Third Meeting, January 10th, 1896.

Dr Peddie in the Chair.

Symmedians of a Triangle and their concomitant Circles
By J. S. Mackay, M.A., LL.D.
NOTATION
A B C = vertices of the fundamental triangle
$\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathbf{O}^{\prime} \quad=$ mid points of $\mathrm{BC} \mathbf{C A} \mathrm{AB}$
D E F = points of contact of sides with incircle
$=$ other triads of points defined as they occur
$\begin{array}{llll}D_{1} & E_{1} & F_{1} \quad=\text { points of contact of sides with first excircle }\end{array}$
And so on
$G \quad=$ centroid of $A B C$
I =incentre of ABC
$\begin{array}{lllll}I_{1} & I_{2} & I_{3} & =1 \text { st } 2 \text { nd } 3 \text { rd excentres of } A B C\end{array}$
$\begin{array}{llll} & J \\ J_{1} & J_{3} & J_{3}\end{array}=$ quartet of points defined in the text
$\mathrm{K} \quad=$ insymmedian point of ABC
$\mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{3} \quad=1$ st 2nd 3rd exsymmedian points of ABC
L M N = projections of K on the sides of $A B C$
$\mathbf{L}_{1} \mathbf{M}_{1} \mathbf{N}_{1}=\underset{ }{\substack{\text { And so on }}} \quad K_{1} \quad " \quad "$

| | O | | $=$ circumcentre of ABC |
| ---: | :--- | :--- | :--- | :--- |
| \mathbf{R} | \mathbf{S} | \mathbf{T} | $=$ feet of the insymmedians |
| \mathbf{R}^{\prime} | \mathbf{S}^{\prime} | \mathbf{T}^{\prime} | $=" \quad " \quad$ exsymmedians |
| \mathbf{X} | \mathbf{Y} | \mathbf{Z} | $=" \quad, \quad$ perpendiculars from A B C |

INTRODUCTORY

Definition. The isogonals* of the medians of a triangle are called the symmedians \dagger

If the internal medians be taken, their isogonals are called the internal symmedians \ddagger or the insymmedians; if the external medians be taken, their isogonals are called the external symmedians, or the exsymmedians

The word symmedians, used without qualification or prefix, may, as in the title of this paper, be regarded as including both insymmedians and exsymmedians (cyclists include both bicyclist.s and triryclists) ; frequently however when used by itself it denotes insymmedians, just as the word medians denotes internal medians

It is hardly necessary to say that as medians and symmedians are particular cases of isogonal lines, the theorems proved regarding the latter are applicable to the former. Merlians and symmedians however have some special features of interest, which are easier to examine and recognise than the corresponding ones of the more general isogonals

Definition. Two points D D^{\prime} are isutomic \S with respect to $B C$ when they are equidistant from the mid point of BC

It is a well-known theorem (which may be proved by the theory of transversals) that

If three concurrent straiyht lines $A D B E C F$ be drawn from the vertices of $A B C$ to meet the opposite sides in $D E F$, and if $D^{\prime} E^{\prime} F^{\prime}$ be isotomic to $D E F$ with respect to $B C C A A B$, then $A D^{\prime} B E^{\prime} C F^{\prime}$ are concurrent

Definition. If O and O^{\prime} be the points of concurrency of two such triads of lines, then 0 and O^{\prime} are called reciprocal points §

[^0]Instead of saying that $D D^{\prime}$ are isotomic points with respect to BC , it is sometimes said that $\mathrm{AD} \mathrm{AD}^{\prime}$ are isotomic lines with respect to angle A

Construction for an insymmedian

Figure 12

Let ABC be the triangle
Draw the internal median AA^{\prime} to the mid point of BC ; and make $\angle \mathrm{BAR}=\angle \mathrm{CAA}^{\prime}$

AR is the insymmedian from A
The angle CAA' is described clockwise, and the angle BAR counter-clockwise ;
consequently $\mathrm{AA}^{\prime} \mathrm{AR}$ are symmetrically situated with respect to the bisector of the interior angle $\mathbf{B A C}$

Hence since AA^{\prime} is situated inside triangle ADC , $A R$ is inside $A B C$

The following construction* leads to a simple proof of a useful property of the insymmedians

Figure 13
From $A C$ cut off AB_{1} equal to AB
and ", AB ", AC_{1}," , AC
If $\mathrm{B}_{1} \mathrm{C}_{1}$ be drawn, it will intersect BC at L the foot of the bisector of the interior angle $\mathbf{B A C}$

Hence if $\mathbf{A A}^{\prime}$, which is obtained by joining A to the point of internal bisection of $B C$, be the internal median from A, the corresponding insynmedian $A R$ is obtained by joining A to the point of internal bisection of $\mathrm{B}_{\mathbf{1}} \mathrm{C}_{\mathbf{1}}$

[^1](1) $B C$ and $B_{1} C_{1}$ are antiparallel with respect to angle A
(2) Since the internal median AA' bisects internally all parallels to BC , therefore the insymmedian AR bisects internally all antiparallels to BC
(3) The insymmedians of a triangle bisect the sides of its orthic triangle *
(4) The projections of B and C on the bisector of the interior anyle $B A C$ are P and Q. If through P a parallel be drawn to $A B$, and through Q a parallel be drawn to $A C$, these parallels will intersect \dagger on the insymmedian from A
[The reader is requested to make the figure]
Let $\mathrm{A}^{\prime \prime}$ be the point of intersection of the parallels, and A^{\prime} the mid point of BC

It is well known \ddagger that $\mathrm{A}^{\prime} \mathrm{P}$ is parallel to AC , that $\mathrm{A}^{\prime} \mathrm{Q}$ is parallel to AB , and that

$$
A^{\prime} P=\frac{1}{2}(A C-A B)=A^{\prime} \mathbf{Q}
$$

Hence the figure $\quad A^{\prime} P A^{\prime \prime} Q$ is a rhombus, and $A^{\prime \prime}$ is the image of A^{\prime} in the bisector of angle A Now since A^{\prime} lies on the median from A $\mathrm{A}^{\prime \prime}$ must lie on the corresponding symmedian
(5) The three internal medians are concurrent at a point, called the centroid ; hence, by a property§ of Isogonals, the three insymmedians are concurrent at a point
[Other proofs of this statement will be given later on]
Various names have been given to this point, such as minimum-point, Grebe's point, Lemoine's point, centre of antiparallel medians. The designation symmedian point, suggested by Mr Tucker $\|$ is the one now most commonly in use

[^2]The symmedian point has three points harmonically associated with it; when it is necessary to distinguish it from them, the name insymmedian point will be used

The insymmedian point and the centroid of a triangle are isogonally conjugate points
(6) If $X Y Z$ be the orthic triangle of $A B C$ the insymmedian points of the triangles AYZ XBZ XYC are situated on the medians* of ABC
(7) The insymmedian from the vertex of the right angle in a right-angled triangle coincides with the perpendicular from that vertex to the hypotenuse \dagger, and the three insymmedians intersect at the mid point of this perpendicular \ddagger

The first part of this statement is easy to establish. The second part follows from the fact that the orthic triangle of the right-angled triangle reduces to the perpendicular

§ 1^{\prime}
 Construction for an exsymmedian

Figure 14
Let $A B C$ be the triangle
Draw the external median AA_{∞} parallel to BC ; and make $\angle \mathrm{BAR}^{\prime}=\angle \mathrm{CAA}_{\infty}$
$A R^{\prime}$ is the exsymmedian from A
The angle CAA× is described counterclockwise, and the angle BAR' clockwise ;
consequently $\mathrm{AA}_{\infty} \mathrm{AR}^{\prime}$ are symmetrically situated with respect to the bisector of the exterior angle BAC

Hence since $A A_{\infty}$ is situated outside triangle $A B C$, $A R^{\prime}$ is outside $A B C$

The following construction leads to a simple proof of a useful property of the exsymmedians

[^3]Figure 15

From CA cut off AB_{1} equal to AB
and " $\mathrm{BA}, ", \mathrm{AC}_{1} \quad, \quad, \mathrm{AC}$
If $B_{1} C_{1}$ be drawn, it will intersect $B C$ at L^{\prime} the foot of the bisector of the exterior angle BAC

Hence if AA_{x}, which is obtained by joining A to the point of external bisection of BC (that is, by drawing through A a parallel to BC) be the external median from A, the corresponding exsymmedian AR^{\prime} is obtained by joining A to the point of external bisection of $\mathrm{B}_{1} \mathrm{C}_{1}$ (that is, by drawing through A a parallel to $\mathrm{B}_{1} \mathrm{C}_{1}$)
(1') BC and $\mathrm{B}_{1} \mathrm{C}_{1}$ are antiparallel with respect to angle A
(2') Since the external median A_{∞} obisects externally all parallels to $B C$, therefore the exsymmedian $A R^{\prime}$ bisects externally all antiparallels to BC
(3') The exsymmedians of a triangle are parallel to the sides of its orthic triangle*
(4') The projections of B and C on the bisector of the exterior angle $B A C$ are P^{\prime} and Q^{\prime}. If through P^{\prime} a parallel be drawn to $A B$, and through (Q^{\prime} a parallel be drawn to ΛC, these parallels will intersect on the insymmedian from A
The proof follows from the fact that $\mathrm{A}^{\prime} \mathrm{P}^{\prime}$ is parallel to AC , that $A^{\prime} Q^{\prime}$ is parallel to $A B$, and that

$$
\mathrm{A}^{\prime} \mathrm{P}^{\prime}=\frac{1}{2}(\mathrm{AC}+\mathrm{AB})=\mathrm{A}^{\prime} \mathrm{Q}^{\prime}
$$

(5') The external medians from any two vertices and the internal median from the third vertex are concurrent at a point; hence, by a property of Isogonals, the corresponding exsymmedians and insymmedian are concurrent at a point
[Other proofs of this statement will be given later on]

[^4]Three points are thus obtained, and they we sometimes called the exsymmedian points

The three points obtained by the intersections of the external medians of ABC are the vertices of the triangle formed by drawing through A B C parallels to BC CA AB; that is, they are the points anticomplementary* to A BC

Hence the exsymmedian points of a triangle are isoyonally conjugate to the anticomplementary points of the vertices of the triangle
(6') The lampeuts to the circumcircle of a triangle at the three vertices are the thre exsymmedians of the trianylet

Figure 14

$$
\text { For } \begin{aligned}
\angle \mathrm{BAR}^{\prime} & =-\mathrm{CAA} x \\
& =\angle \mathrm{ACB}
\end{aligned}
$$

therefore $A R^{\prime}$ touches the circle ABC at A
(7') When the triangle is right-angled two of the exsymmedians are parallel, or they intersect at intinity on the perpendicular drawn from the rertex of the right ingle to the hypotenuse

$$
52
$$

The distances of any point in an insymmedian from the adjucent sides are proportional to those sides

Figure 16

Let $A A^{\prime}$ be the internal median, $A R$ the insymmedian from A
From $\quad R$ draw RV RW perpendicular to $A C A B$;
and " $\mathrm{A}^{\prime}, \mathrm{A}^{\prime} \mathrm{P} \mathrm{A}^{\prime} \mathbf{Q} \quad, \quad, \quad, \quad$,
Then. $\quad R W: R V=A^{\prime} P: A^{\prime} Q$

$$
=\mathrm{AB}: \mathrm{AC}
$$

[^5]
$\S 2^{\prime}$

The distances of any point in an exsymmedian from the adjacent sides are proportional to those sides

Figure 17

Let $\mathrm{AA}_{\varnothing}$ be the external median, AR^{\prime} the exsymmedian from A From R^{\prime} draw $R^{\prime} V^{\prime} R^{\prime} W^{\prime}$ perpendicular to $A O A B$; and from A_{1} any point in the external median, draw $A_{1} P^{\prime} \quad A_{1} Q^{\prime}$ perpendicular to $\mathrm{AC} A B$

Then

$$
\begin{aligned}
\mathbf{R}^{\prime} \mathbf{W}^{\prime}: \mathrm{R}^{\prime} \mathrm{V}^{\prime} & =\mathrm{A}_{1} \mathrm{P}^{\prime}: \mathrm{A}_{1} \mathbf{Q}^{\prime} \\
& =\mathrm{AB}: \mathbf{A} \mathbf{C}
\end{aligned}
$$

§ 3

The segments into which an insymmedian from any vertex divides the opposite side are proportional to the squares of the adjacent sides*

Figure 16

Let $A R$ be the insymmedian from A
Draw RV RW perpendicular to AC AB
Then $\quad A B: A C=R W: R V$ therefore $\quad A B^{2}: A C^{2}=A B \cdot R W: A C \cdot R V$

$$
\begin{aligned}
& =\mathrm{ABR}: \mathrm{ACR} \\
& =\mathrm{BR}: \mathrm{CR}
\end{aligned}
$$

Another demonstration, by Mr Clément Thiry, will be found in Annuaire Scientifique du Cercle des Normaliens (published at Gand, no date given), p. 104

[^6]$\S 3^{\prime}$
The segments into which an exsymmedian from any vertex divides the opposite side are proportional to the squares of the adjacent sides*

Figure 17

Let $A R^{\prime}$ be the exsymmedian from A
Draw $R^{\prime} V^{\prime} R^{\prime} W^{\prime}$ perpendicular to $A C A B$
Then $\quad A B: A C=R^{\prime} W^{\prime}: R^{\prime} V^{\prime}$
therefore $\quad A B^{2}: A C^{2}=A B \cdot R^{\prime} W^{\prime}: A C \cdot R^{\prime} V^{\prime}$

$$
\begin{aligned}
& =\mathrm{ABR}^{\prime}: \mathrm{ACR}^{\prime} \\
& =\mathrm{BR}^{\prime}: \mathrm{CR}^{\prime}
\end{aligned}
$$

$\$ 4$
The insymmedians of a triangle are concurrent

First Demonstration

Figure 18
Let AR BS CT be the insymmedians
Then

$$
\begin{aligned}
& \mathrm{BR}: \mathrm{CR}=\mathrm{AB}^{2}: \mathrm{AC}^{2} \\
& \mathrm{CS}: \mathrm{AS}=\mathrm{BC}^{2}: \mathrm{BA}^{2} \\
& \mathrm{AT}: \mathrm{BT}=\mathrm{CA}^{2}: \mathrm{CB}^{2}
\end{aligned}
$$

therefore

$$
\frac{\mathrm{BR}}{\mathrm{CR}} \cdot \frac{\mathrm{CS}}{\mathrm{AS}} \cdot \frac{\mathrm{AT}}{\mathrm{BT}}=-1
$$

since of the ratios $B R: C R \quad C S: A S \quad A T: B T$ all are negative; therefore AR BS CT are concurrent

[^7]
Second Demonstration

Figure 19
Let BK CK the insymmedians from B C cut each other at K : to prove that K lies on the insymmedian from A

Through K draw
EF^{\prime} antiparallel to BC with respect to A
FD' " , CA " ", B
$\mathrm{DE}^{\prime} \quad$, ", AB ", " \mathbf{C}
Because FD' is antiparallel to CA
therefore BK bisects FD^{\prime}
Similarly CK bisects DE^{\prime}
Now

$$
-\mathrm{D}^{\prime} \mathrm{DK}=-\mathrm{A}=-\mathrm{DD}^{\prime} \mathrm{K} ;
$$

therefore
$K \mathrm{D}=\mathrm{KD}^{\prime}$,
therefore

$$
\mathrm{KD}=\mathrm{KD}^{\prime}=\mathrm{K} \mathrm{E}^{\prime}=\mathbf{K} \mathrm{F}^{\prime}
$$

Again $\quad \therefore \mathrm{E}^{\prime} \mathrm{EK}=-\mathrm{B}=-\mathrm{EE}^{\prime} \mathrm{K} ;$
therefore
Similarly
therefore
therefore K is on the insymmedian from λ

Third Demonstration*

Figure 20
On the sides of $A B C$ let squares $X \quad Y \quad Z$ be described either all outwardly to the triangle or all inwardly. Produce the sides of the squares $Y Z$ opposite to $A C$ and $A B$ to meet in A^{\prime}; the sides of the squares $Z \mathrm{X}$ opposite to BA and BC to meet in B^{\prime}; the sides of the squares $\mathrm{X} \mathbf{Y}$ opposite to CB and CA to meet in C^{\prime}

[^8]
Let BB^{\prime} and CC^{\prime} meet at K

Then BB^{\prime} is the locus of points whose distances from AB and BC are in the ratio $r: a$;
CC^{\prime} is the locus of points whose distances from AC and BC are in the ratio $b: a$;
therefore the ratio of the distances of K from $A B$ and $A C$ is $c: b$ that is, K lies on AA^{\prime}

The eight varieties of position which the squares may occupy relatively to the sides of the triangle may be thus enumerated:
(1) X outwardly $\quad Y$ outwardly $\quad Z$ outwardly
(2) X inwardly $\quad \mathrm{Y}$ inwardly $\quad Z$ inwardly
(3) X inwardly Y outwardly Z outwardly
(4) X outwardly Y inwardly Z inwardly
(5) X outwardly Y inwardly Z outwardly
(6) X inwardly $\quad \mathbf{Y}$ outwardly Z inwardly
(7) X inwardly $\quad \mathrm{Y}$ inwardly $\quad Z$ outwardly
(8) X outwardly $\quad Y$ outwardly Z inwardly

If the construction indicated in the enunciation of the third demonstration be carried out on these eight figures

Now that the existence of the insymmedian point is established, it may be well to give that property of the point which was the first to be discovered.

The sum of the squares of the distances of the insymmedian point from the sides is a minimum*

[^9]In the identity

$$
\begin{array}{r}
\left(x^{2}+y^{2}+z^{2}\right)\left(a^{2}+b^{2}+c^{2}\right)-(a x+b y+c z)^{2} \\
=(b z-c y)^{2}+(c x-a z)^{2}+(a y-b x)^{2}
\end{array}
$$

let $a b c$ denote the sides of the triangle,
$x y \approx$ the distances of any point from the sides
Then the left side of the identity is a minimum when the right sides is a minimum
But $a^{2}+b^{2}+c^{2}$ is fixed, and so is $a x+b y+c z$, since it is equal to 2Δ; therefore $x^{2}+y^{2}+z^{2}$ is a minimum when the right side is 0
Now the right side is the sum of three squares, and can only be 0 when each of the squares is 0 ;
therefore

$$
b z-c y=c x-a z=a y-b x=0
$$

therefore

$$
\frac{x}{a}=\frac{y}{b}=\frac{z}{c}
$$

Hence the point which has the sum of the squares of its distances from the sides a minimum is that point whose distances from the sides are proportional to the sides
[The proof here given is virtually that of Mr Lemoine, in his paper communicated to the Lyons meeting (1873) of the Association Française pour l'avancement des Sciences. Another demonstration by Professor Neuberg will be found in Ronché et de Comberousse's I'raité de Géonétrie, First Part, p. 455 (1891)]

$$
\S 4^{\prime}
$$

The insymmedian from any vertex of' a triangle and the exsymmedians from the two other vertices are concurrent*

First Demonstration

Figure 21
Let $A R$ be the insymmedian from A, and $B S^{\prime} C T^{\prime}$ the exsynmedians from $\mathbf{B C}$

[^10]Then

$$
\begin{aligned}
& \mathrm{BR}: \mathrm{CR}=\mathrm{AB}^{2}: \mathrm{AC}^{2} \\
& \mathrm{C} \mathrm{~S}^{\prime}: \mathrm{AS}^{\prime}=\mathrm{BC}^{2}: \mathrm{BA}^{2} \\
& \mathrm{AT}^{\prime}: \mathrm{BT}^{\prime}=\mathrm{CA}^{2}: \mathrm{CB}^{2}
\end{aligned}
$$

therefore

$$
\frac{\mathrm{BR}}{\mathrm{CR}} \cdot \frac{\mathrm{CS}^{\prime}}{\mathrm{AS}^{\prime}} \cdot \frac{\mathrm{AT}^{\prime}}{\mathrm{BT}^{\prime}}=-1
$$

since of the ratios $\mathrm{BR}: \mathrm{CR}, \mathrm{CS}^{\prime}: \mathrm{AS}^{\prime}, \mathrm{AT}^{\prime}: \mathrm{BI}^{\prime}$ two are positive and one negative;
therefore $\mathrm{AR} \mathrm{BS}^{\prime} \mathrm{CT}^{\prime}$ are concurrent
Hence also $\mathrm{AR}^{\prime} \mathrm{BS} \mathrm{CT}^{\prime}$; $\mathrm{AR}^{\prime} \mathrm{BS}^{\prime} \mathrm{CT}^{\prime}$ are concurrent
The points of concurrency of

will be called the 1st 2nd 3rd exsymmedian points, and will be denoted by $K_{1} \quad K_{2} \quad K_{3}$

Second Demonstration*

Figure 22

About ABC circumscribe a circle ; draw $\mathrm{BK}_{1} \mathrm{CK}_{1}$ tangents to it at B C

Then $\mathrm{BK}_{1} \mathrm{CK}_{1}$ are the exsymmedians from $\mathrm{B} C$: to prove AK_{1} to be the insymmedian from A

Through K_{1} draw DE antiparallel to BC , and let $\mathrm{AB} A C$ meet it at D E

Then

$$
\angle \mathrm{BDK}_{1}=\angle \mathrm{ACB}=\angle \mathrm{DBK}_{1} ;
$$

therefore
$B K_{1}=\mathrm{DK}_{1}$
Similarly
$\mathrm{CK}_{1}=\mathrm{EK}_{1}$;
therefore
$\mathrm{DK}_{1}=\mathrm{EK}_{1} ;$
therefore AK_{1} is the insymmedian from A
From this mode of demonstration it is clear that if K_{1} be taken as centre and $K_{1} B$ or $K_{1} C$ as radius and a circle be described, that circle will cut $A B A C$ at the extremities of a cliameter

