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Abstract. The Kadets path distance between Banach spaces X and Y is defined
to be the infimum of the lengths with respect to the Kadets distance of all curves
joining X and Y. If there is no curve joining X and Y, the Kadets path distance
between X and Y is defined to be 1.

Some approaches to estimates of the Kadets path distance from above and from
below are developed. In particular, the Kadets path distances between the spaces
lnp; p 2 ½1;þ1�, n 2 N are estimated.

2000 Mathematics Subject Classification. Primary 46B20, 52A21, Secondary
46B07, 54E35.

1. Introduction. Path metrics (or inner metrics, or geodesic distances) are very
important objects in both classical geometry and metric geometry. See the books A.
D. Aleksandrov [1], A. D. Aleksandrov and V. A. Zalgaller [2], L. M. Blumenthal [4],
M. R. Bridson and A. Haefliger [5], H. Busemann [6], M. Gromov [11], W. Rinow
[21], J. J. Schäffer [23], and A. C. Thompson [25], where such metrics are introduced
under different names and in different contexts.

The general construction is as follows. Let M be a metric space with metric �.
Let x; y 2 M and let f : ½0; 1� ! M be a continuous mapping satisfying fð0Þ ¼ x and
fð1Þ ¼ y. We call such a mapping a curve joining x and y. The length of the curve f is
defined as

sup
Xn

i¼1

� fð�i
1Þ; fð�iÞð Þ;

where the supremum is taken over all finite subsets

0 � �0 < �1 < . . . < �n � 1:

If M is such that each two points of M are joined by at least one curve of finite
length, we introduce the corresponding path metric on M, defined by �Pðx; yÞ ¼
infimum of the lengths of curves joining x and y.

The main purpose of this paper is to study the distances that we get if we apply
this general construction to distances studied in Geometric Functional Analysis. It is
easy to verify that if we apply this construction to the Banach-Mazur distance we do
not get a new distance (this assertion follows, for example, from Lemma 1 below). In
this paper we are going to consider the Kadets distance. This distance was intro-
duced by M. I. Kadets in [15] and was studied in several papers; see [16] and [18].
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The Kadets distance may be considered as a Banach-space analogue of the Gromov-
Hausdorff distance, well known in geometry. See [11, Chapter 3], where this distance
is called the Hausdorff distance. See also [5] and [20].

We shall use some standard notation of Banach Space Theory. See for example
[14]. We recall the necessary definitions. Let X be a Banach space and let Y and Z be
closed subspaces of X. The opening (sometimes called also gap) between Y and Z is
defined to be the Hausdorff distance between their unit balls; that is

�ðY;ZÞ ¼ maxf sup
y2BðYÞ

distðy;BðZÞÞ; sup
z2BðZÞ

distðz;BðYÞÞg;

where by BðYÞ and BðZÞ we denote the unit balls of Y and Z respectively.
If X and Y are arbitrary Banach spaces we define the Kadets distance

dKðX;YÞ ¼ inf
Z;U;V

�ðUX;VYÞ;

where the infimum is taken over all Banach spaces Z and all linear isometric
embeddings U : X ! Z and V : Y ! Z:

For known properties of Kadets distance we refer to [16] and the references therein.
Adapting the general definition discussed above to the Kadets distance we get the

following definition.

Definition 1. Let X and Y be Banach spaces. Suppose that there exists a map-
ping Z : ½0; 1� ! fBanach spacesg, continuous with respect to dK, such that Zð0Þ ¼ X
and Zð1Þ ¼ Y. We call such a mapping a curve joining X and Y. The Kadets path
distance dKPðX;YÞ between X and Y is defined to be the infimum of the lengths with
respect to dK of all curves joining X and Y.

If there is no curve joining X and Y, then dKPðX;YÞ is defined to be 1.

In addition to being a special case of a well-known construction, the Kadets
path distance attracted my attention for the following reasons.

(1) The values of the Kadets distance between Banach spaces do not reflect adequately
how different are the spaces. We illustrate this statement with the following example.

In [18] (see, also [19, p. 303]) the author proved that there exist a separable
Banach space X and a non-separable Banach space Y such that dKðX;YÞ � 2

ffiffiffi
2

p

 2.

