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1. Introduction

As in [5] a parametric M-surface in Rk (where k ^ n) will be a pair
(/, Mn), consisting of a continuous mapping / of an oriented topological
manifold Mn into the euclidean &-space Rk. (/, Mn) is said to be closed if Mn

is compact. The main purpose of this paper is to use the method of [4] to
prove a general form of Cauchy's Integral Theorem (Theorem 5.3) for those
closed parametric ^-surfaces (/, Mn) in Rn+1, which have bounded variation
in the sense of [5] and for which f{Mn) has a finite Hausdorff w-measure.
As in [4], the proof is carried out by approximating the surface with a
simpler type of surface. However, when n > 1, a difficulty arises in that
there are entities, which occur in a natural way, but are not parametric
surfaces. We therefore introduce a concept which we call an S-system and
which forms a generalisation (see 2.2) of the type of closed parametric
n-surface that was studied in [5] II, 3 in connection with a proof of a Gauss-
Green Theorem. The surfaces of [5] II, 3 include those that are studied in
this paper.

Approximation theorems (4.2 and 4.3) are obtained for S-systems and
these are used to prove Cauchy's Theorem for S-systems. Cauchy's Theorem
for parametric surfaces is then derived by showing that the relevant closed
parametric ^-surface in Rn+1 is a particular case of an S-system.

The definitions used for parametric surfaces and their integrals are those
of [5]. It is regretted that on p. 616 of [5] we mentioned the possibility, that
a certain case of the surface integral of [5], might be equivalent to the
integral defined by L. Cesari in [11. This is incorrect, because equivalence
could occur with at most a particular case of the Cesari surface integral.

The following notational conventions are adopted. The interior, closure
and Frontier (or boundary) of a set A are denoted by, Int (A), A and Fr(^4).
Set complementation is denoted by ^ . 0 denotes the empty set. Distance
is denoted by d. Rk denotes the real euclidean &-space. If a; € Rk, then xt

represents the *th coordinate of x; (x){ is thus a mapping from Rk to R1.
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The norm \/{x\ + ' • ' -+- x\) of the point x of Rk is denoted by \\x\
Pf> (i = l, • • •, k -\- 1) denotes the projection from Rk+1 to Rk given byj

The term 'integrable' will be used in the sense that a function / is integrable
if it is measurable and |/| has a finite integral. Throughout the entire paper n
will be a fixed positive integer.

2. S- systems

2.1. DEFINITION. We denote by IF the Banach space whose points are
those real-valued functions on Rn+1 each of which is bounded and continuous
and whose norm is the norm of uniform convergence; i.e.,

= L.u.b. \f(x)\.

2.2. DEFINITION. By an 5-system we mean a pair consisting of a compact
subset K of Rn+1 and an integral-valued function u on Rn+1 ~ K and with
(K, u) possessing the following properties.

(i) The (n + 1)-dimensional Lebesgue measure of K is zero.
(ii) u is constant on each component of Rn+1 ~ K and is zero on the

unbounded component.
(iii) For each i = 1, • • •, n + 1, there exists a non-negative, extended

real valued, integrable function, e^y) on Rn, such that:
for every y e Rn and every finite sequence of points

xw, xa>, •--, xir) of Pi{y) n (Rn+1~K) with

one always has

X)) — u{xU))\ ^ ef(y).

We will say that a function e^y), satisfying 2.2 (iii), bounds the «th
multiplicity of the S-system.

Whenever a symbol — say E — is used to denote an S-system, then the
compact set and the integral valued function that comprise E will be
denoted by K(E) and uE respectively, or sometimes just by K and u.

If (/, Mn) is a closed parametric ^-surface in Rn+1 with bounded variation
and the (n + 1)-dimensional Lebesgue measure of f{Mn) equal to zero, then
it follows from [5] I 2.5 and 2.6 and II 3.5 and 1.10 that

{/(M«), u{f,M*,x)}

is an 5-system. Thus an 5-system forms a generalisation of this closed
parametric w-surface in Rn+1.
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[3] An n-dimensional analogue of Cauchy's integral theorem 173

2.3. DEFINITION. If E is an S-system and i = 1, • • •, n + 1, then we
denote by Yt(E), the subset of Rn consisting of those points y that have the
following property.

(i) For each point x of Pj1{y), there exists a A > 0 such that x is a point
of accumulation of each of the two sets

K(E)] n {£; | e

K(E)] n

and uE has constant values

and xt - A < £, < xt),

and x, < £,• < xt + A)

on each of these two sets.
It follows from 2.3 (i), 2.2 (ii) and the compactness of K(E), that
2.3.1. if yeY^E), then at(E,x) = pt(E,x) for all points x of P

except at most a finite number.

2.4. THEOREM. / / E is an S-system, then for each i = 1, 2, • • • , « + 1,
Rn ~ Yi(E) has zero measure.

PROOF. Assume i fixed and let et be an integrable function bounding the
tth multiplicity of E. Denote by Zt the set of all those points y of Rn for
which the subset {K(E) n Pj1 (y)}i of R1 has zero 1-mesaure. By 2.2 (i) and
Fubini's theorem, the w-measure of Rn ~ Zt is zero. Let y' e Zt~ (Yt n Z{)
and take an arbitrarily large positive integer r. For each point x of P^iy')
and each A > 0, x is a point of accumulation of each of the two sets

N_(x, X) =

2ST+(ajf A) =

K(E)] n

n

€ P?{y') and xt - A < £,. <
1 and ^ < | , < *, + A}

Therefore by 2.3, there exists a point x' of Pf
 x(y') and a j = -f, — such that

for no A > 0 is u constant on N^x', A). Hence one can choose a sequence
xwt xa)t ... ^(r) of points of P^ty) n {Rn+1 ~ K{E)} such that
sj0) < x™ < • • • < x[r) and w^0"1*) ^ u\x(i)) for / = 1, • • •, r. By 2.2. (iii)

which is evidently ^ r. Hence et{y') = oo and the set Zt ~ (Yt n Z{) has
zero measure. Then Rn ~ Yf has zero measure.

