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Abstract

A submonoid S of a monoid M is said to be cofull if it contains the group of units of M . We extract from
the work of Easdown, East and FitzGerald (2002) a sufficient condition for a monoid to embed as a cofull
submonoid of the coset monoid of its group of units, and show further that this condition is necessary.
This yields a simple description of the class of finite monoids which embed in the coset monoids of their
group of units. We apply our results to give a simple proof of the result of McAlister [D. B. McAlister,
‘Embedding inverse semigroups in coset semigroups’, Semigroup Forum 20 (1980), 255–267] which
states that the symmetric inverse semigroup on a finite set X does not embed in the coset monoid of the
symmetric group on X . We also explore examples, which are necessarily infinite, of embeddings whose
images are not cofull.
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1. Cofull embeddings

In [5], Easdown et al. used groups of units and coset monoids to develop a theory of
factorizable inverse monoids which is dual to the classical construction of fundamental
inverse semigroups from semilattices. In the classical theory, an inverse subsemigroup
S of an inverse semigroup M is full if it contains the semilattice EM of idempotents of
M . If M is a monoid, then one also has the alternative group-theoretic point of view,
and may focus instead on the group G M of units of M , and say that a submonoid S of
M is cofull if S contains G M . In [5] it was shown that cofull inverse submonoids of
coset monoids (defined below) play a role which is dual to that played by full inverse
subsemigroups of the Munn inverse semigroup [13].

An inverse monoid M is factorizable if M = EM G M (= G M EM ). The study
of factorizable inverse monoids was initiated in [2]; for related studies see
[4–6, 8–10, 12, 16, 17] and references therein. Key examples of factorizable inverse
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monoids include finite symmetric inverse semigroups, as well as the so-called coset
monoids which we now describe. Let G be a group and denote by S(G) the join
semilattice of all subgroups of G. (The join H ∨ K of two subgroups H, K ∈ S(G)
is defined to be 〈H ∪ K 〉, the smallest subgroup of G containing HK .) Now let

C(G)= {Hg | H ∈ S(G), g ∈ G},

be the set of all cosets of all subgroups of G. An associative product ∗ is defined on
C(G), for H, K ∈ S(G) and g, l ∈ G, by

(Hg) ∗ (Kl)= (H ∨ gK g−1)gl,

the smallest coset of G containing HgKl. This operation turns C(G) into a factorizable
inverse monoid, with identity {1}, known as the coset monoid of G. Coset monoids
were introduced in [14, 15]; see also [8]. We now collect a number of elementary
properties of coset monoids which, along with other properties, were stated in [11].

LEMMA 1. Let G be a group. Then:
(i) EC(G) = S(G);
(ii) G C(G) = {{g} | g ∈ G} ∼= G; and
(iii) the subgroups of C(G) are precisely the sections of G. (A section of G is a

quotient of a subgroup of G.) 2

For g ∈ G write g = {g} and for S ⊆ G write S = {g | g ∈ S}. In particular, we
have G C(G) = G by Lemma 1(ii).

THEOREM 2 (McAlister [11]). Let X be a set. Then:
(i) the symmetric inverse semigroup I X embeds in the coset monoid C(GY ) of the

symmetric group GY where Y is any set with |Y | = |X | + 1; and
(ii) I X does not embed in C(G X ) if X is finite and nonempty. 2

It follows by Theorem 2(i) and the Wagner–Preston theorem that any inverse
monoid (indeed any inverse semigroup) embeds in the coset monoid of some group.
An interesting question that arises is ‘given an inverse monoid M, what minimal
features (such as cardinality) are required of a group G to ensure that an embedding1

M→ C(G) exists’? By Lemma 1(iii), G would at least have to contain a section
isomorphic to G M , so in particular the cardinality of G would be bounded below by
that of G M . Thus, another natural question arises: ‘which inverse monoids M embed
in C(G M )’? The goal of this article is to give necessary and sufficient conditions for
an inverse monoid M to embed as a cofull submonoid of C(G M ). This allows us to
give an answer to the second question, above, in the case that M is finite.

Let M be an inverse monoid and write E = EM and G = G M . For e ∈ E let

Ge = {g ∈ G | eg = e} = {g ∈ G | ge = e}.

1 Unless stated otherwise, all embeddings are assumed to be semigroup embeddings.
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It is easy to check that Ge is a subgroup of G, and that Ge ∨ G f ⊆ Ge f for each
e, f ∈ E . Define a map

ψM : E→ S(G) : e 7→ Ge for each e ∈ E .