On the other hand, it is easy to show that dKðl
n
1; l

n
2Þ � 1 
 1ffiffi

n
p . Hence, dKðl

34
1 ; l

34
2 Þ

exceeds the Kadets distance between the set of separable and nonseparable spaces.
It seems that the values of Kadets path distance reflect the difference between

Banach spaces more properly than the values of Kadets distance itself.
(2) The study of the behavior of Kadets path distance is one of the natural

approaches to the following problem from [16]: whether each separable infinite
dimensional super-reflexive space belongs to the same connected component (with
respect to dK) as l2?

(3) S. Semmes [24] suggested the following problem. What is an optimal way of
connecting two convex bodies in Rn by a curve of convex bodies in Rn? The study of
the Kadets path distance is one of the approaches to this problem restricted to
symmetric convex bodies.

The main result of this paper is an analogue of the well-known result of V. I.
Gurarii, M. I. Kadets and V. I. Matsaev [13] on Banach-Mazur distances between
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spaces l n
p; p 2 ½1;þ1�, n 2 N. (See Theorem 1 below.) In Section 5 we use the con-

struction due to A. Douady [8] to show that for any Banach space X and for any
closed subspace Y � X

dKPðY�1 X=Y;XÞ � 2:

This estimate shows that Banach spaces that can be joined by ‘‘short’’ curves can be
quite different in many Banach-space-theoretical senses.

It turns out that results on Kadets path distance can be used in the study of finite-
dimensional versions of super-reflexivity. I am going to present my results in this
direction in a separate paper.

We use the following notation. Let f; g : N! Rþ be defined for all sufficiently
large n 2 N. We write f � g if 9c > 0; 9C < þ1 such that

c �
fðnÞ

gðnÞ
� C for all large enough n:

Theorem 1. (a) If 2 � p; q <1 then dKPðl
n
p; l

n
qÞ �

�
2 j ln

p
q

� �
j: If 1 < p; q � 2 then

dKPðl
n
p; l

n
qÞ �

�
2 j ln

1
1=p
1
1=q

� �
j:

(b) Let 1 < p <1. Then dKPðl
n
p; l

n
1Þ � ln ln n.

(c) Let 1 < p <1. Then dKPðl
n
p; l

n
1Þ � ln ln n.

(d) dKPðl
n
1; l

n
1Þ � ln ln n.

We describe where the proofs of different parts of Theorem 1 can be found.
Part (a) is proved in Remark 2 after Corollary 1.
All other estimates from above are proved at the end of Section 2.
Parts (b) and (c) are equivalent by Corollary 3.
Estimates from below in (b) and (d) are proved in Section 4.

2. Estimates from above. In this section we use some results on the interpolation
spaces. See [7] or Chapter 4 of [3].

We start with a very simple estimate. This is useful mainly for small values of
dðX;YÞ. Proposition 2 and Theorem 3 below give better asymptotic estimates.

Proposition 1. dKPðX;YÞ � ln dðX;YÞ.
We need the following well-known result.

Lemma 1. Let X and Y be isomorphic Banach spaces and D > dðX;YÞ. Then there
exists a collection fXð	Þg	2½0;1� of Banach spaces such that Xð0Þ ¼ X, Xð1Þ ¼ Y and
dðXð
Þ;Xð�ÞÞ � Dj

�j:

Sketch of proof. Let T : X ! Y be an isomorphism satisfying jjTjj � 1 and
jjT
1jj � D.

Now, let X and Y be complex Banach spaces. We identify x 2 X with Tx 2 Y.
With such identification the pair ðX;YÞ is a compatible couple (in the sense of [3, p.
24]) or interpolation pair (in the sense of [7, p. 114]). It is well known that the com-
plex interpolation spaces corresponding to this compatible couple (interpolation
pair) (see [7 Paragraph 3] or [3, p. 88]) have the required property.

To consider the real case we need some results on complexifications. See [22,
Section 1.3] for more detailed discussion of complexifications.
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Let X be a real Banach space. By XC we denote the complex Banach space that
we obtain if we endow the direct sum X� X with the multiplication

ð�þ i�Þðx; yÞ :¼ ð�x 
 �y; �x þ �yÞð� 2 R; � 2 R; x 2 X; y 2 XÞ;

and the norm

jjðx; yÞjj :¼ max

��
��

jjðcos 
Þx þ ðsin 
ÞyjjX:

The space X will be identified with the subspace fðx; 0Þ : x 2 Xg � X C.
Let T : X ! Y be a linear operator between real Banach spaces. The mapping

T C : X C ! Y C defined by

Tðx; yÞ ¼ ðTx;TyÞ

is called a complexification of T.