2.5. DEFINITION. If E is an S-system, then for each * = 1, • • •, n + 1 and
each y e Yt, we define

at{E, y)= , x) - &(£, x)\.

2.6. THEOREM. If E is an S-system, 1 ^ i ^ n + 1 and et bounds the ith

https://doi.org/10.1017/S1446788700025544 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700025544


174 J. H. Michael [4]

multiplicity of E, then

ai(E, y) ^ e{(y)
for all yeYt(E).

PROOF. Let y be an arbitrary point of Yt(E). Let

be the finite set of points of P^iy) at which <x.4(x) ^ &(#). We can assume
that r >̂ 1, because otherwise at(y) — 0 and is certainly less than or equal
to et(y). We can also assume that

*P} < *}*> < • < x<'K
It follows from 2.3 that one can now choose points

f w(r)

of Pr1(y) n {R^^KiE)} such that

v™ < x<P < u>™ < v™ < xW < W

and
u(v">) =

for ;' = 1, • • •, r. Then

= 2 l«(»ci)) - «(w(i))\
r

r-1

which by 2.2 (iii)

2.7 LEMMA. / / £ *'s an S-system and

I = {x; c1^x1< dx, c2 ^ x2 < dt, • • •, cn+1 ^ «n+1 < dn+1]

is a half-open interval of Rn+1, then for each i = 1,2, •' *,n + 1, the expression

where the summation is taken over all x el n Pj1{y), is integrable over Yt(E)
with respect to y. (Empty sums being regarded as zero).

PROOF. Assume * fixed. Denote by C the subset of R1 consisting of all
those real numbers c for which the set

Pt{x', xcK(E) and xt = c)

has its ^-dimensional measure equal to zero. By 2.2 (i), R1 ~ C has zero
measure.
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Let e{ be a function, integrable on Rn and bounding the *th multiplicity
of E.

(i) Suppose first of all, that c^dfcC.
Put

B = Pi{Fr(I)nK(E)}uFr{Pi(I)}.

Then B has its w-dimensional measure equal to zero. For each point y of Rn,
let f (y), rj(y) be the points of Pj1(y) whose *th coordinates are cit di respec-
tively. Then, for all y e Yt n {P,(J) ~ B},

(1) <p<(i,y) = «{W}-«{ri(y)}-
Now Pt{I) ~ B is an open set of Rn and it follows from 2.2 (ii), that u{g{y)}
and u{t)(y)} are both constant on each component of Pt{I) ~ B. Then
«{£ (y)} and u{rj(y)} are both measurable on Pt{I) ~ B. Therefore by 2.4 and
(1), <pt{I, y) is measurable on Y{ n {P{(I)~ B} and hence on Y{ r\ P{(I).
But (Pi{I,y) = 0 when y4Pt(I), so that <Pi{I,y) is measurable on Y<.
It follows immediately from 2.5 and 2.6, that

(2) l?«(/.y)l^<My)^««(y)
for all yeY<. Then ^ (7 , y) is integrable on Y,.

(ii) Now suppose that ct, dt are arbitrary. Since R1 ~ C has zero measure,
one can choose a monotone increasing sequence {c(r)} of members of C such
that

lim c(r) = ct

and a monotone increasing sequence {dir)} of members of C such that

c, <

for every r and

Define

7r = {a:; P,(a;) e P,(7) and

By (i), each <Pi(Ir, y) is integrable over Yt and we evidently have

l im^(7 r ,y) = <pt(I, y)
r—•oo

for all ye Y,. Since by (2),

for all y€Y4 and all f, it follows that (pt{I, y) is integrable over Y,.

2.8 THEOREM. 7/ E is an S-systetn, then for each * = 1, • • •, n + l »
««(£, y) is integrable over Yf{E) with respect to y.
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PROOF. Assume * fixed. For each positive integer r, denote by «^r, the
(countable) collection of all those half-open cubes of Rn+1, that have
the form

; S l 2 - ^ xx < (Sl + 1)2-, • • ., sw + 12- £ xn+1 < (sn+1 + 1)2-}

Si,-",sn+1 = 0, ± 1, ± 2 , ••-.

For each y e F { and each I e Sfr, define

where the summation is taken over all x e I n Pjx(y). By 2.7, each <Pi{I, y) is
integrable over Yit hence

vAv) = 2 Wi{i>y)\

is measurable over Yt. But

r—*-oo

for all ye Yit hence «j(£,«/) is measurable on Yt. By 2.6 and 2.2 (iii), it is
integrable on Yt.

2.9. DEFINITION. If E is an 5-system, then for each i — 1, • • •, n + 1 we
define

2.10. DEFINITION. If E is an 5-system and / is a real-valued function on
Rn+1, then we define for each i = 1, • • • , « + 1 and each y e Y^^1),

^ • ( ^ A y) = 2 ME, x) - ME, x)}f{x),
where the summation is taken over all x e P~1(y).

