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Abstract

Let w be a group-word. For a group G, let Gw denote the set of all w-values in G and let w(G) denote the
verbal subgroup of G corresponding to w. The group G is an FC(w)-group if the set of conjugates xGw is
finite for all x ∈G. It is known that if w is a concise word, then G is an FC(w)-group if and only if w(G) is
FC-embedded in G, that is, the conjugacy class xw(G) is finite for all x ∈ G. There are examples showing
that this is no longer true if w is not concise. In the present paper, for an arbitrary word w, we show that
if G is an FC(w)-group, then the commutator subgroup w(G)′ is FC-embedded in G. We also establish
the analogous result for BFC(w)-groups, that is, groups in which the sets xGw are boundedly finite.
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1. Introduction

Let G be a group. For subsets X,Y of G, we denote by XY the set {xy | x ∈ X, y ∈ Y}. The
group G is called an FC-group if xG is finite for all x ∈ G. The group G is said to be a
BFC-group if xG is finite for all x ∈G and the number of elements in xG is bounded by
a constant that does not depend on the choice of x. It was shown by Neumann that G is
a BFC-group if and only if the commutator subgroup G′ is finite [6]. The first explicit
bound for the order of G′ was found by Wiegold [10] and the best known bound was
obtained in [5] (see also [7, 9]).

A subgroup H of G is said to be FC-embedded in G if xH is finite for all x ∈ G.
The subgroup H is BFC-embedded in G if xH is finite for all x ∈ G and the number of
elements in xH is bounded by a constant that does not depend on the choice of x.

Let w = w(x1, . . . , xn) be a group-word, that is, a nontrivial element of the free group
freely generated by x1, x2, . . . .We denote by Gw the (normal) set {w(g1, . . . ,gn) | gi ∈G}
of all w-values in G and by w(G) the verbal subgroup of G corresponding to w, that
is, the subgroup generated by Gw. The group G is an FC(w)-group if xGw is finite for
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all x ∈ G. The group G is a BFC(w)-group if xGw is finite for all x ∈ G and the number
of elements in xGw is bounded by a constant that does not depend on the choice of x.

Obvious examples of FC(w)-groups (respectively, BFC(w)-groups) are provided
by groups G in which the verbal subgroup w(G) is FC-embedded (respectively, BFC-
embedded) in G. For certain group-words w, there are examples of FC(w)-groups
which are not of that type (see the example in [1, Section 4]). However, it is the
main result of the paper [4] that, for many group-words w, the groups G with FC-
embedded verbal subgroups w(G) are the only examples of FC(w)-groups. If the word
w is concise, then G is an FC(w)-group if and only if the verbal subgroup w(G) is
FC-embedded in G. We recall that a group-word w is called concise if the finiteness
of the set Gw always implies the finiteness of the verbal subgroup w(G) (see [8, pages
119–121] for relevant results on concise words). It was shown in [2] that the order of
w(G) is bounded in terms of |Gw| for each concise word w. Together with results from
[1], this implies that, whenever w is a concise word, the group G is a BFC(w)-group if
and only if w(G) is BFC-embedded in G.

As the example in [1] shows, in the case where w is not concise, the verbal subgroup
w(G) of an FC(w)-group G need not be FC-embedded in G. The main goal of the
present paper is to prove the following theorems. In the subsequent work, we write
w(G)′ to denote the commutator subgroup of the verbal subgroup w(G).

Theorem 1.1. Let w be a group-word and let G be an FC(w)-group. Then w(G)′ is
FC-embedded in G.

Theorem 1.2. Let w be a group-word and let G be a BFC(w)-group. Then w(G)′ is
BFC-embedded in G.

In the course of proving the above theorems we establish the following facts that
seem to be of independent interest (see Proposition 2.9 in the next section). The group
G is an FC(w)-group (respectively, BFC(w)-group) if and only if it is an FC(w−1)-
group (respectively, BFC(w−1)-group).

Throughout the paper, we use the term ‘{a, b, c, . . .}-bounded’ to mean ‘bounded
from above by some function depending only on the parameters a, b, c, . . .’. Moreover,
if X is a finite set, the ‘order of X’ means ‘the number of elements in X’.

2. Preliminary results

We start with some lemmas concerning arbitrary groups. The first one is well known
(see, for instance, [3, Proposition 1]).