[^11](1) The insymmedians of a triangle pass throuyh the poles of the sides of the triangle with respect to the circumcircle

For K_{1} is the pole of $B C$ with respect to the circumcircle
(2) The six internal and external symmedians of a triangle meet three and three in four points which are collinear in pairs with the vertices

Figure 25
(3) If triangle $A B C$ be acute-angled, the points

A	B	C	will be situated on the lines
$\mathrm{K}_{2} \mathrm{~K}_{3}$	$\mathrm{~K}_{3} \mathrm{~K}_{1}$	$\mathrm{~K}_{1} \mathrm{~K}_{2} ;$	

and the circle ABC will be the incircle of triangle $\mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{3}$
If, however, triangle ABC be obtuse-angled, suppose at C , then the point A will be situated on $K_{2} K_{3}$ produced

$$
\begin{array}{llll}
\mathbf{B} & " & " & " \\
\mathbf{C} & " & " \mathbf{K}_{3} \mathbf{K}_{1} \\
" & " & " \mathbf{K}_{1} \mathbf{K}_{2}
\end{array}
$$

and the circle ABC will be an excircle of triangle $\mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{3}$

Figure 26

(4) Hence the relation in which triangle $A B C$ stands to $K_{1} K_{2} K_{\text {j }}$ will, if ABC be acute-angled, be that in which triangle DEF stands to ABC ; or, if ABC be obtuse-angled, it will be that in which one of the triangles $\mathrm{D}_{1} \mathrm{E}_{1} \mathrm{~F}_{1} \quad \mathrm{D}_{2} \mathrm{E}_{2} \mathrm{~F}_{2} \mathrm{D}_{3 j} \mathrm{E}_{3} \mathrm{~F}_{3 j}$ stands to $\mathrm{A} . \mathrm{BC}$
(5) If DEF be considered as the fundamental triangle, then A BC are the first, second, and third exsymmedian points, and the concurrent triad AD BE CF meet at the insymmedian point of DEF

If $D_{1} \mathrm{E}_{1} \mathrm{~F}_{1}$ be considered as the fundamental triangle, then A B C are the first, second, and third exsymmedian points, and the concurrent triad $\mathrm{AD}_{1} \mathrm{BE}_{1} \mathrm{CF}_{1}$ meet at the insymmedian point of $\mathrm{D}_{1} \mathrm{E}_{1} \mathrm{~F}_{1}$

Similarly for triangles $\mathrm{D}_{2} \mathrm{E}_{2} \mathrm{~F}_{2} \mathrm{D}_{3} \mathrm{E}_{6} \mathrm{~F}_{3}$
(6) The points of concurrency* of the triads

[^12]Figure 27

Γ being called* the Gergonne point of ABC , and $\Gamma_{1} \Gamma_{2} \Gamma_{3}$ the associated Gergonne points

Hence the Gergonne point and its associates are the insymmedian points of the four DEF triangles
(7) With respect to BC
D and D_{1} are isotomic points, so are D_{2} and D_{3}; and a similar relation holds for the E points with respect to $C A$, and for the F points with respect to $A B$. Hence the triads

$$
\left.\begin{array}{lll}
\mathrm{AD}_{1} & \mathrm{BE}_{2} & \mathrm{CF}_{3} \\
\mathrm{AD} & \mathrm{BE}_{3} & \mathrm{CF} \\
\mathrm{AD}_{3} & \mathrm{BE} & \mathrm{CF} \\
1 \\
\mathrm{AD}_{2} & \mathrm{BE}_{1} & \mathrm{CF}
\end{array}\right\} \text { which are concurrent } \dagger \text { at } \quad\left\{\begin{array}{l}
\mathrm{J} \\
\mathrm{~J}_{1} \\
\mathrm{~J}_{2} \\
\mathrm{~J}_{3}
\end{array}\right.
$$

furnish the four pairs of reciprocal points,

$$
\begin{array}{lllll}
\Gamma & \Gamma_{1} & \Gamma_{2} & \Gamma_{: 3} & \text { (Gergonne points) } \\
\mathrm{J} & \mathrm{~J}_{1} & \mathrm{~J}_{2} & \mathrm{~J}_{3} & \text { (Nagel points) }
\end{array}
$$

(8) Since AD passes through J_{1}

BE	$"$	$"$	J_{2}
CF	$"$	$"$	J_{3}

therefore Γ is situated on each of the straight lines $\mathrm{AJ}_{1} \mathrm{BJ}_{\mathbf{2}} \mathrm{CJ}_{3}$; in other words, the triangles $\mathrm{ABC} \mathrm{J}_{1} \mathrm{~J}_{2} \mathrm{~J}_{3}$ are homologous and have Γ for centre of homology

[^13]Since AD_{1} passes through Γ_{1}

BE_{2}	$"$	$"$	Γ_{2}
CF_{3}	$"$	$"$	$\Gamma_{3} ;$

therefore J is situated on each of the straight lines $A \Gamma_{1} B \Gamma_{2} C \Gamma_{3}$; in other words, the triangles $\mathrm{ABC} \Gamma_{1} \Gamma_{2} \Gamma_{3}$ are homologous and have J for centre of homology

Similarly ABC is homologous with

$$
\mathrm{J}_{3} \mathrm{~J}_{2} \quad \mathrm{~J}_{3} \mathrm{~J} \mathrm{~J}_{1} \quad \mathrm{~J}_{2} \mathrm{~J}_{1} \mathrm{~J}
$$

the centres of homology being respectively

$$
\Gamma_{1} \quad \Gamma_{2} \quad \Gamma_{3}
$$

and ABC is homologous with

$$
\Gamma \Gamma_{3} \Gamma_{2} \quad \Gamma_{3} \Gamma \Gamma_{1} \quad \Gamma_{2} \Gamma_{1} \Gamma
$$

the centres of homology being respectively

$$
\begin{array}{lll}
\mathrm{J}_{1} & \mathrm{~J}_{2} & \mathrm{~J}_{3}
\end{array}
$$

(9) If $\quad \Gamma^{\prime \prime} \quad \Gamma_{1}{ }^{\prime} \quad \Gamma_{2}{ }^{\prime} \quad \Gamma_{3}{ }^{\prime}$
be the points of concurrency of lines drawn from $A^{\prime} B^{\prime} C^{\prime}$, the mid points of the sides, parallel to the triads of angular transversals which determine the points

	Γ	Γ_{1}	Γ_{2}	$\Gamma_{;}$,
then	$\Gamma \Gamma^{\prime}$	$\Gamma_{1} \Gamma_{1}{ }^{\prime}$	$\Gamma_{2} \Gamma_{!}^{\prime}$	$\Gamma_{3} \Gamma_{3}{ }^{\prime}$

are concurrent at the centroid of $A B C$
The points $\Gamma^{\prime} \Gamma_{1}{ }^{\prime} \ldots$ as belonging to triangle $A^{\prime} B^{\prime} \mathrm{C}^{\prime}$ correspond to the points $\Gamma \Gamma_{1} \ldots$ as belonging to triangle $A B C$; hence as $A B C$ $A B^{\prime} C^{\prime}$ are similar and oppositely situated and have G for their homothetic centre, $\Gamma \Gamma^{\prime} \Gamma_{1} \Gamma_{1}^{\prime} \ldots$ pass through G
(10) The Γ^{\prime} points are complementary to the Γ points, and the tetrad

$$
I \Gamma^{\prime} \quad I_{1} \Gamma_{1}^{\prime} \quad I_{2} \Gamma_{\underline{2}}^{\prime} \quad I_{3} \Gamma_{3}^{\prime}
$$

are concurrent at the insymmedian point* of ABC

[^14](11) The J points are anticomplementary to the I points, and the tetrad*
\[

$$
\begin{array}{llll}
\mathrm{I} \mathrm{~J} & \mathrm{I}_{1} \mathrm{~J}_{2} & \mathrm{I}_{2} \mathrm{~J}_{2} & \mathrm{I}_{3} \mathrm{~J}_{3}
\end{array}
$$
\]

are concurrent at G the centroid of $A B C$
(12) $J_{1} \quad J_{2} J_{3} J$ form an orthic tetrastigm *

Figure 26
(13) AI BI OI intersect EF FD DE at the feet of the medians of triangle DEF;

AD BE CF intersect EF FD DE at the feet of the internal symmedians

A $I_{1} \quad B I_{1} C I_{1}$ intersect $E_{1} F_{1} F_{1} D_{1} D_{1} E_{1}$
at the feet of the medians of triangle $\mathrm{D}_{1} \mathrm{E}_{1} \mathrm{~F}_{1}$;
$A D_{1} B E_{1} C F_{1}$ intersect $E_{1} F_{1} F_{1} D_{1} D_{1} E_{1}$
at the feet of the internal symmedians
Similarly for triangles $\mathrm{D}_{2} \mathrm{E}_{2} \mathrm{~F}_{2} \quad \mathrm{D}_{3} \mathrm{E}_{3} \mathrm{~F}_{3}$
(14) The external symmedians of any triangle are also the external symmedians of three other associated triangles

Figure 26
Let DEF be the triangle
Circumscribe a circle about DEF, and draw tangents to it at D E F. Let these tangents intersect at A BC. Then $D_{1} \mathrm{E}_{1} \mathrm{~F}_{3}$ $\mathrm{D}_{2} \mathrm{E}_{2} \mathrm{~F}_{2} \mathrm{D}_{3} \mathrm{E}_{3} \mathrm{~F}_{3}$ are the three triangles associated with DEF

To determine their vertices it is not necessary to find $I_{1} I_{2} I_{3}$ and to draw perpendiculars to BC CA AB

Make $\mathrm{CD}_{1}=\mathrm{BD} \quad \mathrm{CE}_{1}=\mathrm{CD}_{1}$ and $\mathrm{BF}_{1}=\mathrm{BD}_{1}$ and the triangle $\mathrm{D}_{1} \mathrm{E}_{1} \mathrm{~F}_{1}$ is determined

Similarly for $D_{2} \mathrm{E}_{2} \mathrm{~F}_{2} \quad \mathrm{D}_{3} \mathrm{E}_{3} \mathrm{~F}_{3}$

[^15](15) $I_{1} A^{\prime} I_{2} B^{\prime} I_{3} C^{\prime}$ are concurrent * at the insymmedian point of $I_{1} I_{2} I_{3}$

Figure 26
For BC is antiparallel to $I_{2} I_{3}$ with respect to $\angle I_{2} I_{1} I_{3}$ and A^{\prime} is its mid point;
therefore $I_{1} A^{\prime}$ is the insymmedian of $I_{1} I_{2} I_{3}$ from I_{1}

Similarly	$\mathrm{I}_{2} \mathrm{~B}^{\prime \prime}$,			"		"	"	"	
and	$\mathrm{I}_{3} \mathrm{C}^{\prime}$ ",	"		"		"	,	"	
(16)	I A ${ }^{\prime}$		$\mathrm{I}_{3} \mathrm{~B}^{\prime}$		$\mathrm{I}_{2} \mathrm{C}^{\prime}$)			
	$\mathrm{I}_{3} \mathrm{~A}^{\prime}$		I B^{\prime}		$\mathrm{I}_{1} \mathrm{C}$		are concurrent \dagger		
	$\mathrm{I}_{2} \mathrm{~A}^{\prime}$		$\mathrm{I}_{1} \mathrm{~B}^{\prime}$		$1 \mathrm{C}^{\prime}$)			

respectively at the insymmedian points of the triangles

$$
\mathrm{I}_{3} \mathrm{I}_{2} \quad \mathrm{I}_{3} \mathrm{~T} \cdot \mathrm{I}_{1} \quad \mathrm{I}_{2} \mathrm{I}_{1} \mathrm{I}
$$

$$
\$ 5
$$

The internal and external symmedians from any vertex are conjugate harmonic rays with respect to the sides of the triangle which meet at that vertex \ddagger

Figure 25
For

$$
\begin{aligned}
\mathrm{BR}: \mathrm{CR} & =\mathrm{AB}^{2}: \mathrm{AC}^{2} \\
& =\mathrm{BR}^{\prime}: \mathrm{CR}^{\prime}
\end{aligned}
$$

therefore $B \mathbf{R} \mathbf{C} \mathrm{R}^{\prime}$ form a harmonic range

and $A R A R \prime$ are conjugate harmonic rays with respect to $A B A C$

[^16]Hence also for CSAS' and ATB T'
(1) The following triads of points are collinear :
$R^{\prime} S T ; R S^{\prime} T ; R S T^{\prime} ; R^{\prime} S^{\prime} T^{\prime}$
(2) The following are harmonic ranges *

$$
\begin{aligned}
& A K R K_{1} ; \quad B K S K_{2} ; \quad C K T K_{;}^{*} \\
& \Lambda K_{2} R^{\prime} K_{2} ; \quad \quad \quad K_{1} S^{\prime} K_{3}^{*} ; \quad C \kappa_{1}^{\prime} T^{\prime \prime} \kappa_{2}
\end{aligned}
$$

For $B R C R^{\prime}$ is a harmonic range;
therefore A.BRCR' is a harmonic pencil ;
and its rays are cut by the transversals BKSK_{2} and $\mathrm{B} \mathrm{K}_{1} \mathrm{~S}^{\prime} \mathrm{K}_{;}$; therefore $\mathrm{B} K \mathrm{~K}_{\mathbf{2}} \quad \mathrm{B} \mathrm{K}_{1} \mathrm{~S}^{\prime} \mathrm{K}_{3}$ are harmonic ranges
(3) If $D E F$ be the points in which $A K B K C K$ cut the circumcircle of $\Lambda B C$, then the followin! are harmonic ranges

$$
\Lambda R D K_{1} ; \quad B S E K_{2} ; \quad C T F K_{3}
$$

Figure 25

For $K_{1} B \quad K_{1} C$ are tangents to the circle $A B C$, and $K_{1} D R A$ is a secant through K_{1};
therefore this secant is cut harmonically \dagger by the chord of contact BC and the circumference
(4) R^{\prime} is the pole of $A K$, with respect to the circumcircle \ddagger

Since $\quad A R^{\prime}$ is the tangent at A
therefore $\quad \mathrm{AR}^{\prime}$ is the polar of \mathbf{A}
Now $\quad \mathrm{RR}^{\prime}, ", ", \mathrm{~K}_{1}$;
therefore $\quad R^{\prime}$ is the pole of $A K_{1}$
Similarly for S^{\prime} and T^{\prime}
(5) $R^{\prime} D S^{\prime} E \quad T^{\prime} F$ are tangents to the circumcircle

For $A D$ is the polar of R^{\prime} with respect to the circumcircle, that is, $A D$ is the chord of contact of the tangents from R^{\prime}

[^17](6) The straight line $R^{\prime} S^{\prime} T^{\prime}$ is the polar of h^{\prime} with respect to the circumcivcle

For $\mathrm{AK}_{1} \mathrm{BK}_{2} \mathrm{CK}_{3}$ pass through K ;
therefore their respective poles $R^{\prime} S^{\prime} T^{\prime}$ will lie on the polar of K
(7) $\mathrm{R}^{\prime} \mathrm{S}^{\prime} \mathrm{T}^{\prime}$ is perpendicular to OK , and its distance from O is equal to $R^{2} / O K$, where R denotes the radius of the circumcircle

R'S'T' is sometimes called Lemoine's line
(8) $R^{\prime} S^{\prime} T^{\prime \prime}$ is the trilinear polar* of K, or it is the line harmonically associated with the point K

For
ST TR RS meet BC CA AB
at
$R^{\prime} S^{\prime} T^{\prime}$;
therefore
$R^{\prime} S^{\prime \prime} T^{\prime}$ is the trilinear polar of K
(9) The three triangles ABC RST $\mathrm{K}_{\mathbf{1}} \mathrm{K}_{\mathbf{2}} \mathrm{K}_{3}$ taken in pairs will have the same axis of homology, namely the trilinear polar of K
(10) The following triculs of points are collinear

$$
R^{\prime} E F ; \quad S^{\prime} F D ; \quad I^{\prime \prime} D E
$$

For BCEF is an encyclic quadrilateral, and BE CF intersect at K ; therefore EF intersects BC on the polar of K Now the polar of K intersects BC at R^{\prime}; therefore EF passes through R'
(11) If $B F C E$ intersect at D^{\prime}

$$
\begin{array}{lll}
C D A F & " & " E^{\prime} \\
A E B D & " & " F^{\prime}
\end{array}
$$

then $\Lambda D D^{\prime} ; \quad B E E E^{\prime} ; C I F F^{\prime}$ are collinear;
and so are $\quad D^{\prime} E^{\prime} I^{\prime \prime}$
Since BE CF intersect at K
therefore BF CE intersect at a point on the polar of K
Similarly for CD AF and for AE BD;
therefore $\mathbf{D}^{\prime} \mathbf{E}^{\prime} \mathbf{F}^{\prime}$ are collinear

[^18]Again BCEF is an encyclic quadrilateral, and
BE CF intersect at K
BC EF " " \mathbf{R}^{\prime}
BF CE ,, , D^{\prime};
therefore triangle $K R^{\prime} \mathrm{D}^{\prime}$ is self-conjugate with respect to the circumcircle ;
therefore $K D^{\prime}$ is the polar of R^{\prime}
But AK , ", ", R';
therefore $\mathbf{A} \mathbf{D} \mathrm{D}^{\prime}$ are collinear
(12) The following triads of lines are concurrent:

AK BF CE $;$	BK CD AF $;$	CK AE BD
$\mathrm{D}^{\prime} ;$	$\mathrm{E}^{\prime} \quad ;$	F^{\prime}

and $D^{\prime} \mathbf{E}^{\prime} \mathbf{F}^{\prime}$ are situated on $\mathrm{R}^{\prime} \mathbf{S}^{\prime} \mathrm{T}^{\prime}$
(13) The straight lines which join the mid point of each side of a triangle to the mid point of the corresponding perpendicular of the triangle are concurrent at the insymmedian point*

Figure 23
Let $\mathrm{K} \mathrm{K}_{1}$ be the insymmedian and first exsymmedian points of ABC ;
let A^{\prime} be the mid point of $B C$ and let $A^{\prime} K$ meet the perpendicular $A X$ at P_{1}
Join $\mathrm{A}^{\prime} \mathrm{K}_{1}$
Then $A^{\prime} K_{1}$ is parallel to $A X$
Now since $A K R \quad K_{1}$ is a harmonic range therefore A^{\prime}. AKRK $_{1}$ is a harmonic pencil ; therefore $A X$ which is parallel to the ray $A^{\prime} K_{1}$ is bisected by the conjugate ray $\mathbf{A}^{\prime} \mathbf{K}$
§ 6
If $L M N$ be the projections of K on the sides, then K is the centroid \dagger of triangle $L M N$

[^19]
Figure 28

Through L draw a parallel to MK, meeting NK produced in K^{\prime} Join K'M

Then triangle KLK' has its sides respectively perpendicular to BC CA AB :
therefore
$\mathrm{KL}: \mathrm{LK}^{\prime}=\mathrm{BC}: \mathrm{CA}$
But
therefore
$\mathrm{KL}: \mathrm{KML}=\mathrm{BC}: \mathrm{CA}$
therefore $\mathrm{KLK}^{\prime} \mathbf{M}$ is a parallelogram ;
therefore KK bisects LM, that is, KN is a median of LMN

Similarly KL KM are medians ;
therefore K is the centroid of IMN
Another demonstration by Professor Neuberg will be found in Mathesis, I. 173 (1881)
(1) The sides of $L M N$ are proportional to the medians of $A B C$, and the anyles of LIMN are equal to the angles which the medians of ABC make with each other*

Since KL KM KN are two-thircls of the respective medians of LMN, and are proportional to BC CA AB ; therefore the medians of LMN are proportional to BC CA AB; therefore the sides of LMN are proportional to the medians of ABC

See Proceelings of the Edinturyh Mathematical Society, I. 26 (1894)
The second part of the theorem follows from (37) on p. 25 of the preceding reference, and from the fact that the angles

$$
\text { CGB }^{\prime} \quad \mathbf{A G C}^{\prime} \quad \text { BGA }^{\prime}
$$

are respectively equal to the angles

$$
\mathrm{CBG}+\mathrm{GCB} \quad \mathrm{ACG}+\mathrm{GAC} \quad \mathrm{BAG}+\mathrm{GBA}
$$

Or it may be proved as follows :
Since G is the point isogonally conjugate to K, therefore AG BG CG are respectively perpendicular to MN NL LM

See Proceeding: of the Edinburgh Mathematical Society, XIII. 178 (1895)

[^20](2) If LMN be considered as the fundamental triangle, K its centroid, and if at the vertices L M N perpendiculars be drawn to the medians KL KM KN a new triangle ABC is formed having K for its insymmedian point
(3) The sum of the squares of the sides of the triangle LMN inscribed in ABC is less than the sum of the squares of the sides of any other inscribed triangle *

The proof of this statement depends on the following lemma:
Given two fixed points M N and a fixed straight line BC ;
that point L on $B C$ for which $\mathrm{NL}^{2}+L \mathrm{~L}^{2}$ is a minimum is the projection on BC of the mid point of MN
(4) If through every two vertices and the centroid of a triangle circles be described, the triangle formed ly joining their centres will have for centroid and insymmedian point the circumcentre and the centroid of the fundamental trianyle \dagger

Figure 39
Let $\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3}$ be the centres of the three circles, and let the circles $\mathrm{O}_{2} \mathrm{O}_{i j}$ cut BC in the points E F

Join $A G$ cutting $B C$ in its mid point A^{\prime}, and draw $\mathrm{O}_{2} \mathrm{P} \quad \mathrm{O}_{3} Q$ perpendicular to BC