2 . 1 1 . T H E O R E M . If E is anS-system and f e SF, then for each i = 1, •••, n-\~\,
Hi{E, f, y) is integrable over Yt with respect to y.

PROOF. Assume i fixed. Since each member of J*" is bounded, there
exists a positive constant k such that

(1) \f{*)\<k

for all x e Rn+1. For each positive integer r, let Sfr have the same meaning
as in the proof of Theorem 2.8. For each xeRn+l and each positive integer
r, define

/,(*) = L.u.b.

where / is the member of Sfr that contains x. Then

Ht{Et /„ y) = 2 2 {«,-(*) - pt{z)}fr{x)
leyr

 1

= 2 [fr
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so that by 2.7, Ht(E, fr, y) is measurable on Yt. But for each point x of Rn+1,

l im/ , (*)=/(*) ,
r—»-oo

hence by 2.10,

UmHt{E,fr,y)=Ht(E,f,y).
r-*oo

Therefore Ht(E, f, y) is measurable on Yt with respect to y. It follows from
2.10 and (1), that

i.e. by 2.5,

for all y c Yt. Then by 2.8, Ht{E, f, y) is integrable on Yt with respect to y.

2.12. THEOREM. / / E is an S-system, if r is an integer and if we define

K(F) = K(E)

and

uF(x) = r • uB{x)

for all x € i?n+! ~K(F), then

F = {K(F),uF}
is an S-system.

PROOF. Properties 2.2 (i) and (ii) are evidently satisfied. If e{ is an inte-
grable function bounding the i th multiplicity of E and we define

fi(y) = re€(y),

then /, bounds the tth multiplicity of F.
2.13. THEOREM. If E and F are S-systems and if we define

K{G) = K(E) u K{F)

and

uo{x) = uE(x) + uF(x)

for X€Rn+1^K(G), then

G = {K(G), uG)

is an S-system.
PROOF. Properties 2.2 (i) and (ii) are evidently satisfied. Let et and /<

be integrable functions bounding the *th multiplicities of E and F. Define

gi = ei + fi.
Then gt is non-negative and integrable on Rn. If y e Rn and xl0), x{1), • • •, xlr)
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is a finite sequence of points of Pjx{y) n {Rn+1~K(G)} with

* j 0 ) < *<» < • • < *{'>,

then

Thus, the proof is complete.

2.14. THEOREM. / / E and F are S-systems such that uE and up are bounded
and if we define

K{G) = K(E) u K(F)

and

uG(x) = uE(x) ' uF(x)

for all xeR^^KiG), then

G = {K(G), uG}

is an S-system.

PROOF. Properties 2.2 (i) and (ii) are satisfied. Let k be a positive real
number such that

\uE(x)\ ^ k

for all a; € R
n+1 ~K(E) and

for all a; c Rn+1 ^K^). Suppose that et and f{ are integrable functions
bounding the ith. multiplicities of E and F. For each *'= 1, •••, n + 1,
define

Si = Hh + e4).

Then g{ is non-negative and integrable on Rn. liy eRn and x(0), x{1), • • •, x{r)

is a finite sequence of points of Pjx{y) r\ {Rn+1 ~K(G)} with

then
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= T \u (xu~

2 M*"-11) - «*(*W))I ^ Hfiiv) +

This completes the proof.

2.15. THEOREM. / / E is an S-system and f e &', then

\jY{{EHi(E,f,y)dy\^\\f\\Ai(E)

for each » = 1, • • • , « + L "
PROOF. For each y € Yt we have

\Ht(E, f, y)\ = | 2

Then

j' H{(E,f,y)dy ^ \\f\\ j y a^dy = \\f\\A,.

2.16. DEFINITION. If E is an S-system, then we define

O(E) = {x,X€ R^1 ~ K(E) and uE(x) ^ 0}.

As a consequence of 2.2 (ii) and the fact that K(E) is closed we have
2.16.1. O(E) is open.

2.17. THEOREM. / / E is an S-system, then K(E) u O(E) is compact.
PROOF. It follows from 2.2, that K(E) u O(E) is bounded and since it is

the complement of the open set

{x; x e R^1 ~K{E) and uE(x) = 0},

it is closed. Hence it is compact.

3. Continuous linear transformations.

In order to prove our approximation theorems in 4, we need to define
operations of addition and multiplication and thus construct a ring from the
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set Sf consisting of those S-systems E for which uE is bounded. It is not
possible to make S? itself into a ring, but one can construct a ring by
dividing SP into equivalence classes.

Instead of defining the operations between the equivalence classes, we
find it more convenient to represent each class by a continuous linear
transformation from & to Rn+1.

3.1. DEFINITION. We denote by ££, the real vector space of continuous
linear transformations from & to Rn+1. We define a norm for J? in the usual
way by putting for each L

\\L\\ = L.u.b. ||L(/)||,

where the least upper bound is taken over all f e ̂  for which ||/|| 5̂  1.
jSf thus becomes a Banach space.
If L € &, then for each * = 1, • • • , « + 1, we denote by Li the real

continuous linear functional on 3F, given by

3.2. DEFINITION. Let E be an S-system. For each fc^, put

and

Then L is a linear transformation from & to Rn+1 and it follows from 2.15
that for each /

\Lt{f)\ g At{E)
hence

[n+l

i-l

Thus L is continuous, hence L e J?.
We denote this member of JSf by £ or E".
It follows immediately from (1), that

3.2.1.

