is invariant under the

flow {Tt} and its restriction {Tt(c)} to Die) is isomorohic to the flow {St} in such

a way as St-h TΛc) h~x.

In order to state the theorem, we prepare two lemmas.

LEMMA 1. Let {Tt} be a measurable flow on a probability space {X, cϋΓ, m)

and let J?\ be any field which generates *$Γ. Then {Tt} is ergodic if and only

if any {Tt}-invariant A in JFQ is trivial, i.e. m(Λ) = 0 or 1.
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LEMMA 2. The flow {Sjn)} given by (4. l) is ergodic if and only if {λu . . . >λn)

is linearly independent (ί4l).

Now, let (T00, ̂ ( T 0 0 ) , μ*>) be the infinite direct product measure space of

one dimensional tori T1 = [0, 2 π) with uniform distribution dμι(ψ) = 0— dψ.
ύ 7Γ

Then we have the following theorem.

THEOREM 3. Let {Tt) be the canonical flow on 5» with spectral set A = {λk) &> 1}.

Then,

(i) C fe the {Tt)'invariant partion of S* and the flow {Tt(c)} (c<=Q+) on

the space (D(c), ,3&{D(c), P{dψ c)) is isomorphic to the flow {St} on the space

( T 0 0 ,

(4.3) St ' <f=(ψn

(ii) {Tί(c)} is ergodic if A = {Ai, A2, . . .} is linearly independent.

Proof. 1°. Let ψ= (ψ{n) n>l) be a point of T. Then (3.8) implies that

so that we can define a mapping H from T to T" by

(4.4) Hφ = φ

where 5 = (φn » > i ) and ίPΛ = ̂ l,n). By definitions of St, St and #, it is abvious

that H is the isomorphism between the measure spaces T and T00 and

(4.5) St = H*SrH~ι

holds. Therefore, (c) implies (i).

2°. To prove (ii), it is enough to show that the flow {St} is ergodic. Let

A be an {^-invariant subset which is in c#Ό= U π^(JB(Ίm))t for example,

AzΞτ:7A^(Ύn)). Then, by definition of St, we"have StA = S(

t

n)A for all /,

that is, A is {S(

t

n)}-invariant. Therefore, lemma 2 implies that A is trivial, so

that lemma 1 shows that .{St} is ergodic since Jf\ generates ^ ( T ) . Thus the

theorem is proved.
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