Then

$$
\mathrm{A}^{\prime} \mathrm{B} \cdot \mathrm{~A}^{\prime} \mathbf{F}=\mathrm{A}^{\prime} \mathrm{A} \cdot \mathrm{~A}^{\prime} \mathrm{G}=\mathrm{A}^{\prime} \mathrm{C} \cdot \mathrm{~A}^{\prime} \mathrm{E}
$$

therefore

$$
\mathrm{A}^{\prime} \mathrm{F}=\mathbf{\Lambda}^{\prime} \mathrm{E}
$$

and
$\Lambda^{\prime} \mathrm{Q}=\Lambda^{\prime} \mathrm{P}$
Now $\mathrm{O}_{1} \mathrm{~A}^{\prime}$ bisects BC perpendicularly ;
therefore $\mathrm{O}_{1} \mathrm{~A}^{\prime}$ passes through the circumcentre of ABC and bisects $\mathrm{O}_{2} \mathrm{O}_{3}$
therefore $\mathrm{O}_{1} \mathrm{~A}^{\prime}$ is a median of triangle $\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3}$
Similarly for $\mathrm{O}_{2} \mathrm{~B}^{\prime}$ and $\mathrm{O}_{3} \mathrm{C}^{\prime}$;
therefore O the circumcentre of ABC is the centroid of $\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3}$

[^21]Again if through A B C perpendiculars be drawn to the medians $A G B G C G$ these perpendiculars will form a triangle UVW whose vertices will be situated on the circumferences* of $\mathrm{O}_{1} \quad \mathrm{O}_{2} \quad \mathrm{O}_{3}$ and which will be similar to the triangle $\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3}$ Also the triangles UVW $\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3}$ have G for their centre of similitude

Now triangle UVW has G for its insymmedian point; therefore G is also the insymmedian point of triangle $\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3}$
(5) If $\quad L_{1} M_{1} N_{1} \quad L_{2} M_{2} N_{2} \quad L_{3} M_{:} N_{:}$
be the projections on $B C$ CA $A B$ of

	K_{1}	K_{2}	K_{3}
then	$K_{1} N_{1} L_{1} M_{1}$	$K_{2} L_{2} M_{2} N_{2}$	$K_{3} M_{3} N_{3} L_{3}$

are parallelograms \dagger

Figure 40
The points $K_{1} \quad L_{1} \quad B \quad N_{1}$ are concyclic
therefore

$$
\angle \mathrm{L}_{2} \mathrm{~K}_{1} \mathrm{~N}_{1}=\angle \mathrm{ABC}
$$

The points $K_{1} \quad M_{1} C \quad L_{1}$ are concyclic
therefore

$$
\begin{aligned}
\angle \mathrm{K}_{1} \mathrm{~L}_{1} \mathrm{M}_{1} & =\angle \mathrm{K}_{1} \mathrm{CM}_{1} \\
& =\angle \mathrm{K}_{2} \mathrm{CA} \\
& =\angle \mathrm{ABC}
\end{aligned}
$$

therefore $K_{1} N_{1}$ is parallel to $\mathbf{L}_{1} M_{1}$
Similarly $\mathrm{K}_{1} \mathbf{M}_{1}, \quad " \quad, \quad \mathrm{~L}_{1} \mathrm{~N}_{1}$
The point K_{1} is the first of the three points harmonically associated with the centroid of the triangle $\mathrm{L}_{1} \mathrm{M}_{1} \mathrm{~N}_{1}$; the point K_{2} is the second of the three points harmonically associated with the triangle $\mathrm{L}_{2} \mathrm{M}_{2} \mathrm{~N}_{2}$; and the point K_{3} is the third of the three points harmonically associated with the triangle $\mathrm{L}_{3} \mathrm{M}_{3} \mathrm{~N}_{3}$

[^22]If $A K B K C K$ be produced to meet the circumcircle in $D E F F$ the triangle DEF has the same insymmedians as $A B C$

First Demonstration

Figure 29

From K draw KL KM KN perpendicular to BC CA AB and join MN NL LM

Since the points $B L K N$ are concyclic
therefore

$$
\begin{aligned}
\angle \mathrm{KLN} & =\angle \mathrm{KBN} \\
& =\angle \mathrm{EBA} \\
& =\angle \mathrm{EDA}
\end{aligned}
$$

Since the points $\mathbf{C} L K M$ are concyclic
therefore
$\angle \mathrm{KLM}=\angle \mathrm{KCM}$
$=\angle F C A$
$=\angle \mathrm{FDA}$

Hence	$\angle \mathrm{MLN}=\angle \mathrm{EDF}$
Similarly	$\angle \mathrm{LMN}=\angle \mathrm{DEF}$ or $\angle \mathrm{MNL}=\angle \mathrm{EFD}$
and triangles	LMN DEF are directly similar
But since	$\angle \mathrm{KLN}=\angle \mathrm{KDE}$
and	$\angle \mathrm{KLM}=\angle \mathrm{KDF}$

therefore the point K in triangle LMN corresponds to its isogonally conjugate point in triangle DEF
Now K is the centroid of triangle LMN; therefore K is the insymmedian point of triangle DEF

Second Demonstration

Figure 25
Let $A R^{\prime} \mathrm{BS}^{\prime} \mathrm{CT}^{\prime}$ be the exsymmedians
Since $A K$ is the polar of R^{\prime}, and BC EF both pass through R^{\prime} not only will the tangents to the circumcircle at $B C$ meet on the polar of R^{\prime} but also the tangents at EF

But the tangents at E F meet on the insymmedian of DEF from D ; therefore the insymmedian $A D$ is common to triangles $A B C$ DEF

Similarly for the insymmedians BE CF
The cosymmedian triangles ABC DEF are homologous, the insymmedian point K being their centre of homology, and $R^{\prime} S^{\prime \prime} T^{\prime}$ their axis of homology
(1) If two triangles be cosymmedian the sides of the one are proportional to the medians of the other.*

For triangle DEF is similar to triangle LMN
Or thus:
Let G be the centroid of $A B C$
Join GB GC
Then

$$
\begin{aligned}
\therefore \mathrm{EDF} & =\angle \mathrm{EDA}+\angle \mathrm{ADF} \\
& =-\mathrm{KBA}+\angle \mathrm{KCA} \\
& =\angle \mathrm{GBC}+\angle \mathrm{GCB}
\end{aligned}
$$

since the points $G \mathrm{~K}$ are isogonally conjugate
Similarly $\quad \angle D E F=\angle G C A+\angle G A C$
and $\quad \angle \mathrm{EFD}=-\mathrm{GAB}+\angle \mathrm{GAB}$
A reference to the Proceedings of the Edinduryh Mathematical Society, I. 25 (1894) will show that this proves the theorem.
(2) The ratio of the area of $A B C$ to that of its cosymmedian triangle DEF is \dagger

$$
\left(-a^{2}+2 b^{2}+2 c^{2}\right)\left(2 a^{2}-b^{2}+2 c^{2}\right)\left(2 a^{2}+2 b^{2}-c^{2}\right): 27 a^{2} b^{2} c^{2}
$$

Let \triangle^{\prime} be the triangle whose sides are the medians of ABC and which is similar to DEF ; and let R^{\prime} be the radius of its circumcircle

Then

$$
\triangle^{\prime}=3 \mathrm{ABC}=\frac{3 \triangle}{4}
$$

and

$$
\text { DEF : } \triangle^{\prime}=\mathrm{R}^{\prime \prime}: \mathrm{R}^{\prime 2}
$$

[^23]Hence

$$
\begin{aligned}
\mathrm{DEF} & =\frac{3 \triangle \mathrm{R}^{2}}{4 \mathrm{R}^{\prime 2}} \\
& =\frac{3 \triangle}{4} \cdot \frac{a^{2} b^{2} c^{2}}{16 \triangle^{2}} \cdot\left(\frac{3 \triangle}{m_{1} m_{2} m_{3}}\right)^{2} \\
& =\frac{27 \triangle a^{2} b^{2} c^{2}}{64 m_{1}{ }^{2} m_{2}^{2} m_{3}^{2}}
\end{aligned}
$$

The values of $m_{1} m_{2} m_{3}$ are given in the Proceedings of the Edinburgh Mathematical Society, I. 29 (1894)
(3) If $B D C D$ be joined, $D R \quad D R^{\prime}$ are an insymmedian and an exsymmedian of triangle * $D C B$

Figure 24
Draw AA_{1} parallel to $\mathbf{B C}$ to meet the circumcircle at A_{1} and let $A_{1} K_{1}$ meet the circle at D_{1}

Then triangle ACK_{1} is congruent to $\mathrm{A}_{1} \mathrm{~B} \mathrm{~K}_{1}$
therefore $\quad \angle \mathrm{CAD}=\angle \mathrm{BA} \mathrm{A}_{1} \mathrm{D}_{1}$
therefore DD_{1} is parallel to BC
Now since BC is the polar of K_{1} and $\mathrm{AA}_{1} \quad \mathrm{DD}_{1}$ are parallel, therefore $\mathrm{AD}_{1} \quad \mathrm{~A}_{1} \mathrm{D}$ intersect on BC at its mid point A^{\prime}

Again

$$
\begin{aligned}
\angle \mathrm{CDR} & =-\mathrm{CDA} \\
& =-\mathrm{BDA}_{1} \\
& =-\mathrm{PDA}^{\prime}
\end{aligned}
$$

therefore DR is isogonal to the median DA^{\prime}
But DR^{\prime} is a tangent to the circumcircle at D ;
therefore DR^{\prime} is an insymmedian
(4) Hence $\mathrm{BR} \mathrm{BK}_{1}$ are an insymmedian and an exsymmedian of triangle BDA;
$\mathrm{CR} \mathrm{CK}_{1}$ an insymmedian and an exsymmedian of triangle CAD

$$
\begin{equation*}
A R^{\prime 2}+B K_{1}^{2}=K_{1} R^{2,2} \tag{5}
\end{equation*}
$$

Let O be the centre of the circumcircle $A B C$

* C. Adams in his Eiycnscheften des...Dreicchs, pp. 4.5 (1846) gives (3)-(7)

Then

$$
\begin{aligned}
\mathbf{A R}^{\prime 2} & =\mathrm{OR}^{\prime 2}-\mathrm{OA}^{2} \\
& =\mathrm{OA}^{\prime 2}+\mathrm{A}^{\prime} \mathbf{R}^{\prime 2}-\mathrm{OA}^{2} \\
\mathbf{B K}_{1}{ }^{2} & =\mathbf{A}^{\prime} \mathrm{B}^{2}+\mathrm{A}^{\prime} \mathbf{K}_{1}^{2} \\
& =\mathrm{OB}^{2}-\mathrm{OA}^{\prime 2}+\mathrm{A}^{\prime} \mathbf{K}_{1}^{2}
\end{aligned}
$$

therefore

$$
\begin{align*}
\mathbf{A R}^{\prime 2}+\mathrm{BK}_{1}^{2} & =\mathbf{A}^{\prime} \mathbf{R}^{\prime 2}+\mathbf{A}^{\prime} \mathbf{K}_{\mathbf{1}}^{2} \\
& =\mathbf{K}_{\mathbf{1}} \mathbf{R}^{\prime 2} \tag{6}
\end{align*}
$$

$O R$ is perpendicular to $K_{1} R^{\prime}$
For R^{\prime} is the pole of $A K_{1}$
and K_{1}, ," ", BC
therefore $K_{1} R^{\prime}$ is the polar of R
therefore OR is perpendicular to $\mathrm{K}_{1} \mathbf{R}^{\prime}$
(7) $A R^{\prime}$ is a mean proportional between $A^{\prime} R^{\prime}$ and $R R^{\prime}$

Since $\mathbf{B} \mathbf{R} \mathbf{C} \mathbf{R}^{\prime}$ form a harmonic range,
and A^{\prime} is the mid point of $B C$
therefore
B $\mathbf{R}^{\prime}: \mathbf{A}^{\prime} \mathbf{R}^{\prime}=\mathbf{R} \mathbf{R}^{\prime}: \mathrm{CR}^{\prime}$
therefore

$$
\begin{aligned}
\mathbf{A}^{\prime} \mathbf{R}^{\prime} \cdot \mathbf{R} \mathbf{R}^{\prime} & =\mathbf{B R}^{\prime} \cdot \mathbf{C R}^{\prime} \\
& =\mathbf{A R}^{\prime 2}
\end{aligned}
$$

$$
\begin{equation*}
A B \cdot C D=A C \cdot R D=\frac{1}{2} A D \cdot B C \tag{8}
\end{equation*}
$$

Figure 24

For

$$
\begin{aligned}
\mathrm{AB}^{2}: \mathrm{AC}^{2} & =\mathrm{BR}: \mathrm{CR} \\
& =\mathrm{BD}^{2}: \mathrm{CD}^{2}
\end{aligned}
$$

therefore
$\mathrm{AB}: \mathrm{AC}=\mathrm{BD}: \mathrm{CD}$
The last property follows from Ptolemy's theorem
that
$\mathrm{AB} \cdot \mathrm{CD}+\mathrm{AC} \cdot \mathrm{BD}=\mathrm{AD} \cdot \mathrm{BC}$
(9) The distances of R from the four sides of the quadrilateral ABDC are proportional to those sides.

This follows from $\$ 2$
Definition. The four points A B D C form a harmonic system of points on the circle ; and hence ABDC is called a harmonic quadrilateral.

This name was suggested to Mr Tucker by Professor Neuberg in 1885

The first systematic study of harmonic quadrilaterals was made by Mr Tucker. In his article "Some properties of a quadrilateral in a circle, the rectangles under whose opposite sides are equal," read to the London Mathematical Society on 12 th February 1885, he states that in his attempt to extend the properties of the Brocard points and circle to the quadrilateral he "was brought to a stand at the outset by the fact that the equality of angles does not involve the similarity of the figures for figures of a higher order than the triangle. Limiting the figures, however, by the restriction that they shall be circumscriptible" he arrived at a large number of beautiful results all of which cannot unfortunately be given here.

Starting with the encyclic quadrilateral ABCD whose diagonals intersect at E, and investigating the condition that a point P can be found such that

$$
\angle \mathrm{PAB}=\angle \mathrm{PBC}=\angle \mathrm{PCD}=\angle \mathrm{PDA}
$$

he finds, by analytical considerations, that a condition for the existence of such a point is that the rectangles under the opposite sides of the quadrilateral must be equal. He then shows that if there be one Brocard point P for the quadrilateral there will be a second P^{\prime}; that the lines

$$
\text { PA PB PC PD; } \quad P^{\prime} A \quad P^{\prime} B \quad P^{\prime} C P^{\prime} D
$$

intersect again in four points which, with $P P^{\prime}$ lie on the circumference of a circle with diameter $O E$, where O is the centre of the circle ABCD .

Next, if through E parallels be drawn to the sides of the quadrilateral, these parallels will meet the sides in eight points which lie on a circle concentric with the previous one.

Lastly he shows that the symmedian points ($\rho_{1} \rho_{2}$) of ABD BCD lie on AC; the symmedian points ($\sigma_{1} \sigma_{2}$) of ABC ADC lie on BD ; the lines $\mathrm{O} \rho_{1} \mathrm{O} \rho_{2} \mathrm{O} \sigma_{1} \quad \mathrm{O} \sigma_{2}$ are the diameters of the Brocard circles of the triangles ABD BCD ABC ACD respectively; the centres of the four Brocard circles lie two and two on straight lines, parallel to AC BD ; the circles themselves intersect two and two on the diagonals AC BD at their mid points, that is, where the Brocard circle of the quadrilateral meets the diagonals.

Mr Tucker's researches were taken up by Messrs Neuberg and

Tarry, Dr Casey, and the Rev. T. C. Simmons, and there now exists a tolerably extensive theory of harmonic polygons. The reader who wishes to pursue this subject may consult

Mr R. Tucker's memoir which appeared in Mathematical Questions from the Educational Times, Vol. XLIV. pp. 125-135 (1886)

Professor Neuberg Sur le Quadrilatere Harmonique in Mathesis, V. 202-204, 217-221, 241-248, 265-269 (1885)

Dr John Casey's memoir (read 26 th January 1886) "On the harmonic hexagon of a triangle" in the Proceedings of the Royal. Irish Academy, 2nd series, Vol. IV. pp. 545-5i56

A memoir by Messrs Gaston Tarry and J. Neuberg Sur les Polygones et les Polyd̀dres Harmoniques read at the Nancy meeting (1886) of the Association Pransaise pour l'avancement des sciences. See the Report of this meeting, second part, pp. 12-26

A memoir by the Rev. T. C. Simmons (read 7th April 1887) "A new method for the investigation of Harmonic Polygons" in the Proceedings of the London Mathematical Society, Vol. XVIII. pp. 289-304

Dr Casey's Sequel to the First Six Books of the Elements of Euclid, 6th edition, pp. 220-238 (1892)

$$
\$ 8
$$

Tue Cosine or second Lemoine Circle

If through the insymmedian point of a triangle, antiparallels be drawn to the three sides, the sia: points in which they meet the sides are concyctic

Figure 19
Let K be the insymmedian point of ABC
and through K let there be drawn $\mathrm{EF}^{\prime \prime} \mathrm{FD}^{\prime} \mathrm{DE}^{\prime}$
respectively antiparallel to $\quad \mathrm{BC} \mathrm{CA} \mathrm{AB}$
the D points being on BC, the E's on CA, the F's on AB
Then $\mathrm{EF}^{\prime} \mathrm{FD}^{\prime}$ DE' are each bisected at K
Now
$\angle \mathrm{KDD}^{\prime}=\angle \mathrm{A}=\angle \mathrm{KD}^{\prime} \mathrm{D}$
therefore $\quad \mathrm{KD}=\mathrm{KD}^{\prime}$ and $\mathrm{DE}^{\prime}=\mathrm{FD}^{\prime}$
Hence also
$\mathrm{DE}^{\prime}=\mathrm{EF}^{\prime}$
therefore K is equidistant from the six points $\mathrm{D} \mathrm{D}^{\prime} \mathrm{E} \mathrm{E}^{\prime} \mathrm{F} \mathrm{F}^{\prime}$
[This theorem was first given by Mr Lemoine at the Lyons meeting (1873) of the Association Franfaise pour l'avancement des seiences, and the circle determined by it has hence been called one of Lemoine's circles (the second).

The existence of the circle however, and the six points through which it passes were discovered by Mr Stephen Watson of Haylonbridge in 1865, and its diameter expressed in terms of the sides of the triangle. See Lady's ancl Gentleman's Diary for 1865, p. 89, and for 1866, p. 55

In the same publication Mr Thomas Milbourn in 1867 announced a neat relation connecting the diameter of this circle with the diameter of the circumcircle, and here, as far as the Diary is concerned, the inquiry seemed to have stopped]
(1) The figures $\mathrm{DD}^{\prime} \mathbf{E}^{\prime} \mathbf{F} \quad \mathrm{EE}^{\prime} \mathbf{F}^{\prime} \mathrm{D} \quad \mathrm{FF}^{\prime} \mathrm{D}^{\prime} \mathrm{E}$ are rectangles*

It may be interesting to give the way in which these three rectangles made their first appearance.
(2) Three rectangles may be inscribed in any triangle so that they may have each a side coincident in direction with the respective sides of the triangle, and their diagonals all intersecting in the same point, and one circle may be circumscribed about all the three rectangles \dagger

Figure 30
Let $A B C$ be the triangle
Draw AX perpendicular to BC ;
and produce $C B$ to Q making $B Q$ equal to $C X$
About $A C Q$ circumscribe a circle cutting $A B$ at P
Join PC ; and draw BE parallel to PC and meeting AC at E
From E draw ED^{\prime} parallel to AB and EF perpendicular to AB , and let these lines meet $\mathrm{BC} A B$ at $\mathrm{D}^{\prime} \mathrm{F}$
About $\mathrm{D}^{\prime} \mathrm{EF}$ circumscribe a circle cutting $\mathrm{BC} C A \mathrm{AB}$ again in $D \quad E^{\prime} \quad F^{\prime}$. The six points $D \quad D^{\prime} \mathbf{E} \quad E^{\prime} \quad F^{\prime} \quad F^{\prime}$ are the vertices of the required rectangles

Draw CZ perpendicular to AB , and let ED^{\prime} meet CP at R

The similar triangles $\mathrm{ABX} \mathrm{CB} / /$ give

$$
\begin{aligned}
\mathrm{AX}: \mathrm{CZ} & =\mathrm{AB}: \mathrm{CB} \\
& =\mathrm{BQ}: \mathrm{BP} \\
& =\mathrm{CX}: \mathrm{BP} ; \\
\mathrm{AX}: \mathrm{CX} & =\mathrm{CZ}: \mathrm{BP}
\end{aligned}
$$

therefore

[^24]But

$$
\begin{aligned}
\mathrm{E} \mathbf{F}: \mathrm{C} Z & =\mathrm{AE}: \mathbf{A C} \\
& =\mathrm{AB}: \mathrm{AP} \\
& =\mathrm{ED}^{\prime}: \mathrm{ER} \\
& =\mathrm{ED}^{\prime}: \mathbf{B P}
\end{aligned}
$$

therefore $\quad \mathrm{EF}: \mathrm{ED}^{\prime}=\mathrm{CZ}: \mathrm{BP}$;
therefore $\quad \mathrm{AX}: \mathrm{CX}=\mathrm{EF}: \mathrm{ED}^{\prime}$;
therefore the right-angled triangles AXC FED^{\prime} are similar
Hence
$\angle \mathrm{XAC}=\angle \mathrm{EFD}{ }^{\prime}=\angle \mathrm{D}^{\prime} \mathrm{E}^{\prime} \mathrm{E} ;$
therefore $\quad \mathrm{D}^{\prime} \mathrm{E}^{\prime}$ is parallel to AX
Now $\quad \angle \mathrm{FE}^{\prime} \mathrm{D}^{\prime}=\angle \mathrm{FED}^{\prime}=$ a right angle ;
therefore FE^{\prime} is parallel to BC , and $\mathrm{DD}^{\prime} \mathrm{E}^{\prime} \mathrm{F}$ is one of the rectangles

