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Abstract

We investigate the identities which hold in the associated Lie rings of groups of prime exponent.
The multilinear identities which hold in these Lie rings are known, and it is conjectured that
all the identities which hold in these Lie rings are consequences of multilinear ones. This is
known to be the case for the associated Lie rings of two generator groups of exponent 5, and
we provide some additional evidence for the conjecture by confirming that it also holds true for
the associated Lie rings of three generator groups of exponent five.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 20 D 15, 17 B 60.

Introduction

One of Tim Wall's interests in recent years has been the study of the identities
which hold in the associated Lie rings of groups of prime exponent p . Sanov
[8] showed that if L is the associated Lie ring of a group of exponent p, then
L has characteristic p, and L satisfies the (p - 1)-Engel identity x~/~x =
0. Higman's solution [5] of the restricted Burnside problem for groups of
exponent 5, and Kostrikin's solution [7] of the restricted Burnside problem
for general prime exponent, are based on this fact. Higman proved that there
is an integer N such that if L is an r generator Lie ring of characteristic 5
satisfying the Engel identity xy4 = 0, then L is nilpotent of class at most
rN. Havas, Newman and Vaughan-Lee [3] have shown that it is possible
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to take N = 6 in Higman's theorem. Kostrikin [7] proved that if L is a
finitely generated Lie ring of characteristic p satisfying the Engel identity
jcy~' = 0, then L is nilpotent. (Kostrikin did not obtain a bound for
the nilpotency class in terms of the number of generators.) In particular,
if we let E(r, p) be the free r generator Lie ring in the variety of Lie
rings determined by the identities px = 0 and x ^ " 1 = 0, then E(r, p) is
nilpotent and hence finite. If G is any finite r generator group of exponent
p, and if L is the associated Lie ring of G, then G and L have the same
order and class. Furthermore, L is an r generator Lie ring satisfying the
identities px = 0, xyf ~' = 0. It follows that L is a homomorphic image
of the finite Lie ring E(r, p), and so the order of G is bounded by the order
of E{r, p). Thus there is a bound on the orders of finite r generator groups
of exponent p . This implies that there is a largest finite r generator group
of exponent p , R(r,p), with the property that any finite r generator group
of exponent p is a homomorphic image of R(r, p). To see this we let F(r)
be the free group of rank r, and we let M be the normal subgroup of F(r)
generated by {g1*: g e F(r)} . Then we let B(r, p) be the quotient group
F(r)/M. The group B{r,p) is known as the r generator Burnside group of
exponent p, and any r generator group of exponent p is a homomorphic
image of B(r, p). In particular any finite r generator group of exponent
p is isomomorphic to B(r,p)/L for some normal subgroup L of finite
index in B(r, p). Kostrikin's theorem implies that there is a bound on the
possible finite indexes of normal subgroups of B(r,p). We let K be a
normal subgroup of B{r,p) with maximal finite index and we let R(r,p) =
B(r, p)/K. If L is any normal subgroup of B(r, p) with finite index then
K n L is also a normal subgroup of finite index, and so, by the maximality
of the index of K, we have Kc\L = K. This implies that K < L and hence
that B(r,p)/L is a homomorphic image of R(r,p). As we shall see in
Section 1, B(r,p) and R{r,p) have the same associated Lie ring, which we
denote by L(r, p). The remarks above imply that L{r, p) is a homomorphic
image of E(r, p), and Sanov asked whether L{r, p) = E(r, p) for all r and
p. The Lie ring E(r, 2) is abelian (that is, nilpotent of class 1) for all r,
and so it is trivial to see that L(r, 2) = E(r, 2) for all r. It is also easy
to see that E{2, 3) is nilpotent of class 2, and that E(r, 3) is nilpotent of
class 3 for r > 3 . It follows from this that L(r, 3) = E(r, 3) for all r .
But in 1973 Wall [11] found a new identity which holds in the associated
Lie rings of groups of exponent p , and he showed that if p = 5 or p — 7
and if r > 3 then E(r, p) does not satisfy this new identity. Huhro [6]
showed that E(2, 7) does not satisfy Wall's identity. Thus L(r,p) is a
proper homomorphic image of E(r, p) for r = 2 and p = 7, and for r > 3
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and p = 5, 7. On the other hand, Havas, Wall, and Wamsley [4] have
shown that L(2, 5) = E(2, 5). In 1984 I found a sequence of multilinear
identities Kn — 0 (n > p) which hold in the associated Lie rings of groups of
exponent p. These identities are described in [9], where it is proved that any
multilinear identity which holds in the associated Lie ring of every group of
exponent p must be a consequence of the identities Kn = 0 (n > p) and the
identity px = 0. The Engel identity xyp~ = 0 is equivalent to a multilinear
identity in characteristic p, and Wall's identity is also multilinear. So if
we let W(r, p) be the free r generator Lie algebra in the variety of Lie
algebras determined by the identities Kn — 0, px — 0 then L(r,p) is a
homomorphic image of W{r, p), which in its turn is a homomorphic image
of E(r, p). It seems natural to conjecture that L(r, p) — W{r, p) for all r
and p, and we provide some slight evidence for this conjecture by proving
the following theorem.