Let C denote the class of factorizable inverse monoids M for whichψM is a semilattice
embedding; that is, ψM is injective, and Ge f = Ge ∨ G f for all e, f ∈ E . Motivating
examples of members of C include the merge and part braid monoid introduced
in [5] both geometrically (in terms of braids for which certain strings associated with
an equivalence class are allowed to interact) and algebraically (as a quotient of a
semidirect product of a semilattice of equivalence relations by the braid group), and
the largest factorizable inverse submonoid of the dual symmetric inverse monoid on a
finite set [9]. (See [5, Section 4] for proofs and details.) The recently discovered class
of dual reflection monoids [7] also belongs to C . We aim to show that membership
of C is a necessary and sufficient condition for a monoid M to embed as a cofull
submonoid of C(G M ). The following fact is well known and is implicit in [2].

LEMMA 3. Suppose that M is a factorizable inverse monoid. Then, for all e, f ∈ EM
and g, h ∈ G M ,

eg = f h ⇐⇒ e = f and gh−1
∈ Ge. 2

LEMMA 4. Any cofull submonoid of a factorizable inverse monoid is itself a
factorizable inverse monoid.

PROOF. Suppose that N is a cofull submonoid of a factorizable inverse monoid M ,
and choose m ∈ N . Then m = eg for some e ∈ EM and g ∈ G M . Since N is cofull,
we have g−1

∈ N and so m−1
= g−1e = g−1(eg)g−1

= g−1mg−1
∈ N , showing that

N is inverse. We also have e = mg−1
∈ N so that N is factorizable. 2

THEOREM 5. A monoid M embeds as a cofull submonoid of C(G M ) if and only if
M ∈ C .

PROOF. Write E = EM and G = G M , and suppose first that M ∈ C . Define
θ : M→ C(G) by eg 7→ Geg for e ∈ E and g ∈ G. Then θ is well defined by
Lemma 3, and injective since ψM is. That θ is a homomorphism follows from the rule
for ∗ in the coset monoid, and the facts that Ge f = Ge ∨ G f and g−1Geg = Gg−1eg
for all g ∈ G and e, f ∈ E . That Mθ is cofull follows from the fact that G1 = {1}
which shows that Gθ = G (using the notation defined after Lemma 1 ).

To show the converse it suffices, since C is clearly closed under isomorphisms, to
show that N ∈ C for every cofull submonoid N of C(G M ). Since N is a factorizable
inverse monoid by Lemma 4, it remains only to show that the map

ψN : EN → S(G N )

is an embedding. Now EN = S(G) ∩ N , and G N = G, since N is cofull. Furthermore,
if H ∈ EN , then HψN = H . It follows that ψN is an embedding since H ∨ K =
H ∨ K for any subgroups H , K ∈ S(G). 2

https://doi.org/10.1017/S1446788708000153 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000153


78 J. East [4]

REMARK 6. The sufficiency of Theorem 5 can also be deduced from [5, Theorem 3.2]
(although the reader should note that the injectivity of ψM is not part of the definition
of the class C used in [5]), or alternatively from [10, Theorems 3.1.5 and 4.2.3].

As a corollary, we have the following characterization for finite monoids.

THEOREM 7. A finite monoid M embeds in C(G M ) if and only if M ∈ C .

PROOF. Write G = G M and let 9 : M→ C(G) be an embedding. Now G9 is a
section of G by Lemma 1(iii) and, since G9 ∼= G is finite, we must have G9 =
G/{1} = G C(G). Thus 9 is cofull, and we are done by Theorem 5. 2

We now apply Theorem 7 to provide a short proof of Theorem 2(ii).

COROLLARY 8. Let X be a finite nonempty set. Then I X does not embed in C(G X ).

PROOF. Put G = G X = G I X and, for A ⊆ X , denote by idA the identity map
on A so that EI X = {idA | A ⊆ X}. For each A ⊆ X , we have G idA = {π ∈ G |
aπ = a (for all a ∈ A)}. We will denote this subgroup, the pointwise stabilizer of A,
by Stab(A). Now if x ∈ X , then Stab(X)= Stab(X \ {x})= {idX } so that ψI X is not
injective, and we are done by Theorem 7. 2

REMARK 9. If X is any (possibly infinite) set with |X | ≥ 2, then the map ψI X is not
even a homomorphism since if x, y ∈ X with x 6= y then, writing A = X \ {x} and
B = X \ {y},

G idA ∨ G idB = Stab(A) ∨ Stab(B)= Stab(A)= Stab(B)= {idX },

while the transposition which interchanges x and y is in

Stab(X \ {x, y})= Stab(A ∩ B)= G idA∩B = G idA◦ idB .