3.3. THEOREM. / / E and F are S-systems such that

£ = P,
then

uB(x) = uF{x)

for all x € Rn+X ~ {K(E) u K(F)}.
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PROOF. Let p be an arbitrary point of Rn+1 ^ {K(E) u K(F)}. We have
to show that

(1) uE(p) = uP(p).

There exists a point q in the unbounded components of Rn+1 ~K(E) and
such that

and

Pi < 9i-

Since K(E) and K(F) are closed, there exists an e > 0 such that the closed
spheres Sp, Sq with radii e and centres />, <? do not intersect K(E) or K(F).
By 2.2 (ii),

(2) uB(x) = WjB(/>), «,(*) = up{p)

for all a; € 5 , and

(3) uB{x) = uF{x) = 0

for all x e Sa. Define a function g on i?n + 1 by putting

g(x) = s - WP^x - p)\\ if H P ^ - f l l l ^ . and fc£*lSgtflf

= e — ||ic — ^ | | if ||a; — £ | | ^ e and a?j ̂  ^ l f

= e — \\x — q\\ if ||x —gr | | ^e and ^ ;> ̂ ^

= 0 for all other values of x.

Then g€^", hence by hypothesis,

But by 2.10

(5) Hx{Etity)= 2

for all y c Y ! ^ ) . Let

(6) B = {x;xcR*+\ | | P i ( a j - ^ ) | | ^ e and

Then

(7) g(x) = 0

for all x outside B u S , u S t , hence by (5)

(8) # i ( £ , g, y) = o

for all y € Y^E) for which ||y — Px{$)\\ > e.
By (2) and (3),
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for all xeSvv SQ, therefore when \\y — Px(p)\\ <L e, we have by (5) and (7

Ht(E, g,y) = 2 ME, x) - &(£, x)}{e - \\Px{x - p)\\),

hence by (2) and (3)

(9) # i (£> g> y) = UB<4>) { « - \\y - Pi

for all y e YX{E) for which \\y — Px[p)\\ ^ e.
Define a function A on i?w by putting

= 0 otherwise.

By (8) and (9),

Similarly,

By (10), the integral of h is not zero so that by (4),

uE{p) = uF(p).

Thus (1) is true.

3.4. THEOREM. / / E and F are S-systems such thai

uE{x) = uF(x)

for almost all x e i?n+1, then £ = P.
PROOF. Let B be a subset of Rn+1 with zero measure and such that

K(E) Q B, K(F) Q B

and
uE(x) = uF(x)

for all a; c Rn+1 ~ B. For each * = 1, • • • , « + 1, let Zt be the subset of
Yt[E) n Yt(F) consisting of all those points y for which {Pjx{y) nB}t has
its 1-dimensional measure equal to zero. Then Rn ~ Z{ has zero ^-measure.

If * is fixed, y e Zt and x € Pjx{y), then a; is a point of accumulation of each
of the two sets

C = {£; | € Pj^y), £4B a n d f, < x t } ,

D = {£; £ e Pj^y), £4B a n d f4 > z t } ,

hence there exists a point | ' € C such that
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and there exists a point £" e D such that

Therefore for each / e ̂  and y e Zit

= 2 , y M
F> *) - hi*, *))tt*) - Hi(F> f> y)>

hence

Thus

3.5. DEFINITION. Let ifc denote the subset of J£? consisting of all L for
which there exists an S-system E with £ = L.

The following theorem shows that j£?c is a module.

3.6. THEOREM. Let L, M e jS?e aw^ r fo an integer. Then

(i) L + M e ^ c ;
(ii) rLeSec;
(iii) *'/ JE1, F and G are S-systems such that

then

uG(x) = uE(x) + uF(x)

for almost all x c Rn+1)
(iv) if E, H are S-systems such that £ = L, S = rh, then

uH(x) = ruE(x)

for almost all x c Rn+1.
PROOF. Let E and F be S-systems such that £ — L, F = M. Define

(1) K(T) = K(E) u K(F)

and

(2) uT(x) = uE(x) + uF(x)

for aU xe Rn+1^K(T). By 2.13, T is an S-system. Let

(3) Z, = Yt(E) n Y€(F) n y,

for each i. li y e Zt and x e Pjx{y), then by (2)

(4) a<(T,a:) =
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and

(5) fit(T,x)=fit(E,x)+fit(F,x).
For each / e & and each y e Zt,

HAT, f , y ) = I {*t(T, x) - MT, x)}f(x),

which by (4) and (5)

= 2 {«,(£,*)-&(£,*)}/(*) + 2 {*t(F,x)-pt(F,x)}f(x).
xePrHv) »cP,-»(»)

so that

(6) Ht(T, /, y) = Ht(E, /, y) -f Ht(F, f, y).

Hence, for each % and each / e &',

= Et{f) + ftif) = (L + M)t{f).