THEOREM 1. L{3, 5) = W{7>, 5).

Havas, Newman, and Vaughan-Lee [3] have computed the order and class
of W(3, 5) and shown these to be 52282 and 17 respectively. So we obtain
the following theorem as a corollary to Theorem 1.

THEOREM 2. R(3, 5) and L(3, 5) have order 52282 and class 17.

1. The associated Lie ring of a group

Let G be a group. Then we define the lower central series

yx > y2 > • • • > r,•> • • •

of G as follows. We let yx = G, and for / > 1 we let yi+i be the subgroup
of G generated by {[g, h]: g e yt,h £ G}. For / = 1 , 2 , . . . we let
Lj = yi/Vi+i • We think of Lt as a Z-module and we let

1=1

Note that if G has exponent p then the quotients yj/yi+l are elementary
abelian, and so L has characteristic p . If a = gyi+l € Lt and b = hyj+l e
L then we define the Lie product ab of a and ft in L by setting
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We extend this Lie product to the whole of L by linearity, and this turns
L into a Lie ring, the associated Lie ring of G. Since L — ®L(. and
LiLj < Li+j, L is a graded Lie ring. It also satisfies the additional property
that LjLl = Li+{ for / = 1, 2, . . . , reflecting the fact that [y(, y{] = yj+l

for i = 1, 2 , . . . . This means that if some subset of L, generates L, as a
Z-module, then the same subset generates L as a Lie ring. Thus if G is an
r generator group then its associated Lie ring L is an r generator Lie ring,
and we can express L as a quotient Lie ring A/J, where A is the free Lie
ring of rank r and where J is some ideal of A. The free Lie ring A is also
graded. That is,

A = A, © A2 © • • • © A,. © • • • .

where A,.A. < A,. .. In addition A;A, = A/+1 for all / . So we can express
L as a quotient A/J for some graded ideal

/ — 7 fn T ffi>...fR T CD . . .
J U I \U •* •} M7 SI? • / • U7 ,

and Lt — AJJj for / = 1, 2, . . . .
If G is a finite />-group then G is nilpotent, and G has the same order

and class as its associated Lie ring L. Recall that R(r, p) was defined to
be B{r, p)/K, where K is the normal subgroup of B{r, p) with maximal
finite index. If yt is any term of the lower central series of B(r,p) then
B(r, p)lyt is a finite group and so ^ < yt. On the other hand B(r, p)/K is
a finite p-group and so is nilpotent, and this implies that yt < K for some
i. So there is some integer i such that y. = K for all j > i. This implies
that B(r, p) and R(r, p) have the same associated Lie ring L(r, p), and
that L(r, p) has the same order and class as R(r, p). We express L(r, p)
as a quotient A/J for some graded ideal J of A, as above.