Lemma 2. The mapping T C is a linear operator between the complex Banach
spaces X C and Y C, and jjT Cjj ¼ jjTjj.

The proof is straightforward.

Remark. It is worthwhile to mention that Lemma 2 is not valid for some other
natural norms on complexifications of real normed spaces.

We continue the proof of Lemma 1. If X and Y are real Banach spaces, we
consider the operator T C. We have jjT Cjj � 1 and jjðT CÞ


1
jj � D. We identify

x 2 X C with T Cx. With such identification ðX C;Y CÞ becomes a compatible couple
(interpolation pair). Let Xð	Þ; 	 2 ½0; 1� be the intersections of the complex inter-
polation spaces corresponding to the couple with X (or Y, observe that X and Y
coincide as real linear subspaces of the couple). It is easy to check that the real
Banach spaces Xð	Þ have the required property. &

Proof of Proposition 1. If dðX;YÞ ¼ 1, there is nothing to prove, and so we
suppose that dðX;YÞ <1. Let D > dðX;YÞ and fXð	Þg	2½0;1� satisfy the conditions of
Lemma 1. To get an estimate for dKPðX;YÞ it is sufficient to estimate the length of
this curve from above.

We have dðXð
Þ;Xð�ÞÞ � Dj

�j. Now we apply the estimate dK � d 
 1 obtained
in [18]. (See Proposition 6.2 in [19] for a proof. The argument in [18] contains some
unpleasant misprints.) We get

dKðXð
Þ;Xð�ÞÞ � Dj

�j 
 1:

Recalling the definition of the length of a curve (and using the continuity of our
curve) we get dKPðX;YÞ � limn!1 nðD1=n 
 1Þ. However

lim
n!1

nðD1=n 
 1Þ ¼ lim
x!0

ex lnD 
 1

x
¼ lnD: <

We shall use the result of [16] on complex interpolation spaces. Working with
complex interpolation spaces we are forced to consider Banach spaces over C only.
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Let �XX ¼ ðX0;X1Þ be a compatible couple of Banach spaces (interpolation pair)
and let f �XX½
�g
2ð0;1Þ be the standard complex interpolation spaces (as they are defined
in [7, Paragraph 3] or [3, p. 88]). For 
; � 2 ð0; 1Þ we let

hð
; �Þ ¼
sinð�ð�
 
Þ=2Þ

sinð�ð�þ 
Þ=2Þ
:

Theorem 2. [16, Corollary 4.6]. If 0 < 
 < � < 1 then

dKð �XX½
�; �XX½��Þ � 2hð
; �Þ:

We immediately get the next result.

Corollary 1. If 0 < 
 < � < 1 then

dKPð �XX½
�; �XX½��Þ � �

Z �




d	

sinð�	Þ
:

Remark 1. We can find the integral from Corollary 1 explicitly and get

dKPð �XX½
�; �XX½��Þ � ln
cscð��Þ 
 cotð��Þ

cscð�
Þ 
 cotð�
Þ

� �
:

Remark 2. Part (a) of Theorem 1 for complex spaces can be derived from
Corollary 1 in the following way. We apply Corollary 1 to the standard interpolation
between X0 ¼ ln1 and X1 ¼ ln1. Let 
; � 2 ½0; 1� be such that

1

p
¼



1
þ

1 
 


1
and

1

q
¼
�

1
þ

1 
 �

1
:

Hence 
 ¼ 1=p and � ¼ 1=q. First, we consider the case 1=p < 1=q � 1=2. Corollary 1
gives us the estimates

dKPðl
n
p; l

n
qÞ � �

Z 1=q

1=p

d	

sinð�	Þ
� �

Z 1=q

1=p

d	

2	
¼
�

2
ln

p

q

� �
:

In the case 1=q > 1=p � 1=2 we have

dKPðl
n
p; l

n
qÞ � �

Z 1=q

1=p

d	

sinð�	Þ
� �

Z 1=q

1=p

d	

2 
 2	
¼
�

2
ln

1 
 1=p

1 
 1=q

� �
:

The same argument works in the real case also since, as it was observed in [16]
(see Remark after Corollary 4.7), the estimate

dKðl
n
p; l

n
qÞ � 2hð1=p; 1=qÞ; p; q 2 ð1;þ1Þ

is valid in the real case also.