Thus

(7) f = L + M

so that L + M €&e. Thus (i) is true.
If G is an 5-system such that # = L + M, then by (7), Q = f. Therefore,

by 3.3,

for almost all x e Rn+1; i.e., by (2)

uG(x) = uE(x) + uF(x)

for almost all re € Rn+1. Thus (iii) is proved.
To prove (ii) we define

(8) K(U) = K(E), and

(9) uv(x) = r • uE{x)

for all a; e Rn+1 ~ K(U). By 2.12, U is an 5-system. Similarly to the way in
which (6) was derived, we can show that

for each f e & and each yeY^E) n Yt(U); hence
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Thus

(10) 0 = rL

so that rL <•&<.. This completes the proof of (ii).
If H is an S-system such that ft = rL, then by (10), ft = V. Hence by

3.3 and (9),
uH{x) = ruE{x)

for almost all a; € Rn+1. Thus (iv) is proved.
3.7. DEFINITION. We denote by S£b the subclass of ££,. consisting of all L

with the following property:
3.7.1. there exists an S-system E such that uB is bounded and £ = L.
It follows from 3.7.1 and 3.3, that:

3.7.2. if L e £?b and E is any S-system with £ = L, then uE is bounded.
As a consequence of 3.6 (iii) and (iv), jSfb is a sub-module of J£?c.
We define a multiplication for £fb in the following way. Let L, M e £Pb

and let E, F be S-systems such that £ = L, P == M. Let G be an S-system
such that

(1) uG(x) = uE{x) - uF(x)

for almost all x e Rn+1. (By 2.14 at least one such G exists.) Put

L • M = G.

If E', F', G' are further 5-systems such that E' = L, F' — M and

(2) uG>(x) = uE'{x) - uF>(x)

for almost all x e Rn+1, then by 3.3

uE'{x) = uF(x), uF'(x) = uF(x)

for almost all x e Rn+1, hence by (1) and (2),

uG'{x) = uG{x)

for almost all x c Rn+1; therefore by 3.4,

#' = £.
Thus the definition of L • M does not depend on the choice of E, F or G.

The following theorem shows that &h is a commutative ring. Multiplica-
tion in j£?6 is not continuous.

3.8. THEOREM. / / L, M, N e&b, then

L- M = M -L,

L- (M-N) = (L • M) • N,
and

L- (M + N) =L- M + L-N.
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PROOF. Let E, F and G be 5-systems such that £ — L, F = M and

Let H be an 5-system such that

(1) uH{x) = uE{x) • uF{x)

for almost all x e Rn+1. Then

(2) uH{x) = uF{x) • uE{x)

for almost all a; € Rn+1. By (1) and (2)

L • M = H = M • L.

Let T be an S-system such that

(3) uT{x) = uE(x) • up(x) • uG(x)

for almost all x <• Rn+1. One can easily prove that

L • (M • N) = f = (L • M) - N.

Let U be an S-system such that

uv(x) = uE{x){uF{x) + uGlx)]
= uE{x)uF(x) + uE(x)uG(x)

for almost all x e Rn+1. Then

3.9. THEOREM. / / E is an S-system, f e 3F and f is constant on K{E), then

£{f) = o.

PROOF. By 2.10

(1) ^ ( £ , / , y ) = 2 {«,(*) - &(

for » = 1,- • • - , » + 1 and y c Yf(£). But by 2.3, a^a;) = /?,(*), when
x4K{E), hence by (1)

^<(^ A y) = 2 {«*(*) - A(*)}/(«).
where the summation is taken over all xeK(E) n P~1(y). But, if / has
the constant value b on K(E), then

= 0.
Then

so that £{f) = 0.
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3.10. THEOREM. / / E is an S-system, f c IF and k is a constant such that

\f{x)\^k

for all xeK{E), then

PROOF. AS in the proof of 3.9, we have for each y e Yt{E),

(i) #«(£J. sO = 2 W«) - M*)}/(*)
where the summation is taken over all x eK(E) n Pjx{y). But by Tietze's
Extension Theorem ([2] p. 80 or [3] p . 28) there exists a g e J such that

(2) g{x) = f{x)

for all xeK(E) and

(3)

for all x e Rn+\ By (1) and (2)

= Hi(E,g,y)

Thus

Uf) = Ei
hence

and by 3.1

3.11. DEFINITION. For each closed interval/, there is an S-system given by

K = Fr (/)

u{x) = 1 if x e Int(/)

= 0 if x e Rn+1 ~ I.

We denote this S-system, also by / .
Evidently

3.11.1. le&b.

3.12. THEOREM. / / / (1 ) , • • •, / ( r ) (r 2> 1) are c/osei intervals with mutually
disjoint interiors and if

/ = U /<»
is also a closed interval, then
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PROOF. We will have for

(1)

for all y€Yt(F^). But by 3.11 and 3.7, we have

(4) uM*) == 0

for all a; € R^1 ~ {7«> u K(F">)}f

(5)

for aU a; c Int (/<«) n [Rn+1 ~ {K(F<») u
and hence

(6)

whe
for almost all x € Rn+1. Let E be an S-system such that p ,

(2) £ = £/M ) .
By 3.6,

u fx) = yuw<x\ for

for almost ell x e Rn+1, hence by (1) ^

(3) ux{x) = «a(a;)

for almost all x. By (3) and 3.4, 1 = £, hence by (2) lt *

(8)

wh(

3.13. THEOREM. If E is an S-system such that

/or a// a? € Rn+1 ~ K(E) and if 7(1), • • •, 7(r) ( r ^ 1) are closed cubes with
mutually disjoint interiors, then

r n+1 r q-

PROOF. Since 1U)£ e J?j,, there exists for each / an S-system FU) such tha t

(1) i*(» = / < » £ . wh<

Let / be any member of & for which

(2) 11/11^1. so
Then (10

(3) #,(*">./.*)« 2 {«.(F«>,*)-A(FW *)
1
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for all xeRn+^KiFM). By (3) and (4)

where 2i and ^2 denote summation over all a; € Int(/W)) n Pjx{y) and
Fr(/<») n PrX(y) respectively, hence by (2), (5) and (6)

(7) \Hi{F™tf,y)\LZME>*)(UE,x)\ + {o JJ

for all y€Yi(F
{i)) nY^E), where the summation is taken over all

a?€lnt(/«>) n ^
Since

it follows from (1) and (7), that

(8) lU(i)£M/)l ^ 6?} + 2fc(edge of
where

(9) V} = Jy<(if){2 k ( £ . *) - /5t(£, x)|}iy,

the summation being taken over all x e Int (7(i)) r\P^1(y). Let

t7 = M Int (/<»).