2. Gradings and multigradings

The free Lie ring A of rank r is a graded Lie ring, as we described
in the last section. But it is also possible to define a multigrading on A .
Suppose that the free generators of A are JC, , x2, ..., xr. Then A( is
spanned as a Z-module by the Lie products y{y2 • • yt with y , , y2, ... , y, €
{xt, x2, ... , xr} . We assign a multiweight (wi, w2, ... , wr) to the product
y{y2 •yi where (for each j = 1,2, ..., r)Wj is the number of times Xj oc-
curs in the sequence yl,y2, ••• ,yt- Thus xx has multiweight ( 1 , 0 , . . . , 0 ) ,
and JCjJtjJtj has multiweight (0, 1, 2 , 0 , . . . , 0 ) , and so on. For each pos-
sible multiweight w we let Aw be the multihomogeneous component of A
spanned as a Z-module by Lie products yxy2.. .y( with multiweight w. So

A = 0A w ,
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where the direct sum is taken over all possible multiweights. If u and v
are any two multiweights then A ^ < Au+V, with addition of multiweights
defined componentwise.

The Lie rings E(r, p) and W(r, p) are also multigraded. (As we shall
see later it is still an open question whether L{r, p) is always multigraded.)
The Lie ring E{r,p) is the free Lie ring of rank r in the variety of Lie rings
determined by the identities px — 0, xyf'1 — 0, and W(r, p) is the free
Lie ring of rank r in the variety of Lie rings determined by the identities
px — 0, Kn — 0 (n > p). The precise form of the identities Kn — 0
does not concern us here, but for completeness we include a description of
them. The reader is referred to [9] for details. First we need to introduce
some notation. If ax, a2, ... , an,b are elements of a Lie ring L, and if
S — {i, j , ... , k} is a subset of {1, 2 , . . . , « } with i < j < ••• < k, then
we let

(Here, and throughout this article, we are adopting a left-normed conven-
t i o n , s o t h a t baiai •••alc = (••• ((ba^Oj) • • • )ak .) N o t e t h a t t h e e l e m e n t bas

depends only on the elements ax, a2, ... , an , b and on the subset 5 , but
that its definition exploits the fact that 5 has a natural ordering. Now we let
xl, x2, ... be free generators of a free Lie ring of countably infinite rank,
and for n >p - 1 we let Kn+l(xl, x2,... , xn+l) be the element

+lXS(l)XS(2) ' ' 'XS(p-l) '

where the summation is taken over all ordered sequences of disjoint non-
empty subsets S( 1), S(2), ... , S(p - 1) with the property that S( 1) U5(2) U
•••\jS(p- 1) = {1, 2, . . . , « } . (Each partition of {1, 2, . . . , « } into p- 1
disjoint non-empty subsets contributes (p - 1)! terms to the sum, as the
subsets in the partition are permuted among themselves.) Note that if n <
p-1 then the summation is empty, and so Kn+l = 0 for n < p-1. Note also
that if n = p - 1 then the subsets 5(1), 5(2) , ... ,S(p-l) in any term of
the summation must all be one element subsets, and so K (xx, x2, ... , x )
can be expressed in the form

XpXo(l)Xa(2) • "Xa(p-\) '

with the summation taken over all permutations a o f { l , 2 , . . . , p - l } .
Thus Kp(y,y, ... ,y,x) = (p - 1 ) ! * ; / " ' , so that the identities px = 0 ,
K = 0 imply the (p - 1)-Engel identity. On the other hand if we substitute

xp for x and x{ + x2 H h x p _ , for y in x y ~ ' , expand, and pick out
the terms which are multilinear in xx, x2, ... , x then we obtain K . So
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the two identities px = 0, x y ~ l = 0 are equivalent to the two identities
px = Q, Kp = 0.