Proposition 2. Let X and Y be complex Banach spaces. If ln dðX;YÞ � �, then
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dKPðX;YÞ � � ln ln dðX;YÞ:

Proof. We may suppose that dðX;YÞ <1. Let D > dðX;YÞ and let J : X ! Y
be an operator satisfying jjJjjjjJ
1jj � D. We identify x 2 X with Jx 2 Y. With this
identification ðX;YÞ becomes a compatible couple (interpolation pair). We denote it
by �XX. Then for arbitrary 0 < 
 < � < 0 we have

dKPðX;YÞ � dKPðX; �XX½
�Þ þ dKPð �XX½
�; �XX½��Þ þ dKPð �XX½��;YÞ

� ln dðX; �XX½
�Þ þ �

Z �




d	

sinð�	Þ
þ ln dð �XX½��;YÞ;

by Proposition 1 and Corollary 1. We choose � ¼ 1 
 
 and suppose 
 � 1=2.
Observe that dðX; �XX½
�Þ � D
 and dðY; �XX½1

�Þ � D
. Since we may choose D > d
ðX;YÞ arbitrarily, we get

dKPðX;YÞ � 2
 ln dðX;YÞ þ �

Z 1






d	

sinð�	Þ
: ð1Þ

We have

�

Z 1






d	

sinð�	Þ
¼ 2�

Z 1=2




d	

sinð�	Þ
� 2�

Z 1=2




d	

2	
� � lnð

1

2

Þ:

Hence

dKPðX;YÞ � 2
 ln dðX;YÞ 
 � ln 
 
 � ln 2:

The right-hand side attains its minimum when


 ¼
�

2

1

ln dðX;YÞ
:

In addition we have to restrict ourselves to the case in which 
 � 1
2. Thus, if

ln dðX;YÞ � � we get

dKPðX;YÞ � �
 � ln�þ � ln ln dðX;YÞ:

(In the case in which ln dðX;YÞ < � the argument above doesn’t give a new
estimate.) &

In the present context it is important to find an analogue of Proposition 2 for
real spaces. In the appendix we shall prove such an analogue. Its proof is based on a
modification of the complex interpolation method developed in [7] and on a mod-
ification of the argument of [16]. This is why some of the details of the proof are
omitted; we refer to [7] and [16] instead.

Theorem 3. Let X0 and X1 be real Banach spaces. If ln dðX0;X1Þ � �, then
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dKPðX0;X1Þ � � ln ln dðX0;X1Þ:

Proof. See Section 6. &

Corollary 2. The diameter of the nth Minkowski compactum with respect to dKP

is � ln ln n.

Proof of estimates from above in Parts (b), (c) and (d) of Theorem 1. The
complex case immediately follows from Proposition 2. The real case follows from
Theorem 3. Here is an alternative approach to the proof in the real case.

We use the same construction as in Proposition 2 with X ¼ ln1, Y ¼ ln1 and
J : ln1 ! ln1 the canonical embedding, so that jjJjj ¼ 1; jjJ
1jj ¼ n. Let �XX ¼ ðX;YÞ:

Consider the curve f : ½0; 1� ! fBanach spacesg defined by fð
Þ ¼ lnpð
Þ, where
pð
Þ ¼ 1

1

. It is well known that fð
Þ is isometric to �XX½
�.
By the remark about the real spaces mentioned before Proposition 2 we can use

the formula (1) for real spaces and any 
 � 1=2:

dKPðl
n
1; l

n
1Þ � ln dðln1; l

n
pð
ÞÞ þ �

Z 1






d	

sin�	
þ ln dðlnpð1

Þ; l

n
1Þ

� 2
 ln n 
 � ln 
 
 � ln 2 � �
 � ln�þ � ln ln n ðif ln n � �Þ:

Because the considered curve contains the spaces lnp ð1 < p <1Þ, this computation
proves the estimates from above in Parts (b) and (c) of Theorem 1 also. &

3. Duality. We need the following result from [16, Theorem 4.3].

Theorem 4. [16]. Suppose that X and Y are Banach spaces. Then

dKðX
�;Y�Þ � 2dKðX;YÞ:

We immediately get the following result.