Again because $\angle E F F^{\prime}$ is right,
therefore $E F^{\prime}$ is a diameter ;
therefore $\angle \mathrm{F}^{\prime} \mathrm{D}^{\prime} \mathrm{E}$ is right, as well as $\angle \mathrm{F}^{\prime} \mathrm{DE} \angle \mathrm{F}^{\prime} \mathrm{E}^{\prime} \mathrm{E}$;
therefore $\mathrm{EE}^{\prime} \mathrm{F}^{\prime} \mathrm{D} \quad \mathrm{FF}^{\prime} \mathrm{D}^{\prime} \mathrm{E}$ are the other rectangles
(3) To find the diameter* of the circle $D E F$

Figure 30

[^25]

The following is another proof
Figure 19
Triangles AEF' ABC are similar
and AK is a median of AEF^{\prime};
therefore
$\mathbf{E F}^{\prime}: \mathbf{A K}=\mathbf{B C}: m_{1}$
therefore

$$
\begin{aligned}
\mathbf{E F}^{\prime} & =\frac{\mathbf{A K} \cdot \mathbf{B C}}{m_{1}} \\
& =\frac{2 a b c}{a^{2}+b^{2}+c^{2}}
\end{aligned}
$$

For the value of AK, namely, $\frac{2 a b m_{1}}{a^{2}+b^{2}+c^{2}}$
see Formulæ connected with the Symmedians, at the end of this paper.
(4) If d denote the diameter of circle DEF,
and D ", ", " " ABC, then* $\frac{1}{d^{2}}+\frac{1}{D^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}$

For

$$
\frac{1}{d}=\frac{a^{2}+b^{2}+c^{2}}{2 a b c} \quad \frac{1}{\mathrm{D}}=\frac{4 \Delta}{2 a b c} ;
$$

therefore

$$
\frac{1}{d^{2}}+\frac{1}{\mathrm{D}^{2}}=\frac{\left(a^{2}+b^{2}+c^{2}\right)^{2}+(4 \Delta)^{2}}{4 a^{2} b^{2} c^{2}}
$$

* Mr Thomas Millbourn in the Lady's and Gentleman's Diary for 1867, p. 71, and for 1868, p. 75

$$
\begin{aligned}
& =\frac{\left(a^{2}+b^{2}+c^{2}\right)^{2}+4 c^{2} a^{2}-\left(a^{2}-b^{2}+c^{2}\right)^{2}}{4 a^{2} b^{2} c^{2}} \\
& =\frac{4 c^{2} a^{2}+2\left(c^{2}+a^{2}\right) 2 b^{2}}{4 a^{2} b^{3} c^{2}} \\
& =\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}
\end{aligned}
$$

(5) The centre of the circle $D E F$ is the insymmedian point of the triangle $A B C$

$$
\text { Figure } 30
$$

Because
$\angle \mathrm{EFD}^{\prime}=-\mathrm{XAC}$
therefore their complements are equal
that is $\quad \angle \mathrm{D}^{\prime} \mathrm{FB}=-\mathrm{ACX}$;
therefore $D^{\prime} F$ is antiparallel to $C A$ with respect to B

Hence	$\mathbf{E}^{\prime} \mathbf{D}, "$	$"$	$" \mathrm{AB}$,	,$"$, C
and	$\mathbf{F}^{\prime} \mathbf{E}$,	,,	, BC	,	,	, \boldsymbol{A}

But these antiparallels are all bisected at the centre of the circle DEF;
therefore the centre of the circle is the insymmedian point K
(6) The intercepts $D D^{\prime} E E^{\prime} l^{\prime} F^{\prime}$ made by the circle DEF on the sides of $A B C$ are proportional to the cosines of the anyles of $A B C$

For triangle $\mathrm{DD}^{\prime} \mathrm{E}^{\prime}$ is right-angled ;
therefore

$$
\begin{aligned}
\mathrm{DD}^{\prime} & =\mathrm{DE}^{\prime} \cos \mathrm{D}^{\prime} \mathrm{DE}^{\prime} \\
& =\mathrm{DE}^{\prime} \cos \mathrm{A}
\end{aligned}
$$

Similarly

$$
\mathrm{EE}^{\prime}=\mathrm{EF} \mathrm{~F}^{\prime} \cos \mathrm{B}
$$

$$
\mathrm{FF}^{\prime}=\mathrm{FD}^{\prime} \cos \mathrm{C}
$$

and $\mathrm{DE}^{\prime} \quad \mathrm{EF}^{\prime} \quad \mathrm{FD}^{\prime}$ are all equal
Hence the name cosine circle, given to it by Mr Tucker
(7) The triangles $E F D F^{\prime} D^{\prime} E^{\prime}$ are directly similar to $A B C$, and congruent to each other.

Figure 19

$$
\begin{aligned}
& \text { For } \quad \therefore \mathrm{DEF}=\therefore \mathrm{DD}^{\prime} \mathrm{F} \\
& =\angle \mathrm{A} \\
& \text { and } \quad \angle \mathrm{EFD}=\angle \mathrm{EE}^{\prime} \mathrm{D} \\
& =-\mathrm{B}
\end{aligned}
$$

therefore EFD is similar to ABC
In like manner for $F^{\prime} D^{\prime} E^{\prime}$
Now since EFD $F^{\prime} D^{\prime} E^{\prime}$ are similar to each other and are inscribed in the same circle they are congruent
(8) The angles which

FD DE EF
make with
$A B B C C A$
are equal to the angles which $\mathrm{F}^{\prime} \mathrm{D}^{\prime} \mathrm{D}^{\prime} \mathrm{E}^{\prime} \mathrm{E}^{\prime} \mathrm{F}^{\prime}$
make with $\quad \mathrm{BCCAAB}$

$$
\$ 9
$$

The Triplicate Ratio or First Lemoine Circle

If through the insymmedian point of a trianyle parallels be drawn to the three sides, the six points in which they meet the sides will be concyclic

> First Demonstration*

Figure 31
Let K be the insyrmmedian point of $A B C$, and through K let there be drawn $\mathrm{EF}^{\prime} \mathrm{FD}^{\prime} \mathrm{DE}^{\prime}$ respectively parallel to BC CA AB , the D points being on BC , the E's on CA, the F's on $A B$

Then AFKE' is a parallelogram;
therefore AK bisects FE^{\prime};
therefore $\mathrm{F} \mathrm{E}^{\prime}$ is antiparallel to BC ;
therefore $\mathrm{F} \mathrm{E}^{\prime} \quad$, ", EF^{\prime};

[^26]therefore the points $\mathrm{E} \mathrm{E}^{\prime} \mathrm{F} \mathrm{F}^{\prime \prime}$ are concyclic

Hence	$"$,	F	F^{\prime}	D	D^{\prime}	$"$,$"$
and	$"$,$"$	D	D^{\prime}	E	E^{\prime}	$"$,$"$

Now if these three circles be not one and the same circle, their radical axes, which are $\mathrm{DD}^{\prime} \mathrm{EE}^{\prime} \mathrm{FF}^{\prime}$ or BC CA AB , must meet in a point, the radical centre
But BC CA AB do not meet in a point; therefore these three circles are one and the same, that is, the six points D $D^{\prime} \in E \quad E^{\prime} \quad F \quad F^{\prime}$ are concyclic

Second Demonstration

Figure 32

Let O be the circumcentre of $A B C$, and let OA OK be joined. Because AFKE' is a parallelogram therefore AK bisects FE^{\prime} at U ;
therefore $\mathbf{F E}^{\prime}$ is antiparallel to BC
therefore OA is perpendicular to FE^{\prime}
If therefore through U a perpendicular be drawn to FE^{\prime}
it will be parallel to OA, and will pass through O^{\prime},
the mid point of $O K$
Hence also the perpendiculars to DF^{\prime} and ED^{\prime} through their mid points V and W will pass through O^{\prime};
that is, O^{\prime} the mid point of $O K$ is the centre of a circle which passes through D D' E E' F F^{\prime}

This theorem also was first given by Mr Lemoine at the Lyons meeting (1873) of the Association Francaise, and the circle determined by it has been called one of Lemoine's circles (the first). In his famous article "Sur quelques propriétés d'un point remaryuable d'un triangle " (famous for having given the impulse to a long series of researches, Mr Lemoine's own being not the least prominent among them all) he states that the centre of the circle is the mid point of the line joining the centre of antiparallel mediaus (or as it is now called, the symmerlian point) to the circumcentre; and that the intercepts mate by the circle on the sides of the triangle are proportional to the cules of the sides to which they belong.

Ten years later Mr Tucker, unaware of Mr Lemoine's researches, rediscovered the circle with many of its leading properties, and gave to it the name of t riplicate ratio circle. See his papers "The Triplicate-Ratio (ircle" in the quarterly Journal of Mathematics, XIX. 342-348 (1883) and in the Appendix to the I'rortediny; of the Lomlon Mathematical Sority, NIV. 316-3:3 (1883) and "A Group of Cincles" in the punter'y Jomrual, XX. 57-59 (1884).

The parallels drawn through K , the symmedian point, to the sides of ABC are often called Lemoine's parallels, and the hexagon they determine DD'EE'FF' Lemoine's hexagon.
(1) If $E^{\prime} F F^{\prime} D D^{\prime} E$ be produced to meet and form a triangle, then the incircle of this triangle will have O^{\prime} for its centre, and its radius will be half the radius of the circumcircle of $A B C^{\prime}$

For $\quad O^{\prime} U=\frac{1}{2} O A \quad O^{\prime} V=\frac{1}{2} O B \quad O^{\prime} W=\frac{1}{2} O C$;
therefore

$$
O^{\prime} U=O^{\prime} V=O^{\prime} W
$$

and $O^{\prime} U$ is perpendicular to $\mathrm{E}^{\prime} \mathrm{F}, \mathrm{O}^{\prime} \mathrm{V}$ to $\mathrm{F}^{\prime} \mathrm{D}, \mathrm{O}^{\prime} \mathrm{W}$ to $\mathrm{D}^{\prime} \mathrm{E}$
(2) The figures $\mathrm{DD}^{\prime} \mathrm{EF}^{\prime} \mathrm{EE}^{\prime} \mathrm{FD}^{\prime} \mathrm{FF}^{\prime} \mathrm{DE}^{\prime}$ are symmetrical trapeziums;
therefore
$\mathbf{E}^{\prime} \mathbf{F}=\mathbf{F}^{\prime} \mathbf{D}=\mathbf{D}^{\prime} \mathbf{E}$
(3) Triangles $F D E E^{\prime} F^{\prime} D^{\prime}$ are directly similar to $A B C$ and congruent to each other

For $\quad \angle \mathrm{FDE}=\angle F F^{\prime} E=\angle B$
and
$\angle \mathrm{DEF}=\angle \mathrm{DD}^{\prime} \mathrm{F}=\angle \mathrm{C}$
therefore FDE is similar to ABC
In like manner for $\mathrm{E}^{\prime} \mathrm{F}^{\prime} \mathrm{D}^{\prime}$
Now since FDE $\mathrm{E}^{\prime} \mathrm{F}^{\prime} \mathrm{D}^{\prime}$ are similar to each other and are inscribed in the same circle, therefore they are congruent.

It is not difficult to show that if K be any point in the plane of ABC and through it parallels be drawn to the sides, as in the figure, the triangles DEF $D^{\prime} \mathbf{E}^{\prime} \mathrm{F}^{\prime}$ are equal in area.

See Vuibert's Journal de Mathématiques Élénentaires, VIII. 12 (1883)
(4) The following three triangles are directly similar to ABC':

$$
K D D^{\prime} \quad E^{\prime} \kappa E \quad F^{\prime} F^{\prime} \Lambda
$$

For $\mathrm{EF}^{\prime} \mathrm{FD}^{\prime}$ DE' are parallel to the sides
(5) The following six triangles are inversely similar to ABC : $A E^{\prime} F \quad K F E^{\prime} \quad D B F^{\prime} \quad F^{\prime} K^{\prime} D \quad D^{\prime} E C \quad E D^{\prime} K^{\prime}$
For $E^{\prime} F F^{\prime} D D^{\prime} E$ are antiparallel to the sides
(6) The trianyles* cut off from $A B C$ by $E^{\prime} F^{\prime} F^{\prime} D \quad D^{\prime} E$ are together equal to triangle $D E F^{\prime}$ or $D^{\prime} E^{\prime} H^{\prime \prime}$

[^27]For

$$
\begin{aligned}
\mathrm{AE}^{\prime} \mathrm{F} & =\frac{1}{2} \mathrm{AE}^{\prime} \mathrm{KF}=\mathrm{EKF} \\
\mathrm{DBF}^{\prime} & =\frac{1}{2} \mathrm{BF}^{\prime} \mathrm{KD}=\mathrm{FKD} \\
\mathrm{D}^{\prime} \mathrm{EC} & =\frac{1}{2} \mathrm{CD}^{\prime} \mathrm{KE}=\mathrm{DKE}
\end{aligned}
$$

therefore
$\mathrm{AE}^{\prime} \mathrm{F}+\mathrm{DBF}^{\prime}+\mathrm{D}^{\prime} \mathrm{EC}=\mathrm{DEF}=\mathrm{D}^{\prime} \mathrm{E}^{\prime} \mathrm{F}^{\prime}$
(7) The following six angles are equal:
$D H^{\prime} B \quad E D C \quad F^{\prime} E A \quad D^{\prime} E^{\prime} C \quad l^{\prime} D^{\prime} B \quad E^{\prime} l^{\prime} A$
For the arcs E'F F'D $D^{\prime} E$ are equal
(8) If each of these angles be denoted by ω

$$
\begin{aligned}
& \angle \mathrm{AFE}=\angle \mathrm{AE}^{\prime} \mathrm{F}^{\prime}=\mathrm{B}+\mathrm{C}-\omega \\
& -\mathrm{BDF}-\angle \mathrm{BF}^{\prime} \mathrm{D}^{\prime}=\mathrm{C}+\mathrm{A}-\omega \\
& -\mathrm{CED}=\angle \mathrm{CD}^{\prime} \mathrm{E}^{\prime}=\mathrm{A}+\mathrm{B}-\omega
\end{aligned}
$$

(9) The following points are concyclic:
B C $\mathrm{E}^{\prime} \mathrm{F}$
C A $\mathrm{F}^{\prime} \mathrm{D}$
$\mathrm{A} B \mathrm{D}^{\prime} \mathrm{E}$
(10) The radical axis of the circumcircle and the triplicate ratio circle is the Pascal line of Lemoine's hexayon

Let FE^{\prime} meet BC at X
Since the points B F $\mathrm{E}^{\prime} \mathrm{C}$ are concyclic,
therefore
$\mathrm{XB} \cdot \mathrm{XC}=\mathrm{NF} \cdot \mathrm{XE}^{\prime}$
therefore X has equal potencies with respect to the circumcircle and the triplicate ratio circle;
therefore X is a point on their radical axis
Hence if DF^{\prime} meet CA at Y , and $E D^{\prime}$ meet AB at Z,
Y and Z are points on the radical axis;
therefore the radical axis is the straight line XYZ
(11) The radical axis is the polar of K with respect to the triplicate ratio circle
(12) The diagonals of Lemoine's hexagon
$\mathrm{E}^{\prime} \mathrm{F}^{\prime} \mathrm{DE} \quad \mathrm{F}^{\prime} \mathrm{D}^{\prime} \mathrm{EF} \quad \mathrm{D}^{\prime} \mathrm{E}^{\prime} \mathrm{FD}$
intersect on the polar of K with respect to the triplicate ratio circle

Figure 33

(13) If the chords

(14) The intersections of the antiparallel chords with Lemoine's parallels, that is, of

| $E^{\prime} r^{\prime} E V^{\prime}$ | $F^{\prime} D$ | $F^{\prime} D^{\prime}$ | $D^{\prime} E \quad D E^{\prime}$ |
| :--- | :---: | :---: | :---: | :---: |
| namely | P | Q | R |
| are collinear * | | | |

The quadrilateral $\mathrm{EE}^{\prime} \mathrm{FF}^{\prime}$ is inscribed in the circle DEF, and
meet in $\quad \Lambda \quad p \quad P$
therefore triangle $\mathrm{A}_{p} \mathrm{P}$ is self-conjugate with respect to circle DEF; therefore P is the pole of Ap with respect to DEF
Similarly Q ,, ", Aq ," ,, , "
and R, ," " A . , " ", "
Now $\quad A p, \mathrm{~B} q \mathrm{C} r$ are concurrent at T
therefore $\mathbf{P} \quad \mathbf{Q} \quad \mathbf{R}$ are collinear on the polar of T with respect to the circle DEF

* Dr John Casey. See his Scyucl to Euclid, 6th ed., p. 190 (1892)

76

(15) If the intersections of
be

$D E$| $F^{\prime} D^{\prime}$ | $E F$ | $D^{\prime} E^{\prime}$ | $F D$ |
| :---: | :---: | :---: | :---: |
| l | $E^{\prime} F^{\prime}$ | | |
| m | n_{n} | | |

the triangles ABC lmn are similar and oppositely situated
Since the arcs $E^{\prime} \mathrm{F}^{\prime \prime} \mathrm{F}^{\prime \prime} \mathrm{D}^{\prime} \mathrm{E}$ are equal
therefore $\quad \angle \mathrm{E}^{\prime} m \mathrm{~F}=\angle \mathrm{E}^{\prime} n \mathrm{~F}=2 \omega$;
therefore the points $\mathrm{E}^{\prime} \boldsymbol{m} n \mathrm{~F}$ are concyclic ;
therefore $\quad \angle \mathbf{E}^{\prime} n m=\angle \mathrm{E}^{\prime} \mathrm{F} m=\angle \mathrm{E}^{\prime} \mathrm{F}^{\prime \prime} \mathrm{E}$;
therefore $m n$ is parallel to EF^{\prime} and to $\mathbf{B C}$
Similarly for the other sides
(16) The triangles pqr lmn are homologous and K is their
centre of homology
For $E^{\prime} F^{\prime} D^{\prime} F E D$ is a Pascal hexagram ;
therefore the intersections of

	$\mathrm{E}^{\prime} \mathrm{F}^{\prime} \mathrm{FE}$	$\mathrm{F}^{\prime} \mathrm{D}^{\prime} \mathrm{ED}$	$\mathrm{D}^{\prime} \mathbf{F} \quad \mathrm{DE}{ }^{\prime}$
namely	p	l	K
are colline Similar	, K ;		

Tuckrr's Circles*

If trianyles $A B C \quad A_{1} B_{1} C_{1}$ be similar and similarly situated and have K the symmedian point for centre of similitude, the six points in which the sides of $A_{1} B_{1} C_{1}$ meet the sides of $A B C$ are concyclic

Figure 34

Let the six points be $1 \begin{array}{llll}D^{\prime} & E E^{\prime} & F F^{\prime}\end{array}$
Since $\mathrm{AFA}_{1} \mathbf{E}^{\prime}$ is a paralellogram
therefore $A K$ bisects $E^{\prime} F$;
therefore $\mathrm{E}^{\prime} \mathrm{F}$ is antiparallel to BC ,
therefore $\mathrm{E}^{\prime} \mathrm{F}, \quad " \quad, \mathrm{EF}^{\prime}$;

[^28]therefore the points $\mathbf{E} \mathrm{E}^{\prime} \mathrm{F} \mathrm{F}^{\prime}$ are concyclic
Similarly " " 'F F' D D', "
and " " D D E E" ",
therefore the six points $D D^{\prime} E E^{\prime} \quad F^{\prime}$ are concyclic
(1) T'o find the centre of the circle $D D^{\prime} E E^{\prime} F F^{\prime *}$

Let $O O_{1}$ be the circumcentres of $\mathrm{ABC} \quad \mathrm{A}_{1} \mathrm{~B}_{2} \mathrm{C}_{1}$
Then $O \quad O_{1} \mathrm{~K}$ are collinear
and $O A$ is parallel to $O_{1} A_{1}$
Now since $E^{\prime} F$ is antiparallel to $B C$
therefore OA is perpendicular to $\mathrm{E}^{\prime} \mathrm{F}$
Hence if $E^{\prime} F$ meet $A A_{1}$ at U,
a line through U parallel to AO will bisect E'F perpendicularly, and also bisect OO_{1}
Similarly the perpendicular bisectors of $\mathrm{F}^{\prime} \mathrm{D}$ and $\mathrm{D}^{\prime} \mathrm{E}$ will bisect OO_{1};
therefore the centre of the circle is the mid point of OO_{1}
(2) Triangles $F D E E E^{\prime} F^{\prime}$ are directly similar to $A B C$ and congruent to each other

Figure 34
Since $F^{\prime} E \quad D^{\prime} F \quad E^{\prime} D$ are respectively parallel
to $\quad \mathrm{BC} \mathrm{CA} \mathrm{AB}$
therefore the arcs $E^{\prime} F F^{\prime} D D^{\prime} E$ are equal;
therefore $\quad \angle \mathrm{EFD}=\angle \mathrm{D}^{\prime} \mathrm{FF}^{\prime}=\angle \mathrm{A}$
Similarly $\quad \angle \mathrm{FDE}=\angle \mathrm{E}^{\prime} \mathrm{DD}^{\prime}=\angle \mathrm{B}$
therefore FDE is similar to ABC
In like manner for $\mathrm{E}^{\prime} \mathrm{F}^{\prime} \mathrm{D}^{\prime}$
Now since $F D E E^{\prime} F^{\prime} D^{\prime}$ are similar to each other and are inscribed in the same circle therefore they are congruent