The Lie ring W(r, p) can be expressed in the form A/(pA + / ) , where /
is the ideal of A generated by elements of the form

Kn{ax ,a2,...,an) (n>p,a{,a2,...,aneA).

As we showed in [9], if we pick a subset B of A which spans A as a Z-
module, then / is spanned as a Z-module by elements of the form

Kn(a{ ,a2,...,an) {n >p, a , , a2,..., ane B).

Provided B consists only of multihomogeneous elements (such as products
y{y2 •yi with y , , y2, ... , y. G {x,, x2, ..., xr}) then this spanning set for
/ also consists only of multihomogeneous elements, and so / and pA + I
are multigraded ideals of A. It follows that W(r,p) is also multigraded.
Similarly, E(r, p) can be expressed in the form A/(/?A + E), where E is
the ideal of spanned as a Z-module by the elements

Kp{ax ,a2,...,ap) ( a , , a2, ... , ap<=B).

So E(r, p) is also multigraded.
On the other hand, although L(r,p) can be expressed as a quotient A/J

for some graded ideal J of A, it is not known whether / is always multi-
graded, and so it is not know whether L(r, p) is multigraded. Nevertheless
L(r, p) does have a graded structure only slightly weaker than a multigrad-
ing. Wall [12] calls it a functional grading. To see how this functional grad-
ing arises it is convenient to express L(r, p) as a quotient W(r, p)/K, for
some graded ideal K of W(r, p). First we define the functional grading on
W(r, p), using the fact that W{r, p) is multigraded.

We define an equivalence relation on the set of all possible multiweights
by setting

( M , , U 2 , ... , u r ) ~ ( u , , v 2 , ... , v r )

if J2M,r = X)vi a n d if for each / = 1, 2,... , r either u{ = vt — 0 or «(

and vt are non-zero and ut — vt modulo p - 1. If w is a multiweight then
we let [w] be the equivalence class of w under this equivalence relation. We
let W^ be the multihomogeneous component of W{r, p) of multiweight w,
and we let W[w, be the sum of all the multihomogeneous components Wy

of W{r,p) such that v ~ w. Clearly W{r,p) is the direct sum of the
components W[w], and W[u] W[y] < W[a+Y] for all multiweights u and v. So
W{r, p) admits this functional grading, and we show that the ideal K also
admits it, so that the functional grading on W(r, p) induces a grading on
L(r,p).
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We let W( be the homogeneous component of W{r, p) of weight / , and
we let Kj be the homogeneous component of K of weight i. So, letting
Lt be the homogeneous component of L(r,p) of weight i, we have L; =
Wi/Ki. (Sanov [8] proved that Kt, = {0} for i = 1,2, ... , 2p - 2, and
Wall [11] proved that K2pl — {0} .) Any Z-module endomorphism of W{

induces a Lie ring endomorphism of W(r, p). (This is because W(r, p)
is a free Lie ring in the variety of Lie rings determined by the identities
px = 0, Kn = 0, and because the free generators of W{r, p) generate
W{ as a Z-module.) Similarly Z-module endomorphisms of L{ induce Lie
ring endomorphisms of L(r, p). To see this, suppose that xx, x2, ... ,xr

g e n e r a t e B ( r , p ) a n d s u p p o s e t h a t at = x t y 2 e L x f o r i = 1,2, ... , r.
Let a be a Z-module endomorphism of L{, and let bt = ata for i =
1,2,... , r. Pick elements y{, y2, ... , yr in B(r, p) such that bi = yty2

for / = 1, 2, . . . , r, and let ft be the endomorphism of B(r, p) which maps
xt Xo y{ for i — 1, 2, . . . , r. Then 0 induces endomorphisms on the terms
of the lower central series of B(r, p), and so /? induces an endomorphism
8 of L{r, p). Clearly a is the restriction of 8 to Lx .