Corollary 3. Suppose that X and Y are Banach spaces. Then

dKPðX
�;Y�Þ � 2dKPðX;YÞ:

If X and Y are reflexive, then dKPðX;YÞ � 2dKPðX
�;Y�Þ:

4. Estimates from below. Our approach to estimates from below is based on
repeated use of the following results.

Lemma 3. (D. P. Giesy [10, Lemmas I.4 and I.6]; see also [17, p. 62].) If a Banach
space X contains an n2-dimensional subspace X1 satisfying dðX1; l

n2

1 Þ � �, then X con-
tains an n-dimensional subspace X2 satisfying dðX2; l

n
1Þ �

ffiffiffi
�

p
.

The following lemma is well known. To the best of my knowledge the first result
of this type is due to V. I. Gurarii [12].
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Lemma 4. Let X and Y be finite dimensional Banach spaces such that
dKðX;YÞ � � and X contains a k-dimensional subspace X0 satisfying dðX0; l

k
1Þ � 
. If

� < 1=
, then Y contains a subspace Y0 satisfying dðY0; l
k
1Þ � 1=ðð1=
Þ 
 �Þ.

Proof of Lemma 4. (We give it for the convenience of the reader.) Let " > 0. We
may assume that X and Y are subspaces of some Banach space and �ðX;YÞ < �þ ".
The condition on X imples that there exist x1; . . . ; xk 2 X such that

1




Xk

i¼1

jaij � jj
Xk

i¼1

aixijj �
Xk

i¼1

jaij 8faig 2 R
k;

in particular, xi 2 BðXÞ. Since �ðX;YÞ < �þ ", there exist y1; . . . ; yk 2 BðYÞ such
that jjxi 
 yijj < �þ ". Since yi 2 BðYÞ,

jj
Xk

i¼1

aiyijj �
Xk

i¼1

jaij 8faig 2 R
k:

On the other hand

jj
Xk

i¼1

aiyijj � jj
Xk

i¼1

aixijj 

Xk

i¼1

jaijjjxi 
 yijj �

1




Xk

i¼1

jaij 
 ð�þ "Þ
Xk

i¼1

jaij ¼ ð
1




 �
 "Þ

Xk

i¼1

jaij:

Hence the subspace Y" � Y spanned by y1; . . . ; yn satisfies dðY"; l
k
1Þ � 1=ð1
 
 �
 "Þ.

Since " > 0 is arbitrary and Y is finite dimensional, the lemma follows. &

Proof of estimates from below in Parts (b) and (d) of Theorem 1. To estimate
dKPðl

n
1; l

n
pÞ from below we let m ¼ mðp; nÞ be the smallest positive integer satisfying the

condition: the space lnp does not contain an m-dimensional subspace Y with dðY; lm1 Þ � 4.
It is well known (and it follows, e.g., from the uniform convexity of lp ð1 < p <1Þ) that
for 1 < p <1 there exists a constant CðpÞ such that mðp; nÞ � CðpÞ. It is also known
that mð1; nÞ � C ln n for some absolute constant C. (This assertion follows, e.g., from
the estimates on the dimensions of almost euclidean sections in lm1 and ln1; see [9]).

First we shall use Lemmas 3 and 4 to show that

dKPðl
n
1; l

n
pÞ �

3

4
þ

k

4
; ð2Þ

where k is the maximal integer satisfying m2k

� n.
Let f : ½0; 1� ! fBanach spacesg be a continuous curve joining ln1 and lnp. Let

pð0Þ ¼ m2k

; pð1Þ ¼ m2k
1

; . . . ; pðkÞ ¼ m. Let X0 ¼ ln1. Since n � m2k

, the space X0

contains a subspace Y0 satisfying dðl
pð0Þ
1 ;Y0Þ ¼ 1. (The first step of our argument is

somewhat artificial, for the uniformity of the construction.) Observe that
dKðX0; l

n
pÞ >

3
4 (otherwise, by Lemma 4 the space lnp would contain a subspace W0 of
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dimension pð0Þ � m satisfying dðl
pð0Þ
1 ;W0Þ � 4, contrary to the definition of m).