Lemma 2.1. Let w be a group-word and let G be a group such that |Gw| = m. Then
w(G)′ has finite m-bounded order.

Lemma 2.2. Let w be a group-word, let x be an element of a group G and let A be a
subset of Gw with xGw = {xa | a ∈ A}. Then, for any j ≥ 1 and y1, . . . , y j ∈ Gw, there
exist a1, . . . , a j ∈ A such that xy1...y j = xa1...a j .
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Proof. We argue by induction on j. The case j = 1 is clear. Let j > 1 and assume that
xy1...y j−1 = xa1...a j−1 with a1, . . . , a j−1 ∈ A. Then

xy1...y j = xa1...a j−1y j = xy j
ba1...a j−1 ,

where b = (a1 . . . a j−1)−1. Since y j
b ∈ Gw, xy j

b
= xa j for some a j ∈ A, and so xy1...y j =

xa ja1...a j−1 . After renumbering the w-values ai, we obtain the required result. �

Recall that a simple commutator of weight k ≥ 1 in elements of a subset A of a
group is a left-normed commutator

[b1, b2, b3, . . . , bk] = [. . . [[b1, b2], b3], . . . , bk],

where each bi ∈ A.

Lemma 2.3. Let x, b1, . . . , b j be elements of a group G. Then the simple commutator
[x, b1, . . . , b j] can be written as a product of 2 j conjugates x±di , where each di is a
product of at most j factors from the set {b1, . . . , b j}. Here the product of zero factors
is understood as the trivial element.

Proof. This is an easy induction on j, using the fact that [x, b] = x−1xb. �

As usual, the centre of a group G is denoted by Z(G).

Lemma 2.4. Let G be a group such that the commutator subgroup of G/Z(G) has
finite order m, and let A be a finite subset of G with |A| = n. Then the set of simple
commutators in elements of A has finite {m, n}-bounded order. Moreover, any simple
commutator in elements of A has weight at most m + 1.

Proof. Let X be the set of all simple commutators in elements of A. By hypothesis,
X is finite modulo Z(G). Let {x1, . . . , xl} be a maximal subset of X consisting of
commutators which are pairwise distinct modulo Z(G). Clearly, l ≤ m + n. Put

Y = A ∪ {[xk, a] | a ∈ A, 1 ≤ k ≤ l}.

Thus |Y | ≤ n(l + 1). We will show that X ⊆ Y . Let x = [a1, . . . , a j] ∈ X, with ai ∈ A. If
j = 1, then x ∈ A ⊆ Y . Assume that j > 1. Since [a1, . . . , a j−1] = xkz for some k with
1 ≤ k ≤ l and z ∈ Z(G),

x = [[a1, . . . , a j−1], a j] = [xkz, a j] = [xk, a j] ∈ Y.

Thus, indeed, X ⊆ Y . Obviously, Y ⊆ X and so X = Y . It follows that X has at most
n(m + n + 1) elements.

We will now show that every element of X has weight at most m + 1. Since the
commutator subgroup of G/Z(G) has order m, the commutators x1, . . . , xl can be
chosen of weight at most m. On the other hand, by the above, any x ∈ X\A can be
written as [xk, a] for some k ∈ {1, . . . , l} and a ∈ A. Therefore x has weight at most
m + 1. �
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Given an infinite subgroup H of a group G and an element a ∈G, it may happen that
Ha < H and Ha , H. Indeed, let n ≥ 2 be an integer and let α be the automorphism
of the additive group of rational numbers Q sending every x ∈ Q to nx. Obviously,
Zα = nZ and so Zα < Z. Our next lemma gives a sufficient condition under which the
containment Ha ≤ H implies the equality Ha = H.

Lemma 2.5. Let H be a subgroup of a group G and N a normal subgroup of G such that
the commutator subgroup of N/Z(N) is finite. Suppose that Ha ≤ H for some a ∈ N.
Then Ha = H.

Proof. It is enough to prove that Ha−1
≤ H. Suppose, on the contrary, that there exists

h ∈ H such that ha−1
< H. Since [h, a] ∈ H and [h, a−1] < H,

[a, [a, h]] = [h, a]a[h, a]−1 ∈ H ∩ N′

and
[a, [a, h]]a−1

= [a, h, a−1] = [h, a][a, h]a−1
= [h, a][h, a−1] < H ∩ N′.