[^29]6 Vol. 14
(3) If T be the mid point of 00_{1}

$$
T U=\frac{1}{2}\left(O A+O_{1} A_{1}\right)
$$

Similarly, if $V W$ be the mid points of $F^{\prime} D D^{\prime} E$,

$$
\begin{aligned}
& T V=\frac{1}{2}\left(O B+O_{1} B_{1}\right) \\
& T W=\frac{1}{3}\left(O C+O_{1} C_{1}\right)
\end{aligned}
$$

Hence if $E^{\prime} F F^{\prime} D D^{\prime} E$ be produced to meet and form a triangle $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2}$
T will be the incentre of the triangle $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2}$ and the radius of the incircle will be an arithmetic mean between the radii of the circumcircles of ABC and $\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}$
(4) The triangle $A_{3} B_{3} C_{3}$ formed by producing $E^{\prime} F F^{\prime} D D^{\prime} F$ will have its sides respectively parallel to those of $\mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{3}$ formed by drawing through $\mathrm{A} B \mathrm{C}$ tangents to the circumcircle ABC

Figure 35

(5) Triangles $A_{i j} B_{i j} C_{i} \quad K_{1} K_{2} K_{3}$ have K for their centre of homology
(6) When the triangle $\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}$ becomes the triangle ABC , the Tucker circle DD'EE'FF' becomes the circumcircle
(7) When the triangle $A_{1} B_{1} C_{1}$ reduces to the point K that is when the parallels $\mathrm{B}_{1} \mathrm{C}_{1} \quad \mathrm{C}_{1} \mathrm{~A}_{1} \quad \mathrm{~A}_{1} \mathrm{~B}_{1}$ to the sides of ABC pass through K the Tucker circle $\mathrm{DD}^{\prime} \mathrm{EE}^{\prime} \mathrm{FF}^{\prime}$ becomes the triplicate ratio or first Lemoine circle
(8) When the triangle $A_{3} \quad B_{3} \quad C_{3}$ reduces to the point K, that is when the antiparallels $\mathrm{B}_{3} \mathrm{C}_{3}, \mathrm{C}_{3}, \mathrm{~A}_{3} \mathrm{~A}_{i} \mathrm{~B}_{3}$ to the sides of ABC pass through K, the Tucker circle $\mathrm{DD}^{\prime} \mathrm{EE}^{\prime} \mathrm{FF}^{\prime}$ becomes the cosine or second Lemoine circle
(9) If $F^{\prime} D \quad D^{\prime} E$ meet at A_{3}
$D^{\prime} E E^{\prime} F^{\prime}, \quad, B_{3}$
$E^{\prime} F F^{\prime} D \quad, \quad, C_{3}$
then $A K B K$ CK pass through $A_{;} B_{3} C_{3}$

Figure 28
Let R denote the foot of the symmedian $A K$
Then

$$
\begin{aligned}
\mathrm{KF}^{\prime}: \mathrm{KE} & =\mathrm{BD}: \mathrm{CD}^{\prime} \\
& =c^{2}: b^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{RD}: \mathrm{RD}^{\prime} & =\mathrm{BR}-\mathrm{BD}: \mathrm{CR}-\mathrm{Cl}^{\prime} \\
& =r^{2}: l^{2}
\end{aligned}
$$

therefore $\mathrm{F}^{\prime} \mathrm{D}$ KR ED' are concurrent

Taylor's Circle

The six projections of the vertices of the orthic triangle on the sides of the fundamental triangle are concyclic

Figure 86

Let the projections of X on $C A$ AB be $Y_{1} Z_{1}$

$$
\begin{aligned}
& \text {, } \mathrm{Y},{ }^{\text {, }} \mathrm{AB} \mathrm{BC}, \mathrm{Z}_{2} \mathrm{X}_{2} \\
& \text {, } Z, \ldots \text { BC CA , } X_{3} Y_{n}
\end{aligned}
$$

Then

$$
\begin{aligned}
\mathrm{AZ}: \mathrm{AZ}_{1} & =\mathrm{AH}: \mathrm{AX} \\
& =\mathrm{AY}: \mathrm{AY}_{1}
\end{aligned}
$$

therefore YZ is parallel to $\mathrm{Y}_{1} Z_{1}$
Now $\mathrm{Y}_{3} \mathrm{Z}_{2}$ is antiparallel to $\mathrm{Y} Z$
therefore $Y_{3} Z_{2}, \quad, \quad, Y_{1} Z_{1}$
therefore $\mathbf{Y}_{1} \mathbf{Y}_{3} Z_{2} Z_{1}$ are concyclic
Similarly $Z_{2} Z_{1} X_{3} X_{2}, "$,
and $\mathrm{X}_{3} \mathrm{X}_{2} \mathrm{Y}_{1} \mathrm{Y}_{3}$ ", ,
therefore the six points $X_{3} \quad X_{2} \quad Y_{1} \quad Y_{3} \quad Z_{3} \quad Z_{1}$ are concyclic
The property, that the six projections of the vertices of the orthic triangle on the sides of the fundamental triangle are concyclic, seems to have been first published in Mr Vuibert's Journal de Mathématiqucs Élémentaires in November 1877. See Vol. II. pp. 30, 43. It is proposed by Eutaris. This name, as my friend Mr Maurice D'Ocagne informs me, was assumed anagrammatically by M. Restiau, at that time a répétiteur in the Collège Chaptal, Paris.

The same property, along with three others, is given in Catalan's Théorèmes et Problèmes, 6th ed., pp. 139-4 (1879). It occurs also in a question proposed by Professor Neuberg in Mathexis, I. 14 (1881), and in a paper by Mr H. M. Taylor in the Messenger of Mathematics, XI. 177-9 (1882). A proof by Mr C. M. Jessop, somewhat shorter than that given by Mr Taylor, occurs in the Messenger, XII. 36 (1883) and in the same volume (pp. 181-2) Mr Tucker examines whether any other positions of X Y Z on the sides would, with a similar construction, give a six-point circle, and he shows that no other circle is possible under the circumstances.

See also L'Internédiaive des Mathénaticiens, II. 166 (1895).
The projections of

$$
\begin{array}{llll}
\mathbf{X} \text { on } \mathrm{BY} & \mathrm{CZ} \text { are } \mathrm{Y}_{2} & \mathrm{Z}_{0} \\
\mathbf{Y} & , \mathrm{CZ} & \mathrm{AX} & , \\
\mathrm{Z}_{3} & \mathbf{X}_{0} \\
\mathbf{Z} & " \mathrm{AX} & \mathrm{BY} & , \\
\mathbf{X}_{1} & \mathbf{Y}_{0}
\end{array}
$$

With regard to the notation it may be remarked that the
X points lie on $B C$ and on the perpendicular to it from A

Let a notation, similar to that which prevails with regard to the sides, the semiperimeter, the radii of the incircle and the excircles of triangle ABC , be adopted for triangle XYZ ; that is, let

$$
\mathrm{YZ}=x \quad \mathrm{ZX}=y \quad \mathrm{XY}=z
$$

$\sigma=\frac{1}{2}(x+y+z) \quad \sigma_{1}=\frac{1}{2}(-x+y+z) \quad \sigma_{2}=\frac{1}{2}(x-y+z) \quad \sigma_{3}=\frac{1}{2}(x+y-z)$ and let $\rho \rho_{1} \rho_{3} \rho_{3}$ be the radii of the incircle and the excircles

If reference be made to the Proceedings of the Edinburgh Mathematical Society, XIII. 39-40 (1895), it will be found that various properties are proved with respect to triangle $I_{1} I_{2} I_{3}$ and its orthic triangle ABC. These properties may be transferred to triangle ABC and its orthic triangle XYZ. The transference will be facilitated by writing down in successive lines the points which correspond. They are

$$
\begin{array}{ccccccccccc}
\mathrm{I} & \mathrm{I}_{1} & \mathrm{I}_{2} & \mathrm{I}_{3} & \mathrm{~A} & \mathrm{~B} & \mathrm{C} & \mathrm{~A}_{1} & \mathrm{~A}_{2} & \mathrm{~A}_{3} & \mathrm{~A}_{4} \\
\mathrm{H} & \mathrm{~A} & \mathrm{~B} & \mathrm{C} & \mathrm{X} & \mathrm{Y} & \mathrm{Z} & \mathrm{Y}_{2} & \mathrm{Y}_{1} & \mathrm{Z}_{0} & \mathrm{Z}_{1}
\end{array}
$$

Hence, from Wilkinson's theorem and corollary, the three following statements relative to Fig 25 may at once be inferred
 are three tetrads of collinear points

$$
\begin{array}{llll}
& Y_{1} Z_{1} & Z_{2} X_{2} & X_{3} Y_{3} \tag{2}\\
\text { or } & Y_{2} Z_{0} & Z_{3} X_{0} & X_{1} Y_{0}
\end{array}
$$

intersect two by two at the mid points of the sides of XYZ
(3) *

$$
\begin{aligned}
& Y_{1} Z_{1}=Z_{2} X_{2}=X_{3} Y_{3}=\sigma \\
& Y_{2} Z_{0}=Z_{3} X_{2}=X_{3} Y_{0}=\sigma_{1} \\
& Y_{1} Z_{0}=Z_{3} X_{0}=X_{1} Y_{3}=\sigma_{2} \\
& Y_{2} Z_{1}=Z_{2} X_{0}=X_{1} Y_{0}=\sigma_{3}
\end{aligned}
$$

(4) If $\quad \begin{array}{llll} & X^{\prime} & \mathbf{Y}^{\prime} & Z^{\prime}\end{array}$ be the mid points of YZ ZX XY
the sides of triangle $X^{\prime} Y^{\prime} Z^{\prime}$ intersect the sides of $A B C$ in six concyclic points
(5) Triangles $A B C \quad X^{\prime} Y^{\prime} Z^{\prime}$ are homologous, and the symmedian point K is the centre of homology

For YZ is antiparallel to BC,
and X^{\prime} is the mid point of YZ ;
therefore $A X^{\prime}$ is the symmedian from A
Similarly $\mathrm{BY}^{\prime} \mathbf{C Z}$, are the symmedians from $\mathbf{B} \mathbf{C}$
(6) \dagger

$$
\begin{array}{ll}
R \cdot Y_{1} Z_{1}=A B C & R \cdot Y_{2} Z_{0}=H C B \\
R \cdot Y_{1} Z_{0}=C H A & R \cdot Y_{2} Z_{1}=B A I I
\end{array}
$$

Figure 37

Join O the circumcentre to $A \quad B \quad C$
Then OA OB OC are respectively perpendicular
to $\quad \mathbf{Y Z} \mathbf{Z X} \mathbf{X Y}$
therefore $2 \mathrm{AZOY}=\mathrm{OA} \cdot \mathrm{YZ}$
$2 B X O Z=O B \cdot Z X$
$2 \mathrm{CYOX}=\mathrm{OC} \cdot \mathrm{XY}$
therefore $\quad 2 \Delta=\mathbf{R}(\mathbf{Y Z}+\mathbf{Z X}+\mathbf{X Y})$

[^30](7) The following trianyles are isosceles:
$$
X^{\prime} Z Z_{2} \quad X^{\prime} Z_{2} Y \quad X^{\prime} Z I_{3} \quad X^{\prime} Y_{3} Y
$$

For triangles $Y Z Z_{2} Y_{Z} Y_{3}$ are right-angled and X^{\prime} is the mid point of their hypotenuse

Similarly there are four isosceles triangles with vertex Y^{\prime} and
(8) $Y_{1} Z_{1}$ is anciparallel to BC with respect to A $Z_{2} \mathrm{X}_{2}, \quad$, CA, \quad, "B $\mathrm{X}_{3} \dot{\mathbf{Y}}_{;}, \quad, \quad, \mathrm{AB}, \quad, \quad, \mathrm{C}$
(9) $Y_{3} Z_{2}$ is parallel to BC
$Z_{1} X_{i j}, \quad, \quad, \quad \mathrm{C}$.
$\mathrm{X}_{\mathbf{2}} \mathbf{Y}_{1}, ", \quad, \quad \mathrm{AB}$
(10) $Z_{1} X_{3}$ and $Y_{1} X_{2}$ intersect on the symmedian from A

Let A_{1} be their point of intersection
Then $A Z_{1} A_{1} Y_{1}$ is a parallelogram,
and ΛA_{1} bisects $Y_{1} Z_{1}$
But $Y_{1} Z_{1}$ is antiparallel to $B C$ with respect to Λ;
therefore $A A_{1}$ is the symmedian from A
Similarly $Y_{1} X_{2} \quad Z_{2} Y_{3}$ intersect on the symmedian from B; and $Z_{2} Y_{3} Z_{1} X_{3} \quad, \quad, \quad, \quad$,
(11) Triangles $Y_{1} Z_{2} X_{3} Z_{1} X_{2} Y_{3}$ are directly similar to $A B C$ and congruent to each other

Figure 36
For

$$
\angle X_{i j} Y_{1} Z_{2}=\angle X_{3} Y_{3} Z_{2}
$$

Now $\mathrm{X}_{3} \mathrm{Y}_{\text {; }}$ is parallel to XY
and $\mathrm{Y}_{3} Z_{\text {. . . , " }}$ UC
therefore $\quad \therefore \mathrm{X}_{3} \mathrm{Y}_{3} Z_{2}=-\mathrm{YXC}$

$$
=-1
$$

Similarly $\quad-Y_{i} Z_{2} \lambda_{i 3}=-13$
therefore $Y_{1} Z_{1} X_{i j}$ is similar to ABC
In like manner for $Z_{1} X_{2} Y_{3}$
Now since $Y_{1} Z_{2} X_{3} \quad Z_{1} X_{3} Y_{3}$ are similar to each other and are inscribed in the same circle, therefore they are congruent
(12) Since $X Y Z$ is the orthic triangle not only of $A B C$, but also of HCB CHA BAH, if the projections of $\mathrm{X} \mathbf{Y ~ Z}$ be taken on the sides of the last three triangles, three other circles are obtained

These circles are

$$
\mathrm{X}_{2} \mathrm{X}_{3} \mathrm{Y}_{2} \mathrm{Y}_{0} \mathrm{Z}_{3} \mathrm{Z}_{0} \quad \mathrm{X}_{1} \mathrm{X}_{0} \mathrm{Y}_{3} \mathrm{Y}_{1} \mathrm{Z}_{0} \mathrm{Z}_{3} \quad \mathrm{X}_{0} \mathrm{X}_{1} \mathrm{Y}_{0} \mathrm{Y}_{\mathrm{E}} \mathrm{Z}_{1} \mathrm{Z}_{2}
$$

If they be denoted by $T_{1} T_{2} T_{3}$ and the circle $\mathrm{X}_{3} \mathrm{X}_{2} \mathrm{Y}_{1} \mathrm{Y}_{3} Z_{2} Z_{1} \quad, \quad, \mathrm{~T}$, then
$\left.\begin{array}{ll}\mathrm{T} & \mathrm{T}_{1} \\ \mathrm{~T} & \mathrm{~T}_{2} \\ \mathrm{~T} & \mathrm{~T}_{3} \\ \mathrm{~T}_{2} & \mathrm{~T}_{3} \\ \mathrm{~T}_{3} & \mathrm{~T}_{1} \\ \mathrm{~T}_{1} & \mathrm{~T}_{2}\end{array}\right\}$ have for radical axis $\left\{\begin{array}{c}\mathrm{BC} \\ \mathrm{CA} \\ \mathrm{AB} \\ \mathrm{AX} \\ \mathrm{BY} \\ \mathrm{CZ}\end{array}\right.$
(13) The centres of the circles $T T_{1} T_{2} T_{1}$ are the incentre and the excentres of the triangle $X^{\prime} Y^{\prime} Z^{\prime}$

For $Y_{1} Z_{1} \quad Z_{2} X_{2} \quad X_{3} Y_{3}$ are equal chords in circle T; therefore the centre of T is equidistant from them But these chords form by their intersection the triangle $X^{\prime} Y^{\prime} Z^{\prime}$; therefore the centre of T must be the incentre of $\mathrm{X}^{\prime} \mathrm{Y}^{\prime} \mathrm{Z}^{\prime}$

Hence $\mathrm{T}_{\mathrm{T}} \mathrm{T}_{1} \mathrm{~T}_{2} \mathrm{~T}_{3}$ form an orthic tetrastigm
(14) The centres of $T T_{1} T_{2} T_{3}$ are the four points of concurrency of the triads of perpendiculars from $\mathrm{X}^{\prime} \mathrm{Y}^{\prime} \mathrm{Z}^{\prime}$ on the sides of ABC HCB CHA BAH

See Proceedinys of the Edinburgh Mathematical Society, I. 66 (1894)
(15) The circle T' belonys to the group of Tucker circles*

Figure 36
For triangle $Z_{1} X_{2} Y_{3}$ is similar to ABC ; and it is inscribed in ABC Hence its circumcircle \mathbf{T} belongs to the group of Tucker circles

[^31](16) The circle T cuts orthogonally the three excircles of the orthic triangle $X Y Z$, and each of the circles $T_{1} T_{2} \quad T_{3}$ cuts orthogonally* the incircle and two of the excircles of $X Y Z$

Figure 36

Let $\quad p_{1} \quad p_{2} \quad p_{8}$ denote the perpendiculars from
$\mathrm{A} \quad \mathrm{B}$ on $\mathbf{Y Z} \mathbf{Z X} \mathbf{X Y}$;
these perpendiculars are the radii of the three excircles of $X Y Z$
Since triangles AYZ ABC are similar,
therefore $\quad p_{1}{ }^{2}: \mathrm{AX}^{2}=A Z^{2}: \mathrm{AC}^{2}$
therefore $\quad p_{1}{ }^{2}: A C \cdot A Y_{1}=A C \cdot A Y_{3}: A C^{2}$
therefore $\quad p_{1}{ }^{2}=A Y_{1} \cdot A Y_{3}$ the potency
of the point Δ with respect to the circle T
Hence the circle with centre A and radius p_{1} cuts the circle T orthogonally

Similarly for the other statements
(17) The squares of the radii of the circles \dagger

	T	T_{1}	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$
are	$\frac{1}{4}\left(\rho^{2}+\sigma^{2}\right)$	$\frac{1}{4}\left(\rho_{1}{ }^{2}+\sigma_{1}{ }^{2}\right)$	$\frac{1}{4}\left(\rho_{2}{ }^{2}+\sigma_{2}{ }^{2}\right)$	$\frac{1}{4}\left(\rho_{3}{ }^{2}+\sigma_{3}{ }^{5}\right)$

Figure 36
The triangle $\mathrm{X}^{\prime} \mathrm{Y}^{\prime} \mathrm{Z}^{\prime}$ is similar to XYZ , the ratio of similitude being $1: 2$
therefore the radii of the incircle and excircles of $X^{\prime} Y^{\prime} Z^{\prime}$ are $\frac{1}{2} \rho \quad \frac{1}{2} \rho_{1} \quad \frac{1}{2} \rho_{2}$ $\frac{1}{2} \rho_{3}$
Now if T be the incentre of $X^{\prime} Y^{\prime} Z^{\prime}$, the perpendicular from T to $Y_{1} Z_{1}$ will bisect $Y_{1} Z_{1}$, and will be equal to $\frac{1}{2} \rho$.