Then by (9),

where the summation is over x e U n P^1^) ,

so that

(10)

It follows from (8) that

where 6<« = (6">, • • •, 6 ^ ) and >̂ = 2k (edge of /">)• . (1, 1, • • •, 1),
hence by (2) and 3.1,

n+X

|| J<'>£|| ^ ||6<«|| + ||/>||, ^ 2 &ij) + 2 «"£ (edge of

Then by (10),
r n+1 r

2 | | / w £ | | ^ lAtiE) + 2ny«^2 (edge of
i-X <-X i-X
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3.14. THEOREM. If E is an S-system with £ e S^h and I is a closed interval
of Rn+1 that does not intersect K(E), then

PROOF. Let F and G be S-systems such that

By 3.3 and 3.7,

(1) uF(x) = Uj(x) • uE{x)

for almost all x e Rn+1 and by 3.6 (iv)

(2) uG{x) = uE{I) - Uj{x)

for almost all x e Rn+1. By (1) and 3.11,

(3) uF{x) = uE(x)

for almost all x e Int(J) and

(4) uP(x) = 0

for almost all xeRn+1~I. It follows from (2) and 3.11 that

(5) uG(x) = uE(x)

for almost all x e Int(/) and

(6) uG(x) = 0

for almost all x e Rn+1 ~ I. By (3), (4), (5) and (6)

uF{x) = uG(x)

for almost all x e Rn+1, so that by 3.4, F = &.

3.15. THEOREM / / E is an S-system with E e 5Ph and I is a closed interval
of Rn+l containing K(E), then

!•£ = £.

PROOF. Let F be an S-system such that

(1) # = !•£.

Then by 3.3 and 3.7

uF(x) = u^x) • uE(x)

for almost all x e Rn+1. Hence by 3.11,

(2) uF{x) = uE(x)

for almost all #elnt(/) and

(3) uP{x)=0

for almost all x e Rn+1 ~ I.
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But since K(E) QI, it follows from 2.2 (ii) that

(4) uE(x) = 0

for all x e Rn+1 ~ I. As a consequence of (2), (3) and (4) we now have

uF(x) = uE(x)

for almost all x e R^1, so that by 3.4, F = £; i.e., by (1), £ = I • £.

4. Some approximation theorems

In 4 we prove some theorems which enable us to approximate a particular
S-system with a finite number of S-systems, each of which is the product of
an integer and an S-system corresponding to a cube. These theorems will be
used in 5 to prove Cauchy's theorem.

4.1. THEOREM. / / B is a compact non-empty subset of Rn+1 with a finite
Hausdorff n-nteasure A and if e is an arbitrary positive number, then there
exists a finite set

/ ( « , . . . , /<-> (r ^ 1)

of closed cubes of Rn+1 with mutually disjoint interiors and such that:

(i) the diameter of each I(i) is less than e;

(ii) B Q Int { y /<»}
i-i

and each Ili) intersects B;

(iii) J (edge of /<>>)" < M*»22n+M + 1.

PROOF. It follows from the definition of Hausdorff measure that there
exists a partition

B = # ! u B% u • • •

of B into a sequence (possibly infinite) of mutually disjoint subsets such that

(1) diameter of B, ^ 2-*n~v*e

for each s and

2~na(«) • (diameter of B8)
n <A + n-±n2-2 n-2,

where <x.(n) is the w-measure of the unit n-cell {x;xeRn and \\x\\ ^ 1}.
Since a cube of Rn with edge 2M-*4 can be included in this w-cell, cn(n) ̂  2nn~~*n

and therefore

(diameter of B,)n < n*nA + 2~2n~\

Each Bs can now be covered by an open set U, such that
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(2) diameter of U, < 2-1n-Vle

for each s and

(diameter of Us)
n — (diameter of Bt)

n < 2—-2n-2

for each s. Then

(3) 2 (diameter of Us)
n < n*nA + 2~2n-1.

Since B is compact one can choose a finite non-empty collection % from the
Ua's which covers B. For each U e <% one can choose an integer t(U) such
that

(4) 2-
tm~1 ^ diameter of U < 2~t(u).

For each integer s, let 5f, denote the collection consisting of all those
closed cubes of Rn+1 of the form

{x; W l 2 - ^ x, ^ K + 1)2-, • • •, wn+12- ^ xn+1 ^ (wn+1 + 1)2-}
wi> • ' ->wn+i= 0, ±1, ± 2, • • •.

For each U e <%, let «/(C/) be the collection consisting of those cubes of
Sft(V) that intersect U. By (4) the number of cubes in ./(£/) is ^ 2n+1,
hence again by (4),

(5) ^ (edge o f J)n ^ 2n+!(2- diameter of U)n,

for each U e <%.
From the collection

one can now select a (finite) subcollection J' of closed cubes with mutually
disjoint interiors and covering

(6) U U'

Let 7(1), • • •, 7(r) be the members of J' that intersect B. Since J' covers the
open set (6), which contains B, it follows that

B Q Int { (J /<»}.
i-i

Thus (ii) is true.
Now each IU) belongs to some S(U), hence to S^t{U) so that

diameter of I™ == ny*2^*(U)
f

which by (4),
^ 2MH • (diameter of U)

and by (2)
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Thus (i) is true.
Evidently

2 (edge of /<'>)" ^ 2 (edge of / ) "

2 (edge of I)n,

which by (5)

^ 2 22n+1 (diameter of U)n

^ 2 22n+1 (diameter of U,)n

and by (3)

This proves (iii) and completes the proof of the theorem.