Because the curve is continuous, there exists a point X1 on the curve corresponding to
0 < t1 < 1 satisfying dKðX0;X1Þ ¼

3
4. By Lemma 4 (we apply it with 
 ¼ 1 and � ¼ 3

4)
the space X1 contains a subspace Y1 of dimension pð0Þ satisfying dðl

pð0Þ
1 ;Y1Þ � 4. By

Lemma 3 (we apply it with � ¼ 4 and
ffiffiffi
�

p
¼ 2) X1 contains a subspace Z1 of dimen-

sion pð1Þ satisfying dðl
pð1Þ
1 ;Z1Þ � 2. Observe that dKðX1; l

n
pÞ >

1
4 (otherwise, by Lemma

4 the space lnp would contain a subspace W1 of dimension pð1Þ � m satisfying
dðl

pð1Þ
1 ;W1Þ � 4, contrary to the definition of m). Because the curve f is continuous

with respect to dK, there exists a point X2 on the curve satisfying dKðX2;X1Þ ¼
1
4 and

corresponding to a t2 from the interval ðt1; 1Þ. We continue in an obvious way (all
steps, except the first, are the same). In this way we find a sequence X1; . . . ;Xk of
points on the curve corresponding to 0 < t1 < . . . < tk < 1 such that

dKðX0;X1Þ ¼
3

4
; dKðX1;X2Þ ¼ . . . ¼ dKðXk
1;XkÞ ¼

1

4
; dKðXk; l

n
pÞ >

1

4
:

Hence the length of the curve is at least 3
4 þ

k
4. Since the curve was arbitrary, it proves (2).

Remark. This argument can be generalized in terms of l1-properties discussed
in [19, p. 293]. I am going to present such generalizations in a separate paper.

To finish the proof it remains to show that 3
4 þ

k
4 � c ln ln n when n is large

enough.
The definition of k implies that m2kþ1

> n. This inequality can be rewritten as

k þ 1 >
ln ln n 
 ln lnm

ln 2
:

If 1 < p <1, then the sequence fmðp; nÞg1n¼1 is bounded by a constant that depends
on p only, and the estimate is immediate.

If p ¼ 1, then mðp; nÞ � C ln n for some absolute constant C, and we get

k þ 1 >
ln ln n 
 ln lnC 
 ln ln ln n

ln 2
;

and the required inequality follows. &

5 One more estimate. The following estimate for dKP is of a quite different
nature from those discussed above.

Proposition 3. Let X be aBanach space andY be a closed linear subspace of X. Then

dKPðY�1 X=Y;XÞ � 2:

Proof. We recall a construction from [8, pp. 15–16]; see also [19, Lemma 5.9].
Let us denote by � the quotient mapping X ! X=Y. In the space X �1 ðX=YÞ we
introduce the subspaces G0 ¼ Y �1 ðX=YÞ and G� ¼ fð�x;�xÞ : x 2 Xg; 1 � � > 0:
We need the following variant of Lemma 5.9 of [19].
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Lemma 5. 8�; � 2 ½0; 1� �ðG�;G�Þ � 2j�
 �j:

Proof. We may suppose without loss of generality that � > 0. Let
u ¼ ð�x;�xÞ 2 BðG�Þ. Hence, maxf�jjxjj; jj�xjjg � 1. Let � > 0 and let y 2 Y be
such that jjx 
 yjj � ð1 þ �Þjj�xjj. Then ð�x þ ð�
 �Þy;�xÞ 2 G� and

jjð�x;�xÞ 
 ð�x þ ð�
 �Þy;�xÞjj � j�
 �jð1 þ �Þjj�xjj � j�
 �jð1 þ �Þ:

Taking the infimum over � > 0 we get distðu;G�Þ � j�
 �j. It follows that

distðu;BðG�ÞÞ � 2j�
 �j:

If � > 0 the same argument works with the roles of � and � interchanged.
Now let � ¼ 0. Let u ¼ ðy; zÞ 2 BðG0Þ, so thatmaxfjjyjj; jjzjjg � 1. Let � > 0 and let

x 2 X be such that �x ¼ z and jjxjj � ð1 þ �Þjjzjj. It is clear that ð�x þ y; zÞ 2 G� and

jju 
 ð�x þ y; zÞjj � �jjxjj � �ð1 þ �Þ:

Taking the infimum over � > 0 we get distðu;G�Þ � �. Hence

distðu;BðG�ÞÞ � 2�:

This lemma has the following immediate consequence.

Corollary 4. 8�; � 2 ½0; 1� dKPðG�;G�Þ � 2j�
 �j.