2. Other embeddings

In this final section we consider examples of factorizable inverse monoids M which
embed in C(G M ) but do not belong to C . These monoids are necessarily infinite and,
of course, the embeddings are not cofull.

EXAMPLE 1. Let X be an infinite set. Then the symmetric inverse semigroup I X does
not belong to C as noted in Remark 9. On the other hand, I X does embed in the coset
monoid of the symmetric group G X = G I X by Theorem 2(i).

Now I X (indeed EI X ) is uncountable for any infinite set X . Our second example
is a countable factorizable inverse monoid M for which |EM | = 3 and rank(G M )= 1.
(For a group G, rank(G) denotes the minimal cardinality of a set which generates G
as a group.)

EXAMPLE 2. Let G = 〈x〉 be the infinite cyclic group generated by x , and let G y be
the semigroup obtained by adjoining a zero y to G. Let M = (G y)z be the semigroup
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obtained by adjoing a new zero z to G y . It is easy to check that M is a factorizable
inverse monoid with G M = G and EM = {1, y, z}. We also have G y = Gz = G so
that M /∈ C . Now define

9 : M→ C(G) :


x 7→ {x2

},

y 7→ 〈x2
〉,

z 7→ G.

Then one may easily check that 9 is an embedding.

Our final example is also countable, but in this case we have |EM | = rank(G M )= 2.

EXAMPLE 3. Let G = 〈x, y〉 be the free group freely generated by {x, y}. Define a
homomorphism

ϕ : G→ G : x 7→ x2, y 7→ y2,

and put H = 〈x2, y2
〉, the image of ϕ. Let B = G/N where N is the normal closure

in G of {xyxy−1x−1 y−1
}. So B has the presentation 〈x, y | xyx = yxy〉 and is

isomorphic to the braid group on three strings; see [1]. It is well known that N x2

and N y2 generate a free subgroup of B of rank two; see for example [3]. It follows
that N ∩ H = {1}.

Now let E = {0, 1}, which we consider as a semilattice under multiplication, and
put M = E × G. So M is a factorizable inverse monoid with EM = (E, 1)∼= E and
G M = (1, G)∼= G. We see that M /∈ C since G(1,1) = G(0,1) = {(1, 1)}. Now define

9 : M→ C(G) :
{
(1, g) 7→ {gϕ} for all g ∈ G,

(0, g) 7→ N (gϕ) for all g ∈ G.

Then 9 is a homomorphism since N is normal in G and ϕ is a homomorphism.
To show that 9 is injective, suppose that e1, e2 ∈ E and g1, g2 ∈ G are such
that (e1, g1)9 = (e2, g2)9. Then we clearly must have e1 = e2. Suppose first
that e1 = e2 = 1. Then

{g1ϕ} = (e1, g1)9 = (e2, g2)9 = {g2ϕ}.

It then follows that g1 = g2, since ϕ is injective, and so (e1, g1)= (e2, g2). Finally,
suppose that e1 = e2 = 0. Then

N (g1ϕ)= (e1, g1)9 = (e2, g2)9 = N (g2ϕ),

from which it follows that (g1g−1
2 )ϕ = (g1ϕ)(g2ϕ)

−1
∈ N . But then (g1g−1

2 )ϕ = 1
since N ∩ H = {1}, and so g1g−1

2 = 1 since ϕ is injective, whence g1 = g2 and
(e1, g1)= (e2, g2). This completes the proof that 9 is injective.

While the monoids M considered in Examples 2 and 3 had different values of |EM |

and rank(G M ), they shared the property that |EM | + rank(G M )= 4. This number
turns out to be minimal among all such examples, as the next proposition demonstrates.
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PROPOSITION 10. Suppose that M /∈ C is a factorizable inverse monoid and that
there exists an embedding 9 : M→ C(G M ). Then |EM | + rank(G M )≥ 4.

PROOF. Write E = EM and G = G M and suppose that |E | + rank(G)≤ 3. Since
M /∈ C , we have |E | ≥ 2 and, since 9 is injective, we have rank(G)≥ 1. It then
follows that |E | = 2 and rank(G)= 1. Write E = {1, e} where 1 is the identity of M .
Since M /∈ C we must have Ge = {1}. Since M is infinite, G must be an infinite cyclic
group generated by an element x (say) and, since 9 is an embedding, we have x9
= {x i

} and e9 = 〈x j
〉 for some i, j ∈ Z \ {0}. But then ex j

6= e since Ge = {1}, yet

(ex j )9 = (e9) ∗ (x j9)= 〈x j
〉 ∗ {x i j

} = 〈x j
〉x i j
= 〈x j

〉 = e9,

contradicting the injectivity of 9. This completes the proof. 2
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