4.2. THEOREM. / / E is an S-system and e is an arbitrary positive number,
then there exists an S-system F such that

K(F)=K(E),

0(F) = 0(E),

uF is bounded, and

\\£ - * | | < e.

(i)

(ii)

(iii)

(iv)

PROOF. For each positive integer s, define

(1) K{E.) = K(E)

and, for all x e Rn+1 ~K{Et), define
uEg{

x) = UE(X) if — * ^ uE{x) ^ s,
(2) = - s if uE(x) ^ - s,

= s if uE(x) ^ s.

Then E, evidently satisfies 2.2 (i) and (ii). To prove that it satisfies 2.2 (iii),
let et be an integrable function bounding the I t h multiplicity of E, let y be
an arbitrary point of Rn and take a finite sequence

of points of P r 1 ^ ) n {i?n+J with

x\0)
x\rK

It follows from (2), that
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hence

Thus 2.2 (iii) is satisfied, hence each Et is an S-system. Evidently

(3) 0(E,) = 0(E)

for each s.

Define, for each positive integer s,

(4) K(G,) = K(E)

and

(5) uGf(x) = uE{x) - uEt{x)

for all X€Rn+x~K{Gt). By 2.12 and 2.13, each G, is an S-system. Let

(6) Zt = Yt(E) n
*=i

Then Rn ~ Zt has zero ^-measure. Take an arbitrary point y of Z<. If
*', x" e PT-1^) n {22»+1^iiC(£)}, then

and by Theorem 2 on page 3 of [4],

hence for each x e P^x

so that by 2.5

(7) a,(G., y) £* , (£ , y)

for all y c Z< and each s. Now it follows from 2.3.1 that uE(x) is bounded for
x e Pjx{y) n {Rn+1~K(E)}, hence by (2) and (5), there exists an s, such
that

uGf(x) = 0

for all xeP^iy) n {Rn+1~K(E)} and all s ^ sx. Therefore by 2.5,

ai(G,, y) = 0

for all 5 ^ Sj; i.e.,

(8) lim «,(£,, y) = 0

for all y e Zf. Since by 2.8, a^E, y) is integrable, it follows from (7), (8) and
dominated convergence that

lim f ai(G,,y)dy = 0;
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i.e. by 2.9
UmAtiG,) = 0,
«-*oo

for each i = 1, • • •, n -\- 1. Hence we can choose an s0 such that
r «+i "I ft

therefore by 3.2.1,

But by (5), 3.6 and 3.4,

hence

(9) \\£-£to\\<e.

Thus, if we put F = E,o, it follows from (1), (3), (2) and (9), that F has
the required properties.

4.3. THEOREM. Let E be an S-system such that O(E) ^ 0 , K(E) has a finite
Hausdorff n-tneasure A and

for all xe Rn+1~ K(E). Let e be an arbitrary positive number.
Then there exists a finite set

(r ^ 1)

of closed intervals of Rn+1, corresponding integers

and a finite set

Fa)t FU>,---, FW (s ^ 1)

of S-systems, with the following conditions satisfied.

(i) Each I(i) is contained in O(E).

(ii) £ = j

s n+1 n+1

(iii) 2 ll^'ll < 2 Ai

(iv) The diameter of each K(FlP)) is less than e.
PROOF. It follows from 2.2 (ii), that O(E) is open, hence there exists a <5

such that 0 < 6 < e and no closed interval with diameter less than d can
cover the whole of O(E). By 4.1, there exists a finite set
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of closed cubes with mutually disjoint interiors and such that

(1) diameter of /<*> < 6

for each p = 1, • • •, s,

(2) K(E) C Int { U 7<»>},
0=1

(3) /<»> n K(E) ^ 0

for each p, and

(4) 2 (edge of /<*>)" < n*n22n+xA + 1.

Let / be a closed interval that contains all the JiP)'s, hence also K(E),
One can choose a finite set

of closed intervals, whose interiors are disjoint with each other and with the
interiors of the J{p)'s and for which

(5) / = U /«) u U /<»>.
ii i

We can assume that

/<!>, • • -., /<r) (r ^ 1)

are those of the J(i)'s that are contained in 0(E). By (5) and 3.12,

hence

so that by 3.14 and 3.15,

£ = 2 «*(/W)) ' /(i) + 2 ̂ (

i = l J>=1

and, since uE{I(i)) = 0 when / > r, we have

Define

(7)

For each £ = 1, • • •, s, there exists an 5-system GlP) such that

(8)

i
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Define

K(F^) = J{p) nK{G{v)),

uFw{x) = UGM{X) if x e Jw n {RO+1 ~ K{F{P))}

= 0 if xeRT+1^J{9).

It is not difficult to verify that, for each p, F{v) is an S-system,

(9) uPw(x) = uG<v)(x)

for almost all x e Rn+1 and

(10) diameter of K{F™) ^ diameter of J{PK

It follows from (9) and 3.4 that JF<*» = &p), hence by (8)

(11)

By (6), (7) and (11),

thus (ii) is true. We have already proved (i).
It follows from 3.13, that

n+1 s

£11 ^ I Ai(E) + 2n%k I (edge of /<»>)•

hence by (4) and (11),

n+l n+1
2 k A

Thus (iii) is true, (iv) follows immediately from (1) and (10).