Hence if t denote the radius of circle T,

$$
t^{2}=\mathrm{TY}_{1}^{2}=\left(\frac{1}{2} \rho\right)^{2}+\left(\frac{1}{2} \sigma\right)^{2}=\frac{1}{4}\left(\rho^{2}+\sigma^{2}\right)
$$

Similarly if T_{1} be the first excentre of $X^{\prime} Y^{\prime} Z^{\prime}$, and t_{1} denote the radius of circle T_{1},

$$
t_{1}^{2}=\mathrm{T}_{1} \mathrm{Y}_{2}^{2}=\left(\frac{1}{2} \rho_{1}\right)^{2}+\left(\frac{1}{2} \sigma_{1}\right)^{2}=\frac{1}{4}\left(\rho_{1}^{2}+\sigma_{1}^{2}\right)
$$

[^32](18) The sum of the squares of the radii of the circles $T T_{1} T_{2} T_{3}$ is equal to the square of the radius of the circumcircle of $A B C$

In reference to triangle ABC, the following property may be proved to be true

$$
16 \mathrm{R}^{2}=r^{2}+r_{1}^{2}+r_{2}^{2}+r_{3}^{2}+a^{2}+b^{2}+c^{2}
$$

This becomes in reference to triangle $X^{\prime} Y^{\prime} Z^{\prime}$

$$
\begin{aligned}
16\left(\frac{1}{4} \mathrm{R}\right)^{2} & =\left(\frac{1}{2} \rho\right)^{2}+\left(\frac{1}{2} \rho_{1}\right)^{2}+\left(\frac{1}{2} \rho_{2}\right)^{2}+\left(\frac{1}{2} \rho_{3}\right)^{2}+\left(\frac{1}{2} x\right)^{2}+\left(\frac{1}{2} y\right)^{2}+\left(\frac{1}{2} z\right)^{2} \\
\text { or } \quad \mathrm{R}^{2} & =\frac{1}{4}\left(\rho^{2}+\rho_{2}^{2}+\rho_{2}^{2}+\rho_{3}^{2}\right)+\frac{1}{4}\left(x^{2}+y^{2}+z^{2}\right)^{2} \\
& =\frac{1}{4}\left(\rho^{2}+\rho_{1}^{2}+\rho_{2}^{2}+\rho_{3}^{2}\right)+\frac{1}{4}\left(\sigma^{2}+\sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{3}^{2}\right)
\end{aligned}
$$

In connection with the Taylor circles it may be interesting to compare the properties given in the Proceedings of the Edinburgh - Mathematical Society, Vol. I. pp. 88-96 (1894). These properties were worked out before the Taylor circle had attracted much attention.
(19) If $A^{\prime} B^{\prime} C^{\prime}$ be the complementary, and $X Y Z$ the orthic triangle of $A B C$, the Wallace lines of the points $A^{\prime} B^{\prime} C^{\prime \prime}$ with respect to the triangle XYZ pass through the centre of the circle T

Figure 36
It is well known that the points $A^{\prime} B^{\prime} \mathbf{C}^{\prime} \mathbf{X} \mathbf{Y} \quad \mathbf{Z}$ are situated on the nine point circle of ABC

Since A^{\prime} is the mid point of BC
therefore

$$
A^{\prime} \mathrm{Y}=\mathrm{A}^{\prime} \mathrm{Z}
$$

therefore the foot of the perpendicular from A^{\prime} on YZ is X^{\prime} the mid point of $Y Z$

Since BC bisects the exterior angle between XY and ZX the straight line joining the feet of the perpendiculars from A^{\prime} on XY and ZX will be perpendicular to $\mathbf{B C}$
Hence the Wallace line A^{\prime} (XYZ) passes through X^{\prime} and is perpendicular to BC
that is, it passes through the centre of \mathbf{T}
Similarly for the Wallace lines $\mathrm{B}^{\prime}(\mathrm{XYZ})$ and $\mathrm{C}^{\prime}(\mathrm{XYZ})$
(20) The Wallace lines of the points $X \quad Y^{Y} Z$ with respect to the triangle $A^{\prime} B^{\prime} C^{\prime}$ pass through the centre of the circle T^{\prime}
[The reader is requested to make the figure]
Let the feet of the perpendiculars from X on $B^{\prime} C^{\prime} C^{\prime} A^{\prime} A^{\prime} B^{\prime}$ be L M N

Then the points $A^{\prime} M X N$ are concyclic
therefore

$$
\begin{aligned}
\therefore \mathbf{A}^{\prime} \mathrm{MN} & =-\mathrm{A}^{\prime} \mathrm{XN} \\
& =90^{\circ}-\angle \mathrm{B} \\
& =\angle \mathrm{CAO}
\end{aligned}
$$

therefore LMN is parallel to AO
But L is the mid point of $A X$ and H_{1} is situated on $A O$ therefore LMN passes through the mid point of $\mathrm{H}_{1} \mathrm{X}$, that is through T

(21) If	H_{1}	H_{2}	H_{3}	be the orthocentres of
triangles	$A Y Z$	ZBX	IVC	
the lines	$H_{1} \mathrm{~N}$	$H_{11} Y$	Mr: Z	
pass through the centre of circle T and are there bisected				

Figure 36

The orthocentre H_{1} of triangle AYZ is the point of intersection of $Z_{3} Y_{3} Z_{2}$ which are respectively perpendicular to CA AB

The centre T of the Taylor circle is the point of intersection of
Y'T Z'T which are respectively perpendicular to CA AB
Hence since $\quad X Z=2 X Y^{\prime} \quad X Y=2 X Z^{\prime}$
the quadrilaterals $\mathrm{H}_{1} \mathrm{ZXY}$ ' $\mathrm{TY}^{\prime} \mathrm{XZ'}^{\prime}$ are homothetic ; therefore $\mathrm{H}_{1} \mathrm{X}$ passes through T and is there bisected
(22) Triangle $\mathrm{H}_{1} \mathrm{H}_{2} \mathrm{H}_{3}$ is congruent and oppositely situated to triangle XYZ and T is their homothetic centre
(23) The centre T is situated on the straight line which joins O the circumcentre of ABC to the orthocentre of XYZ

For O is the orthocentre of $\mathrm{H}_{1} \mathrm{H}_{2} \mathrm{H}_{3}$

Not only is XYZ the orthic triangle of ABC and

			triangles
AYZ	XBZ	XYC	similar to

but XYZ is the orthic triangle of HCB CHA BAH and

triangles			similar to
HYZ	XCZ	XYB	HCB
CYZ	XHZ	XYA	CHA
BYZ	XAZ	XYH	BAH

Let the orthocentres of the second, third, and fourth triads of triangles be denoted by

$$
\begin{array}{llllllll}
\mathrm{H}_{1}^{\prime} & \mathrm{H}_{2}{ }^{\prime} & \mathrm{H}_{3}^{\prime} & \mathrm{H}_{1}^{\prime \prime} & \mathrm{H}_{2}{ }^{\prime \prime} & \mathrm{H}_{3}{ }^{\prime \prime} & \mathrm{H}_{3}^{\prime \prime \prime} & \mathrm{H}_{2}{ }^{\prime \prime \prime}
\end{array} \mathrm{H}_{3}{ }^{\prime \prime \prime}
$$

The following results (among several others) will be found to be established in the Proceedings of the Edinburgh Mathematical Society, I. 83-87 (1894). They are quoted here, without proof, to save the reader the trouble or the expense of hunting out the reference
(24) The homothetic centre of the triangles

XYZ	$\mathrm{H}_{1}{ }^{\prime} \mathrm{H}_{2}{ }^{\prime} \mathrm{H}_{3}{ }^{\prime}$	is	T_{1}
XYZ	$\mathrm{H}_{1}{ }^{\prime \prime} \mathrm{H}_{2}{ }^{\prime \prime} \mathrm{H}_{3}{ }^{\prime \prime}$		
XYZ	$\mathrm{H}_{1}{ }^{\prime \prime \prime} \mathrm{H}_{2}{ }^{\prime \prime \prime} \mathrm{H}_{3}{ }^{\prime \prime \prime}$	T_{2}	
	$"$	$\mathrm{~T}_{2}$	

and $\mathrm{T}_{1} \mathrm{~T}_{2} \mathrm{~T}_{3}$ is similar and oppositely situated to ABC
(25) The point T is the centre of three parallelograms

$$
\mathrm{YZH}_{2} \mathrm{H}_{3} \quad \mathrm{ZXH}_{3} \mathrm{H}_{4} \quad \mathrm{XYH}_{1} \mathrm{H}_{2}
$$

and similarly $T_{1} \quad T_{2} \quad T_{1}$ are each the centre of three parallelograms
Let the incircle and the excircles of XYZ be denoted by their centres H A B C
(26) The radical axes of

	H	A	H	B	H	C	B	C
C	C	A	A	B				
are	$\mathrm{T}_{2} \mathrm{~T}_{3}$	$\mathrm{~T}_{3} \mathrm{~T}_{1}$	$\mathrm{~T}_{1} \mathrm{~T}_{2}$	$\mathrm{~T}_{1} \mathrm{~T}$	$\mathrm{~T}_{2} \mathrm{~T}$	$\mathrm{~T}_{3} \mathrm{~T}$		

(27) The radical centres of
are
$\begin{array}{lllllll}\mathbf{A} & \mathbf{B} & \mathbf{C} & \mathrm{H} & \mathbf{C} & \mathbf{B} \\ & \mathbf{T} & & & & \mathbf{T}_{1} & \end{array}$
C $\quad \mathbf{H} \quad \mathbf{A}$
$\begin{array}{ccc}\text { B } & \text { A } & \mathbf{H} \\ & \mathrm{T}_{\mathbf{3}} & \end{array}$
(28) $\mathrm{X}^{\prime} \quad \mathrm{Y}^{\prime} \quad \mathrm{Z}^{\prime}$ are the feet of the perpendiculars of the triangle $\mathrm{T}_{1} \mathrm{~T}_{2} \mathrm{~T}_{3}$
(29) The homothetic centre of the triangles

$\mathrm{T}_{1} \mathrm{~T}_{2} \mathrm{~T}_{3}$	$\mathrm{H}_{1}{ }^{\prime} \mathrm{H}_{1}{ }^{\prime \prime} \mathrm{H}_{2}^{\prime \prime \prime}$	is	\mathbf{X}
$\mathrm{T}_{1} \mathrm{~T}_{2} \mathrm{~T}_{3}$	$\mathrm{H}_{2}^{\prime} \mathrm{H}_{2}{ }^{\prime \prime} \mathrm{H}_{2}^{\prime \prime \prime}$	\prime	\mathbf{Y}
$\mathrm{T}_{1} \mathrm{~T}_{2} \mathrm{~T}_{3}$	$\mathrm{H}_{3}{ }^{\prime} \mathrm{H}_{3}{ }^{\prime \prime} \mathrm{H}_{3}^{\prime \prime \prime}$	$"$	\prime

(30) The straight lines
$\begin{array}{llll}\text { HT } & \mathrm{AT}_{1} & \mathrm{BT}_{2} & \mathrm{CT}_{3}\end{array}$
pass through the centroid of XYZ
(31) If G^{\prime} denote this centroid

$$
\begin{aligned}
H G^{\prime}: T G^{\prime}=A G^{\prime}: T_{1} G^{\prime} & =B G^{\prime}: T_{2} G^{\prime}=C G^{\prime}: T_{3} G^{\prime} \\
& =2: 1
\end{aligned}
$$

(32) If $\mathrm{HG}^{\prime} \mathrm{T}$ be produced to J^{\prime} so that $\mathrm{TJ}^{\prime}=\mathrm{HT}$ then J^{\prime} will be the incentre $\mathrm{X}_{1} \mathrm{Y}_{1} \mathrm{Z}_{1}$ the triangle anticomplementary to XYZ

Similarly $\begin{array}{lllllll}J_{1}^{\prime} & J_{2}^{\prime} & J_{3}^{\prime} & \text { situated on } & A_{1} T_{1} & B_{2} & \mathbf{C T}_{3} \\ \text { so that }\end{array}$ $T_{1} J_{1}^{\prime}=A T_{1}$ and so on, will be the first, second, and third excircles of $X_{1} Y_{1} Z_{1}$
(33) The tetrads of points
$\mathrm{HG}^{\prime} \mathrm{TJ} \mathrm{J}^{\prime} \quad \mathrm{AG}^{\prime} \mathrm{T}_{1} \mathrm{~J}_{1}^{\prime} \quad \mathrm{BG}^{\prime} \mathrm{T}_{2} \mathrm{~J}_{2}{ }^{\prime} \quad \mathrm{CG}^{\prime} \mathrm{T}_{3} \mathrm{~J}_{3}{ }^{\prime}$
form harmonic ranges
§ 12
Adams's Circle*
If $D E F F$ be the points of contact of the incircle with the sides of $A B C$, and if through the Gergonne point Γ (the point of concurrency of $A D \quad B E C F)$ parallels be drawn to $E F F D \quad D E$, these parallels will meet the sides of $A B C$ in six concyclic points

[^33]
Figure 38

Let $\mathbf{X} \mathbf{X}^{\prime} \mathbf{Y} \quad \mathbf{Y}^{\prime} \mathbf{Z} \mathbf{Z}^{\prime}$ be the six points
Join LL' MM' NN'
The complete quadrilateral AFГEBC has its diagonal A厂 cut harmonically by FE BC;
therefore $\mathrm{A} U \Gamma \mathrm{D}$ is a harmonic range;
therefore $\mathrm{E} \cdot \mathrm{A} \mathrm{U} \Gamma \mathrm{D}$ is a harmonic pencil
Now ГMEM $^{\prime}$ is a parallelogram ;
therefore $\mathbf{M M}^{\prime}$ is bisected by $\mathrm{E} \Gamma$
therefore $\mathbf{M M}^{\prime}$ is parallel to that ray of the harmonic pencil which is conjugate to $\mathrm{E} \Gamma$, namely EA

In like manner NN^{\prime} is parallel to AB , and $L L^{\prime}$ to BC
Again, since $\mathbf{Y E M}^{\prime} \mathbf{M} \quad \mathbf{Y}^{\prime} \mathrm{EMM}^{\prime}$ are parallelograms,
therefore
$\mathbf{Y} \mathbf{E}=\mathbf{Y}^{\prime} \mathbf{E}$
Similarly
$Z^{\prime} F=Z F$
therefore
YE: $\mathbf{Y}^{\prime} \mathbf{E}=\mathrm{Z}^{\prime} \mathrm{F}: \mathbf{Z F}$
Now $\mathrm{Y} Z^{\prime}$ is parallel to EF ;
therefore $Y^{\prime} Z$ is parallel to $E F$
In like manner $Z^{\prime} X$ is parallel to $F D$ and $X^{\prime} Y$ to $D E$
Hence the two hexagons $L L^{\prime} \mathbf{M M}^{\prime} \mathrm{NN}^{\prime}$ and $\mathrm{XX}^{\prime} \mathrm{YY}^{\prime} \mathrm{ZZ'}^{\prime}$ are similar, and the ratio of their corresponding sides is that of 1 to 2

Lastly, since $L L^{\prime}$ is parallel to $\mathbf{B C}$

$$
\begin{aligned}
\angle \mathrm{L}^{\prime} \mathrm{L} \Gamma & =\angle \mathrm{CDE} \\
& =\angle \mathrm{CED} \\
& =\angle \mathbf{M M}^{\prime} \Gamma
\end{aligned}
$$

therefore the points $\mathbf{L} \quad \mathbf{L}^{\prime} \quad \mathbf{M} \quad \mathbf{M}^{\prime}$ are concyclic
Similarly the points $M \quad \mathbf{M}^{\prime} \quad \mathrm{N} \quad \mathrm{N}^{\prime}$ are concyclic
and the points $N N^{\prime} \quad L \quad L^{\prime}$ are concyclic;
therefore all the six points are concyclic *
Hence the six points $\mathbf{X} X^{\prime} \quad \mathbf{Y} \quad \mathbf{Y}^{\prime} \quad \mathrm{Z} \mathrm{Z}^{\prime}$ are also concyclic
*This method of proof is different from Adams's
(1) The centre of Adams's circle is the incentre * of $A B C$

For $X^{\prime} X^{\prime} Y Y^{\prime} Z Z^{\prime}$ are chords of Adams's circle, and they are bisected at D E F;
hence the centre of Adams's circle is found by drawing through D E F perpendiculars to $\mathrm{XX}^{\prime} \mathrm{YY}^{\prime} \mathrm{ZZ}^{\prime}$
These perpendiculars are concurrent at I the incentre of $A B C$
(2) To find the centre of the circle $L L^{\prime} M M^{\prime} N N^{\prime}$

Since Γ is the homothetic centre of the two circles $X X X^{\prime} Y^{\prime} Z^{\prime}$ and LL'MM'NN', and I is the centre of the first of these circles, therefore the centre of the second circle is situated on ΓI

If I' denote the centre of the second circle
then

$$
\Gamma \mathrm{I}: \Gamma \mathrm{I}^{\prime}=2: 1
$$

(3) Since Γ the Gergonne point of ABC is the insymmedian point of DEF, the circle LL'MM'NN' is the triplicate ratio or first Lemoine circle of DEF
(4) Besides the six-point circle obtained by drawing through Γ the Gergonne point of ABC parallels to the sides of triangle DEF, three other six-point circles will be obtained if through the associated Gergonne points $\Gamma_{1} \quad \Gamma_{2} \quad \Gamma_{3}$ parallels be drawn to the sides of the triangles $\quad \mathrm{D}_{1} \mathrm{E}_{1} \mathrm{~F}_{1} \quad \mathrm{D}_{2} \mathrm{E}_{2} \mathrm{~F}_{2} \quad \mathrm{D}_{3} \mathrm{E}_{\mathrm{i}} \mathrm{F}_{3}$ respectively

The centres of these three circles are the excentres of ABC namely $I_{1} I_{2} I_{3}$ and the centres of the three LMN circles which correspond to them are the mid points of $\Gamma_{1} I_{1} \quad \Gamma_{2} I_{2} \quad \Gamma_{3} I_{3}$

These three LMN circles are the triplicate ratio circles of the triangles $\quad \mathrm{D}_{1} \mathrm{E}_{1} \mathrm{~F}_{1} \quad \mathrm{D}_{2} \mathrm{E}_{2} \mathrm{~F}_{\underline{2}} \quad \mathrm{D}_{3 j} \mathrm{E}_{3} \mathrm{~F}_{3}$

Formulae connected witif the Symmedians

The sides $a b c$ are in ascending order of magnitude

$$
\left.\begin{array}{lll}
\mathrm{BR}=\frac{a c^{2}}{b^{2}+c^{2}} & \mathrm{CS}=\frac{b a^{2}}{c^{2}+a^{2}} & \mathrm{AT}=\frac{c b^{2}}{a^{2}+b^{2}} \tag{1}\\
\mathbf{C R}=\frac{a b^{2}}{b^{2}+c^{2}} & \mathrm{AS}=\frac{b c^{2}}{c^{2}+a^{2}} & \mathrm{BT}=\frac{c a^{2}}{a^{2}+b^{2}}
\end{array}\right\}
$$

[^34]\[

\left.$$
\begin{array}{lll}
\mathrm{BR}^{\prime}=\frac{a c^{2}}{c^{2}-b^{2}} & \mathrm{CS}^{\prime}=\frac{b a^{2}}{c^{2}-a^{2}} & \mathrm{AT}^{\prime}=\frac{c b^{\prime}}{b^{2}-a^{2}} \\
\mathrm{CR}^{\prime}=\frac{a b^{2}}{c^{2}-b^{2}} & \mathrm{AS}^{\prime}=\frac{b c^{2}}{c^{2}-a^{2}} & \mathrm{BT}^{\prime}=\frac{c a^{2}}{b^{2}-a^{2}} \tag{3}
\end{array}
$$\right\}
\]

Let the three internal medians be denoted by

$$
m_{1} \quad m_{2} \quad m_{i}
$$

Their values in terms of the sides are

$$
\begin{aligned}
& 4 m_{1}{ }^{2}=-a^{2}+2 b^{2}+2 c^{2} \\
& 4 m_{2}^{2}=2 a^{2}-b^{2}+2 c^{2} \\
& 4 m_{3}{ }^{2}=2 a^{2}+2 b^{2}-c^{2}
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{AR}=\frac{2 b c m_{1}}{b^{2}+c^{2}} \quad \mathrm{BS}=\frac{2 c a m_{2}}{c^{2}+a^{2}} \quad \mathrm{CT}=\frac{2 a b m_{3}}{a^{2}+b^{2}} \tag{4}
\end{equation*}
$$

Figure 12
Let $\mathrm{AA}^{\prime} \mathrm{AR}$ be the internal median and symmedian from A
Then
$\mathrm{BR} \cdot \mathrm{CR}: \mathrm{BA}^{\prime} \cdot \mathrm{CA}^{\prime}=\mathrm{AR}^{2}: \mathrm{AA}^{\prime 2}$
therefore

$$
\mathrm{AR}^{2}=\frac{\mathrm{BR} \cdot \mathrm{CR}}{\overline{\mathrm{BA}} \cdot} \cdot \mathrm{CA}^{\prime} \cdot \mathrm{AA}^{\prime 2}
$$

$$
\begin{equation*}
\mathrm{AR}^{\prime}=\frac{a b c}{c^{2}-b^{2}} \quad \mathrm{BS}^{\prime}=\frac{a b c}{c^{2}-a^{2}} \quad \mathrm{CT}^{\prime}=\frac{a b c}{b^{2}-a^{2}} \tag{5}
\end{equation*}
$$

Figure 14
For

$$
\mathrm{AR}^{\prime 2}=\mathrm{BR}^{\prime} \cdot \mathrm{CR}^{\prime}
$$

$$
\begin{align*}
& \left(\mathrm{AR}^{2}+\mathrm{BR}^{2}\right) b^{2}+\left(\mathrm{AR}^{2}+\mathrm{CR}^{2}\right) \mathrm{c}^{2}=2 b^{2} c^{2} \tag{6}\\
& \quad \text { and so on }
\end{align*}
$$

[^35]\[

$$
\begin{array}{ll}
\mathrm{AK}=\frac{2 b c m_{1}}{a^{2}+b^{2}+c^{2}} & \mathrm{RK}=\frac{2 a^{2} b c m_{1}}{\left(b^{2}+c^{2}\right)\left(a^{2}+b^{2}+c^{2}\right)} \\
\mathrm{BK}=\frac{2 c a m_{2}}{a^{2}+b^{2}+c^{2}} & \mathrm{SK}=\frac{2 a b^{2} c m_{2}}{\left(c^{2}+a^{2}\right)\left(a^{2}+b^{2}+c^{2}\right)} \tag{7}\\
\mathrm{CK}=\frac{2 a b m_{3}}{a^{2}+b^{2}+c^{2}} & \mathrm{TK}=\frac{2 a b c^{2} m_{3}}{\left(a^{2}+b^{2}\right)\left(a^{2}+b^{2}+c^{2}\right)}
\end{array}
$$
\]

Figure 18

[^36]\[

\left.$$
\begin{array}{ll}
\mathrm{AK}_{1}=\frac{2 b c m_{1}}{-a^{2}+b^{2}+c^{2}} & \mathrm{RK}_{1}=\frac{2 a a^{2} b c m_{1}}{\left(b^{2}+c^{2}\right)\left(-a^{2}+b^{2}+c^{2}\right)} \tag{10}\\
\mathrm{BK}_{2}=\frac{2 c a m_{2}}{a^{2}-b^{2}+c^{2}} & \mathrm{SK}_{2}=\frac{2 a b^{2} c m_{2}}{\left(c^{2}+a^{2}\right)\left(a^{2}-b^{2}+c^{2}\right)} \\
\mathrm{CK}_{3}=\frac{2 a b m_{3}}{a^{2}+b^{2}-c^{2}} & \mathrm{TK}_{3}=\frac{2 a b c^{2} m_{3}}{\left(a^{2}+b^{2}\right)\left(a^{2}+b^{2}-c^{2}\right)}
\end{array}
$$\right\}
\]