Note that (H ∩ N′)a ≤ H ∩ N′ and N′ is finite modulo Z(N), so (H ∩ N′)a = H ∩ N′

modulo Z(N). It follows that [a, [a, h]]a−1
= h1z for some h1 ∈ H ∩ N′ and z ∈ Z(N).

Hence [a, [a, h]] = h1
az. Since h1

a ∈ H ∩ N′, we conclude that z ∈ H ∩ N′. In
particular, [a, [a, h]]a−1

∈ H ∩ N′, which is a contradiction. �

Let w be a group-word and let G be a group. A subgroup H of w(G) is said to
have finite w-index if the elements of Gw lie in finitely many right cosets of H in w(G).
The subgroup H has finite w-index m if there are exactly m right cosets of H in w(G)
containing elements of Gw. The centraliser Cw(G)(x) has finite w-index m if and only if
|xGw | = m. Thus, G is an FC(w)-group if and only if Cw(G)(x) has finite w-index for all
x ∈ G. Further, G is a BFC(w)-group if and only Cw(G)(x) has finite w-index bounded
by a constant which does not depend on the choice of x ∈ G.

The following lemma is taken from [4]. Its proof is straightforward.

Lemma 2.6. Let w be a group-word, let G be a group and let H1, . . . ,Hn be subgroups of
w(G) having finite w-indices m1, . . . ,mn, respectively. Then

⋂n
i=1 Hi has finite w-index

at most m1 . . .mn.

Lemma 2.7. Let w be a group-word.

(i) If G is a finitely generated FC(w)-group, then the set (G/Z(G))w is finite.
(ii) If G is an n-generator BFC(w)-group such that |xGw | ≤ m for all x ∈ G, then the

set (G/Z(G))w has finite order at most mn.

Proof. Write G = 〈x1, . . . , xn〉. Since G is an FC(w)-group, for every i = 1, . . . , n the
subgroup Cw(G)(xi) has finite w-index, say, mi. It is clear that

w(G) ∩ Z(G) =
⋂

1≤i≤n

Cw(G)(xi).

Thus, by Lemma 2.6, w(G) ∩ Z(G) has finite w-index at most m0 = m1m2 . . . mn. It
follows that (G/Z(G))w has at most m0 elements. Finally, if |xGw | ≤ m for all x ∈ G,
then mi ≤ m for all i = 1, . . . , n. Hence m0 ≤ mn. �
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Note that, for any element g of a group G, g ∈ Gw if and only if g−1 ∈ Gw−1 . Thus
w(G) = w−1(G) and so Cw(G)(x) = Cw−1(G)(x) for all x ∈ G. We do not know whether
the condition that Cw(G)(x) has finite w-index necessarily implies that Cw(G)(x) also has
finite w−1-index. Our next goal is to show that this is true in the case where G is an
FC(w)-group.

Lemma 2.8. Let w be a group-word and let x be an element of a group G such that
Cw(G)(x) has finite w-index m. Suppose that Cw(G)(x) contains a subgroup N of finite
index l which is normal in w(G). Then the w−1-index of Cw(G)(x) is at most ml.

Proof. Put C = Cw(G)(x). We have Gw ⊆
⋃m

i=1 Cgi and C =
⋃l

j=1 c jN, for some gi ∈Gw

and c j ∈ C. Then Gw ⊆
⋃

i, j c jNgi and so Gw−1 ⊆
⋃

i, j g−1
i Nc−1

j . Since N is normal in
w(G), we get Gw−1 ⊆

⋃
i, j Cg−1

i c−1
j . �

The next proposition provides the main technical tool for the proof of our main
results.

Proposition 2.9. Let w = w(x1, . . . , xn) be a group-word.

(i) The group G is an FC(w)-group if and only if it is an FC(w−1)-group.
(ii) The group G is a BFC(w)-group if and only if it is a BFC(w−1)-group. More

precisely, if G is a BFC(w)-group such that Cw(G)(x) has w-index at most m for
all x ∈ G, then Cw(G)(x) has finite {m, n}-bounded w−1-index.