So if a is any Z-module endomorphism of Wl then a induces an en-
domorphism 8 of W{r,p). Identifying W{ with L{, a also induces an
endomorphism of L(r, p), and it follows that the ideal K of W(r, p) is
invariant under the action of 8. We use this fact to show that K admits the
functional grading of W(r, p).

We need to show that AT is a sum of components of the form K n W[w].
Since K is graded it is sufficient to show that each of the homogeneous
components Kt of K is a sum of components of the form Ki n W... So let
a e Kr Then a can be expressed as a sum of products of the form y{y2 • • -yt

with yx,y2,... ,yt elements of the free generating set {xx, x2, ... , xr) for
W(r, p). We express a in the form

where a0 is a sum of products y 1 JV-} ' , which do not involve x{, and
where (for j — 1, 2, . . . , p - 1) a^ is a sum of products yxy2 •••yi which
have multiweight (wl, w2,... , wr) with w{ > 0 and w{ = j modulo
p - 1. We show that a, e Kf for j = 0, 1, . . . , p - 1. First let 8 be the
endomorphism of W{r, p) which maps x, to 0 and maps xk to xk for
k = 2 , 3 , . . . , r. Then Kfi < Kt, and so a0 = a8 e Kr This implies
that b — ax + a2 -\ 1- ap_l e K{. Next let n be any integer in the range
1 < n < p - 1, and let 8n be the endomorphism of W(r, p) which maps
JC, to nxx and maps xk to ^ for k = 2, 3, . . . , r. Then using the fact
that W{r, p) has characteristic p we see that

bdn = nax + na2 + ••• + np~2ap_2 + ap_x e Kr

https://doi.org/10.1017/S1446788700032407 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700032407


[8] Lie rings 393

Once more using the fact that W(r,p) has characteristic p, we see that
flpfl2,..., ap_x lie in the linear span of bdl, bd2, ... , bdp_l, and so
ax,a2,..., ap_{ a l l l ie i n Kt. W e r e f e r t o aQ, ax, ... , ap_{ a s t h e c o m p o -
nents of a which are p-homogeneous in x{. We can then apply the same ar-
gument with the generator x2 to each of the components a0, a, , . . . , ap_x,
expressing each of them as a sum of components which lie in Kt and are
p-homogeneous in x2 . Repeating this argument for each of the generators of
W(r, p) we eventually obtain an expression for a as a sum of components
each of which lies in Kt, and each of which is ^-homogeneous in all of the
generators of W(r, p). Each of these components lies in ff|w] for some w.
This completes the proof that K admits the functional grading on W(r,p).

3. Proof of Theorem 1

The most straightforward way to prove Theorem 1 would be to use the
nilpotent quotient algorithm for groups to compute the order of R(3, 5).
If the computation showed that the order was 52282 then this would pro-
vide a proof that L(3, 5) = W{3, 5). On the other hand if the computa-
tion showed that the order was less than 52282 then this would provide a
proof that L(3,5) is a proper quotient of W{3, 5). However computing
R(3, 5) would entail many, many hours of CPU time and so it is worth in-
vestigating how the theory of Sections 1 and 2 can be used to simplify the
computation required. This theory implies that L{3, 5) can be expressed as
a quotient W{3, 5)1 K for some functionally graded ideal K of W(3, 5).
To prove Theorem 1, we need to show that K = {0}, and to this end it
is sufficient to show that K( n W^j = {0} for all / and all multiweights
w. For p = 5, Sanov's result mentioned above implies that K( — {0} for
i = 1, 2 , . . . , 8, and Wall's result implies that K9 = {0} . Wall [12] pro-
vided a general criterion which (when satisfied) implies that Kt = {0} for
1 < i < 3/7 — 3 . Havas, Newman, and Vaughan-Lee [3] confirmed that this
criterion is satisfied for r = 3, p — 5, and so Wall's result implies that
Kt = {0} for i = 1, 2, . . . , 12. It was also shown in [3] that the multi-
homogeneous component Wv of W{r, 5) is trivial if any of the entries in
w exceeds 6. Furthermore the computation of W{3, 5) in [3] showed that
it has class 17, which implies that its multihomogeneous component with
multiweight ( 6 , 6 , 6 ) is trivial. So to prove Theorem 1 it is sufficient to
prove that Ki n W[v] = {0} when 13 < i < 17 and when w = (a, b, c) with
0<a,b,c < 6, a + b + c= i.