$\mathrm{BK}_{1}=\mathrm{CK}_{1}=\frac{a b c}{-a^{2}+b^{2}+c^{2}}$

$$
\begin{equation*}
\mathrm{CK}_{2}=\mathrm{AK}_{2}=\frac{a b c}{a^{2}-b^{2}+c^{2}} \tag{11}
\end{equation*}
$$

$$
\mathrm{AK}_{3}=\mathrm{BK}_{3}=\frac{a b c}{a^{2}+b^{2}-c^{2}}
$$

$$
\mathrm{K}_{1}=\frac{4 a^{2} b c m_{1}}{\left(a^{2}+b^{2}+c^{2}\right)\left(-a^{2}+b^{2}+c^{2}\right)}
$$

$$
\begin{equation*}
\mathbf{K} \mathrm{K}_{2}=\frac{4 a b^{2} c m_{2}}{\left(a^{2}+b^{2}+c^{2}\right)\left(a^{2}-b^{2}+c^{2}\right)} \tag{12}
\end{equation*}
$$

$$
\mathbf{K} \mathbf{K}_{3}=\frac{4 a b c^{2} m_{3}}{\left(a^{2}+b^{2}+c^{2}\right)\left(a^{2}+b^{2}-c^{2}\right)}
$$

$$
\mathbf{K}_{2} \mathbf{K}_{3}=\frac{2 a^{3} b c}{\left(a^{2}-b^{2}+c^{2}\right)\left(a^{2}+b^{2}-c^{2}\right)}
$$

$$
\begin{equation*}
\mathrm{K}_{3} \mathrm{~K}_{1}=\frac{2 a b^{3} c}{\left(a^{2}+b^{2}-c^{2}\right)\left(-a^{2}+b^{2}+c^{2}\right)} \tag{13}
\end{equation*}
$$

$$
\mathrm{K}_{1} \mathrm{~K}_{2}=\frac{2 a b c^{3}}{\left(-a^{2}+b^{2}+c^{2}\right)\left(a^{2}-b^{2}+c^{2}\right)}
$$

$$
\begin{equation*}
a^{2} \frac{\mathbf{A} K_{1}}{\mathbf{K K}_{1}}=b^{2} \frac{\mathbf{B K _ { 2 }}}{\mathbf{K K}_{2}}=c^{2} \frac{\mathbf{C K} K_{3}}{\mathbf{K K}_{3}}=\frac{a^{2}+b^{2}+c^{2}}{2} \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\mathrm{KK}_{1}}{\mathrm{AK}_{1}}: \frac{\mathrm{KK}_{2}}{\mathrm{BK}_{2}}: \frac{\mathrm{KK}_{3}}{\mathrm{CK}_{3}}=a^{2}: b^{2}: c^{2} \tag{15}
\end{equation*}
$$

[^37]7 Vol. 14

$$
\begin{align*}
& \mathrm{BL}=\frac{a\left(a^{2}-b^{2}+3 c^{2}\right)}{2\left(a^{2}+b^{2}+c^{2}\right)}=\frac{a\left(c^{2}+c a \cos \mathrm{~B}\right)}{a^{2}+b^{2}+c^{2}} \\
& \mathrm{CL}=\frac{a\left(a^{2}+3 b^{2}-c^{2}\right)}{2\left(a^{2}+b^{2}+c^{2}\right)}=\frac{a\left(b^{2}+a b \cos \mathrm{C}\right)}{a^{2}+b^{2}+c^{2}} \\
& \mathrm{CM}=\frac{b\left(3 a^{2}+b^{2}-c^{2}\right)}{2\left(a^{2}+b^{2}+c^{2}\right)}=\frac{b\left(a^{2}+a b \cos \mathrm{C}\right)}{a^{2}+b^{2}+c^{2}} \\
& \mathrm{AM}=\frac{b\left(-a^{2}+b^{2}+3 c^{2}\right)}{2\left(a^{2}+b^{2}+c^{2}\right)}=\frac{b\left(c^{2}+b c \cos \mathrm{~A}\right)}{a^{2}+b^{2}+c^{2}} \tag{16}\\
& \mathrm{AN}=\frac{c\left(-a^{2}+3 b^{2}+c^{2}\right)}{2\left(a^{2}+b^{2}+c^{2}\right)}=\frac{c\left(b^{2}+b c \cos \mathbf{A}\right)}{a^{2}+b^{2}+c^{2}} \\
& \mathrm{BN}=\frac{c\left(3 a^{2}-b^{2}+c^{2}\right)}{2\left(a^{2}+b^{2}+c^{2}\right)}=\frac{c\left(a^{2}+c a \cos \mathrm{~B}\right)}{a^{2}+b^{2}+c^{2}}
\end{align*}
$$

Distanges of K from the sides of ABC

$$
\begin{align*}
& \mathrm{KL}=\frac{2 a \triangle}{a^{2}+b^{2}+c^{2}}=\frac{a \sin \mathrm{~A} \sin \mathrm{~B} \sin \mathrm{C}}{\sin ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~B}+\sin ^{2} \mathrm{C}} \\
& \mathrm{KM}=\frac{2 b \triangle}{a^{2}+b^{2}+c^{2}}=\frac{b \sin \mathrm{~A} \sin \mathrm{~B} \sin \mathrm{C}}{\sin ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~B}+\sin ^{2} \mathrm{C}} \tag{17}\\
& \mathrm{KN}=\frac{2 c \triangle}{a^{2}+b^{2}+c^{2}}=\frac{c \sin \mathrm{~A} \sin \mathrm{~B} \sin \mathrm{C}}{\sin ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~B}+\sin ^{2} \mathrm{C}}
\end{align*}
$$

Figure 23
Draw AX perpendicular to BC
Then

$$
\begin{aligned}
\mathrm{AR}: \mathrm{KR} & =\mathrm{AX}: \mathrm{KL} \\
\mathrm{KL} & =\frac{\mathrm{KR} \cdot \mathrm{AX}}{\mathrm{~A}} \overline{\mathrm{R}} \\
& =\frac{a^{2} h_{1}}{a^{2}+b^{2}+c^{2}} \\
& =\frac{2 a \triangle}{a^{2}+b^{2}+c^{2}}
\end{aligned}
$$

* E. W. Grebe in Grunert's Archiv, IX. 252, 250-1 (1847)

The following is another demonstration *

Let a $\beta \gamma$ denote the distances of K from $\mathrm{BC} \mathrm{CA} A B$
Then

$$
\begin{aligned}
\frac{a}{a} & =\frac{\beta}{b}=\frac{\gamma}{b} \\
& =\frac{a a}{a^{2}}=\frac{b \beta}{b^{2}}=\frac{c}{r^{2}} \\
& =\frac{a a+b \beta+\cdots}{a^{2}+b^{2}+\cdots} \\
& =\frac{2 \triangle}{a^{2}+b^{2}+r^{2}}
\end{aligned}
$$

$$
\left.\begin{array}{l}
\mathrm{KL}^{2}+\mathrm{KM}^{2}+\mathrm{KN}^{2}=\frac{4 \triangle^{2}}{a^{2}+b^{2}+c^{2}} \\
=\frac{a^{1} \sin ^{2} \mathrm{~B} \sin ^{2} \mathrm{C}}{\sin ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~B}+\sin ^{2} \mathrm{C}}=\frac{b^{2} \sin ^{2} \mathrm{C} \sin ^{2} \mathrm{~A}}{\sin ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~B}+\sin ^{2} \mathrm{C}} \\
=\frac{c^{2} \sin ^{2} \mathrm{~A} \sin ^{2} \mathrm{~B}}{\sin ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~B}+\sin ^{2} \mathrm{C}}=\frac{\triangle}{\cot \mathrm{A}+\cot \mathrm{B}+\cot \mathrm{C}}
\end{array}\right\}(18) \div
$$

Distances of $K_{1} K_{2} K_{3}$ from the sides of ABC

$$
\left.\begin{array}{llc}
\left(\mathrm{K}_{1}\right) \frac{-2 a \triangle}{-a^{2}+\dot{b}^{2}+c^{2}} & \frac{2 b \Delta}{-a^{2}+b^{2}+c^{2}} & \frac{2 c \Delta}{-a^{2}+b^{2}+c^{2}} \\
\left(\mathrm{~K}_{2}\right) \frac{2 a \triangle}{a^{2}-b^{2}+c^{2}} & \frac{-2 b \triangle}{a^{2}-b^{2}+c^{2}} & \frac{2 c \triangle}{a^{2}-b^{2}+c^{2}} \tag{19}\\
\left(\mathrm{~K}_{3}\right) \frac{2 a \triangle}{a^{2}+b^{2}-c^{2}} & \frac{2 b \triangle}{a^{2}+b^{2}-c^{2}} & \frac{-2 c \triangle}{a^{2}+b^{2}-c^{2}}
\end{array}\right\}
$$

[^38]Grebe, loco citato, p. 257, gives the distances of K_{3} from the sides of ABC with the following trigonometrical equivalents

$$
\begin{align*}
& \frac{a \sin \mathrm{~A} \sin \mathrm{~B} \sin \mathrm{C}}{\sin ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~B}-\sin ^{2} \mathrm{C}}=\frac{1}{2} a \tan \mathrm{C} \\
& \frac{b \sin \mathrm{~A} \sin \mathrm{~B} \sin \mathrm{C}}{\sin ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~B}-\sin ^{2} \mathrm{C}}=\frac{1}{2} b \tan \mathrm{C} \tag{20}\\
& \frac{-c \sin \mathrm{~A} \sin \mathrm{~B} \sin \mathrm{C}}{\sin ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~B}-\sin ^{2} \mathrm{C}}=-\frac{1}{2} c \tan \mathrm{C}
\end{align*}
$$

If $\Sigma \Sigma_{1} \Sigma_{2} \Sigma_{3}$ denote the sum of the squares of the distances from the sides of $A B C$ of $\begin{array}{lllll} & K_{1} & K_{2} & K_{3}\end{array}$

$$
\begin{gather*}
\Sigma_{1}=\frac{4 \Delta^{2}}{-a^{2}+b^{2}+c^{2}} \quad \Sigma_{2}=\frac{4 \Delta^{2}}{a^{2}-b^{2}+c^{2}} \quad \Sigma_{3}=\frac{4 \Delta^{2}}{a^{2}+b^{2}-c^{2}} \tag{21}\\
\frac{1}{\Sigma}=\frac{1}{\Sigma_{1}}+\frac{1}{\Sigma_{2}}+\frac{1}{\Sigma_{3}} \tag{22}
\end{gather*}
$$

If $k k_{1} k_{2} k_{3}$ denote the distances from BC of $\mathrm{K} \mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{\mathbf{3}}$

$$
\begin{equation*}
\frac{1}{k}+\frac{1}{k_{1}}=\frac{1}{k_{2}}+\frac{1}{k_{3}}=\frac{2}{h_{1}} \tag{23}
\end{equation*}
$$

This relation holds for any four harmonically associated points

$$
\begin{equation*}
\mathbf{M N}^{2}+\mathrm{NL}^{2}+\mathbf{I} \mathrm{M}^{2}=\frac{12 \Delta^{2}}{a^{2}+b^{2}+c^{2}} \tag{24}
\end{equation*}
$$

For the left side $=3\left(K^{2}+K^{2}+K N^{2}\right)$

$$
\left.\begin{array}{l}
\mathrm{MN}=\frac{4 m_{1} \triangle}{a^{2}+b^{2}+c^{2}}=\frac{m_{1}}{\triangle} \tag{25}\\
\mathrm{NL}=\frac{4 m_{2} \triangle}{a^{2}+b^{2}+c^{2}}=\frac{m_{2} \Sigma}{\triangle} \\
\mathrm{LM}=\frac{4 m_{3} \triangle}{a^{2}+b^{2}+c^{2}}=\frac{m_{3} \Sigma}{\triangle}
\end{array}\right\}
$$

[^39]For MN can be found by applying Ptolemy's theorem to the encyclic quadrilateral ANKM

$$
\begin{equation*}
\mathrm{LMN}=\frac{12 \triangle^{3}}{\left(a^{2}+b^{2}+c^{2}\right)^{2}} \tag{26}
\end{equation*}
$$

Figure 28

Since K is the controid of LMN,

$$
\mathrm{LMN}=3 \mathrm{KLK} \mathrm{~K}^{\prime}
$$

Now KLK' has its sides equal to KL KM KN and it is similar to ABC

$$
\text { therefore } \quad \begin{aligned}
\frac{\mathrm{KLK}^{\prime}}{\mathrm{ABC}} & =\frac{\mathrm{KL}^{2}+\mathrm{KM}^{2}+\mathrm{KN}^{2}}{a^{2}+b^{2}+c^{2}} \\
& =\frac{4 \triangle^{2}}{\left(a^{2}+b^{2}+c^{2}\right)^{2}}
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{KBC}: \mathrm{KCA}: \mathrm{KAB}=a^{2}: b^{2}: c^{2} \tag{27}
\end{equation*}
$$

$$
\mathrm{AA}^{\prime} \cdot \mathrm{BB}^{\prime} \cdot \mathrm{CC}^{\prime}: \mathrm{AK}_{1} \cdot \mathrm{BK}_{2} \cdot \mathrm{CK}_{3}
$$

$$
\left.=\mathrm{AK} \cdot \mathrm{BK} \cdot \mathrm{CK}: \mathrm{KK}_{1} \cdot \mathrm{KK}_{2} \cdot \mathrm{KK}_{3}\right\}(29) \ddagger
$$

$$
\left.\begin{array}{l}
\mathrm{AK}_{2}: \mathrm{AK}_{2}=\mathrm{CX}: \mathrm{BX} \tag{30}\\
\mathrm{BK}_{3}: \mathrm{BK}_{1}=\mathrm{AY}: \mathrm{CY} \\
\mathrm{CK}, \mathrm{CK}_{2}=\mathrm{BZ}: \mathrm{AZ}
\end{array}\right\}
$$

[^40]
Figure 23

Draw CZ perpendicular to AB
Let the tangent at A meet $K_{1} C$ produced at K_{2} and draw $K_{2} \mathrm{~B}^{\prime}$ perpendicular to CA

From the similar triangles $\mathrm{K}_{1} \mathrm{CA}^{\prime} \mathrm{CAZ}$

$$
\begin{aligned}
& \mathrm{K}_{1} \mathrm{C}: \mathrm{CA}^{\prime}=\mathbf{C A}: \mathrm{AZ} \\
& \mathrm{~K}_{1} \mathrm{C}: a=b: 2 \mathrm{AZ}
\end{aligned}
$$

From the similar triangles $\mathrm{K}_{2} \mathrm{CB}^{\prime} \mathrm{CBZ}$ $\mathrm{K} . \mathrm{C}: \mathrm{CB}^{\prime}=\mathrm{CB}: \mathrm{BZ}$ $\mathrm{K} . \mathrm{C}: l=a: 2 \mathrm{BZ}$
or

$$
\begin{aligned}
\mathrm{K}_{1} \mathrm{C} \cdot \mathrm{~A} \mathrm{Z} & =\frac{1}{2} a b \\
& =\mathrm{K}_{2} \mathrm{C} \cdot \mathrm{BZ}
\end{aligned}
$$

therefore $\quad \mathrm{K}_{1} \mathrm{C}: \mathrm{K}_{2} \mathrm{C}=\mathrm{B} Z: \mathrm{AZ}$
If $k_{1} k_{2} k_{;}$denote the distances of K from BC CA AB

$$
\begin{equation*}
k_{1}^{2}+k_{2}^{2}+k_{3}^{2}: a^{2}+b^{2}+c^{2}=\frac{1}{3} \mathrm{LMN}: \mathrm{ABC} \tag{31}
\end{equation*}
$$

If $k_{1}^{\prime} h_{2}^{\prime} k_{3}^{\prime}$ denote the distances of K_{1}
$k_{1}^{\prime \prime} k_{2}^{\prime \prime} k_{:, "}^{\prime \prime} \quad$, ", " K_{2}
$k_{1}^{\prime \prime \prime} k_{2}^{\prime \prime \prime} k_{:!}^{\prime \prime \prime} \quad, \quad, \quad, \quad, \mathbf{K}_{3}$
from BC CA AB

$$
\begin{equation*}
k_{1}{ }^{\prime} k_{1}{ }^{\prime \prime} k_{1}^{\prime \prime \prime}: k_{12}^{\prime} k_{2}{ }^{\prime \prime} k_{\underline{2}}^{\prime \prime \prime}: k_{3}^{\prime} k_{3}{ }^{\prime \prime} k_{3}^{\prime \prime \prime}=a^{3}: b^{3}: c^{3} \tag{32}
\end{equation*}
$$

$\mathrm{K}_{2} \mathrm{~K}_{3} \cdot \mathrm{~K}_{3} \mathrm{~K}_{1} \cdot \mathrm{~K}_{1} \mathrm{~K}_{2}: \mathrm{BC} \cdot \mathrm{CA} \cdot \mathrm{AB}=2$ circle $\mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{3}:$ circle ABC

Figure 26

If the sides of triangle DEF be denoted by $d e f$, the following formula is obtained by comparison of the similar triangles $I_{1} I_{2} I_{3}$ DEF

$$
\frac{d e f}{r^{2}}=\frac{a b c}{2 \mathrm{R}^{2}}
$$

Now, in Fig. 26, triangles DEF ABC stand in the same relation to each other as ABC $K_{1} K_{2} K_{3}$

[^41]\[

$$
\begin{equation*}
a b c: \mathrm{R}^{2}=2 \triangle \mathrm{~K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{3}: \text { radius of circle } \mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{3} \tag{34}
\end{equation*}
$$

\]

This follows from the preceding since

$$
\frac{a b c}{2 \mathrm{R}^{2}}=\frac{2 \triangle}{\mathrm{R}}
$$

Cosine Circle or Second Lemoine Circle

Figure 19

$$
\begin{array}{ll}
\mathrm{AE}=\frac{2 b c^{2}}{a^{2}+b^{2}+c^{2}} & \mathrm{AF}^{\prime}=\frac{2 b^{2} c}{a^{2}+b^{2}+c^{2}} \\
\mathrm{BF}=\frac{2 c a^{2}}{a^{2}+b^{2}+c^{2}} & \mathrm{BD}^{\prime}=\frac{2 c^{2} a}{a^{2}+b^{2}+c^{2}} \tag{35}\\
\mathrm{CD}=\frac{2 a b^{2}}{a^{2}+b^{2}+c^{2}} & \mathrm{CE}^{\prime}=\frac{2 a^{2} b}{a^{2}+b^{2}+c^{2}}
\end{array}
$$

For triangles $\mathrm{AEF}^{\prime} \quad \mathrm{ABC}$ are similar and AK is a median of AEF^{\prime} therefore

$$
\mathrm{AE}: \mathrm{AB}=\mathrm{AK}: m_{1}
$$

$$
\left.\begin{array}{ll}
\mathbf{A E}^{\prime}=\frac{b\left(-a^{2}+b^{2}+c^{2}\right)}{a^{2}+b^{2}+c^{2}} & \mathrm{AF}=\frac{c\left(-a^{2}+b^{2}+c^{2}\right)}{a^{2}+b^{2}+c^{2}} \tag{36}\\
\mathbf{\mathbf { B F } ^ { \prime } = \frac { c (a ^ { 2 } - b ^ { 2 } + c ^ { 2 }) } { a ^ { 2 } + b ^ { 2 } + c ^ { 2 } }} & \mathrm{BD}=\frac{a\left(a^{2}-b^{2}+c^{2}\right)}{a^{2}+b^{2}+c^{2}} \\
\mathbf{C D}^{\prime}=\frac{a\left(a^{2}+b^{2}-c^{2}\right)}{a^{2}+b^{2}+c^{2}} & \mathrm{CE}=\frac{b\left(a^{2}+b^{2}-c^{2}\right)}{a^{2}+b^{2}+c^{2}}
\end{array}\right\}
$$

$\mathrm{DD}^{\prime}=\frac{a\left(-a^{2}+b^{2}+c^{2}\right)}{a^{2}+b^{2}+c^{2}} \quad \mathrm{EE}^{\prime}=\frac{b\left(a^{2}-b^{2}+c^{2}\right)}{a^{2}+b^{2}+c^{2}} \quad \mathrm{FF}^{\prime \prime}=\frac{c\left(a^{2}+b^{2}-c^{2}\right)}{a^{2}+b^{2}+c^{2}}$

$$
\begin{equation*}
\mathrm{FD}=\frac{4 a \triangle}{a^{2}+b^{2}+c^{2}} \quad \mathrm{DE}=\frac{4 b \triangle}{a^{2}+b^{2}+c^{2}} \quad \mathrm{EF}=\frac{4 c \Delta}{a^{2}+b^{2}+c_{2}} \tag{38}
\end{equation*}
$$

For

$$
\mathrm{FD}^{2}=\mathbf{E}^{\prime} \mathrm{D}^{2}-\mathrm{E}^{\prime} \mathrm{F}^{2}=\mathrm{E}^{\prime} \mathrm{D}^{2}-\mathrm{D}^{\prime} \mathrm{D}^{2}
$$

$$
\left.\begin{array}{l}
\mathrm{BD}^{\prime} \cdot \mathrm{CD}=\mathrm{CE}^{\prime} \cdot \mathrm{AE}=\mathrm{AF}^{\prime} \cdot \mathrm{BF} \\
\mathrm{BD}^{\prime}: \mathrm{CE}^{\prime}: \mathrm{AF}^{\prime}=\frac{c}{b}: \frac{a}{c}: \frac{b}{a} \\
\mathrm{BF}: \mathrm{CD}: \mathrm{AE}=\frac{a}{b}: \frac{b}{c}: \frac{c}{a} \tag{40}
\end{array}\right\}
$$