Proof. We will deal only with the statement (ii), since the proof of (i) can be obtained
in the same way by simply forgetting the bounds. More precisely, assuming that G is
a BFC(w)-group such that Cw(G)(x) has finite w-index at most m for all x ∈ G, we will
prove that Cw(G)(x) has finite {m, n}-bounded w−1-index for all x ∈ G.

Let M be the monoid generated by Gw, that is, the set of all finite products of
w-values in G (here, and in the subsequent work, the empty product stands for the
element 1). Take any x ∈ G and put H = 〈xM〉. Choose elements a1, . . . , am ∈ Gw

such that xGw = {xa1 , . . . , xam}. Let A = {a1, . . . , am} and denote by A0 the set of all
simple commutators of the form [x,b1, . . . , b j], with j ≥ 1 and b1, . . . , b j ∈ A. Note that
[x, b1, . . . , b j] ∈ H by Lemma 2.3. Hence 〈x, A0〉 ≤ H. We claim that H = 〈x, A0〉. For
any j ≥ 1, xb1...b j ∈ 〈x, A0〉 for any b1, . . . , b j ∈ A. In fact, xb1 = x[x, b1] ∈ 〈x, A0〉 and,
if j > 1, the induction hypothesis implies that xb1...b j = (xb1...b j−1 )b j ∈ 〈x,A0〉

b j ≤ 〈x,A0〉.
On the other hand, for any j ≥ 1 and y1, . . . , y j ∈Gw, by Lemma 2.2, xy1...y j = xb1...b j for
some b1, . . . , b j ∈ A. Thus xy1...y j ∈ 〈x, A0〉 and therefore H = 〈x, A0〉, as claimed.

Put C = Cw(G)(x). Since w depends on n variables and C has finite w-index m, we
can choose a subgroup J generated by at most mn + 1 elements of G with x ∈ J and
a1, . . . , am ∈ Jw. By (ii) of Lemma 2.7, (J/Z(J))w has finite {m, n}-bounded order.
Then, by Lemma 2.1, w(J)′ has finite {m, n}-bounded order modulo Z(J). Applying
Lemma 2.5, we get Ha = H for all a ∈ A, from which it follows that Hy = H for all
y ∈ Gw. Indeed, for any y ∈ Gw, there exists a ∈ A such that y ∈ Ca. Of course, both C
and a normalise H. Hence y ∈ NG(H), as required. Thus H is normal in w(G).
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Let B be the subgroup generated by A and all commutators [x, a] with a ∈ A.
Since B ≤ w(J), the commutator subgroup of B/Z(B) has finite {m, n}-bounded order.
By Lemma 2.4 used with B in place of G, there are only {m, n}-boundedly many
commutators of the form [x, b1, . . . , b j], with j ≥ 1 and b1, . . . , b j ∈ A. Moreover,
the weight of these commutators is at most some {m, n}-bounded number k. Since
H = 〈x, A0〉, it follows from Lemma 2.3 that

H = 〈xd | d ∈ D〉,

where D is the set of all products of at most k factors from A. Obviously, D is
finite with {m, n}-boundedly many elements. Let S be the set of all right cosets of
C in w(G) containing products of at most k factors from Gw. By Lemma 2.2, S is
precisely the set of all right cosets of C containing products of at most k factors from
A. Write S = {Cd1, . . . ,Cds}, where di ∈ D and s is {m, n}-bounded. Clearly, C acts by
conjugation on the set S . Denote by K the kernel of this action. Then the index |C : N|
is finite and depends only on s, so it is {m, n}-bounded.

We claim that K ≤ Cw(G)(H). For any c ∈ K, Cdi
c = Cdi for all i = 1, . . . , s.

Therefore didi
−c ∈ C and thus c ∈ Cdi for all i, and hence K ≤ C ∩ Cd1 ∩ · · · ∩ Cds .

Now let c ∈ C ∩ Cd1 ∩ · · · ∩ Cds . For any d ∈ D, there exists i ∈ {1, . . . , s} such
that Cd = Cdi, so xd = xdi and [c, xd] = 1. Hence [c, H] = 1, which proves that
C ∩Cd1 ∩ · · · ∩Cds ≤ Cw(G)(H). Consequently, K ≤ C ∩Cd1 ∩ · · · ∩Cds ≤ Cw(G)(H).