First consider the case when / = 17. There are three multiweights to
consider: ( 6 , 6 , 5 ) , ( 6 , 5 , 6 ) , ( 5 , 6 , 6 ) . These three multiweights lie in
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different equivalence classes under the functional equivalence relation de-
scribed in Section 2, and so if Kl7 were non-trivial it would have non-
trivial intersection with one of the three multihomogeneous components of
W(3, 5) corresponding to these multiweights. But these three multihomo-
geneous components of W(3, 5) all have order 5, and so if Kl7 had non-
trivial intersection with one of these components then it would contain the
whole component. But then, applying automorphisms of W(S, 5) induced
by permutations of the generators, we would see that Kxl contained all three
components W,b 6 5 ) , W.6 5 6 ) , W,5 6 6 ) . So if Kxl were non-trivial then
it would equal the whole of Wxl, and this would imply that R(3, 5) had
class at most 16. So to prove tht KX1 = {0} it is sufficient to establish the
existence of some finite 3 generator group of exponent 5 with class 17.

Next consider the case when i = 16. The components of W with multi-
weight ( 6 , 6 , 4 ) , ( 6 , 4 , 6 ) , ( 4 , 6 , 6 ) are all trivial and so once again there
are only three multiweights to consider: ( 6 , 5 , 5 ) , ( 5 , 6 , 5 ) , ( 5 , 5 , 6 ) .
These three multiweights also lie in different equivalence classes under the
functional equivalence relation defined above, and the corresponding multi-
homogeneous components of W{5, 5) also all have order 5. So, as in the
case above, to prove that Kl6 = {0} it is sufficient to establish the existence
of some finite 3 generator group of exponent 5 with class 16.

The case when / = 15 is somewhat different. There are 10 multiweights to
consider: ( 6 , 6 , 3 ) , ( 6 , 3 , 6 ) , ( 3 , 6 , 6 ) , ( 6 , 5 , 4 ) , ( 6 , 4 , 5 ) , ( 5 , 6 , 4 ) ,
( 5 , 4 , 6 ) , ( 4 , 6 , 5 ) , ( 4 , 5 , 6 ) , ( 5 , 5 , 5 ) . Once again, these multiweights
all lie in different equivalence classes under the equivalence relation defined
above. The multihomogeneous components of W(3, 5) corresponding to the
first 3 of these multiweights are all trivial, and the components corresponding
to the next 6 all have order 5. The component W,5 5 5) has order 25. The
argument used asbove for the cases i = 16, 17 does not work here, but
(using the presentation of W(h, 5)) we easily see that if a is a non-trivial
element of Wl5 then ab is a nontrivial element of Wl6 for some b € Wx

(in other words Wl5 has trivial intersection with the centre of W(2>, 5)). So
if Kl5 were non-trivial then Kl6 would also be non-trivial, and so using the
case / = 16 above we see that to show that Kl5 is trivial it is sufficient to
establish the existence of some finite 3 generator group of exponent 5 with
class 16.