To finish the proof of Proposition 3 it remains to observe that G1 is isometric
to X. &

6. Appendix. Real case estimate.

Proof of Theorem 3. We are going to follow the proof of Proposition 2. Let D be
any number satisfying D > dðX0;X1Þ. It is easy to see that in order to use the same
argument as in Proposition 2 it is enough to find a collection of real Banach spaces
X
 such that

dðX
;X0Þ � D
; ð3Þ

dðX
;X1Þ � D1

; ð4Þ

dKðX
;X�Þ � 2hð
; �Þ: ð5Þ

Let J : X0 ! X1 be a linear operator satisfying jjJjj � 1 and jjJ
1jj < D. Let X C
0 and

X C
1 be the complexifications of X0 and X1 and J C be the complexification of J (see the

definitions preceding Lemma 2). By Lemma 2 we have jjJ Cjj � 1 and jjðJ CÞ
1
jj < D.

We identify x 2 X C
0 with T Cx 2 X C

1 . With this identification ðX C
0 ;X

C
1 Þ becomes

a compatible couple (interpolation pair) of complex Banach spaces. We denote this
couple by �XX. Observe that

x 2 X0 , T Cx 2 X1:
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Hence X0 and X1 are identical as real linear subspaces of �XX. We denote the
corresponding linear subspace of �XX by X and call it the real part of �XX.

For couples of the described form we introduce the following modification of
the complex interpolation method. Consider Banach couples �AA ¼ ðA0;A1Þ of com-
plex spaces satisfying the following conditions:

(i) the spaces A0 and A1 are the complexifications of real Banach spaces P0

and P1 respectively,
(ii) there exists an isomorphism T : P0 ! P1 such that the couple �AA is obtained

by identification of elements of A0 and their images under T C.
Hence A0 and A1 are identical as linear spaces. We denote this linear space by A.

An A-valued function will be called bounded (continuous) if it is bounded (continuous)
as a function into A0 or A1 (these notions coincide because T C is an isomorphism). A
function from an open region in C into A will be called analytic, if it is analytic as a
function with values in A0 (or A1, these notions coincide). The real part of �AA will be
denoted by P.

Let Rð �AAÞ be the real Banach space consisting of all A-valued bounded con-
tinuous functions on � :¼ fz : 0 � <z � 1g satisfying the conditions:

(a) f is analytic in fz : 0 < <z < 1g,
(b) fð
Þ 2 P for every 0 � 
 � 1,
(c) jj f jjRð �AAÞ ¼ maxfsup	2R jj f ði	ÞjjA0

; sup	2R jj f ð1 þ i	ÞjjA1
g,

(c) limjzj!1; z2� f ðzÞ ¼ 0.

Comment. The conditions (a), (c) and (d) are the same as in Calderón’s con-
struction. The condition (b) is needed in order to prove the inequality (5).

Now we introduce the real Banach space P
, 0 < 
 < 1, as the linear space P
endowed with the norm

jjxjj
 ¼ inffjj f jjRð �AAÞ : fð
Þ ¼ xg:

We need the following analogue of a result of A. P. Calderón.
Let �AA and �BB be two pairs of the described type with the real parts P and R

respectively. Let T : P ! R be such that

jjTjjP0!R0
¼ M0

and

jjTjjP1!R1
¼ M1:

Then

jjTjjP
!R

� M1



0 M

1: ð6Þ

To prove (6) we observe that the function Mz
1
0 M
z

1 is real-valued on the real line,
and TCðPÞ ¼ R. Hence

gðzÞ :¼ Mz
1
0 M
z

1 T Cð f ðzÞÞ 2 Rð �BBÞ

provided that f 2 Rð �AAÞ. By Lemma 2 jjT CjjA0!B0
¼ jjTjjP0!R0

and jjT CjjA1!B1
¼

jjTjjP1!R1
. Therefore the inequality (6) can be proved using the well-known argument.

(See [7, p. 129] and [3, p. 88].)
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The following fact is obvious: if T : P0 ! P1 is an isometry, then the norms of
all spaces P
 are the same.

Using this fact and the estimate (6) we get (3) and (4).
To derive (5) from the argument of [16] (see pp. 35–36) it is enough to observe

that the space Rð �AAÞ is invariant under multiplication of functions of the form

 
ðzÞ ¼
sinð�ðz 
 
Þ=2Þ

sinð�ðz þ 
Þ=2Þ
;

and jj 
 f jjRð �AAÞ ¼ jj f jjRð �AAÞ.
This observation immediately follows from the fact that  
 is a conformal

mapping of the strip onto the unit disk in C and because  
 is real on ½0; 1�. &
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