Triplicate Ratio on First Lemoine Circle

The whole of the subsequent results are taken from two of $\mathbf{M r}$. Tucker's papers in the Quarterly Journal of Mathematics, XIX. 342-348 (1883) and XX. 57-59 (1885). The proofs are sometimes different from Mr Tucker's

Figure 32

$$
\left.\begin{array}{ll}
\mathrm{AF}=\frac{b^{2} c}{a^{2}+b^{2}+c^{2}} & \mathrm{AE}^{\prime}=\frac{b c^{2}}{a^{2}+b^{2}+c^{2}} \tag{41}\\
\mathrm{BD}=\frac{c^{2} a}{a^{2}+b^{2}+c^{2}} & \mathrm{BF}^{\prime}=\frac{c a^{2}}{a^{2}+b^{2}+c^{2}} \\
\mathrm{CE}=\frac{a^{2} b}{a^{2}+b^{2}+c^{2}} & \mathrm{CD}^{\prime}=\frac{a b^{2}}{a^{2}+b^{2}+c^{2}}
\end{array}\right\}
$$

For

$$
\frac{\mathrm{ABC}}{\mathrm{AFE}^{\prime}}=\frac{\mathrm{AB} \cdot \mathrm{AC}}{\mathrm{AF} \cdot \overline{\mathrm{AE}}^{\prime}}
$$

therefore

$$
\frac{2 \triangle}{\mathbf{A E}^{\prime} \cdot \mathbf{K M}}=\frac{b c}{\mathbf{A F} \cdot \overline{\mathbf{A E}^{\prime}}}
$$

therefore

$$
\begin{gather*}
\mathrm{AF}=\frac{b c \mathrm{KM}}{2 \triangle} \\
=\frac{b c \cdot b}{a^{2}+b^{2}+c^{2}} \\
\mathbf{B D} \cdot \mathrm{CD}^{\prime}=\mathrm{CE} \cdot \mathrm{AE}^{\prime}=\mathbf{A F} \cdot \mathrm{BF}^{\prime} \tag{42}
\end{gather*}
$$

$$
\left.\begin{array}{ll}
\mathrm{AF}^{\prime}=\frac{c\left(b^{2}+c^{2}\right)}{a^{2}+b^{2}+c^{2}} & \mathrm{AE}=\frac{b\left(b^{2}+c^{2}\right)}{a^{2}+b^{2}+c^{2}} \tag{43}\\
\mathrm{BD}^{\prime}=\frac{a\left(c^{2}+a^{2}\right)}{a^{2}+b^{2}+c^{2}} & \mathrm{BF}=\frac{c\left(c^{2}+a^{2}\right)}{a^{2}+b^{2}+c^{2}} \\
\mathrm{CE}^{\prime}=\frac{b\left(a^{2}+b^{2}\right)}{a^{2}+b^{2}+c^{2}} & \mathrm{CD}=\frac{a\left(a^{2}+b^{2}\right)}{a^{2}+b^{2}+c^{2}}
\end{array}\right\}
$$

$\mathrm{DD}^{\prime}=\frac{a^{3}}{a^{2}+b^{2}+c^{2}} \quad \mathrm{EE}^{\prime}=\frac{b^{3}}{a^{2}+b^{2}+c^{2}} \quad \mathrm{FF}^{\prime}=\frac{c^{3}}{a^{2}+b^{2}+c^{2}}$

$$
\left.\begin{array}{l}
\mathrm{BD}: \mathrm{DD}^{\prime}: \mathrm{D}^{\prime} \mathrm{C}=c^{2}: a^{2}: b^{2} \tag{44}\\
\mathrm{CE}: \mathrm{EE}^{\prime}: \mathrm{E}^{\prime} \mathrm{A}=a^{2}: b^{2}: c^{2} \\
\mathrm{AF}: \mathbf{F} \mathrm{F}^{\prime}: \mathrm{F}^{\prime} \mathrm{B}=b^{2}: c^{2}: a^{3}
\end{array}\right\}
$$

$\mathrm{EF}^{\prime}=\frac{a\left(b^{2}+c^{2}\right)}{a^{2}+b^{2}+c^{2}} \quad \mathrm{FD}^{\prime}=\frac{b\left(c^{2}+a^{2}\right)}{a^{2}+b^{2}+c^{2}} \quad \mathrm{DE}=\frac{c\left(a^{2}+b^{2}\right)}{a^{2}+b^{2}+c^{2}}$

$$
\begin{equation*}
\mathrm{E}^{\prime} \mathrm{F}=\mathrm{F}^{\prime} \mathrm{D}=\mathrm{D}^{\prime} \mathrm{E}=\frac{a b c}{a^{2}+b^{2}+c^{2}} \tag{46}
\end{equation*}
$$

For $\mathrm{DE}^{\prime} \mathrm{FF}^{\prime}$ is a symmetrical trapezium therefore $\mathrm{E}^{\prime} \mathrm{F}^{2}=\frac{1}{4}\left(\mathrm{DE}^{\prime}-\mathrm{FF}^{\prime}\right)^{2}+\mathrm{KN}^{2}$

$$
\left.\begin{array}{l}
=\frac{1}{4}\left\{\frac{c\left(a^{2}+b^{2}\right)}{a^{2}+b^{2}+c^{2}}-\frac{c^{3}}{a^{2}+b^{2}+c^{2}}\right\}^{2}+\left\{\frac{2 c \triangle}{a^{2}+b^{2}+c^{2}}\right\}^{2} \\
=\frac{c^{2}}{4\left(a^{2}+b^{2}+c^{2}\right)^{2}}\left\{\left(a^{2}+b^{2}-c^{2}\right)^{2}+16 \Delta^{2} ;\right. \\
=\frac{4 a^{2} b^{2} c^{2}}{4\left(a^{2}+b^{2}+c^{2}\right)^{2}} \\
\mathrm{DF}=\frac{c}{a^{2}+b^{2}+e^{2}} \sqrt{b^{2} c^{2}+c^{2} a^{2}+a^{2} b^{2}} \\
\mathrm{FE}=\frac{b}{a^{2}+b^{2}+c^{2}} \sqrt{b^{2} c^{2}+c^{2} a^{2}+a^{2} b^{2}} \tag{48}\\
\mathbf{E D}=\frac{a}{a^{2}+b^{2}+c^{2}} \sqrt{\frac{b^{2} c^{2}+c^{2} a^{2}+a^{2} b^{2}}{}}
\end{array}\right\}
$$

* It was this property which suggested to Mr Tucker the name "triplicateratio circle."

For $\mathbf{D} \mathbf{E}^{\prime} \mathbf{F} \mathbf{F}^{\prime}$ are concyclic
and $\mathrm{DE}^{\prime} \mathrm{FF}^{\prime}$ is a symmetrical trapezium ;
therefore $\quad \mathrm{DF} \cdot \mathrm{E}^{\prime} \mathrm{F}^{\prime}=\mathrm{DE}^{\prime} \cdot \mathrm{FF}^{\prime}+\mathrm{DF}^{\prime} \cdot \mathrm{FE}^{\prime}$
that is $\quad \mathrm{DF}^{2}=\mathrm{DE}^{\prime} \cdot \mathrm{FF}^{\prime}+\mathrm{DF}^{\prime 2}$

$$
\left.\begin{array}{rl}
\mathrm{KE} \cdot \mathrm{KF}^{\prime} & =\mathrm{KF} \cdot \mathrm{KD}^{\prime}=\mathrm{KD} \cdot \mathrm{KE}^{\prime} \tag{49}\\
& =\mathrm{E}^{\prime} \mathrm{F}^{2}=\mathrm{F}^{\prime} \mathrm{D}^{2}=\mathrm{D}^{\prime} \mathrm{E}^{2}
\end{array}\right\}
$$

For

$$
\mathrm{KE} \cdot \mathrm{KF}^{\prime}=\mathrm{CD}^{\prime} \cdot \mathrm{BD}
$$

$\left.\begin{array}{l}\text { The minimum chord through } \mathrm{K} \\ \qquad=2 \mathrm{E}^{\prime} \mathrm{F}=2 \mathrm{~F}^{\prime} \mathrm{D}=2 \mathrm{D}^{\prime} \mathrm{E}\end{array}\right\}$
For

$$
\mathrm{KE} \cdot \mathrm{KF}^{\prime}=\mathrm{E}^{\prime} \mathrm{F}^{2}
$$

$$
\left.\begin{array}{rl}
\mathrm{DD}^{\prime} \cdot \mathrm{EE}^{\prime} \cdot \mathbf{F F}^{\prime} & =\mathrm{E}^{\prime} \mathbf{F} \cdot \mathbf{F}^{\prime} \mathrm{D} \cdot \mathrm{D}^{\prime} \mathrm{E} \tag{51}\\
& =\frac{a^{3} b^{3} c^{3}}{\left(a^{2}+b^{2}+c^{2}\right)^{3}}
\end{array}\right\}
$$

The hexagon $\mathrm{DD}^{\prime} \mathrm{EE}^{\prime} \mathrm{FF}^{\prime}$ has its
perimeter $\quad=\frac{a^{3}+b^{3}+c^{3}+3 a b c}{a^{2}+b^{2}+c^{2}}$
area

$$
\begin{align*}
& =\frac{\triangle\left(a^{4}+b^{4}+c^{4}+b^{2} c^{2}+c^{2} a^{2}+a^{2} b^{2}\right)}{\left(a^{2}+b^{2}+c^{2}\right)^{2}} \tag{53}\\
& =\mathbf{A F E}+\mathbf{B D F}+\mathbf{C E D} \\
& =\mathbf{A} \mathbf{E}^{\prime} \mathrm{F}^{\prime}+\mathbf{B} \mathrm{F}^{\prime} \mathrm{D}^{\prime}+\mathbf{C} \mathrm{D}^{\prime} \mathrm{E}^{\prime}
\end{align*}
$$

The circle $\mathrm{DD}^{\prime} E E^{\prime} \mathrm{FF}^{\prime}$ has its
radius $\quad=\frac{\sqrt{b^{2} c^{2}+c^{2} a^{2}+a^{2} b^{2}}}{a^{2}+b^{2}+c^{2}} \cdot \mathbf{R}$
If

EF	cuts	FD	$\mathrm{D}^{\prime} \mathrm{E}^{\prime}$	at	L
L^{\prime}					
FD^{\prime}	,	DE	$\mathrm{E}^{\prime} \mathrm{F}^{\prime}$,	M
M^{\prime}					
DE^{\prime}	,	EF	$\mathrm{F}^{\prime} \mathrm{D}^{\prime}$,	N
N^{\prime}					

Figure 33

For	$F L: D L=F K: D^{\prime} K=A E^{\prime}: C E$
and	$D^{\prime} L^{\prime}: E^{\prime} L^{\prime}=C E: E E^{\prime}$

[^0]: *See Proceedings of Edinburgh Mathematical Socicty, XIII. 166-178 (1895)
 \dagger This name was proposed by Mr Maurice D'Ocagne as an abbreviation of la droitc symetrique de la médiane in the Nourelles Annales, 3rd series, II 451 (1883). It has replaced the previous name antiparallel median proposed by $\mathbf{M r} \mathbf{E}$. Lemoine in the Nourelles Annales, 2nd series, XII 364 (1873). Mr D'Ocagne has published a monograph on the Symmedian in Mr De Longehamps's Journal de Mathenct. tiques Élémentaires, 2nd series, I V. 173-175, 193-197 (1885)
 \ddagger The names symédiane intéricure and symédianc extérieure are used by Mr Clément Thiry in Le troisième livre de Géométrie, p. 42 (1887)
 § Mr De Longchamps in his Journal de Mathématiques Élémentaires, 2nd series, V. 110 (1886).

[^1]: * Mr Maurice J'Ocagne in Journal de Mathémutiques Élímentaires et Spaciales, IV. 539 (1880). This construction, which recalls Euclid's pons usinorum, is substantially equivalent to a more complicated one given by Const. Harkema of St Petersburg in Schlömilch's Zeitschriff, XVI. 168 (1871)

[^2]: * Dr Franz Wetzig in Schlömilch's Zeitschrift, XII. 288 (1867)
 \dagger Mr Maurice D'Ocagne in the Nourelles Annales, 3rd series, II. 464 (1883)
 \ddagger See Proceedings of the Edinburyh Mfathematical Society, XIII. 39 (1895)
 § Proccedings of the Edinlurgh Mathematical Society, XIII. 172 (1895)
 \|Educational Times, XXXVII. 211 (1884)

[^3]: * Dr Franz Wetzig in Schlömilch's Zeitschrift, XII. 288 (1867)
 † C. Adams's Eiyenschaften des... Dreiccks, p. 2 (1846)
 \ddagger Mr Clément Thiry's Le troisième livre de Géométrie. p. 42 (1887)

[^4]: * Dr Wetzig in Schlomilch's Zeitschrift, XII. 288 (1867)

[^5]: * See Proceedings of the Edinburgh Mathematical Society, I. 14 (1894)
 \dagger C. Adams's Eiyertschaften des... Dreiecks, 1. 5 (1846)
 \ddagger Ivory in Leybourn's Mathematical Repository, new series, Vol. I. Part I. p. 26 (1804). Lhuilier in his Élemens d'Analyse, p. 296 (1809) proves that

 $$
 R W: R V=\sin C: \sin B
 $$

[^6]: *Ivory in Leybourn's Mathenatical Repository, new series, Vol. I. Part I. p. 27 (1804). Lhuilier in his Élémens d'Analyse, p. 296 (1809) proves that

 $$
 \mathrm{BR}: \mathrm{CR}=\sin ^{2} \mathrm{C}: \sin ^{2} \mathrm{~B}
 $$

[^7]: * C. Adams's Eigenschaften des ... Dreiecks, pp. 3-4 (1846). Pappus in his Mathematical Collcction, VII. 119 gives the following theorem as a lemma for one of the propositions in Apollonius's Loci Plani :

 $$
 \begin{aligned}
 \text { If } \mathrm{AB}^{2}: \mathrm{AC}^{2} & =\mathrm{BR}^{\prime}: \mathrm{CR}^{\prime} \\
 \text { then } \quad \mathrm{BR}^{\prime} \cdot \mathrm{CR}^{\prime} & =\mathrm{AR}^{\prime 2}
 \end{aligned}
 $$

[^8]: " E. W. Grebe in Grunert's Archic; IX. 258 (1847)

[^9]: *"Yanto" in Leybourn's Mathematical Repository, old series, III. 71 (1803). See Proceedinys of the Edinburgh Muthematical Society, XI. 92-102 (1893)

[^10]: * C. Adams's Eigenschaften des...Dieiecks, pp. 3.4 (1846)

[^11]: * Professor J. Neuberg in Mathesis, I. 173 (1881)

[^12]: *'I'he concurrency may be established by the theory of transversals

[^13]: * By Professor J. Neuberg. J. D. Gergonne (1771-1859) was editor of the Annales de Mathématiques from 1810 to 1831
 + Many of the properties of the J points were given by C. H. Nagel in his Ontersuchungen über die wichtigsten zum Dreiecke gehörigen Kreisc (1836). This pamphlet I have never been able to procure. Since 1836 some of these properties have been rediscovered several times

[^14]: * William Godward in the Lady's and Gentlcnuan's Liary for 1867, p. 63. He contrasts this point, in reference to one of its properties, with the centroid of ABC, and recognises it as the point determined by Mr Stephen Watson in 1865. See $\S 8(2)$ of this paper.

[^15]: * William Godward in Mathematical Questions from the Educational Times II. 87, 88 (1865)

[^16]: * Geometricus (probably Mr William Godward) in Mathematical Questions from the Educational Times, III. 29-31 (1865). The method of proof is not his.

 Mr W. J. Miller adds in a note that $I_{1} A^{\prime}$ divides $I_{2} I_{3}$ into parts which have to one another the duplicate ratio of the adjacent sides of the triangle $I_{1} I_{2} I_{3}$ and similarly for $\mathrm{I}_{2} \mathrm{~B}^{\prime} \mathrm{I}_{3} \mathrm{C}^{\prime}$; and that the point of concurrency is such that the sum of the squares of the perpendiculars drawn therefrom on the sides of the triangle $\mathrm{I}_{1} \mathrm{I}_{2} \mathrm{I}_{3}$ is a minimum, and these perpendiculars are moreover proportional to the sides on which they fall.
 \dagger Professor Johann Döttl in his Neue merkwürdige Punkte des Dreiecks, p. 14 (no date) states the concurrency, but does not specify what the points are.
 \ddagger C. Adams's Eigenschafton des...Drcieckis, p. 5 (1846)

[^17]: * The first of these is mentioned by Dr Franz Wetzig in Schlömilch's Zeitschrift, XII. 289 (1867)
 \dagger This is one of Apollonius's theorems. See his Conics, Book III., Prop. 37-40 \ddagger C. Adams's Eigenschaften des...Dreiecks, pp. 3-4 (1846)

[^18]: * Mr J. J. A. Mathieu in Nourclles Annales, 2nd series, IV. 404 (186ă)

[^19]: * Dr Franz Wetzig in Schlömilch's Zeitschrift, XII. 289 (1867)
 † E. W. Grebe in Grunert's Archiv, IX. 253 (1847)

[^20]: * Dr Franz Wetzig in Schlömilch's Zeitschrift, XII. 297 (1867)

[^21]: * Mr Einile Lemoine in the Journul ac Mathématiques Élémentaircs, 2nd series, III. 52-3 (1884)
 \dagger This theorem and the proof of it have been taken from Professor W. Fuhrmann's Synthetische Beweisc plenimetrischer Sätze, pp. 101-2 (1890)

[^22]: *For proof of some of the statements made here, see Proceedings of the Edinburgh Mathematical Society, I. 36-7 (1894)
 † Dr Franz Wetzig in Schlömilch's Zeitschrift, XII. 298 (1867)

[^23]: * Dr John Casey in Procecdings of the Royral Irish Acadcmy, 2nd series, IV. 546 (1886)
 \dagger Rev. T. C. Simmons in Milne's Companion to the Wechly Prollem Papers, p. 150 (1888)

[^24]: * Mr Lemoine at the Lille meeting (1s74) of the Association Francuise pour l'araneement des sciences
 \dagger Mr Stephen Watson in the Lady's and Gcntleman's Diary for 186̈, p. 89, and for 1866, p. 55

[^25]: *Mr Stephen Watson in the Lady's and Gentleman's Diary for 1866, p. 55

[^26]: * This mode of proof is due to Mr R. F. Davis. See Fourteenth General Report (1888) of the Association for the Improvement of Geometrical Teaching, p. 39.

[^27]: * Properties (6)-(9) are due to Mr Tucker. See Quarterly Journul, XLX. 344,346 (1883)

[^28]: * See the Quarterly Journol, XX. 57-59 (1884)

[^29]: * The properties (1), (2), (3), (6), (7) are due to Mr Tucker. See Quarterly Journal, XX. 59, 57, XIX. 348, XX. 59 (1884, 3)

[^30]: *The property that $\mathbf{Y}_{1} \mathbf{Z}_{1}$ is equal to the semiperimeter of XXZ occurs in Lhuilier's Elémens d'Analyse, p. 231 (1809)
 \dagger The first of these equalities is given by Feuerbach, Eigenschaften des ... Dreiecks, $\S 19$, or Section VI., Theorem 3 (1822). The other three are given by C. Hellwig in Grunert's Archiv, XIX., 27 (1852). The proof is that of Messrs W. E. Heal and P. F. Mange in Artemas Martin's Mathematical Visitor, II. 42 (1883)

[^31]: * Dr Kiehl of Bromberg. See his Zur Theoric der Transversalen, pp. $7-8$ (1881). See also Proccedina/s of the Lonulon Mathemetical Socict!, XV. 2 S1 (1884)

[^32]: * This corollary and the mode of proof have been taken from Dr John Casey's Sequel to Euclid, 6th ed. p. 195 (1892)
 \dagger Dr John Casey's Sequel to Euclid, 5th ed. p. 195 (1892)

[^33]: * C. Adams's Die Lehre von den Transversalen, pp. 77-80 (1843)

[^34]: * C. Adams's Die Lehre ion den Transversalen, p. 79 (1843)

[^35]: * Mr Clément Thiry, Applications remarquables du Théorème de Stewart, p. 20 (1891)

[^36]: *The values of AK BK CK are given by E. W. Grebe in Grunert's Archiv, XI. 252 (1847)
 \dagger Dr Franz Wetzig in Schlömilch's Zeitschrift, XII. 293 (1867)
 \ddagger Mr Clément Thiry, Applications remarquables du Théorème de Stewart, p. 38 (1891)

[^37]: * Dr Franz Wetzig in Schlömilch's Zcitschrift, XII. 294 (1867)

[^38]: * Mr R. Tucker in Quartcily Jour.al of Mathematice, NIX. 342 (1883)
 + The first of these values is given by "Yanto" in Leybourn's Mathcmatical Repository, old series, Vol. III. p. 71 (1803). Lhuilier in his Élémens d'Analysc, p. 298 ($\mathbf{1 8 0 9 \text {) gives the analogous property for the tetrahedron. }}$

 The other values are given by E. W. Grebe in Grunert's Archic; IN. 251 (1847)

[^39]: * Dr Franz Wetzig in Schlömilch's Zeitschrift, XII. 294-295 (1867)
 † Both forms are given by E. W. Grebe in Grunert's Archiv, IX. 2 as3 (1847)

[^40]: * Dr Franz Wetzig in Schlömilch's Zeitschrift, XII. 299 (1867)
 \dagger L. C. Schulz von Strasznicki in Baumgartner and D'Ettingshausen's Zeitschrifı für Physik und Mathematik, II. 403 (1827)
 \ddagger Dr Franz Wetzig in Schlömilch's Zeitschrift, XII. 287, 293, 291 (1867)

[^41]: * Dr Wetzig in Schlimmilch's Zcitschrift, XII. 298, 296, 292 (1867)