The arguments used above for i — 15, 16, 17 no longer apply for / =
13, 14. For example, the three multiweights ( 6 , 6 , 2 ) , ( 6 , 2 , 6 ) , (2 ,6 ,6 )
are equivalent under the functional equivalence relation, and the correspond-
ing multihomogeneous components of W(3, 5) are non-trivial and lie in the
centre of W(3, 5). Nevertheless it is possible to show that L(3, 5) does not
satisfy any new relation involving these multiweights without computing the
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full class 14 quotient of 7? (3, 5). We can define the multiweight of a group
commutator [>>,, y2,... , yt] in 7?(3, 5) in the same way as we define the
multiweight of a Lie product yxy2 ...yj in W(3, 5). If (a, b, c) is a mul-
tiweight we let N(a ,b,c) be the normal subgroup of 7?(3, 5) generated by
commutators with multiweight (d, e, f) where d>a or e>b or f>c.
The Canberra version of the nilpotent quotient algorithm has an option which
makes it possible to compute the quotient group 7?(3, 5)/N(a, b, c) for any
multiweight (a,b,c). The group R(3, 5)/N(6, 6, 2) has class at most 14,
and if it has non-trivial commutators of weight 14 then these must have mul-
tiweight (6, 6, 2). So to show that L(3, 5) does not satisfy any new relation
involving products in W(3, 5) with multiweight ( 6 , 6 , 2 ) it is sufficient to
show that the 14th term of the lower central series of 7?(3, 5)/N(6, 6, 2)
has the same order as W,6 6 2 ) . (It should be noted that the computing re-
sources required to compute R(3, 5)/N(6, 6, 2) are considerably less than
those required to compute R(3, 5).) In this way it would be possible to per-
form a number of relatively short computations to show that Kl3 and Kl4

are trivial. We could then complete the proof that K = {0} by establishing
the existence of a finite 3 generator group of exponent 5 with class 17.

In the event, I combined these two approaches into one single compu-
tation. I used the Canberra version of the nilpotent quotient algorithm to
compute R(3, 5)/N(5,6,6). The computation gave a presentation for a
three generator group G of exponent 5 with class 17 and order 52180. I also
computed the quotient W{3, 5) / / (5, 6 , 6 ) , where 7(5, 6,6) is the ideal
of W(3, 5) generated by products with multiweight (d, e, / ) with d > 5.
This Lie ring also has class 17 and order 52180 and it can be shown that it is
the associated Lie ring of G. (A presentation for the associated Lie ring of
G can be read off from the power commutator presentation obtained for G.
The Lie ring presentation obtained in this way is identical to the presentation
given for W{3, 6 ) / / (5 ,6 ,6 ) by the nilpotent quotient algorithm for graded
Lie rings.) It follows from this that K < 1(5, 6 , 6 ) . Now if v is a non-
trivial element of 7(5, 6, 6) then there is an automorphism 6 of W(3, 5)
induced by a permutation of its generators such that vd £ 7(5, 6, 6). Since
K6 = K this implies that K = {0} and that 7,(3, 5) = W{3, 5).

4. The computation

In this section we give some details of the computation. We assume that
the reader is familiar with the Canberra version of the nilpotent quotient
algorithm. We refer the reader to Havas and Newman [2] and Vaughan-Lee
[9] for a description of the algorithm.
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It might be thought that there was little to be gained in computing the
quotient R(3, 5)/N(5, 6, 6) rather than R(3, 5) itself, since their orders
are so close. In the event there probably was very little gain, and (as we
shall see) there was some disadvantage. The main problem with comput-
ing groups as large as these is the amount of memory required to store the
presentations. The presentation generated for R(3, 5)/N{5,6,6) takes up
18.4 megabytes of memory, and I estimate that a presentation for R{3, 5)
would take up about 22 megabytes of memory. At intermediate stages of the
computation much larger presentations can be generated. I estimate that the
standard version of the Canberra nilpotent quotient algorithm would gen-
erate intermediate presentations needing up to 75 megabytes of memory in
calculating R(3, 5)/N(5,6,6), and needing up to 100 megabytes in calcu-
lating R(3, 5). The computations described here were carried out with a
disk allocation of 25 megabytes, and it would probably not have been pos-
sible to compute R(3, 5) within that allocation. We describe below some
of the modifications which were made to the algorithm to save space and to
speed up the computation.