Finally, put N = Cw(G)(H). Since H is normal in w(G), the subgroup N is normal in
w(G). Also, by the above, K ≤ N. It follows that |C : N| ≤ |C : K| is {m, n}-bounded.
By Lemma 2.8, we conclude that Cw(G)(x) has finite {m, n}-bounded w−1-index, as
required. �

3. Proofs of Theorems 1.1 and 1.2

Lemma 3.1. Let w = w(x1, . . . , xn) be an arbitrary group-word and let

v = [w(x1, . . . , xn),w(xn+1, . . . , x2n)].

Let G be a BFC(w)-group such that |xGw | ≤ m for all x ∈G. Then G is a BFC(v)-group
such that xGv has only {m, n}-boundedly many elements for all x ∈ G.

Proof. Let y ∈ Gv. We have y = zt, where z = w(g1, . . . , gn)−1 ∈ (Gw)−1 = Gw−1 and
t = w(g1, . . . , gn)w(gn+1,...,g2n) ∈ Gw, for some gi ∈ G. Given x ∈ G, put C = Cw(G)(x)
and let a1, . . . , am ∈ Gw be such that xGw = {xa1 , . . . , xam}. Thus Gw ⊆

⋃m
1=1 Cai.

Furthermore, by Proposition 2.9(ii), C has finite {m, n}-bounded w−1-index, say, m′.
So there exist b1, . . . , bm′ ∈ Gw−1 such that Gw−1 ⊆

⋃m′
j=1 Cb j. It follows that z = c1b j

and t = c2ai for some c1, c2 ∈ C and i, j. Hence

xy = xc1b jc2ai = xb j
c2 ai = xbkai ,

where xb j
c2

= xbk , 1 ≤ k ≤ m′ and 1 ≤ i ≤ m. This proves the result. �
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Lemma 3.2. Let w = w(x1, . . . , xn) be an arbitrary group-word and let

v = [w(x1, . . . , xn),w(xn+1, . . . , x2n)].

Let G be a BFC(w)-group such that |xGw | ≤ m for all x ∈ G. There exists an {m, n}-
bounded positive integer e such that ye ∈ Z(G) for any y ∈ Gv.

Proof. Take any y ∈ Gv. Then there exist y1, . . . , y2n ∈ G such that

y = [w(y1, . . . , yn),w(yn+1, . . . , y2n)].

Let y0 be an arbitrary element of G, and put J = 〈yi | 0 ≤ i ≤ 2n〉. Of course, y ∈ v(J),
and J is a finitely generated BFC(w)-group such that |xJw | ≤ m, for all x ∈ J. By
Lemma 2.7(ii), the set (J/Z(J))w has finite order at most m2n+1. Hence, by Lemma 2.1,
the commutator subgroup of w(J/Z(J)) has finite {m, n}-bounded order. In particular,
v(J) has finite {m, n}-bounded order modulo Z(J), say, e. Therefore ye ∈ Z(J) and
[ye, y0] = 1. �

We are now in the position to prove Theorem 1.2.

Proof of Theorem 1.2. Recall that w = w(x1, . . . , xn) is a group-word and that G is a
BFC(w)-group. We will prove that w(G)′ is BFC-embedded in G.

Set v = [w(x1, . . . , xn),w(xn+1, . . . , x2n)] and note that v(G) = w(G)′. Assume that
|xGw | ≤ m0 for all x ∈G. By Lemma 3.1, G is a BFC(v)-group such that xGv has {m0,n}-
boundedly many elements, say, at most m, for all x ∈ G. Let x be an arbitrary element
of G and choose a1, . . . , am ∈ Gv such that xGv = {xa1 , . . . , xam}. Define an order < on
the set of all (formal) products of the form ai1 . . . ai j , with 1 ≤ ik ≤ m and j ≥ 1, as
follows. Put

ai1 . . . ai j < ai′1 . . . ai′j′
(*)

if and only if one of the following conditions is satisfied: j < j′, or j = j′ and there is
a positive integer l ≤ j such that il < i′l and ik = i′k for all k > l.

Let y be an arbitrary element of v(G). Then y = y1 . . . y j, where each yi ∈ Gv ∪G−1
v .

It is easy to see that the word v has the property that G−1
v = Gv and so each yi ∈ Gv.