5. Gauchy's Theorem

We now make use of 4.2 and 4.3 in proving Cauchy's integral theorem,
first of all for S-systems (5.1 and 5.2) and then for closed parametric
«-surfaces in Rn+1 (5.3).

5.1. THEOREM. If E is an S-system such that K(E) has a finite Hausdorff
n-tneasure A and if flt - • •, fn+l e SF and have the property, for each closed
interval I of Rn+1 that is contained in 0{E),

n+1

then
n+1

E = 0-
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PROOF. If O(E) is empty, then uE(x) = 0, hence £ = 0 and the theorem
is trivial. Hence we can assume that

(1) O(E) # 0.

(a) Assume to begin with that there exists a constant k > 0 such that

(2) \uE(x)\^k

for all x € Rn+1~K(E). Take an arbitrary r\ > 0. Put
n+l n+l

(3) c = J At{E) + 22»+2» i fcl + 2ny*k.

By 2.17, there exists a/> > 0 and such that ||a;|| < p for all x e K(E) u 0(E).
Define for each *,

if \\x\\
\ + \\x\\-p " N

Then

i =!,••', n

for all xeK(E) u 0(£) and

(5) &(*)-* 0 * = 1 , • • • , » + !

as x -> oo. By (5) and continuity, each & is uniformly continuous on Rn+1.
Hence we can choose an e > 0 so that

(6) \gi(X
f) - gi(x")\ < J^~y .*= 1, •••,»+ 1,

for all x', x" € Rn+X with

(7) ||z' - x"\\ < e.

Let /<», ijt F(»> be defined as in 4.3. By (4) and 3.9,

hence
n+l n+l

which by 4.3 (ii)
r n+l n+l »

i-1 i~l i-1

so that by 4.3 (i), (4) and hypothesis,
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n+l n+l s

(8) 2 £<(/<) = 2
We will now prove that

|| ^ \ = \(9) ifPWI £ | | * | | r^rr \ \
(w + l)c p = 1, • • •, s

When if(F(J>)) = 0 , «,<»> = 0, hence F™ = 0 and (9) is trivial. Suppose
therefore that K(F<p))=£0. Choose a point bWcK(F<*>) and define

Then

hence by 3.9,

But by 4.3 (iv), (6) and (7),

ki"(*)i < ¥

for all xeK(F{p)), so that by 3.10

(10) and (11) evidently imply (9).
It now follows from (3), (9) and 4.3 (iii), that

«=i « 4- 1

hence
n+l a

2 2
t = l J > = 1

and therefore by (8),
n+l

1 2 £<(/<)! ^»y-
t=i

Thus
n+l

2 £«(/<) = o.
(b) Suppose now that there is no restriction on uE. Since each fte

there exists a constant J* > 0 such that
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for all x e Rn+1. Take an arbitrary r\ > 0 and put

Let F be defined as in Theorem 4.2.
By (a)

n+l

(13) 2 f<V<) = o.
t=i

But it follows from 4.2 (iv), that

n •+-

so that by (13)
n+l

12 £<(/<
Thus

n+l

2 EiVi) = o.
t = l

5.2. THEOREM. Let E be an S-system such thatK(E) has finite Hausdorff
n-measure. Let /,-,••*, fn+1 e3? and, have the 'properties'.

(i) each of the partial derivatives

oxt

exists and is continuous on O(E);
n+1 df-

(ii) I (- I)*"1 jr = 0
<=i ox{

at all points of.O(E).
Then

n+l

IUU) = o.
i=-l

PROOF. Let

/ = {x; Cl^xt^ dlf - • •, cn+1 ^ xn+1 ^ dn+1}

be an arbitrary closed interval that is contained in O(E). It follows from
2.10, 3.2 and 3.11, that for each fe &,

(i) /,(/) = ( - i ) « f u{v(i)(y)} - m{i){y)}}dy,

where £{i){y), rj{i){y) denote the points of Pjx{y) whose *th coordinates are
cit dt respectively. It is well known that (i) and (ii) of the hypothesis imply
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n+1

i.e., by (1)
n+l

Hence by 5.1,
n+l

2 Biifi) = o.

5.3. THEOREM. L<?£ (/, Mn) be a closed parametric n-surface in Rn+1 with
bounded variation and such that f(Mn) has a finite Hausdorff n-measure.
Let gi,- • • ,gn+i be real-valued functions on f{Mn) u O(f, Mn) with the
following properties:

(i) each gt is continuous on f(Mn) u O(f, Mn);
(ii) each of the partial derivatives

exists and is continuous on 0{f, Mn)\

(iii) J (_i)«-i ^1 = 0

at all points of 0{f, Mn).
Then

n+l

PROOF. Put

K(E) = f(M»)
and

uE(x) = u{f,Mn,x)

for all a; e Rn+1 ~ K(E). Then we have shown in 2.2 that E is an S-system.
It follows from 3.4, 3.7 and 3.10 of [5] II, that for each g e

(i) B

By 2.17, K(E) u O(E) is compact, hence each g{ is bounded onK(E)
ByTietze's Extension Theorem ([2] p. 80 or [3] p. 28) each gt can be ex-
tended to a bounded continuous function on Rn+1. Then each g{ e SF so that
by (1)

n+l .

I (f
< - l JV>

and by 5.2 is equal to zero.

n+l . n+1

*) = I
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