The algorithm was modified so that the 5th powers of the power-commu-
tator presentation generators were trivial in all presentations (including in-
termediate ones). This was achieved by not adding 'tails' to 5th powers when
going from one class to the next. The collection routine was modified to
exploit this, and a version of collection from the left was used in which the
5th powers of all power-commutator presentation generators were assumed
to be trivial. (See [10] for a description of collection from the left.)

Fifth powers of normal words on the generators were computed by for-
mula evaluation. The 5-covering group of R(2, 5) was computed, and
b~5a~5(ab)5 was calculated in this group (where a and b were the defin-
ing generators of the group). An expression for this element was obtained
as a product of commutators of weight 5 or more in a and b. This ex-
pression was used as a formula for computing 5th powers of words in the
power-commutator presentation generators. A normal word w — a" • • • a? ay

k

is expressed as a product uv where u - a" •••a? and v = ay
k. Then

v~5u~5(uv)5 is evaluated by substituting u for a and v for b in the
formula. The resulting normal word is then treated as an extra relator of
the group. The process is then iterated with u in place of w. (Since v
is a power of a power-commutator generator, v5 is always trivial.) In this
way the 5th power of w and of a number of subwords of w are factored
out of the group. This method is significantly faster than the method of
concatenating 5 copies of w , and collecting the resulting word.

The intermediate presentations generated by the algorithm were prevented
from growing too large as follows. When extending a class c- 1 presentation
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to a class c presentation, the Canberra NQA adds 'tails' to the commutators
in the presentation in descending order of weight. It first adds 'tails' to weight
c commutators, then performs the consistency checks of class c, then adds
'tails' to commutators of weight c - 1 and performs consistency checks of
class c - 1, then adds 'tails' to commutators of weight c — 2 and performs
consistency checks of class c - 2, and so on. But the standard Canberra
NQA does not eliminate redundant generators after each consistency check
as this is not normally necessary and can waste time. So the algorithm was
modified to perform these extra eliminations and cut down the size of the
presentations being generated. The algorithm was also modified to perform
some exponent checking after each consistency check. After the consistency
checks of class c — r were performed the 5th power evaluation formula was
applied to normal words a" ...a^ay

k where ak had weight c - r- 4 . Since
the formula only involves commutators of weight 5 or more, applying the
formula to normal words of this type only involves 'tails' of weight c - r or
more.

The normal words used to enforce exponent 5 were chosen in the follow-
ing way. The Felsch-Neubiiser algorithm [1] was used to compute a set of
representatives for the conjugacy classes of cyclic subgroups of the class 13
quotient of R(3, 5)/N(5,6,6). The Felsch-Neubiiser algorithm was not ap-
plied in full, so there was some redundancy in this set of representatives. The
set of normal words used to enforce exponent 5 was taken to be the subset
of this set of representatives consisting of words of weight at most 17. While
constructing the presentations at each class it was sufficient to use enough
normal words from this set to bring the order down to that predicted by the
Lie ring computations. In this way a presentation for a group G of class 17
and order 52180 was obtained. Next, letting x, y, z be the images in G of
the free generators of R{7>, 5), I checked that G admitted automorphisms
S and e given by xd — x, yd = yz, zd — z, and xe = x, ye — z ,
ze = y. (The automorphisms were chosen to correspond to the generators
[o !] > [?o] o f G L ( 2 ' 5) •) l t n e n confirmed that G had exponent 5 by
considering the action of the automorphism group (S, e) on the test set of
normal words previously obtained, and by evaluating the 5th power of one el-
ement out of each orbit of the test set under this action. All these 5th powers
were trivial, and so this confirmed that G had exponent 5. I then completed
the proof of Theorem 1 by verifying that W(3, 5) / / (5, 6, 6) was the associ-
ated Lie ring of G. The final stage of the computation would certainly have
been easier with a presentation for R(3, 5), since then I would have been
able to use automorphisms corresponding to generators of GL(3, 5). The
idea of using automorphisms was suggested to me by M. F. Newman, who
has used them in a similar way in computing groups of exponent 4.
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