Lemma 2.2 tells us that
xy = xai1 ...ai j ,

with 1 ≤ ik ≤ m. Clearly, we can choose ai1 . . . ai j to be the smallest (in the sense of
the order <) product of elements from {a1, . . . , am} such that xy = xai1 ...ai j . Let us now
show that i1 ≥ i2 ≥ · · · ≥ i j. Suppose that ik < ik+1 for some k. Then

xy = xai1 ...aik−1 aik aik+1 aik+2 ...ai j = xai1 ...aik−1 baik aik+2 ...ai j ,

where b = aik aik+1 a−1
ik
∈ Gv. In view of Lemma 2.2,

xai1 ...aik−1 b = xai′1
...ai′k−1

ai′k+1

for some 1 ≤ i′1, . . . , i
′
k−1, i

′
k+1 ≤ m, so that

xy = xai′1
...ai′k−1

ai′k+1
aik aik+2 ...ai j .
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This contradicts the choice of the product ai1 . . . ai j because

ai1 . . . aik−1 aik aik+1 aik+2 . . . ai j > ai′1 . . . ai′k−1
ai′k+1

aik aik+2 . . . ai j .

Thus xy = xai1 ...ai j with i1 ≥ i2 ≥ · · · ≥ i j or, equivalently,

xy = xam
em ...a1

e1

for some nonnegative integers em, . . . , e1.
Finally, by Lemma 3.2, there exists an {m0, n}-bounded positive integer e such that

ai
e ∈ Z(G), for all i. Thus, we may assume that ei < e for all i. Hence |xv(G)| ≤ em, and

v(G) is BFC-embedded in G. �

The following two results are the analogues of Lemmas 3.1 and 3.2 for FC(w)-
groups.

Lemma 3.3. Let w = w(x1, . . . , xn) be an arbitrary group-word and let

v = [w(x1, . . . , xn),w(xn+1, . . . , x2n)].

If G is an FC(w)-group, then G is an FC(v)-group.

Proof. The proof is similar to that of Lemma 3.1. The modifications required are
evident and therefore we omit the details. �

Lemma 3.4. Let w = w(x1, . . . , xn) be an arbitrary group-word and let

v = [w(x1, . . . , xn),w(xn+1, . . . , x2n)].

Let A = {a1, . . . , am} be a finite subset of Gv. If G is an FC(w)-group, then, for any
x ∈ G, there exists a positive integer e such that ai

e ∈ Z(〈x, A〉) for all ai ∈ A.

Proof. Let x be an arbitrary element of G. For any ai ∈ A, there exist gi,1, . . . , gi,2n ∈ G
such that

ai = [w(gi,1, . . . , gi,n),w(gi,n+1, . . . , gi,2n)].

Put J = 〈x,gi, j | 1 ≤ i ≤ m,1 ≤ j ≤ 2n〉. Of course, each ai ∈ v(J) and, by Lemma 2.7(i),
the set (J/Z(J))w is finite. Thus, by Lemma 2.1, the commutator subgroup of w(J/Z(J))
is finite. It follows that v(J) has finite order modulo Z(J), say, e. Therefore ai

e ∈ Z(J)
for all i. As 〈x, A〉 ≤ J, the result follows. �

Proof of Theorem 1.1. Recall that w is a group-word and that G is an FC(w)-group.
We need to prove that w(G)′ is FC-embedded in G.

Set v = [w(x1, . . . , xn),w(xn+1, . . . , x2n)]. Clearly, v(G) = w(G)′ and, by Lemma 3.3,
G is an FC(v)-group. Let x be an arbitrary element of G and choose a1, . . . , am ∈ Gv
such that xGv = {xa1 , . . . , xam}. Define the order < on the set of all (formal) products of
the form ai1 . . . ai j , with 1 ≤ ik ≤ m and j ≥ 1, as in (*) in the proof of Theorem 1.2.

Let y be an arbitrary element of v(G). Arguing as in the proof of Theorem 1.2,
write xy = xam

em ...a1
e1 for some nonnegative integers em, . . . , e1. If A = {a1, . . . , am}, by

Lemma 3.4, there exists a positive integer e such that ai
e ∈ Z(〈x, A〉) for all i. Hence

we may assume that ei < e for all i, and so |xv(G)| ≤ em. Thus xv(G) is finite for all x ∈G.
We conclude, therefore, that v(G) is FC-embedded in G. �
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